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Executive Summary  

The purpose of this project was to explore opportunities for enhancing the detection and 
surveillance of inpatient-acquired surgical site infections (SSIs) for four target procedures—
herniorrhaphy, coronary artery bypass graft (CABG), and hip and knee arthroplasty (including 
primary total arthroplasty, primary hemiarthroplasty, and revision procedures). Four delivery 
systems came together in order to provide the most representative results and generalizable tools. 
Collaborating delivery systems include Denver Health (a safety-net hospital located in Denver, 
CO), Intermountain Healthcare (a large, nonprofit, integrated delivery system based in Salt Lake 
City, UT), and the Salt Lake City Veterans Affairs Medical Center (a VAMC hospital located in 
Salt Lake City); representativeness was further extended by including the Vail Valley Medical 
Center (Vail, CO), a Denver Health partner.  

One key activity involved developing and testing a computer-assisted algorithm for 
retrospective assessment of medical records, laboratory test results, and patient demographic data 
to identify electronically patients with potential SSIs. The plan for, results, and implications of 
this work is presented in Chapter 2.  

A second primary activity of our work involved screening an expanded set of SSI risk factors 
to consider in exploring, monitoring, and predicting SSIs. The approach for screening additional 
risk factors, analytic results, and recommendations are presented in Chapter 3.  

Chapter 4 provided insights from two target audiences—surgeons and infection prevention 
nurses—using qualitative research methods to inform Chapter 2 and Chapter 3 activities as well 
as dissemination and outreach with the results of our work (see Chapter 5).  
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Chapter 1. Administration  

Overall project management and administration was conducted via co-leadership of the 
Principal Investigators and Project Directors from Denver Health and Intermountain Healthcare, 
Connie Savor Price, M.D. and Lucy A. Savitz, Ph.D., M.B.A. Denver Health acted as the prime 
contractor and was responsible for oversight of the collaboration, which was funded through the 
Accelerating Change and Transformation in Organizations and Networks (ACTION) 
mechanism. Susan L. Moore, M.S.P.H., served as the ACTION project coordinator and as such 
was the primary point of contact in facilitating and coordinating communications with the 
Agency for Healthcare Research and Quality (AHRQ), the Centers for Disease Control and 
Prevention (CDC), and the research team. 

To maintain clear and regular communication, monthly conference calls were held between 
key project stakeholders, including Kendall Hall, M.D., who represented AHRQ as the Task 
Order Officer (TOO); Sandra Berrios-Torres, Teresa Horan, and Jonathan Edwards, who 
together represented CDC as Technical Experts; and the research team leadership from Denver 
Health, Intermountain Healthcare, Salt Lake City VAMC, and Vail Valley Medical Center. The 
calls were scheduled on a regular basis to occur on the third Tuesday of each month. A call-in 
number was established and used for all calls. Agendas and supporting materials for the calls 
were distributed to the group every Friday before the scheduled calls, to allow sufficient time to 
review agenda items. Appendix A*

Following the first teleconference with the TOO and Technical Experts, the project team 
determined that internal preparation and coordination teleconferences should be scheduled on a 
regular basis. The internal team calls were scheduled on the second Tuesday of every month. To 
ensure adherence to the project work plan, the team call agendas were driven by the project work 
plan timeline and deliverable schedule. The progress of each task was discussed during each call, 
and any issues or challenges of the work were discussed as a team. 

 provides agendas and meeting summaries for these calls. 

The team-building value of face-to-face meetings was considered important, both early in the 
project and on a regular basis throughout. The first team meeting was scheduled in Salt Lake 
City, Utah on November, 20, 2009. At the meeting, the overall project goals were discussed, 
project management and logistics were reviewed, and the progress of each task was discussed at 
length. A second meeting was held in Salt Lake City, Utah on October, 15, 2010. The project 
milestones and deliverables were reviewed with specific focus on the project timeline and end 
date. Several challenges and updates were discussed at length, most notably, the nursing focus 
group was proposed to be repurposed to present use cases for the surveillance tool; and the plans 
for dissemination of the project work were discussed. The TOO and Technical Experts were 
included in the meeting via teleconference for part of the meeting to review the project updates. 
A final face-to-face meeting was held in Vail, Colorado on January 27-28, 2011 as a writing 
session to finalize the draft final report for the project. Summary notes from these in-person 
meetings are provided in Appendix B. 

                                                 
 
* The Appendixes are available on the AHRQ Web site at http://www.ahrq.gov/qual/hais.htm#Providers, as part of 
the HTML version of the Report. Unlike the Report, the Appendixes are unedited. 

http://www.ahrq.gov/qual/hais.htm#Providers�
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Monthly progress reports covered the work done in the previous month and included concise 
updates of: 

• what was accomplished for each task during the reporting period 
• problems or delays the contractor has experienced in the conduct of performance 

requirements, including what specific action is proposed to alleviate the problem(s) 
and a revised timetable  

• activities planned for the next reporting period, including anticipated staffing 
requirements, level of effort, and cost  
 

To keep all parties informed of the monthly progress, the reports were submitted 
electronically through AHRQ’s Research and Reporting System (ARRS), with duplicates 
delivered by email to the TOO, Technical Experts, and AHRQ’s Contracting Officer. We have 
explored with AHRQ the opportunity to engage in a variety of dissemination activities. Three 
presentations, two poster and one oral, have been given at national meetings and two papers are 
planned for submission to the Journal of the American Medical Informatics Association (JAMIA) 
and an open-access, peer-reviewed journal such as Implementation Science. This is discussed 
further in Chapter 5. 
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Chapter 2. Determine Surgical Site Infection Rates  

The purpose of this task is to develop a surveillance tool that detects downstream 
manifestations of surgical site infection (SSI) in electronic data. Health care systems with 
electronic health information systems may improve the efficiency (time spent to find a positive 
case) of their SSI surveillance activities and improve reliability by leveraging electronic data. 
Although many approaches exist, the one long employed by the Intermountain Healthcare 
system uses electronic algorithms to populate more manageable queues of charts that an 
Infection Preventionist (IP) can subsequently review. This approach can capitalize on the IP’s 
superior ability to discern the presence of SSI and may unburden the IP of mundane, automatic 
tasks significantly. When Intermountain Health initially implemented this scheme, there were 
few facilities that could have replicated the feat, but more and more facilities may be able to 
employ similar strategies. Human–adjudicated electronic surveillance for SSI may now be 
generalizable to other institutions as more hospitals switch over to electronic medical records 
(EMRs) or electronic health records (EHRs). 

The purpose of an IP performing manual surveillance is at least two-fold: to improve 
situational awareness and to be able to detect differences between times or places. For the 
former, it is useful to have a high a sensitive surveillance system. To perform the latter, it is 
useful to be highly specific. IPs have been traditionally employed in this task because they are 
adaptable and have a better ability to discriminate between charts that have and do not have SSI 
than automated systems. Although employing IP appears to be the ideal solution, they are 
routinely stretched and not allowed adequate time for all of their responsibilities.1-3 Also, 
adaptation can lead to problems when it comes to comparability. 

On the other hand, completely automated systems can review charts quickly and usually do 
not adapt. There is some evidence to suggest that depending on the conditions and the purpose of 
surveillance, automated systems may be the instrument of choice.4 These systems can be 
extremely sensitive to artifacts of data manipulation or changes in practice. Usually, algorithms 
are restricted to structured data and cannot use as much information as manual systems. Also, 
their specificities are usually inferior to manual review. 

Our approach used a hybrid, human-adjudicated approach. Such systems are not new, but 
there have been barriers to implementation. They still need human reviewers, and adapting 
algorithms developed elsewhere to the local electronic health system may be difficult. The 
rationale for the combination of the two may be illustrated by invoking signal detection theory. 

In signal detection theory, reviewers distinguish between the presence or absence of disease 
by assessing the chart, laboratory values, antibiotics, etc. These data are called signal. The 
reviewer has two important characteristics: the discriminability index and criterion. The 
discriminability index is a measure of how well the reviewer perceives the differences in signal 
between the diseased and nondiseased states. The criterion is the threshold at which the reviewer 
interprets signal as disease. If the criterion is lowered, then sensitivity improves and specificity 
declines. If the criterion is raised then the reverse is true. The only way to improve sensitivity 
and specificity simultaneously is to improve discriminability. A human reviewer’s 
discriminability index is unlikely to change rapidly, but criterion might. An automated system’s 
discriminability index is usually lower than a human reviewer’s, but it can review a large number 
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of cases rapidly. Its criterion usually does not change unless the semantics of the data have 
changed. With this framework, we can build a two tiered system. The first tier is run by the 
automated system. It removes charts where signal is weak enough that they can still be safely 
removed despite its inferior discriminability index. The second tier involves human review on 
more difficult cases, where the human’s superior discriminability index can be used efficiently. 

The algorithm we constructed was developed for use in this two-tiered system. A strength of 
our approach was to rigorously differentiate between risk factors for and manifestations of SSI. 
Risk factor data could supply additional information to improve performance, but it would also 
curtail any analysis of risk from surveillance systems using the algorithm. We anticipated that 
the main characteristics that would facilitate its acceptability were a high sensitivity and a low 
number of charts needed to review per identified SSI.  

Our approach seeks to capitalize on the superior specificity of human reviewers, the growing 
wealth of electronic data, and the speed of automated systems. If charts are reviewed in roughly 
20 minutes5 and the fraction of SSI among procedures is roughly 1 percent,6 then 33 hours of 
review could be anticipated for every SSI found. If electronic tools could effectively remove 80 
percent of charts, then only 6.6 hours would be spent for every SSI found. The impact of such 
savings may be large. The Virginia requirement for statewide detection/reporting would require 
160 infection preventionists (IPs) at a cost of $11.5 million. More than 50 percent of IP time is 
spent at the desk7—time that could be applied to implementation, education, and other effective 
activities. The surveillance tool will enhance nurse work, moving them from being infection 
counters to being IPs, freeing these professionals up to do more prevention. Further, the 
surveillance system provides cognitive surveillance support of the human element of current 
practice (i.e., chart review, available electronic data, using “shoe leather”). 

 
 

 
SSI = surgical site infection. 

S ubtas k 2.1. Identify P otential Automated/E lec tronic  S ourc es  
of Health C are Data Us eful for S urveillanc e of S S I. 

The investigators and supervising officers decided to investigate a human-adjudicated 
electronic system akin to the one currently used in Intermountain Healthcare. In such systems, 
electronic algorithms with high sensitivity and negative predictive value are employed to identify 
electronic markers of SSI and populate a manageable queue of charts that an IP would 

 Quality assurance for current practice 
 Reduces burden of chart review 
 Identify p atterns of  i nfection t hat m ight s uggest oppor tunities f or pr ocess 

improvement/reengineering to enhance quality and safety 
 Changes the nature of the job 
 Meets mandatory, hospitalwide reporting of SSI for value-based payments;   
 Publicly available electronic surveillance tool vs . expensive, proprietary data mining 

surveillance t ools l ike Theradoc™ or Medimined® that c an c ost up t o $150,000,  
require a separate server, and have continuing maintenance/upgrade fees 

 

Exhibit 1. Advantages of surveillance automation  
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subsequently review. The decision to implement this hybrid type of surveillance system was 
made based on the difficulty of categorizing SSI subtypes and concern for the poor specificity of 
solely electronic approaches. Initially, the plan was to perform this task using data from the four 
participating hospitals; however, as we acquired SSI data from these hospitals, it became 
apparent that the rarity of SSI among the total number of procedures performed would make 
these data insufficient for the proper training and validation of the electronic algorithm 
component of our system (see Exhibit 2 below).  

In Exhibit 2, it can be seen that there were 73 SSIs, with the smallest hospital contributing  
only 3 (4.1 percent) and the largest hospital contributing 43 (58.9 percent). The use of data from 
only the principal four hospitals would produce algorithms based on small numbers and 
dominated by Intermountain Health.  

The standard approach to SSI surveillance, as implemented by the National Surgical Quality 
Improvement Program (NSQIP), facilitates a consistent measurement of SSI across facilities. 
Their methodologies are well-documented and there is a certification process for each reviewer. 
Additionally, NSQIP performs yearly audits to assess interrater reliability. The accrual of data 
contributed is also reviewed to maintain data quality. The entire Veterans Affairs (VA) network 
of 152 active hospitals participates in NSQIP (its implementation is called VASQIP) and 
performs a large number of surgeries. We subsequently received permission for and obtained 
VASQIP data for 2007 through 2010 for training and testing. Data from the four principal 
hospitals were used for external validation process described in Task 2.3.2.  

Of note, VASQIP reviewers do not review all cases. Surgical chart reviewers review cases in 
temporal order as they are identified by CPT code. Reviewing stops when they reach their quotas 
over 8 day cycles. In the VA, the quota is 36 procedures. No more than 5 of the procedures can 
be inguinal herniorrhaphies during a cycle.8 Although sampling is not random, the first day of 
each cycle shifts the weekday it falls on for each cycle, so it is not obvious that this process 
produces systematic bias with regard to SSI outcomes. Exhibit 3 illustrates the fraction of cases 
reviewed among the listed procedures at VA SLC HCS, whether documented only by ICD-9 
codes, CPT codes, or both. Depending on the total number of cases of each type, we expect that 
there would be differences in the proportions reviewed that may vary over time. We cannot 
exclude bias and it appears that, for some procedures, only a minority of cases is reviewed, but 
the number of both surgeries and SSIs in hospitals of different sizes, locations, and acuity were 
seen as an asset for training algorithms to detect SSI. Again, because our objective is to develop 
an algorithm to detect SSI, the only bias we are concerned with is whether cases are sampled in 
ways that induce differential misclassification between diagnoses of SSI and our measured 
indicators of SSI.  
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Exhibit 2. Number of procedures stratified by hospital and types between 2008 and 2009 

      DH IH VA SLC VVMC* 

Procedure   Num. 
% 

Proc. Num. 
% 

Proc. Num. 
% 

Proc. Num. 
% 

Proc. 
CABG Total Procedures 0   1845   78   0   

    
Superficial 
SSI 0   12 0.7% 3 3.8% 0   

    Deep SSI 0   7 0.4% 0 0.0% 0   

    
Organ-
Space SSI 0   1 0.1% 0 0.0% 0   

  Total SSI 0   20 1.1% 3 3.8% 0   
                      
HERNIA Total Procedures 898   1059   237   294   

    
Superficial 
SSI 4 0.4% 0 0.0% 2 0.8% 1 0.3% 

    Deep SSI 2 0.2% 0 0.0% 0 0.0% 0 0.0% 

    
Organ-
Space SSI 1 0.1% 0 0.0% 1 0.4% 0 0.0% 

  Total SSI 7 0.8% 0 0.0% 3 1.3% 1 0.3% 
                      
THA Total Procedures 268   2810   90   137   

    
Superficial 
SSI 2 0.7% 0 0.0% 0 0.0% 0 0.0% 

    Deep SSI 2 0.7% 5 0.2% 0 0.0% 1 0.7% 

    
Organ-
Space SSI 3 1.1% 3 0.1% 2 2.2% 0 0.0% 

  Total SSI 7 2.6% 8 0.3% 2 2.2% 1 0.7% 
                      
TKA Total Procedures 232   7897   163   421   

    
Superficial 
SSI 1 0.4% 6 0.1% 0 0.0% 0 0.0% 

    Deep SSI 2 0.9% 7 0.1% 0 0.0% 1 0.2% 

    
Organ-
Space SSI 1 0.4% 2 0.0% 1 0.6% 0 0.0% 

 
Total 
SSI   4 1.7% 15 0.2% 1 0.6% 1 0.2% 

DH = Denver Health, IH = Intermountain Health, VA SLC = VA Salt Lake City Healthcare System, VVMC = Vail Valley 
Medical Center, % Proc = percent of total procedures, CABG = coronary artery bypass grafting, HERNIA = herniorrhaphy, 
THA = total hip arthroplasty, TKA = total knee arthroplasty.  
* From 2007 to 2009. 
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Exhibit 3. Comparison of fraction of all herniorrhaphy and total knee and hip arthroplasties 
reviewed by VASQIP 

 
Note: All procedures were identified by ICD-9 and CPT codes. VA SLC HCS = Veterans Administration Salt Lake City Health 
Care System; VASQIP = Veterans Affairs Surgical Quality Improvement Program 

2.1.1. Identify data elements for inclusion in training datasets 
A literature review was performed using Medline and the searches “ (“surgical wound 

infection/diagnosis”[Mesh] AND “Data collection”[Mesh])” as well as  “(“surgical wound 
infection/diagnosis”[Mesh] AND  (“Blood Sedimentation”[Mesh] OR “C-Reactive 
Protein”[Mesh] OR “Leukocytosis”[Mesh])”, which produced 256 and 75 results respectively. 
Titles and abstracts were reviewed to identify articles to investigate. Our criterion was to identify 
articles that pertained to the manifestations of surgical site infections, especially those 
manifestations that can be identified electronically, as opposed to risk factors of disease. We also 
incorporated articles that the authors were aware of and allowed “snowballing” of related articles 
during review. We excluded articles that employed primary data collection. The identified data 
elements were: leukocyte count, leukocyte differential, fever, procalcitonin (not helpful, as this 
laboratory measurement is not readily available in the United States), erythrocyte sedimentation 
rate, C-reactive protein, microbiology results, and antimicrobial administration.9-43 A significant 
number of articles incorporated claims data into algorithms.16,18,20,21,26,30,34,44 Unfortunately, these 
data are generally not available until well after an IP typically would be reviewing cases. We 
have elected not to include claims data into the algorithm here. 

Based on our findings in the literature review, a data dictionary was sent to each of the 
participating centers, so that they could pull their data. Standardizing to a common physical data 
model allowed us to share the algorithm through the dissemination of SQL (structured query 
language) code scripts. Each of the centers then implemented the algorithm on their own data 
and identified charts that needed to be reviewed. The full data dictionary is included in Appendix 
C. 
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2.1.2. Each site pulls surgical-procedural and other identified data, 
based on the list for training sets 

Some modifications were made to this subtask with approval from AHRQ. The movement of 
large sets of individual data between institutions was problematic. Instead, we focused on 
developing a portable algorithm, so that each of the centers would be able to implement it 
locally. Local (as opposed to central) implementation also demonstrates the feasibility of 
algorithm dissemination. 

During the task, it became apparent that VA SLC HCS was the only hospital contributing to 
NSQIP for all four surgeries of interest. Intermountain Healthcare (IH) does participate in 
NSQIP, but does not perform NSQIP surveillance on all surgery types of interest. Neither 
Denver Health (DH) nor Vail participated in NSQIP. At the VA, VASQIP is the principal 
method of SSI surveillance. For the purposes of training and validating an algorithm, we needed 
a dataset much larger than the participating hospitals could provide so we decided to use 
nationwide VASQIP data. A database of vitals, laboratories, medications, microbiology data, and 
SSI outcomes was constructed for the purposes of algorithm development. Drawbacks of 
developing an algorithm entirely in the VA and applying it to other hospitals include the fact that 
the veteran patient population does not necessarily generalize well to the populace at large, and 
that the VA system has a comprehensive inpatient and outpatient system. IH and DH are similar 
in this respect. The use of both inpatient and outpatient data improve postdischarge surveillance 
while making it more efficient. We anticipated that the algorithms might fare more poorly at Vail 
Valley Medical Center (VVMC) due to the nonintegrated inpatient and outpatient care systems. 

A significant amount of work was devoted to ensuring data quality. Since VA data came 
from many individual hospitals with different data formats, the distributions of each of the data 
elements was examined to look for outliers. These outliers were then examined to see if they 
stemmed from differences in units or other unanticipated formats. The final distributions of each 
were within anticipated bounds. 

S ubtas k 2.2. Develop P roc edure-s pec ific  Algorithms  Utilizing 
Identified Data S ourc es  to Detec t S S I E vents  

2.2.1. Create and train the algorithm 
Our objective was to build an algorithm with high negative predictive value that favored 

sensitivity over specificity, and relied on human adjudication to improve the specificity of the 
SSI surveillance system. Traditionally, prospective surveillance systems that rely on manual 
human review have suffered from suboptimal sensitivity. Because SSIs are rare outcomes, many 
hours are spent to find each infection, which is extremely inefficient and time consuming. 
Further, sensitivity may be low because of reviewer fatigue.45 A human-adjudicated system that 
reduces workload by removing charts unlikely to contain SSI both reduces the amount of work 
necessary to detect SSIs and raises the reviewer’s expectation that a chart might contain an SSI. 

Previous experience detecting methicillin-resistant Staphylococcus aureus (MRSA) by means 
of electronic algorithms46–48 guided our efforts to find electronic signs of infection as opposed to 
risk factors. We began with identifying candidate surgeries among VASQIP data from 2007 
through 2009. As VASQIP surgeries are identified by CPT code and not by ICD-9s, we built a 
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map between the two for the four target procedures: coronary artery bypass grafts, total hip 
arthroplasties, total knee arthroplasties, and abdominal and inguinal herniorrhaphies. We used 
the UMLS (Unified Medical Language System) metathesaurus concepts to bridge between ICD-
9 and CPT vocabularies at the level of coronary artery bypass grafting (CABG), herniorrhaphies, 
procedures of the hip, and procedures of the distal femur and knee. We then reviewed the 
children of these concepts and identified codes that described the types of procedures that were 
included in the ICD-9 list. We felt that this procedure was more reproducible and updatable than 
an entirely manual mapping attempt. Details of our findings while performing this mapping are 
included in Appendix D. 

Once the necessary CPT codes were identified, they were used to identify candidate surgeries 
among all VA hospitals. Between 2007 and 2009, there were 71,102 targeted procedures 
performed and reviewed in our sampling of the VASQIP dataset. This set was randomly divided 
into two equal sets, one for training and one for testing. However, due to gaps in the laboratory 
data we received, the cases before January 1, 2008, were excluded from the testing set.  

The dataset also noted whether a superficial, deep, or organ-space SSI was identified within 
30 days of the surgical procedure. For simplicity, we summarized the information present in the 
different levels of infection into dichotomous variables indicating the presence or absence of 
deep or organ-space SSI, or SSI of any type. As an IP would still need to review the chart, we 
felt that it was unnecessary for an algorithm to be trained to find each SSI type separately. 

These data were then linked to potential manifestations of disease. We included electronic 
markers between postoperative days 4 and 30 because pre- or perioperative data might indicate 
risks for SSI or that the patient was already infected at the time of operation. We then 
investigated the relationship of leukocyte count, temperature, the sending of a microbiology 
culture, whether the culture matched, the administration of an antibiotic (inpatient or outpatient), 
readmission, erythrocyte sedimentation rate, and C-reactive protein to SSI. Maximum values 
during the eligible time-frame were used for laboratory values and vitals. The administration of 
an antibiotic was limited to systemic antibacterials and readmission was limited to admission to 
ICU or acute care medical or surgery wards. Although we recognized that risk factors could be 
associated with SSI as well, we were concerned about introducing mathematical coupling49—that 
bias would be introduced into any subsequent analyses of risk, because risk was used to 
determine eligibility for SSI. 

We also considered the potential need for rules that considered the dynamic evolution of the 
patient’s status over time. We excluded the first three postoperative days when determining the 
administration of antibiotics and sending of cultures because of recommendations for antibiotics 
prophylaxis and because some operations are performed on known or suspected infected joints. 
Laboratories and vitals were more difficult because successful operations without complication 
are known to cause abnormalities that resolve over time. Exhibits 4 and 5 show the evolution of 
C-reactive protein in total hip arthroplasties both without SSI and with SSI. The laboratory 
values appeared to have poor correlation with outcome during preliminary analysis, so it was 
unclear whether this line of analysis would yield much extra information. We opted to simplify 
by not considering this aspect. 
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Exhibit 4. Evolution of C-reactive protein values among individuals who NEVER develop an SSI.  

 
CRP = C-reactive protein; SSI = surgical site infection; THA = total hip arthroplasty. 

 
Exhibit 5. Evolution of C-reactive protein among individuals who DO develop an SSI. 

 
CRP = C-reactive protein; SSI = surgical site infection; THA = total hip arthroplasty. 
 
To increase the amount of information that a microbiology culture could provide and to 

improve the specificity of electronic algorithms, we mapped the reported sample and specimen 
fields to a single collection-site type. Each type was categorized as to whether it could be 
consistent with each of the surgeries of interest (see Appendix E). For example, a urine specimen 
was considered to be incompatible with an SSI from any of our surgeries of interest. A wound 
swab was considered to be compatible with any of the surgeries. Synovial fluid from the hip was 
considered to be only compatible with an SSI after a total hip arthroplasty. While all of the 
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cultures were mapped, not all were considered to be postoperative. Only postoperative cultures 
were included for consideration in the algorithm. We also extracted information regarding 
whether there was growth of any organism, whether there was growth of a virulent organism, 
and whether the specimen came from a normally sterile site. But, as it became clear that 
implementation would be difficult at other centers, we discontinued development of this aspect.  

Various strategies are available for algorithm development. We targeted algorithms with high 
sensitivity that also could increase the efficiency of chart review by excluding a large fraction of 
negative charts. To do the latter while not impeding the former, we investigated methods that 
would allow interactions between variables. Classification tree and regression tree  (CART) 
analysis, also called recursive partitioning, lends itself to the formulation of interacting rules and 
has been used previously in algorithms to detect SSI.16 This method is limited, however, because 
it does not analyze interactions along the entire range of variables. Another issue is that it is not 
as robust when dealing with frequent missing data. Random forest strategies may have had 
advantages, but we felt that, for user acceptability, it was important to have simple, 
understandable rules. 

We used the function rpart for recursive partitioning in R, to develop algorithms. We used 
the function initially to detect all types of SSI, but because of the lack of sensitivity and 
inefficiencies when searching for superficial SSIs, it was subsequently trained to target only deep 
and organ-space SSIs. It was felt that the reliability in the reference standard would also be 
higher in this subgroup.50 The results presented in this document refer to these later algorithms; 
however, classification trees of these earlier attempts are also included in Appendix F. We 
specified a classification tree and a loss matrix to penalize false negatives. The loss matrix was 
weighted by the inverse of the prevalence of deep and organ-space infections in the set. The 
maximum depth was limited to three and the minimum number of cases in a branch, before a 
split was permitted, was three. Any tree that resulted in a change of the complexity parameter 
(cp) of more than 0.001 was investigated. Effort was taken to prune the tree at the cp that 
minimized the relative cross-validation error, but when the difference was small and the 
algorithm was not sensitive enough, values with more splits but slightly higher relative cross-
validation errors were accepted. The model was built with the following R code: 

inverse_prevalence<-(1/mean(N$SSI)) 
loss<-matrix(c(0,inverse_prevalence,1,0),byrow=TRUE,ncol=2) 
 
fit<-rpart(SSI~WBC +ESR +CRP +NE_N +NE_P  +FERRITIN  
+P_WBC +P_ESR +P_CRP +P_FERRITIN +postopabx +postopcx +postopadmit 
,data=N, minsplit=3, maxdepth=3, method="class", cp=.001, parms=list(loss=loss)) 
 

Where ‘N’ is the original data frame and ‘N$SSI’ is the vector representing deep and organ-
space SSI. ‘loss’ is the loss matrix. The modification of the variable names with the prefix ‘P_’ 
indicates the presence of a value, as we anticipated that the presence or absence of a lab may be 
informative as well. NE_N denotes the absolute number of neutrophils and NE_P denotes the 
percentage of neutrophils. 

The initial tree, the correlation coefficient and cross-validation errors, and the final tree (if 
different from the initial tree) are included in Appendices F & G. The presentation of rules in 
Exhibit 6 is equivalent to the charts in the appendix. This is because the tree has been collapsed 
into an expression of the set of surgeries among which SSI are likely.  



14 
 

 
Exhibit 6. Demonstration that algorithm positives can be identified by compact logic.  

 

 
A, B, and C represent conditions. ~ is the NOT operator. ∩ is the INTERSECTION operator and U is the UNION operator. SSI = 
surgical site infection. 

 
The way in which classification trees are collapsed is illustrated in Exhibit 6, if the first 

branch includes on A and its subbranch includes on B, then the set A∩B meets both conditions, 
where ∩ is the INTERSECTION operator. Because of the law of commutation, A∩B= B∩A and, 
by extension, A∩B∩C= C∩B∩A. Each branch that extends to the right joins the new set by the 
INTERSECTION operator. The rest of the figure describes how rules may be expanded. Exhibit 
7 presents the same algorithm as the charts in the appendix, except that the law of commutation 
has been used to make the rules more presentable. An important point to make is that missing 
values do not evaluate to true or to false. They evaluate to NULL. All of these NULLs are also 
interpreted as positive. 

All SSI

A~ A

B~ B~ C C

A∩BA∩~B~A∩C~A∩~C

Positive PositiveNegativeNegative

POSITIVES: A∩B U ~A∩C
NEGATIVES: ~A∩C U ~A∩~C
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Exhibit 7. Algorithm to identify deep and organ-space surgical site infections 
Surgery Description 
CABG 1. Presence of both postoperative culture and postoperative antibiotics, and the 

maximum postoperative leukocyte count is not less than 11.85 
  
Herniorrhaphy One of the following: 
 1. Presence of a postoperative culture and one of the following criteria: 
  a. The maximum postoperative leukocyte count is not less than 7.78 
  b. The maximum postoperative neutrophil percentage is not less than 67.3 
 2. Absence of a postoperative culture and one of the following criteria: 
  a. Postoperative antibiotics given and any postoperative leukocyte count test drawn 
  b. Postoperative antibiotics not given, but the patient had a postoperative 

admission 
  
TKA One of the following: 
 1. Presence of a postoperative culture 
 2. Presence of a C-reactive protein and the maximum postoperative leukocyte count is 

not less than 9.45 
   
THA 1. Presence of a postoperative culture and postoperative antibiotics were given and the 

maximum postoperative leukocyte count is not less than 7.55 

CABG = coronary artery bypass graft; TKA = total knee arthroplasty; THA = total hip arthroplasty. 
 

Alternatively, we tried an “inclusive” rule using the presence of any high-normal value.  

“Inclusive” rule:  
• the presence of an erythrocyte sedimentation rate (ESR) greater than 20  
• or a total neutrophil count greater than 5,000/mm3  
• or a leukocyte counter greater than 9,000/mm3  
• or a C-reactive protein greater than 3mg/dL  
• or postoperative antibiotics given  
• or the presence of a postoperative culture, or the patient was readmitted within 30 

days postoperatively. 
 
Finally, we also implemented a "simple" rule. 

 “Simple” rule: 
• Microbiology test ordered between postoperative days 4 and 30, inclusively 
• An antibacterial was prescribed between postoperative days 4 and 30, inclusively 

 

The algorithms’ performance on the training set can be seen in Exhibits 8–10 below. In 
Exhibit 8, the total numbers of procedures are divided by procedure type. Additionally, the 
breakdown by depth of infection and fraction of total SSI are expressed. In Exhibit 9, two-by-
two tables and diagnostic accuracy in the training set are listed. Additionally, the fraction 
excluded and the numbers of charts that need to be reviewed per positive case are expressed for 
both unfiltered review and algorithm filtered review. The sensitivity was as low as 93.3 percent 
for herniorrhaphies and total knee arthroplasties. When heavily penalizing false-negatives, even 
beyond the inverse prevalence, the rpart function would not return acceptable algorithms. The 
“inclusive algorithm” was implemented as well, which is detailed above, but did not employ any 
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other logic than logical OR/set union. Exhibit 10 demonstrates the gains in sensitivity from a 
very inclusive algorithm. While there were some gains in sensitivity, particularly with respect to 
superficial SSI, which we were not targeting, this came at the expense of needing to review 
approximately one-third of the charts. 

 
Exhibit 8. Distribution of SSI among surgeries in VASQIP data 

  CABG   HERNIA   KNEE   HIP   TOTAL   

Total 
Procedures 4525   19692   7467   3867   35551   

                     

Surgical 
Site 
Infections # SSI 

% 
Total # SSI 

% 
Total # SSI 

% 
Total # SSI 

% 
Total # SSI % Total 

sSSI 108 93.1 165 74.7 61 59.2 40 51.3 374 72.2 

dSSI 8 6.9 36 16.3 29 28.2 33 42.3 106 20.5 

oSSI 0 0.0 20 9.0 13 12.6 5 6.4 38 7.3 

TOTAL 116   221   103   78   518   

SSI = surgical site infections, VASQIP = Veterans Affairs-Surgical Quality Improvement Program, CABG = 
coronary artery bypass grafting, HERNIA = herniorraphy, KNEE = total knee arthroplasty, HIP = total hip 
arthroplasty, #SSI =  number of SSI, % Total = percent of all SSI, sSSI = superficial SSI, dSSI = deep 
SSI, oSSI = organ space SSI 

 
Exhibit 9. Preliminary performance on VASQIP training set 
    CABG HERNIA KNEE HIP 

Total Cases 4525 19692 7467 3867 
Positive SSI TP 8 FN 0 TP 52 FN 4 TP 39 FN 3 TP 36 FN 2 

Negative SSI FP 402 TN 4115 FP 1004 TN 18632 
FP 
873 TN 6552 

FP 
295 TN 3534 

ID by Alg   410 4115 1056 18636 912 6555 331 3536 

%Excluded by Alg 90.94 94.64 87.79 91.44 

                    
Diagnostic Accuracy 
Sensitivity 100.00% 92.86% 92.86% 94.74% 
Specificity 91.10% 94.89% 88.24% 92.30% 
PPV   1.95% 4.92% 4.28% 10.88% 
NPV   100.00% 99.98% 99.95% 99.94% 
AUROC   95.60% 93.90% 90.50% 93.50% 
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   CABG   HERNIA   KNEE   HIP  
                
Time Saving                 
NNR w/Alg 51.25 20.31 23.38 9.19 
NNR s/Alg 555.56 357.14 178.57 102.04 

Alg = algorithm, AUROC = area under receiver-operator curve, CABG = coronary artery bypass grafting, HERNIA = herniorraphy, 
ID = identified, KNEE = total knee arthroplasty, HIP = total hip arthroplasty, NNR= number needed to read, NPV = negative 
predictive value, PPV = positive predictive value. 

 
 
Exhibit 10. Performance of different algorithms by SSI type on the training set 

 

Total Surgeries sSSI dSSI oSSI 

Total 35551 374 106 38 

 Surgeries Flagged # Caught (Sensitivity) 

Rpart Algorithm 2709 (7.6%) 
156 
(41.7%) 

101 
(95.3%) 34 (89.5%) 

Inclusive Algorithm 7961 (22.4%) 
328 
(87.7%) 

104 
(98.1%) 35 (92.1%) 

Simple 6939 (19.5%) 
318 
(85.0%) 

103 
(97.2%) 34 (89.5%) 

SSI = surgical site infection. sSSI = superficial SSI. dSSI = deep SSI. oSSI = organ-space SSI. Inclusive algorithm looks for 
any high-normal value. Rpart algorithm refers to the algorithm derived using the Rpart procedure. ( ) = percentage of total 

 
After the algorithm was developed, its sensitivity was 93.8% (95% confidence interval [CI] = 

88.5–97.1) and its specificity was 93.0% (95% CI = 92.7–93.3) for all procedures compared to 
the training NSQIP dataset. Its positive and negative predictive values were 5.2 (95% CI = 4.3–
6.1) and 99.99% (95% CI = 99.9–100), respectively. Thus, when an IP reviews these procedures, 
we would expect her/him to review 18.9 charts on average before finding an SSI using the 
recursive partitioning algorithm, 79.3 using the “inclusive” algorithm, and 246.9 if all charts 
were reviewed. 

2.2.2. Externally validate data elements for inclusion in the algorithm 
& create final list 

The VA NSQIP data was randomly divided into two equal size sets for validation, because a 
second set of data was not collected prospectively. Data from the VA Salt Lake City Healthcare 
System were excluded because they would later be used in the analysis of our four principal 
hospitals of interest. We had initially considered bootstrap validation. However, when we 
decided on using NSQIP data and anticipated a much larger number of outcomes, we elected to 
use one-fold cross-validation.  

Sensitivity, specificity, and positive and negative predictive value were calculated by 
comparing the electronic algorithm’s output against the testing set to report final validation 
numbers. Its sensitivity and specificity were 73.1 percent and 92.9 percent, respectively. The 
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positive predictive value (PPV) was 3.9 percent and the negative predictive value (NPV) was 
99.9 percent. Unfortunately, the statistics for sensitivity were well below those seen on the 
training set. However, the inclusive and simple algorithms’ performance remained stable, as seen 
when comparing Exhibits 10 and 11. 
 
Exhibit 11. Performance on SSI types using test set 

 

Total Surgeries sSSI dSSI oSSI 
Total 27,739 279 75 33 

 
Surgeries 
Flagged # Caught (Sensitivity) 

Rpart Algorithm 2034 (7.3%) 126 (45.2%) 54 (72.0%) 25 (75.8%) 
Inclusive Algorithm 8,685 (31.3%) 251 (90.0%) 75 (100%) 30 (90.9%) 
Simple 5318 (19.2%) 230 (82.4%) 68 (90.7%) 30 (90.9%) 

SSI = Surgical Site Infection. sSSI = superficial SSI. dSSI = deep SSI. oSSI = organ-space SSI. Inclusive 
algorithm looks for any high-normal value. rpart algorithm refers to the algorithm derived using the rpart 
procedure. ( ) = percent of total 

 
Not all elements were included in the final algorithm. Although we initially planned to 

include fever in the algorithm, Denver Health did not have this information extending back 
through the whole cohort so it was removed from analysis. To develop an easily comprehensible 
algorithm with face validity and easier implementation, we targeted an algorithm with a minimal 
set of easily pulled elements (see Exhibit 12). 
 
Exhibit 12. Data for algorithm 

Name Short Description Units/variable 
type Long Description 

Hosp_ID Hospital identifier varchar Unique identifier for the hospital 
Pt_ID Patient identifier varchar Unique identifier for each patient 
SGY_ID Surgery identifier varchar Unique identifier for each surgery 

sSSI 
superficial 
surgical site 
infection 

integer [0,1] 0 if routine surveillance found no infection; 1 for + 
superficial SSI 

dSSI deep surgical 
site infection integer [0,1] 0 if routine surveillance found no infection; 1 for + 

deep SSI 

oSSI 
organ space 
surgical site 
infection 

integer [0,1] 0 if routine surveillance found no infection; 1 for + 
organ space SSI 

postopabx postoperative 
antibiotics integer [0,1] 1 if any antibiotics given between postop day 3 and 

30, but not day -1 to -7; else 0 

postopcx postoperative 
culture integer [0,1] 1 if any microbiology culture sent between postop 

day 3 and 30; else 0 

postopadmit postoperative 
readmission integer [0,1] 1 if any readmission between postop day 3 and 30; 

else 0 

wbc white blood cell 
count float [K/mm3] maximum recorded wbc between postop day 4 and 

30 
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Name Short Description Units/variable 
type Long Description 

crp C-reactive 
protein float [mg/dL] maximum recorded crp between postop day 4 and 

30 
SGY_Type Procedure Type varchar [CABG, THA, TKA, Herniorrhaphy] 

 
Each of the hospitals was sent the data elements necessary for the final algorithm. Actual 

code scripts were also sent to facilitate algorithm implementation; however, we realized, as 
others have before,51, 52 that tailoring and adjustments would have to be made to accommodate 
different data structures at each facility. The final algorithm was implemented in the SQL script 
included in Appendices F and G. 

2.2.3. Create test database from final/validated list of data elements 
As previously mentioned, it became apparent that the movement of individual level data 

between institutions for this task was an unworkable option. In lieu of this, we focused on 
algorithm portability. Instead of a single database upon which to run the electronic algorithm, 
multiple local databases and local implementation of electronic algorithms solved the issue of 
moving individual-level data back and forth. Each institution performed data pulls for the 
necessary elements. Scripts that encoded algorithms for each of the four target procedures were 
written and distributed to each of the facilities. Data and computer professionals at each hospital 
tailored the code to run on their data. Each center’s code was reviewed by the team at Salt Lake 
VAMC in order to catch potential misunderstandings during the implementation and adaptation 
process. Finally, the electronic algorithm was used on local hospital data, which identified charts 
to be reviewed for Subtask 2.3. 

S ubtas k 2.3. Demons trate P erformanc e of E lec tronic  
Detec tion S c hemes  C ompared to an Ac c epted S S I 

S urveillanc e R eferenc e S tandard.  

2.3.1. Acquire all surveillance data pertaining to cases in the test set 
Each of the facilities had different preexisting strategies for SSI surveillance. Denver Health 

and Vail hospitals followed National Healthcare Safety Network (NHSN) guidelines and 
performed traditional, manual surveillance. Intermountain Healthcare previously pioneered 
electronically supported, human-adjudicated surveillance systems and used that modality 
routinely across all hospitals in their system. The VA used NSQIP for surveillance with rules 
similar to, but not entirely the same as NHSN. None of the participating hospitals followed 
NHSN guidelines pertaining to not counting procedures where a drain was placed through the 
incision intraoperatively. Each of the facilities pulled the results of routine surveillance based on 
their own methodologies into databases residing on their own systems. Each of these datasets 
served as slightly different reference standards representing the status quo. As such, accuracy 
and reliability statistics between the centers are not directly comparable, but represent the 
performance of the human-adjudicated surveillance systems compared to the various systems 
already in place. 

With regard to amending VASQIP data to be more in line with NHSN guidelines, it became 
clear that Denver Health, because of its integrated system (where outpatient and inpatient records 
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are part of the same EHR) also principally focused on postdischarge surveillance of up to 30 
days. Because of variances from and differences in interpretation of the NHSN guidelines at each 
center, it was deemed difficult to attempt to build or amend data from the routine surveillance 
data to achieve harmonization to a common standard at each facility. In the end, no consistent 
reference standard could be applied across all hospitals. 

2.3.2. Analysis and reporting of electronic surveillance & manual 
surveillance performance to the reference standard 

At each hospital, we applied our electronic algorithm to all surgical procedures that met our 
prespecified criteria. Results were pooled to report overall accuracy. The sensitivity was 37.8 
percent, the specificity was 94.3 percent, the PPV was 2.0 percent, and the NPV was 99.8 
percent. Results from each system calculated individually are outlined in Exhibit 13. The 
sensitivity ranged from 0 percent at VVMC to 50 percent at VA SLC HCS. As the numbers of 
positives are quite small, the confidence intervals for sensitivity and PPV are quite large. 
 
Exhibit 13. Accuracy of algorithm at each participating hospital 

Accuracy of Algorithm at DH Accuracy of Algorithm at IH 

  Routine 
Surveillance     Routine 

Surveillance  

A
lg

or
ith

m
  SSI no SSI Total 

A
lg

or
ith

m
  SSI no SSI Total 

SSI 6 71 77 SSI 9 704 713 
no SSI 7 1345 1352 no SSI 16 10857 10873 
Total 13 1416 1429 Total 25 11561 11586 

           
 Sensitivity 46.2%   Sensitivity 36.0% 
 Specificity 95.0%   Specificity 93.7% 
 Positive Predictive Value 7.8%   Positive Predictive Value 1.3% 
  Negative Predictive Value 99.5%   Negative Predictive Value 99.9% 
Accuracy of Algorithm at VA SLCHCS Accuracy of Algorithm at VVMC 

  Routine 
Surveillance     Routine 

Surveillance  

A
lg

or
ith

m
  SSI no SSI Total 

A
lg

or
ith

m
  SSI no SSI Total 

SSI 2 33 35 SSI 0 17 17 
no SSI 2 531 533 no SSI 3 832 835 
Total 4 564 568 Total 3 849 852 

           
 Sensitivity 50.0%   Sensitivity 0.0% 
 Specificity 94.1%   Specificity 98.0% 
 Positive Predictive Value 5.7%   Positive Predictive Value 0.0% 
  Negative Predictive Value 99.6%   Negative Predictive Value 99.6% 

DH = Denver Health; IH = Intermountain Healthcare; VA SLC HCS = Veterans Affairs Salt Lake City 
 Health Care System; VVMC = Vail Valley Medical Center; SSI = surgical site infection. 
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We compared the human-adjudicated system to routine prospective surveillance as a test of 
feasibility and diagnostic performance. Of all of the charts that the algorithm deemed positive 
and queued for review, we randomly selected up to 50 that had also been identified by routine 
surveillance as positive (i.e., true positives) and up to 50 identified as negative (i.e., false 
positives) for manual review at each center. The reviewer was blinded as to the result of routine 
surveillance as well as to the ratio of positives and negatives. The reviewer classified each chart 
as to whether an SSI was present and the depth of the SSI. The procedure type was already 
specified by ICD-9 or CPT code. Charts not queued for review by the algorithm were considered 
negative by the human-adjudicated system. Exhibit 14 illustrates the sampling and reviewing 
processes. Sensitivity, specificity, and their confidence intervals were calculated using methods 
included in the Appendix H. We found a sensitivity of 41.5 percent (excluding records with 
corrupted identifiers), which is lower than hoped for, but had been limited only by the 
insensitivity of the electronic algorithm. Our specificity of 99.8 percent was comparable to that 
frequently reported by manual surveillance systems. The overall measured interrater reliability 
between the two historical surveillance assessments and the assessments of our reviewers on 
sampled charts was 0.85. 

During implementation, poor algorithm performance was noted at VVMC (Exhibit 15). 
At most other facilities, the absence of an antibiotic prescription after surgery meant either no
antibiotic was given, or that the prescription data were missing from the record. In the case of
VVMC, no electronic antibiotic prescription data were available, so all were missing. In their 
case, we coded ‘-1’s in the postoperative antibiotic field and altered the algorithm to allow ‘-1’s 
to cause the algorithm to err on the side of calling cases positive for flagging. No cases were
picked up with the changes. 
 
Exhibit 14. Schematic showing the sampling process for chart review and the assignment of true 

and false positives and negatives* 

 
* Relative to routine surveillance, as the reference standard. 

TP = true positive;, TN = true negative; FP = false positive; FN = false negative. 
  

Routine Surveillance Positive 
è

Algorithm Positive èAlgorithm Positive è

No Review No Review Sample up 
to 50

Sample up 
to 50

TN FN

TN

FP TP

FN

ReviewReview
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Exhibit 15. Accuracy of adjudicated algorithm at each participating hospital 

Accuracy of Adjudication at DH Accuracy of Adjudication at IH 

  Routine 
Surveillance     Routine 

Surveillance  

A
dj

ud
ic

at
ed

  SSI no SSI Total 

A
dj

ud
ic

at
ed

  SSI no SSI Total 

SSI 6 1.42 7.42 SSI 9 0 713 
no SSI 3 1410 1348 no SSI 16 11559 11575 

Total 9 1411.4 1420.4 Total 25 11559 11584 

           
 Sensitivity 66.7%   Sensitivity 36.0% 
 Specificity 99.9%   Specificity 100.0% 
 Positive Predictive Value 80.9%   Positive Predictive Value 100.0% 
  Negative Predictive Value 99.8%   Negative Predictive Value 99.9% 
Accuracy of Adjudication at VA SLCHCS Accuracy of Adjudication at VVMC 

  Routine 
Surveillance     Routine 

Surveillance  

A
dj

ud
ic

at
ed

  SSI no SSI Total 
A

dj
ud

ic
at

ed
  No Change  

SSI 2 4 35     
no SSI 2 560 562     

Total 4 564 568     

           
 Sensitivity 50.0%     
 Specificity 99.3%     
 Positive Predictive Value 33.3%     
  Negative Predictive Value 99.6%     

DH = Denver Health; IH = Intermountain Healthcare; VA SLC HCS = Veterans Affairs Salt Lake City 
 Health Care System; VVMC = Vail Valley Medical Center; SSI = surgical site infection. 

 
 
Exhibit 16. The rpart algorithm alone—sensitivity by surgical procedure type 

 

DH IH VA SLC VVMC 
 TP FN SN TP FN SN TP FN SN TP FN SN 

CABG NA NA NA 4 4 50.0% 0 0 NA 0 0 NA 
HERNIA 3 3 50.0% 0 0 NA 1 0 100.0% 0 1 0.0% 

THA 1 3 25.0% 3 5 37.5% 0 2 0.0% 0 1 0.0% 
TKA 2 1 66.7% 2 7 22.2% 1 0 100.0% 0 1 0.0% 

DH = Denver Health, IH = Intermountain Health, VA SLC = VA Salt Lake City Healthcare System, VVMC = Vail Valley Medical 
Center, CABG = coronary artery bypass grafting, HERNIA = herniorrhaphy, THA = total hip arthroplasty, TKA = total hip arthoplasty, 
NA = not applicable, TP = true positive, FN = false negative, SN = sensitivity 

 
  



23 
 

Exhibit 17. Sensitivity and positive predictive values of algorithms alone 

 
IH VA SLC DH 

Algorithm SN PPV SN PPV SN PPV 
rpart 10/25 (40%) 10/896 (1.1%) 2/4 (50%) 2/35 (5.7%) 6/13 (46.2%) 6/77 (7.8%) 

Simple 13/25 (52%) 13/1100 (1.2%) 2/4 (50%) 2/106 (1.9%) 5/13 (38.5%) 5/157 (3.2%) 
Inclusive 21/25 (84%) 21/7250 (0.3%) 2/4 (50%) 2/184 (1.1%) 11/13 (84.6%) 11/381 (2.9%) 

IH = Intermountain Health. VA SLC = VA Salt Lake City Health Care System. DH = Denver Health. rpart = algorithm developed 
using recursive partitioning. SN = sensitivity. PPV = positive predictive value. 

 
All reports of sensitivity, especially when grouped by procedure as in Exhibit 16, must be 

interpreted with extreme caution. The confidence intervals are wide. For example, at VVMC the 
algorithm found 0 of 3 SSI. These data would be observed with a sensitivity of up to 60 percent 
over 5 percent of the time. 

All positives identified by the algorithm, as well as positives identified by routine 
surveillance were reviewed (Exhibit 17). At DH, the study reviewer agreed with all of the cases
identified as positive by routine surveillance. Four surgeries were noted to have incorrect ICD-9
codes, indicating that they should not have been included. The study reviewer also identified one 
superficial SSI and one deep SSI caught by the algorithm, but not found in routine surveillance 
records. At VA SLC HCS, four additional deep and organ-space SSI were identified in addition 
to those identified by routine surveillance. At VVMC, all algorithm-identified cases were false 
positives. At IH, the study reviewer agreed with all positive cases identified by routine 
surveillance and none identified by algorithm, except for two cases where there appeared to have 
been errors with identifiers. 

False negatives were reviewed at each center to determine the reasons for failure and to 
identify areas for future algorithm improvement. At Denver Health, two of the false negatives 
represented problems with the data pull. One SSI was assigned to the wrong hip replacement in 
the historical dataset. The hip replacement with infection was not in the dataset. Another 
procedure identified as having an SSI was actually a hysterectomy. Three surgeries were missed 
because the SSI occurred greater than 30 days postoperatively. One SSI was missed because 
laboratories were only available from the outpatient setting. One SSI could only have been 
picked up from emergency department notes. Only two SSI could have been picked up by 
electronic data, but were missed due to the algorithm’s threshold criteria. 

At VA SLC HCS, only two SSI were missed. Both occurred in total hip arthroplasties with 
onset of infection greater than 30 days postoperatively. This is interesting because although 
VASQIP protocol is to extend surveillance through 30 days, it appears that SSIs occurring 
outside of this time period are being recorded. Fortunately, algorithm sensitivity can be easily 
increased in this setting by increasing the observation period. 

At VVMC, the algorithm was unable to detect three SSIs, due to one surgery being treated 
solely in the outpatient setting and another being treated at an outside facility. The last infection 
developed 11 months after surgery and was thus not picked up because of the time period of 
surveillance. 
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At IH, 11/16 false negatives were attributed to the algorithm missing important information. 
Most of this information was in the clinical notes (10/12), with the remainder in microbiology. 
All of this information occurred after discharge from the initial surgery. In 2 cases, the reviewer 
felt that the cases were ambiguous, in another 2 the reviewer actually disagreed that the cases 
were SSI. In 1 case, the reviewer felt that the case actually was sSSI rather than dSSI or oSSI. 

The single most remediable element for the algorithm is the duration of surveillance after 
surgery. Otherwise, it appears that further improvements may be difficult without information 
extraction from free-text notes. Difficulties that arise from fragmented care are not easily 
addressed, but do contribute to missed SSIs. 

S ubtas k 2.4. As s es s ability of E lec tronic  Detec tion Methods  to 
Determine P roc edure-s pec ific , Organis m-s pec ific  S S I R ates  
Vers us  E s timates  of Annual National B urden and Identifying 

S S I in Health C are F ac ilities  

2.4.1. Identifying SSI in health care facilities 
We tabulated identified organisms by procedure at each hospital. Organisms associated with 

deep- or organ-space SSI were counted by positive microbiology cultures from postoperative day 
4 to 30. If more than one organism was present, all were counted. No attempt at establishing the 
organism as the etiology of the SSI was made. Organisms were grouped in Exhibit 18. Trend 
analysis was not feasible because of the short-time period represented in the data and the rarity of 
events, especially when divided by procedure.  

 
Exhibit 18. Counts of identified organisms by procedure* 

Surgery Organism DH IH† VA SLC VVMC 
CABG S. aureus NA 1 0 NA 
  Enterococcus NA 1 0 NA 
  P. aeruginosa NA 0 0 NA 
  Other NA 5 1 NA 
            
HERNIA S. aureus 1 0 1 0 
  Enterococcus 0 0 0 0 
  P. aeruginosa 0 0 0 0 
  Other 2 3 1 0 
            
TKA S. aureus 1 3 2 0 
  Enterococcus 0 1 0 0 
  P. aeruginosa 0 0 0 0 
  Other 0 2 0 1 
            
            
THA S. aureus 3 3 0 1 
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Surgery Organism DH IH† VA SLC VVMC 
  Enterococcus 0 2 0 0 
  P. aeruginosa 0 1 0 0 
  Other 1 2 0 0 

SSI with recognized pathogens 7 20 4 2 

Total SSI 13 25 4 3 

DH = Denver Health; IH = Intermountain Health; VA SLC = Veterans Affairs Salt Lake City 
Health Care System; VVMC = Vail Valley Medical Center; CABG = coronary artery bypass 
grafting, HERNIA =  herniorrhaphy, THA = total hip arthroplasty, TKA = total hip arthoplasty, 

*More than one organism can be counted for a single SSI. Only identified organisms are 
counted. †Organisms categorized by surgical bed, so that other surgeries with SSI at the same 
site could not be easily differentiated. 

 

2.4.2. Estimate the national procedure-specific, organism-specific 
rates of SSI 

We used methods similar to those outlined by the National Nosocomial Infection 
Surveillance System (NNIS) as a model for estimating the annual national burden of SSI for the 
specified four procedures.53 The SSI incidence proportions are listed in Exhibit 20. We did 
differentiate between ICU and non-ICU infections as in the NNIS study because of the difficulty 
with assigning hospitalization days that were at risk for SSI versus days that were a result of SSI. 
Inpatient sample data from AHRQ’s Healthcare Cost and Utilization Project (HCUP) were used 
to estimate the number of procedures performed nationwide in 2008 (Exhibit 19). Multiplying the
number of procedures by the pooled incidence proportion gave us 16,530 as an estimate of
nationwide yearly instances of SSI for these four procedures. Individually, they were 4,478 for
CABG, 1,233 for herniorrhaphies, 4,929 for total knee arthroplasties, and 5,890 for total hip
arthroplasties. These numbers are not directly comparable to NNIS results because we are only
examining a fraction of the surgeries. Additionally, the four hospitals were selected for convenience
and do not represent the range of variability in hospitals across the country (by size, case mix, etc.). 
Exhibit 21 contrasts the number of total knee arthroplasties performed at each of the principal 
hospitals with the average number of procedures performed at various hospital types using 
HCUP data. Deficiencies in representativeness are evident. Combining these into a single 
estimate of SSI rate is misleading, at best and could be quite biased. Accurate estimates could be 
made by defining segments in the population thought to have different SSI rates (this is a 
challenge in and of itself) and sampling hospitals from each. At the very least, to apply this 
method to determine national SSI burden, there would need to be a larger number of hospitals 
chosen to represent the variability in size and case mix. Reporting confidence intervals would be 
inappropriate given these limitations.  

There are severe limitations to this approach and there should be caution with interpretation. 
Unfortunately, the nationwide SSI rates are unknown–the best estimate being one from 2002 by 
NNIS.53 Our smaller group of hospitals is only informative in a very limited way. Vail was noted 
to have the lowest risk patients and a very low SSI rate. If all of the hospitals had the same SSI 
rate, then a low estimate of infections associated with 254 herniorraphies, with 2,620 THAs, and 
with 1,337 TKAs could be made, but not without a large amount of uncertainty secondary to 
very small numbers. Estimates using each of the hospital’s rates and pooled rates are illustrated 



26 
 

in Exhibit 19 and Exhibit 20 below. Again, more accurate estimates would require sophisticated 
patient case mix adjustment and a much larger sampling of hospitals.  
 
Exhibit 19. HCUP estimates of the total number of target procedures  

 
CABG = coronary artery bypass grafting, HERNIA = herniorrhaphy; HIP = total hip arthroplasty; KNEE =total knee 
arthroplasty. 

 
 
Exhibit 20. Estimates of the total number of SSI cases in the United States, based on the rates 

used.  

 
DH = Denver Health; IH = Intermountain Health; VA SLC = VA Salt Lake City Health Care System; VVMC = Vail Valley 
Medical Center. Pooled ; pooled rate over all four hospitals; SSI = surgical site infection(s). 
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Exhibit 21. No. of total knee arthroplasties at principal hospitals in 2008 compared to the HCUP 
estimates for different hospital types 

Rank of 2008 
#TKA 
Discharges 

1 2 3 4 5 

Hospital Type Very large 
hospitals 
(>500 beds) 

Urban large- or 
medium-sized 
teaching 
hospitals 

Hospitals in 
micropolitan 
areas  

Voluntary non-
teaching 
hospitals in 
metropolitan 
areas  

Inter-
mountain 
Health 

# Hospitals in 
Hospital Type 

256 308 1301 627 23 

% Nation's TKA 
at this Hospital 
Type 

15.4% 14.3% 29.4% 14.2% NA 

# TKA 
Discharges 2008 

513.6 394.8 192.4 192.4 191.3* 

            
Rank of 2008 
#TKA 
Discharges 

6 7 8 9 10 

  Vail Valley 
Medical 
Center 

Public hospitals 
in micropolitan 
areas  

Denver Health Public hospitals 
in metropolitan 
areas 

For-profit  

# Hospitals in 
Hospital Type 

1 220 1 187 1072 

% Nation's TKA 
at this Hospital 
Type 

NA 3.6% NA 2.4% 11.4% 

# TKA 
Discharges 2008 

140.3* 139.3 116* 109.9 90.5 

            
Rank of 2008 
#TKA 
Discharges 

11 12 13   

  VA Salt Lake 
City 
Healthcare 
System 

Rural hospitals 
with >50 beds 

Public 
hospitals in 
rural areas 

    

# Hospitals in 
Hospital Type 

1 969 724     

% Nation's TKA 
at this Hospital 
Type 

NA 7.7% 1.7%     

# TKA 
Discharges 2008 

81.5* 67.8 19.6     

* Averaged between 2008 and 2009. Highlighted columns represent hospitals in our dataset. 
TKA = total knee arthroplasties, VA = Department of Veterans Affairs. 
 

The results above are methodologically problematic, but are best estimates considering the 
data and resource limitations of the task. Sound estimates would necessitate a large enough 
dataset to estimate the rate at each hospital with confidence. Ideally (for statistics, but not for 
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patients), there would be enough events, so that the rate could be estimated with confidence with 
at least one year granularity. Facilities that are too small to accumulate enough events to estimate 
their rates within an aggregated 2- to 3-year time period are difficult to use when secular trends 
are important. The sample of hospitals needs to be large enough to provide power in the 
estimation of rates and be representative of the target population. Some adjustments can be made 
if patient-case mix is considered. However, the number of SSIs at each hospital is small and we 
had only four hospitals from the Intermountain west to analyze. Acquiring the data for and 
developing valid models that adjust for patient-case mix is a large endeavor outside of the scope 
of this task. It is perhaps more appropriate to compare the individual SSI rates that we found with 
that reported in the literature.  

Total hip arthroplasty. In much of the developed world, the incidence of SSI after total hip 
arthroplasty appears low. Reports from the United States range from 0.9 to 2.52 percent.54,55 In 
Europe, rates have been reported as low as 1.3 percent in Germany24 and as high as 3.4 percent 
in the Netherlands.56 In Brazil, one small study reported a rate of 17 percent for this procedure.57 
Unfortunately, with this and other studies, there may be some important differences in reporting 
systems that complicate the direct comparisons of rates from one institution to the next. Also, the 
point estimates from small single-hospital studies may be spurious and not reflect the true 
underlying rate because of chance. However, there does appear to be real variability between 
institutions and countries. The rates we reported from each of our hospitals range from below the 
low end reported in the United States to that reported in the Netherlands. 

Total knee arthroplasty. Similar trends were seen in TKA as in THA. The rates for SSI 
after TKA range from 0.5 percent in France58 to 0.99–2.3 in the Netherlands.56 Using Medicare 
data, the rate of prosthetic joint infections was estimated at 1.55 percent within 2 years of 
surgery.59 As with THA, TKA had a higher rate in Brazil from the same study above.57 As with 
THA, we observed rates that ranged from below the low to above the high range reported in 
these first world countries. This is not surprising, given the small numbers in this study 
compared to the studies cited. 

Coronary artery bypass grafting. Reports of anywhere between 0.560 and 2.7 percent can 
be seen for deep SSI after cardiac surgery. A study in New York found a rate of 1.8 percent after 
isolated CABG and 2.4 percent after CABG combined with other cardiac procedures, such as 
valve replacement.61 Only two centers performed CABG in our study. Our values of 1.9 and 4.2 
percent are comparable to, but perhaps a bit higher than, that reported in the literature. One 
aspect to point out is that Intermountain Health rates are calculated from data already derived 
from an algorithm-driven, human-adjudicated process, which may decrease review fatigue and 
improve sensitivity. As with the other surgeries, direct comparisons can be difficult because 
followup time can be variable.  

Herniorrhaphy. A Cochrane review in 2007 identified four studies that used CDC criteria 
when considering antimicrobial prophylaxis for herniorrhaphy or hernioplasty. The other studies 
used various criteria that were not completely in line with CDC guidelines. Among the four 
studies, the incidence proportion of SSI among those receiving prophylaxis was 0–1.72 percent 
and 1.9–8.16 percent, respectively, for herniorrhaphy and hernioplasty. The reported proportions 
from our four hospitals are closest to those reported in the literature for patients receiving 
preoperative antibiotics. 
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S ubtas k 2.5. E s timate B urdens  of E lec tronic  S S I Detec tion 
R elative to an Ac c epted R eferenc e S tandard  

Our ability to conduct a detailed cost estimate was limited, in that costs associated with 
information technology implementation are largely system-specific and are dependent on 
available resources and the expertise of inhouse personnel. As a result, we present a general 
categorization of the expected costs and resources required for adaptation and implementation of 
an electronic SSI detection tool, and provide an estimate of cost savings due to successful 
implementation for an example case.  

As previously mentioned, we observed variations in SSI surveillance practices across the 
four partner health delivery systems. The practice of conducting manual review for surveillance 
with no automated support was used as the standard base case. Cost and resource use for 
implementation of the electronic surveillance algorithm were categorized in two primary cost 
buckets:  (1) cost to set up; and (2) costs to run. In addition, we also note the expectation that 
there will be future costs and a resource burden associated with regular maintenance and required 
updating of the algorithm, to maintain the value and accuracy of the tool.  

The SSI-identifying algorithm is a program written in structured query language (SQL) that 
uses Boolean logic (in “case” statements) to identify potential surgical site infections. Setting up 
the query is a one time, up-front investment that results in a generalized program that can be 
reused repeatedly. The time required to set up the algorithm varies, based on the electronic 
availability of required data fields within a given delivery system, as well as the expertise of 
personnel available to perform the algorithm implementation. If all the variables are easily 
accessible and experienced personnel available, the algorithm can be programmed in 1–2 hours. 
The most difficult aspect of developing the query is the complexity inherent in joining multiple 
data sources such as laboratory, surgery, and patient demographic data.  

DH serves as a case example for adapting and implementing an electronic surveillance 
algorithm in a health care delivery system in which manual review is used as standard 
surveillance practice. 

DH identified 2,179 procedures for inclusion in its system-specific cohort. Sixty procedures 
were associated with SSI after manual chart review using NHSN methodology. The modified 
algorithm flagged 804 procedures (or 37 percent of total charts) for review. The percent of total 
procedures flagged for review varied by procedure type, and ranged from 15 percent 
(herniorrhaphy) to 62 percent (craniotomy). The modified algorithm achieved 100 percent 
sensitivity and 72 percent specificity in detecting SSIs, validated on 4 years of our manual SSI 
surveillance data using NHSN methodology. 

Based on these results, 1,375 unnecessary chart reviews would have been avoided over the 4-
year period without sacrificing detection of a single SSI. Assuming 20 minutes per chart for 
manual review, 57 work days (8 hours/day) of chart review would have been eliminated using 
the algorithm for surveillance of SSI in hip and knee arthroplasty, abdominal and vaginal 
hysterectomy, spinal fusion, craniotomy, and herniorrhaphy. 
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Tas k 2 Dis c us s ion 

Measurements of algorithm diagnostic accuracy must be carefully considered. Routine, 
manual, prospective surveillance is estimated to have a sensitivity between 30 percent and in 
excess of 90 percent, with most estimates in the 70–80 percent range.21,35,50,62,63 Additionally, the 
reliability of manual health care-associated and surgical site surveillance has been reported to be 
less than ideal.21,64-67 For many of these studies, either routine surveillance or some augmentation 
of routine surveillance is used as the reference standard. Any comparisons to such standards 
must take this into account. Other electronic algorithms are frequently reported to have 
sensitivities in excess of 80 percent.38,68 Only some of them have been applied to multiple 
hospitals,16,21,35 and none of them report individual hospital validation results among hospitals as 
heterogeneous as the principal hospitals of our study. Although our recursive partitioning 
algorithm had high sensitivity on the VASQIP training set, its sensitivity was 73.1 percent on the 
VASQIP test set. The pooled sensitivity at the four principal hospitals was 41.5 percent. These 
results contrast with the high performance seen in other published literature. Specificities and 
predictive values were relatively stable between training and testing sets. 

The differences in sensitivities that we see in the recursive partitioning algorithm suggest two 
levels of overfitting. The first is overfitting to the training dataset and the other is overfitting to 
the VA system. The two “common sense” algorithms demonstrated high sensitivity in both the 
VASQIP training and testing sets. Since they were not derived from the training set, they are not 
overfit to it. We expected the sensitivity of these algorithms to be high because of success for 
previously devised algorithms—and because we surmised that it was unlikely that patients with 
deep or organ-space SSI would neither be treated by antimicrobials nor tested for etiologic 
microorganisms. However, when these algorithms were tested against other hospitals, the 
sensitivity and positive predictive values varied. At VA SLC HCS, no improvement in sensitivity 
was observed over the recursive partitioning algorithm, perhaps due to small numbers. At IH, a 
much larger number of false positives was found, resulting in a much lower positive predictive 
value. This appears largely due to a different pattern of antimicrobial use during the 
postoperative period in this system. At DH, the simple algorithm fared poorly, while the 
inclusive algorithm fared better. This illustrates that the “common-sense” algorithms that include 
elements successful at other institutions16,21,35 still did not generalize well because of institutional 
differences. 

Other factors may also have contributed to the less than desirable performance of the 
algorithm derived from recursive partitioning. Poor reliability in the reference standard, too little 
information, and limitations in the recursive partitioning method may also have been factors. 
Having relatively few SSIs to work with was also a limiting factor for algorithm training.  

The amount and quality of electronic information, as well as algorithm development issues, 
are also important. The available data elements may not have been informative enough. In 1992, 
Harvard Pilgrim Health used the same recursive partitioning method on a set of 4,086 procedures 
containing 96 postdischarge SSIs to develop algorithms to predict SSI.16 The approach allows for 
some interactions of variables in rule generation. The group allowed variables such as diagnosis 
codes, age, sex, length of surgery, microbiology, antibiotics, readmissions, and emergency 
department visits. The principal difference between our variables and the Harvard study was that 
we omitted diagnosis codes, age, and sex, and included laboratory values. We made these 
omissions for reasons stated previously. They developed multiple models: one with a sensitivity 
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of 74 percent and a specificity of 98 percent, one with a sensitivity of 92 percent and a specificity 
of 92 percent, and another with a sensitivity of 77 percent and a specificity of 94 percent. Each of 
these models was created by adding different sets of information. The authors noted that no 
model surpassed a sensitivity of 80 percent without both outpatient diagnosis codes and 
microbiology results. It is still unclear how well those algorithms would perform on an external 
set. The discriminability indices of the models above [discussed earlier, on pp. 5–6] were as 
follows: 2.7, 2.8, and 2.3 respectively. In comparison, our algorithm had a sensitivity of around 
73 percent and a specificity of around 92 percent. The “simple” algorithm, using only data on 
postoperative cultures or postoperative antibiotics, had a sensitivity of 95 percent and a 
specificity of 81 percent on the same set. The discriminability indices were 2.0 and 2.2, 
respectively. Similar discriminability indices would suggest that the criterion is drastically 
different to produce very different sensitivities. The effect of criterion is illustrated by examining 
the inverse of the positive predictive value, or the number of charts needed to review to find an 
SSI. IP would likely choose the more sensitive algorithm, although they would need to review an 
average of 53 charts for every SSI, instead of 23. However, any option would like be better than 
the approximately 250 charts needed to be reviewed to find a deep or organ-space SSI. Problems 
with identifying SSI may have been in part because: (1) the available information was 
insufficient; (2) recursive partitioning may not be robust to missing data and/or not fully consider 
interactions between variables; and (3) the penalty for false negatives was not high enough. 

The algorithm may have problems with generalizability. However the measures of sensitivity 
at the principal hospitals are difficult to interpret because the confidence intervals are very wide. 
Improving the algorithm’s sensitivity, while keeping the number of charts needed to review low, 
can only be accomplished by improving the algorithm’s discriminability. This could be 
accomplished by using procedures more robust to sparse data for algorithm development, 
incorporating dynamic thresholds for laboratory values and vitals, and enriching the input data 
by using natural language processing to extract information from text notes. Recently, natural 
language processing was used to find postoperative complications (but not SSI) using VA data.69  

Another potential approach to improve acceptability is to allow IPs to change criterion by 
allowing them to choose from a menu of algorithms. Instead of using algorithms to rule out cases 
by forcing a dichotomy, algorithms would predict the likelihood of SSI to facilitate subsequent 
triage and chart review. Algorithms could also facilitate review by annotating important aspects 
of the case.  

In this system, IP would need to accept that greater sensitivity comes at the price of 
reviewing more charts. When discriminability is held constant and criterion is lowered, then 
sensitivity improves and specificity worsens. If criterion is raised then the opposite happens. Just 
as we demonstrated with the “inclusive” algorithm, we could investigate other algorithms with 
known characteristics. If IP are unsatisfied with the sensitivity of an algorithm, then the next 
most sensitive algorithm can be selected. If IP feel that they are reviewing too many cases, then a 
more specific algorithm can be selected. The drawback to this approach is that it compromises 
the reliability that automated systems could contribute. 

A modification of this last approach could use strategies similar to IBM’s DeepQA 
technology to incorporate information from multiple, simultaneously applied algorithms for 
prediction. This technology was used in the recently televised Watson experiment on Jeopardy.70 
Model-combining71 or multiple-model-estimation72 approaches could potentially provide better 
performance, but they would increase the complexity of the rules and make the automated 
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system a black box. This may be less acceptable to IP, but it could still be used in a decision-
support style system. For example, instead of a two-tiered system, a multitiered system could be 
employed. As before, IP would be the final tier, but the automated system could have multiple 
tiers. The initial tier would use a high-sensitivity algorithm to completely eliminate a modest 
number of charts, perhaps up to half. The next tier would flag possible SSI, but not remove 
charts. One or multiple algorithms could be used in this tier. Finally, IP would still need to 
review all charts that from passed the first tier, but could choose to spend more or less time on 
charts, depending on the flags.  

The most appropriate use of automated systems, whether alone or in combination with 
manual surveillance, will take careful consideration of the purpose and requirements of the 
events being surveilled. The performance of automated systems may vary, particularly when 
attempting to detect events that occur in the outpatient setting, where differences in data 
availability may be pronounced. More work is necessary to improve the discriminability index of 
electronic algorithms, but allowing IP to select rules that suit their own needs may be a 
reasonable measure in the interim. 
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Chapter 3. Designing and Testing Methods to Stratify 
the Risk of Surgical Site Infections  

The primary purpose of this task was to design and test methods to risk-stratify surgical 
patients for surgical site infection. We began by clarifying conditions and data availability for 
analyses. Exhibit 22, below, summarizes data availability by facility/system. It can be seen that 
data were available for all target procedures across partner facilities except CABG data that were 
not available for Denver Health or Vail Valley Medical Center. 
Exhibit 22. Availability of data by procedure and facility/system 

Procedure Denver Health Intermountain SLC VAMC Vail 

CABG NA √ √ NA 

Herniorrhaphies √ √ √ √ 

Hip prosthesis √ √ √ √ 

Knee Prosthesis √ √ √ √ 

CABG = cardiac artery bypass grafting, NA = not applicable, SLC VAMC = Salt Lake City Veterans Affairs Medical Center 

S ubtas k 3.1. Identify S trong P redic tors  of S S I, P artic ularly 
Important Variables  Not C urrently Us ed in Mains tream R is k-

s tratific ation Methods . 

The list of potential risk factors for surgical site infections was developed with a two-tier 
process: 

An active surgeon on the study team used his extensive experience with SSIs and a previous 
list of risk factors used by his institution to identify potential risk factors. That initial list 
consisted of 88 risk factors for SSI (see Appendix I). This list was then used in a focus group to 
solicit input with surgeons (see Chapter 4).  

An extensive literature review was also performed using Internet search engines (including 
PubMed and Google Scholar) to identify any published risk factors for SSIs at any site. All 
English-language publications for the previous 10 years were included. Keywords used for the 
search included: SSI, surgical site infection, surgical risk factor, risk factor, surgical wound, 
surgical infection. Risk factors identified from any surgical site were included in the list. From 
that search, 24 additional potential risk factors were included in the Master Risk Factor table (see 
Appendix J). Each of the potential risk factors in the list was then clinically reviewed and 
categorized as modifiable or nonmodifiable. 
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S ubtas k 3.2. Develop a R is k-adjus tment Method that Utilizes  
the Identified R is k Variables  to Validly C ompare R ates  of S S I 

Ac ros s  F ac ilities  

The Master List of all identified potential risk factors (see Appendix K) was sent to each of 
the four study sites—Intermountain Healthcare, Denver Health, Salt Lake VA, and Vail Valley 
Medical Center. Each site examined the Master List and determined if it had electronic access to 
each of the individual risk factors. Each site then returned its marked list to Intermountain 
Healthcare where their site-specific information was added to the Master List. After that 
information was collected from all four sites, a union set of 34 potential risk factors was 
identified. From that union set, a new list of risk factors common to all four sites was created 
(see Appendix L; also, Appendix M compares the initial and final lists of risk factors). Each of 
those risk factors was then further defined to remove any ambiguity between the study sites, 
ensuring identical collection and reporting. The data values for each risk factor, their description, 
and type were agreed upon via conference calls and email. Based on that process, a final data 
collection spreadsheet was created in Microsoft Excel® and sent to each of the four study sites. 
Each site then met with their data access colleagues to plan how the data would be collected, and 
made sure both groups had the same definitions of the needed risk factors. Each site developed 
programs based on their specific data-retrieval needs to access and collect the data elements 
needed for each risk factor.  

Each site then collected their data for patients older than 18 years of age, using unique patient 
identifiers for patients who had CABG, herniorrhaphies, hip arthroplasty, and knee arthroplasty. 
Intermountain also collected data for appendectomies and added that data to their final dataset. 

Each patient in the study group from each of the four sites was then identified as having or 
not having an SSI, based on the specific surgical procedure, and marked accordingly in the 
spreadsheet. SSI data was collected based on the reporting site’s specific collection method, with 
SSIs defined using NNIS criteria from CDC. A random sample of patients and identifiers were 
manually selected to verify that data access was correct at each site. Each site then deidentified 
the data and submitted their final spreadsheet to Intermountain Healthcare. Mappings to actual 
patient identifiers were kept behind the firewalls at each of the study sites. 

All four sites then examined each of the risk factors they had electronic access to and 
documented the original data source for each. Exhibit 23 denotes data sources for the 33 risk 
factors at each of the sites. As is often the case during the actual data collection process, some of 
the risk factors contained in the common list were found not to be stored (or only stored 
occasionally) in the databases at the different sites. For example, at Intermountain, the American 
Society of Anesthesiologists ASA score is a data element in the surgery database, but we found it 
was only populated 17 percent of the time. This was often the case at the other sites also. Thus, 
ASA score was not included in the final list of 33 common risk factors used in the analysis (see 
Appendix L). While each of the four sites had access to the common list of risk factors, each site 
often collected that data from different clinical departments or databases. This information 
should help other facilities to determine where they may find these risk factors at their 
institutions. At Intermountain, eight additional risk factors electronically found in the database 
and not included in the common list were also included in a second spreadsheet (Exhibit 24, 
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below). Other sites also identified some unique risk factors not found at the other participating 
sites, but that were not included in this study. 
Exhibit 23. Data sources for the SSI common risk factors 

Column Heading Denver Health SLC VA Vail Intermountain 
Admit_src Utilization  PTFMove Encounter.Admit_src_cd Demographics 
Icu_admit Utilization  PTFMove Encntr_loc_hist.nurse_unit_cd ADT data 
Inpat_surg Utilization  Local VASQIP Encounter.Encntr_type_cd Surgery data 
Outpat_surg Utilization  Local VASQIP Encounter.Encntr_type_cd Surgery data 
Age Utilization demographics Person.birth_dt_tm (calculation) Demographics 
BMI Pharmacy/ Lab  vitals Clinical_event Height & weight 
CA_hx Utilization/ 

Surgery 
 Dx Codes Diagnosis ICD-9 codes 

Chronic kidney dx Utilization  Dx Codes Diagnosis ICD-9 codes 
Chronic lung dx Utilization  Dx Codes Diagnosis ICD-9 codes 
COPD_hx Utilization/ 

Surgery 
 Dx Codes Diagnosis ICD-9 codes 

Diabetes Utilization  Dx Codes Diagnosis ICD-9 codes 
DVT Utilization/ 

Surgery 
 Dx Codes Diagnosis Vascular 

studies 
Hypocholest Utilization  Dx Codes Diagnosis ICD-9 codes 
MRSA Utilization  Microbiology person_patient.disease_alert_cd Microbiology 
Patid ADT   PTF Person.Person_id Demographics 
Payer Utilization   Fee Basis Health_plan.health_plan_cd Demographics 
Postop_hematocrit Lab  laboratory Clinical_event Laboratory data 
Postop_admit Utilization/ 

Surgery 
 ADT  Laboratory data 

Preop_hematocrit Lab  laboratory Clinical_event Laboratory data 
Preop_hemoglob Lab  laboratory Clinical_event Laboratory data 
Postop_hemoglob Lab  laboratory Clinical_event Laboratory data 
Preop_stay Utilization/surg  ADT Encounter.arrive_dt_tm 

Surgical_case.surg_start_dt_tm 
(calculation) 

ADT & surgery 

Proeop_albumin Lab  laboratory Clinical_event Laboratory data 
Rheum-dx Utilization  Dx codes Diagnosis ICD-9 codes 
Sex Utilization Demographics Person.sex_cd Demographics 
SSI NHSN reports  Local VASQIP Manual tracking Infection 

control 
Abx_dc    Pharmacy Clinical_event Pharmacy data 
ASA NHSN reports  Local VASQIP Surgical_case.asa_class_cd Surgery data 
Emergent NHSN reports/ 

Surgery 
 Local VASQIP Surgical_case.sched_type_cd Surgery data 

General_anes NHSN reports/ 
Surgery 

Local VASQIP Surgical_case.anesth_type_cd Surgery data 

No_procedures Utilization   Local VASQIP Count instances of 
surg_case_procedure for a 
surgical_case 

Surgery data 

Surg_date/time    Local VASQIP Surgical_case.surg_start_dt_tm Surgery data 
Surg_dur Surgery  Local VASQIP Surg_case_procedure.proc_dur_

min 
Surgery data 

Surg_proc Utilization  Local VASQIP Hardcoded based on dx Surgery data 
Surgeon_ex Medical 

Records 
 Local VASQIP Not done Surgery data 

Wnd_class Surgery  Local VASQIP Surgical_case.wound_class_cd Surgery data 
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Exhibit 24. List of additional SSI risk factors at Intermountain Healthcare 

Column Heading Value Type Description 
Charlson Score Numeric Charlson Score 
Preop  glucose Numeric Preop glucose 
No. of People in OR Numeric Number of people in OR 
Postop glucose Numeric First glucose level after surgery 
Postop fluid Numeric Liters of Fluid 24 hrs PostOp 
Abx allergy Numeric 1 if Hx of abx allergy…0 if not 
Trach Numeric 1 if patient had tracheotomy…0 if not 
No. of surgeons Numeric No. of surgeons scrubbed 
Abx = antibiotics; Hx = history; OR = operating room; Postop = postoperative; Preop = preoperative 

 
Description of Intermountain data. All of the data from Intermountain Healthcare was 

collected from data contained in the Enterprise Data Warehouse (EDW), which resides on an 
Oracle® relational database. All clinical data from the EMR, surgery database, hospital-acquired 
infection database and other databases contained in the Intermountain EMR are loaded into the 
EDW each night. The EDW contains 35,000,000,000 records and 8 Terabytes of data. Each of 
the common risk factors was collected using SQL queries on specific tables or the union of 
multiple tables. All Intermountain patients have an enterprise[-wide identification] number that is 
consistent for all encounters at any of the 22 hospitals and over 100 InstaCare facilities, clinics, 
and physician offices. That number was used to link all patient specific data. Surgery data was 
queried first to identify all patients undergoing the study procedures during the study period. 
Each of those patients was then checked for SSIs linked by the date of the surgery. All the other 
data elements listed in the common data list (and the eight other data elements available to 
Intermountain only) were then collected, based on the definitions included in the common list. 
After the data was then checked and verified, the final study database was loaded and sent for 
statistical analysis. 

Description of Denver Health data. Data were available in the warehouse. The many 
ancillary services housed in this single database include lab, radiology, pharmacy, scheduling, 
and surgery. Along with the Web Portal, information in the data warehouse can be accessed 
through Crystal Reports, Executive View, and Microsoft Analysis Services, as well as by using 
other tools. These data were collected using Statistical Analysis Software® (SAS®) Enterprise 
guide, version 4.2. DH data were limited to total knee (TK) and total hip (TH) replacements, and 
herniorrhaphies (HE), as CABGs are not performed at this location. These data were found in 
utilization, lab, surgery, and pharmacy electronic repositories. Other variables were found in 
NHSN reports. Denver Health has a data warehouse with a unique patient identifier and unique 
episode identifiers used to link data across systems. There are some limitations to DH data. 
Surgeon experience is limited to the number of years practicing at DH. There are missing 
datapoints, including 616 for ASA and 427 for surgeon’s experience. We were unable to locate 
data on antibiotics discontinued within 24 hours. There were three out-of-range values found for 
preop stay length (less than 0 days) and six out-of-range values for surgery duration (less than 0 
minutes). Up to 15 diagnosis codes were available per surgery, and up to 10 procedure codes. 
The limitation on procedure codes is not a large problem, though, as only seven surgeries (0.5 
percent) had 10 procedure codes. 
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Description of Vail data. Data are available via an EMR system (CERNER). This data is 
accessed via either chart review or through prebuilt reports that require a coded program. The 
system allows unlimited diagnosis and procedure codes for each surgery. Data was collected 
using Excel®. VVMC data were limited to total knee (TK) and total hip (TH) replacements and 
herniorrhaphies (HE), as CABGs are not performed at this institution. These data were found in 
demographics, ADT, Surgery, Nursing, ICD-9, Microbiology, Laboratory, and Pharmacy 
modules of our EMR. 

There were two limitations to the VVMC data: first, surgeon experience was unable to be 
collected; and second, the algorithm was run without including postdischarge antibiotic 
prescription data for a large majority of patients who return home for postdischarge care. 

Description of SLC VAMC data. The VA Salt Lake City Health Care System Data Mart is 
a compilation of operational data designed to extend the utilization of the clinical and 
administrative systems. The data mart is comprised of a collection of databases storing data from 
The Veterans Health Information Systems and Technology Architecture (VistA) and other data 
sources. VistA is an enterprise-wide information system built around an EHR. Data are stored in 
a relational database. Targeted patient population was selected using both ICD-9 codes and CPT 
codes (total knee [TK], and total hip [TH] replacements, herniorrhaphies HE], and CABG). 
Multiple VA data sources are merged and cohorts are definable by attributes such as ICD-9 
codes and CPT codes from both inpatient and outpatient encounters within a target time period. 
These data are kept current by frequent updates with new data from the source databases, so that 
timely data are available for research. Additionally, surgical outcome data were obtained from 
VASQIP. VASQIP data represents an extensive surgical quality improvement program and data 
collection tool. Comprehensive selections of approximately 69 clinical variables are collected for 
each case in this option. The dataset contains a broad range of variables that can be used for 
research purposes, as well as for identifying opportunities for surgical process improvement and 
other quality improvement efforts. 

Data collection summary: 
A total of 3,612 herniorrhaphies, 3,410 total hip and 9,728 total knee procedures were 

included in the study using Intermountain, Vail Valley Medical Center, VAMC, and Denver 
Health. An additional 1,802 CABG and 5,873 appendectomy procedures were submitted from 
Intermountain and the VAMC (Exhibit 25).  A total of 222 SSIs were associated with the various 
surgical procedures and participating facilities (Exhibit 26). The SSI rates varied by reporting 
site and procedure each year, and ranged from 0.0 to 7.1 percent. 
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Exhibit 25. Number of procedures per data site and year 

 Surgery Procedure 
  AP CA HE TH TK Total 
2007        

DH   296 71 76 443 
IH     2 2 

VA  4 16 3 11 34 
Vail     109 42 87 238 

2008        
DH   328 88 72 488 
IH 2941 922 1057 1345 4210 10475 

VA  42 119 45 83 289 
Vail     130 47 149 326 

2009        
DH   274 109 84 467 
IH 2932 802 1002 1548 4587 10871 

VA  32 102 42 69 245 
Vail     179 70 298 547 

Total        
DH             898 268 232 1398 
IH 5873 1724 2059 2893 8799 21348 

VA  78 237 90 163 568 
Vail     418 159 534 1111 

All 
Sites 5873 1802 3612 34109 9728 24425 

DH =Denver Health; IH =Intermountain Healthcare; VA =Salt Lake City VA Vail =Vail 
Valley Medical Center; AP =Appendectomy;  CA =CABG;  HE =Herniorrhaphy;  TH 
=Total Hip Arthroplasty;  TK =Total Knee Arthroplasty 
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Exhibit 26. Number of SSIs per procedure and data site 

Surgery Procedure 
  AP CA HE TH TK Total 

2007             
DH . . 1 2 3 6 
IH . . . . 0 0 

VA . 0 0 0 0 0 
Vail . . 0 1 0 1 

2008        
DH . . 3 0 3 6 
IH 14 17 22 19 36 108 

VA . 3 2 2 0 7 
Vail . . 0 0 0 0 

2009        
DH . . 3 2 1 6 
IH 15 15 7 16 29 82 

VA . 0 1 0 1 2 
Vail . . 2 0 2 4 

Surgery Procedure 
  AP CA HE TH TK Total 

Total        
DH . . 7 4 7 18 
IH 29 32 29 35 65 190 

VA . 3 3 2 1 9 
Vail . . 2 1 2 5 

All Sites 29 35 41 42 75 222 

DH = Denver Health; IH = Intermountain Healthcare; VA = Salt Lake City VA Vail = Vail 
Valley Medical Center; AP = Appendectomy; CA = CABG; HE =Herniorrhaphy; TH = Total 
Hip Arthroplasty; TK = Total Knee Arthroplasty 

 

S ubtas k 3.3. E valuate the Quality of the R is k-Adjus tment 
R elative to Method C omplexity and Data C ollec tion C os ts  

We met with a statistician and selected appropriate statistical tests to identify the risk factors 
for SSI. The dataset was checked by the statistician for any obvious coding problems or other 
issues that would complicate or confound the analysis. The statistician also verified that the 
dataset was formatted correctly so that it could be loaded into the statistical software for 
analyses. After the data was loaded into the statistical program, it was then further cleaned and 
any missing or incomplete data was resolved.  
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After combining the data from each health care system, we found numerous missing lab 
values (Exhibit 27), especially for the outpatient procedures. We found that the variables 
preop_hematocrit, preop_hemoglob, preop_albumin, postop_hemoglob, and postop_heatocrit 
were most often missing because those tests were not ordered prior to the patient’s procedure 
(Exhibit 28). An analysis of lab values 30 days prior to surgery showed that 99.7 percent of lab 
values were captured within 30 days preop, and verified that the missing values were indeed the 
result of the tests not being ordered prior to the procedure. However, dropping an entire record 
due to missing values can result in undesired outcomes and misleading results,73,74 therefore we 
decided to impute the missing values. We considered a bootstrapping approach, but ultimately 
chose to use a multiple imputation (MI) method to approximate missing data. 
 
Exhibit 27. Summary of missing data 

 Value Non-SSI Patients SSI Patients 
abx_dc 1970 (8%) 27 (11%) 
admit_src 643 (3%) 9 (4%) 
age 642 (3%) 13 (6%) 
asa 18954 (76%) 170 (72%) 
bmi 4320 (17%) 27 (11%) 
ca_hx* 0 (0%) 0 (0%) 
ch_kidney_dx* 0 (0%) 0 (0%) 
ch_lung_dx* 0 (0%) 0 (0%) 
copd_hx* 0 (0%) 0 (0%) 
diabetes* 0 (0%) 0 (0%) 
general_anes 8 (0%) 0 (0%) 
hypocholest* 0 (0%) 0 (0%) 
postop_hematocrit 7597 (31%) 40 (17%) 
postop_hemoglob 9540 (38%) 57 (24%) 
preop_albumin 17468 (70%) 143 (61%) 
preop_hematocrit 10220 (41%) 73 (31%) 
preop_hemoglob 10709 (43%) 79 (34%) 
preop_stay 1002 (4%) 14 (6%) 
rheum_dx* 0 (0%) 0 (0%) 
sex 13 (0%) 0 (0%) 
surg_dur 614 (2%) 13 (6%) 
wnd_class 1128 (5%) 34 (14%) 

* Unable to determine extent of missing data; original data dictionary 
instructed data abstractors to send specific ICD-9 codes if condition 
was present or leave blank if condition was not present. 
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Exhibit 28. Count of missing values (with percentage) 

Procedure 
postop_ 
hematocrit 

postop_ 
hemoglob 

preop_ 
albumin 

preop_ 
hematocrit 

preop_ 
hemoglob 

DH      
HE 429 (46.4%) 429 (46.4%) 489 (52.9%) 340 (36.8%) 345 (37.3%) 
TH 47 (17.3%) 47 (17.3%) 127 (46.9%) 70 (25.8%) 70 (25.8%) 
TK 31 (13.2%) 32 (13.7%) 99 (42.3%) 41 (17.5%) 41 (17.5%) 

IH      
AP 3923 (64%) 3949 (64.5%) 2784 (45.4%) 1568 (25.6%) 1672 (27.3%) 
CA 80 (4.4%) 81 (4.5%) 418 (23.2%) 123 (6.8%) 128 (7.1%) 
HE 1690 (77.8%) 1703 (78.4%) 2173 (100%) 1424 (65.5%) 1682 (77.4%) 
TH 85 (2.9%) 514 (17.7%) 2478 (85.2%) 1249 (42.9%) 1334 (45.8%) 
TK 615 (6.9%) 1817 (20.3%) 7697 (86.2%) 4511 (50.5%) 4549 (50.9%) 

VA      
CA 78 (100%) 78 (100%) 1 (1.3%) 78 (100%) 78 (100%) 
HE 202 (85.2%) 237 (100%) 90 (38%) 22 (9.3%) 22 (9.3%) 
TH  (0%) 90 (100%) 49 (54.4%) 1 (1.1%) 1 (1.1%) 
TK 1 (0.6%) 163 (100%) 95 (58.3%) 3 (1.8%) 3 (1.8%) 

VAIL      
HE 388 (92.8%) 390 (93.3%) 418 (100%) 337 (80.6%) 336 (80.4%) 
TH 13 (8.2%) 12 (7.5%) 159 (100%) 107 (67.3%) 107 (67.3%) 
TK 55 (10.3%) 55 (10.3%) 534 (100%) 419 (78.5%) 420 (78.7%) 

DH = Denver Health; IH = Intermountain Healthcare; VA = Salt Lake City VA Vail = Vail Valley Medical Center; AP = 
Appendectomy; CA = CABG; HE =Herniorrhaphy; TH = Total Hip Arthroplasty; TK = Total Knee Arthroplasty 
 

In multiple imputation, missing values for any variable are predicted using existing values 
from other variables. The predicted values, called “imputes”, are substituted for the missing 
values, resulting in a full dataset called an “imputed dataset.” This process is performed multiple 
times, producing multiple imputed datasets (hence the term “multiple imputation”). Standard 
statistical analysis is carried out on each imputed dataset, producing multiple analysis results. 
These analysis results are then combined to produce one overall analysis.  

Multiple imputation accounts for missing data by restoring not only the natural variability in 
the missing data, but also by incorporating the uncertainty caused by estimating missing data. 
Maintaining the original variability of the missing data is done by creating imputed values, 
which are based on variables correlated with the missing data and causes of data being missing. 
Uncertainty is accounted for by creating different versions of the missing data and observing the 
variability between imputed datasets. It is important to note that imputed values produced from 
an imputation model are not intended to be “guesses” as to what a particular missing value might 
be; rather, this modeling is intended to create an imputed dataset that maintains the overall 
variability in the population while preserving relationships with other variables. Thus, in 
performing multiple imputation, a researcher is interested in preserving important characteristics 
of the dataset as a whole (e.g., means, variances, regression parameters). Creating imputes is 
merely a mechanism to deliver an analysis that makes use of all possible information. 
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New to SAS® version 9†

Our next step was to randomly select 60 percent of the data to be placed in a derivation 
environment where we could develop the statistical models. The remaining 40 percent of the data 
was placed in the validation dataset, which was used for comparison and confirmation of the 
models built with the derivation dataset. After validation, the final statistical models used the full 
dataset that included both the derivation and validation datasets. 

 is the Multiple Imputation (MI) procedure,75 which uses a random 
sample of missing values to account for any uncertainty from the missing data. For our project, 
we chose a Markov Chain Monte Carlo method to create five complete datasets, each with a 
slightly different value in the missing slot. We then used standard statistical analyses on the 
complete datasets. Also new to SAS 9 is the MIANALYZE procedure that we used to combine 
the five dataset-analysis results into a single inferential result. 

Univariate regression was used to determine the independent association of potential risk 
factors and SSI. The final model included risk factors with probability P < 0.05, or that 
contributed to the predictive value of the model. We first used a binary logistic regression model 
to evaluate the relationship of each variable with the occurrence of an SSI. For the nonimputed 
variables, we used the original dataset with logistic regression. For the imputed variables, we 
used the five imputed datasets with a combination of logistic regression and the MIANALYSE 
procedure to generate results. 

The risk factors for SSI were tested by including the type of procedure as a binary variable 
(yes/no) and the risk factors were also independently tested for each of the five different 
procedures (CABG, herniorrhaphies, hip arthroplasty, knee arthroplasty and appendectomies). 
The predictive models were created with stepwise logistic regression, using the five imputed 
datasets. The entry level probability for each variable was set at .2 and the probability used to 
keep a variable in the model was set at .25. Running logistic regression on five separate datasets 
resulted in five different candidate models that were mostly the same, but had a few differences. 
We then took any variable identified in the five multivariate models to create the final logistic 
regression model. We then ran the final logistic regression model on the five imputed datasets 
and used the MIANALYZE procedure to produce one set of results from the five iterations. 

 

S ubtas k 3.4. Identify S S I R is k F ac tors  us ing c ombined 
datas ets  from all four fac ilities /s ys tems . 

3.4.1. Multivariate analysis of the datasets, including each procedure 
as a binary variable.  

During the univariate analyses of the derivation dataset, 13 different risk factors were 
included in the model. That analysis also included each of the five different procedures as a 

                                                 
 
† The data analysis for this paper was generated using SAS/STAT software, Version 9.2 of the SAS System for Windows. 

Copyright © 2002-2008 SAS Institute Inc. SAS and all other SAS Institute Inc. product or service names are registered 
trademarks or trademarks of SAS Institute Inc., Cary, NC, USA 
 

 



43 
 

binary variable, yes/no. Each of those 13 risk factors was then included in three different logistic 
regression analyses using the derivation, validation, and combined datasets (Exhibit 29, Exhibit 
30, and Exhibit 31). The statistical significance of each of the 13 potential risk factors changed 
during each test using the three different datasets. For the derivation dataset, 6 of the 13 
univariate risk factors remained significant in the model compared to only 3 in the validation set, 
and 7 when both the derivation and validation sets were combined. Only a history of MRSA 
infection and a postoperative admission within 30 days were significant in all three tests. In 
many cases, postoperative admission was indicative for admission due to a postoperative wound. 
Chronic kidney disease was significant in the derivation and combined datasets, along with an 
increase in the number of procedures and a low postoperative hematocrit. Male gender was only 
significant in the derivation analysis. CABG surgery was only found to be significant in the 
validation and combined datasets. A longer preoperative stay was only significant in the 
combined dataset.  

 
Exhibit 29. Results of logistic regression using the 60-percent derivation set, including each of the 

five surgical procedures as a possible risk factor 

Variable Estimate tValue Probability 
Intercept -5.66922 -7.18334 0.00000 
Admission transfer 0.249358 0.655373 0.51223 
History or cancer 0.675356 1.234336 0.21708 
Chronic kidney 
disease -2.28736 -2.24028 0.02507 
General anesthesia  0.419425 1.499021 0.13387 
Male 0.58722 2.677562 0.00742 
History of MRSA 1.47331 4.87133 0.00000 
Number of 
procedures 0.381148 3.171798 0.00151 
Postop admission 2.104624 9.115523 0.00000 
Postop hematocrit -0.04406 -2.01137 0.04496 
Preop stay 0.042437 1.623837 0.10441 
CABG surgery 0.24496 0.746911 0.45512 
Herniorrhaphy 0.186762 0.564969 0.57209 
Wound class 0.003031 0.014814 0.98818 
CABG = coronary artery bypass grafting; MRSA = methicillin-resistant Staphylococcus aureus; Postop = postoperative; Preop = 
preoperative. 
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Exhibit 30. Results of logistic regression using the 40-percent validation set, including each of the 
five surgical procedures as a possible risk factor 

Variable Estimate tValue Probability 
Intercept -5.9448 -7.7606 0.00000 
Admission transfer -0.46026 -0.92513 0.35490 
History or cancer -0.78305 -0.76388 0.44494 
Chronic kidney 
disease -0.49964 -0.91168 0.36193 
General anesthesia  0.046769 0.171229 0.86404 
Male -0.08612 -0.3914 0.69550 
History of MRSA 1.149853 3.048832 0.00230 
Number of 
procedures 0.264643 1.861373 0.06269 
Postop admission 2.115295 9.348542 0.00000 
Postop hematocrit -0.01706 -0.79509 0.42677 
Preop stay 0.035891 1.814288 0.06963 
CABG surgery 0.725095 2.077166 0.03779 
Herniorrhaphy 0.553825 1.787663 0.07383 
Wound class 0.326074 1.904355 0.05686 
CABG = coronary artery bypass grafting; MRSA = methicillin-resistant Staphylococcus aureus; Postop = postoperative; Preop = 
preoperative. 
 
Exhibit 31. Results of logistic regression using the combined derivation and validation sets, 

including each of the five surgical procedures as a possible risk factor 

Variable Estimate tValue Probability 
Intercept -5.75478 -10.6587 0.00000 
Admission transfer -0.07527 -0.25258 0.80059 
History or cancer 0.186484 0.396676 0.69161 
Chronic kidney 
disease -1.19328 -2.52852 0.01145 
General anesthesia  0.248213 1.277382 0.20147 
Male 0.254338 1.658706 0.09718 
History of MRSA 1.347607 5.798036 0.00000 
Number of 
procedures 0.322013 3.494699 0.00047 
Postop admission 2.111179 13.10889 0.00000 
Postop hematocrit -0.03231 -2.16588 0.03045 
Preop stay 0.035145 2.315832 0.02057 
CABG surgery 0.477163 2.015653 0.04384 
Herniorrhaphy 0.376815 1.673907 0.09415 
Wound class 0.16983 1.300158 0.19355 
CABG = coronary artery bypass grafting; MRSA = methicillin-resistant Staphylococcus aureus; Postop = postoperative; Preop = 
preoperative. 
 



45 
 

3.4.2. Multivariate analysis of the datasets including only CABG 
surgery. 

During the univariate analyses of the derivation dataset for CABG surgeries, seven different 
risk factors were included in the model. Each of those seven risk factors was then included in 
three different logistic regression analyses using the 60-percent derivation, 40-percent validation, 
and 100-percent combined datasets (Exhibits 32–34). The probability of each of the seven 
potential risk factors changed for each of the three different datasets. For the derivation dataset, 
five (transfer admission, increased BMI, history of MRSA, postoperative admission within 30 
days, and longer surgery duration) of the seven univariate risk factors remained significant in the 
model, while only one (increased BMI) remained in the validation set. For the combined dataset, 
except for transfer admission, the same four factors identified using the derivation set remained 
significant. Of interest, postoperative admission within 30 days had a nonsignificant probability 
of 0.2134 in the validation set.  
Exhibit 32. Results of logistic regression using the derivation dataset for only CABG surgeries. 

Variable Estimate tValue Probability 
Intercept -10.9133 -4.25511 0.00002 
Transfer 
admission 1.285104 2.234972 0.02542 
BMI 0.111739 3.758852 0.00017 
History of MRSA 2.214599 3.213444 0.00131 
Postop admission 2.03457 3.397303 0.00068 
Preop hematocrit 0.145933 1.881071 0.06342 
Preop hemoglob -0.1963 -0.86847 0.39360 
Surgery duration -0.00573 -2.02865 0.04249 
BMI = body mass index; MRSA = methicillin-resistant Staphylococcus aureus; Postop = postoperative; Preop = preoperative. 
 
Exhibit 33. Results of logistic regression using the validation dataset for only CABG surgeries. 

Variable Estimate tValue Probability 
Intercept -4.41194 -2.00311 0.04533 
Transfer admission -0.36612 -0.46516 0.64182 
BMI 0.087611 2.610583 0.00904 
History of MRSA 1.072824 1.320566 0.18665 
Postop admission 0.646026 1.244747 0.21324 
Preop hematocrit 0.027258 0.274814 0.78942 
Preop hemoglobin -0.20223 -0.70553 0.50265 
Surgery duration -0.00372 -1.3105 0.19003 

BMI = body mass index; MRSA = methicillin-resistant Staphylococcus aureus; Postop = postoperative; Preop = preoperative. 
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Exhibit 34. Results of logistic regression using the combined dataset for only CABG surgeries. 

Variable Estimate tValue Probability 
Intercept -7.01035 -4.29561 0.00002 
Transfer admission 0.616473 1.420047 0.15560 
BMI 0.095185 4.350031 0.00001 
History of MRSA 1.565599 3.098649 0.00195 
Postop admission 1.267214 3.445955 0.00057 
Preop hematocrit 0.087034 1.579951 0.12344 
Preop hemoglobin -0.22319 -1.51617 0.14453 
Surgery duration -0.00477 -2.36402 0.01809 
BMI = body mass index; MRSA = methicillin-resistant Staphylococcus aureus; Postop = postoperative; Preop = preoperative. 

3.4.3. Multivariate analysis of the datasets, including only 
herniorrhaphy. 

During the univariate analyses of the derivation dataset for CABG surgeries, seven different 
risk factors were included in the model. Each of those seven risk factors was then included in 
three different logistic regression analyses using a 60-percent derivation, 40-percent validation 
and 100-percent combined datasets (Exhibits 35– 37). The probability of each of the seven 
potential risk factors changed for each of the three different datasets. For the derivation dataset, 
three factors (postoperative admission within 30 days, postoperative hematocrit, and 
postoperative hemoglobin) remained significant in the model, and only postoperative admission 
remained in the validation and the combined sets. Of interest, postoperative admission within 30 
days had a nonsignificant probability of 0.2134 in the validation set.  
Exhibit 35. Results of logistic regression using the derivation dataset for only herniorrhaphy 
Variable Estimate tValue Probability 
Intercept -7.19702 -2.90005 0.00378 
No. of procedures -1.22262 -1.19116 0.23359 
Postop admission 2.105654 3.434398 0.00059 
Postop hematocrit -0.15235 -2.04515 0.04164 
Postop hemoglobin 0.558391 2.282273 0.02329 
Longer preoperative 
stay 0.119229 1.583554 0.11330 
History or rheumatism  1.80024 1.428812 0.15310 
Wound class 0.812588 1.409284 0.15876 
Postop = postoperative; Preop = preoperative. 
 
Exhibit 36. Results of logistic regression using the validation dataset for only herniorrhaphy 
Variable Estimate tValue Probability 
Intercept -6.63084 -3.1182 0.00195 
No. of procedures 0.389846 1.706724 0.08789 
Postop admission 3.430942 5.136659 0.00000 
Postop hematocrit 0.132635 1.271441 0.20613 
Postop hemoglobin -0.42173 -1.32403 0.18974 
Longer preop stay 0.006993 0.13405 0.89336 
History or rheumatism  0.632211 0.536855 0.59137 
Wound class 0.407113 0.76837 0.44228 

Postop = postoperative; Preop = preoperative. 
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Exhibit 37. Results of logistic regression using the combined dataset for only herniorrhaphy. 
Variable Estimate tValue Probability 
Intercept -6.53827 -4.0998 0.00007 
No. of procedures 0.174594 0.920322 0.35743 
Postop admission 2.787336 6.551838 0.00000 
Postop hematocrit -0.03547 -0.44784 0.66071 
Postop hemoglobin 0.082922 0.331393 0.74535 
Longer preop stay 0.036602 1.854843 0.06362 
History or rheumatism  1.226935 1.51136 0.13070 
Wound class 0.490776 1.44229 0.14923 

Postop = postoperative; Preop = preoperative. 

3.4.4. Multivariate analysis of the datasets including only total hip 
surgery. 

During the univariate analyses of the derivation dataset for total hip surgeries, eight different 
risk factors were included in the model. Each of those eight risk factors was then included in 
three different logistic regression analyses using 60-percent derivation, 40-percent validation and 
100-percent combined datasets (Exhibits 38–40). The probability of each of the eight potential 
risk factors changed for each of the three different datasets. For the derivation dataset, four 
factors (emergency surgery, number of procedures, postoperative admission within 30 days, 
surgery duration) remained significant in the model. Chronic lung disease, emergency surgery, 
and postoperative admission were significant in the validation set, and the probability related to 
surgery duration was 0.05866. For the combined dataset, the same three factors as for the 
validation set were significant, plus surgery duration. Because the stepwise logistic regression 
entry and stay probabilities were set at .20 and .25, respectively, it was possible for some 
variables to be nonsignificant in the derivation dataset and significant in the validation and 
combined datasets (chronic lung disease, for example). 
Exhibit 38. Results of logistic regression using the derivation dataset for only total hip surgery. 
Variable Estimate tValue Probability 
Intercept -3.15016 -1.31103 0.19127 
Age -0.02436 -1.36677 0.17172 
Chronic lung disease 0.717234 1.299857 0.19365 
Emergency surgery 1.667783 2.711989 0.00669 
No. of procedures 0.647188 2.857793 0.00442 
Postop admission 1.502892 2.895868 0.00379 
Postop hemoglobin -0.26253 -1.52152 0.12890 
Preop hemoglobin 0.013404 0.231 0.82005 
Surgery duration 0.007371 2.714224 0.00665 
Postop = postoperative; preop = preoperative 
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Exhibit 39. Results of logistic regression using the validation dataset for only total hip surgery. 
Variable Estimate tValue Probability 
Intercept -5.30978 -2.3102 0.02089 
Age -0.01718 -1.01601 0.30962 
Chronic lung disease 1.181684 2.524745 0.01158 
Emergency surgery 2.01501 3.420056 0.00063 
No. of procedures -0.58576 -0.61154 0.54084 
Postop admission 1.962564 3.988843 0.00007 
Postop hemoglobin 0.079368 0.560087 0.57554 
Preop hemoglobin 0.019021 0.361141 0.72071 
Surgery duration 0.002467 1.890769 0.05866 
Postop = postoperative; Preop = preoperative 
Exhibit 40. Results of logistic regression using the combined dataset for only total hip surgery. 
Variable Estimate tValue Probability 
Intercept -4.28495 -2.91129 0.00361 
Age -0.02085 -1.74905 0.08028 
Chronic lung disease 0.930147 2.645746 0.00815 
Emergency surgery 1.730828 4.182002 0.00003 
No. of procedures 0.410227 1.931115 0.05347 
Postop admission 1.728514 4.971104 0.00000 
Postop hemoglobin -0.09155 -0.89798 0.36925 
Preop hemoglobin 0.014634 0.464605 0.64256 
Surgery duration 0.003186 2.997669 0.00272 

Postop = postoperative; Preop = preoperative 

3.4.5. Multivariate analysis of the datasets including only total knee 
surgery. 

During the univariate analyses of the derivation dataset for total knee surgeries, only five 
different risk factors were included in the model. Each of those five risk factors was then 
included in three different logistic regression analyses using a 60 percent derivation, 40 percent 
validation and 100 percent combined datasets (Exhibit 41, Exhibit 42, and Exhibit 43). The 
probability of each of the five potential risk factors changed for each of the three different 
datasets. For the derivation dataset, three univariate risk factors (history of MRSA, number of 
procedures, and postoperative admission within 30 days) remained significant in the model. 
Three of the five (history of MRSA, postoperative admission within 30 days, and preop 
hemtocrit) were significant in the validation set. When the five univariate risk factors were tested 
with the combined dataset, all five (including male gender) were significant.  
 
Exhibit 41. Results of logistic regression using the derivation dataset for only total knee surgery 
Variable Estimate tValue Probability 
Intercept -5.75277 -4.00541 0.00007 
Male 0.680791 2.12279 0.03377 
History of MRSA 1.752457 4.314211 0.00002 
No. of procedures 0.748074 4.581106 0.00000 
Postop admission 2.233521 5.919509 0.00000 
Preop hematocrit -0.03908 -1.20797 0.22750 
MRSA = methicillin-resistant Staphlococcus aureus; Postop = postoperative; Preop = preoperative 
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Exhibit 42. Results of logistic regression using the validation dataset for only total knee surgery 
Variable Estimate tValue Probability 
Intercept -3.80701 -2.42999 0.01528 
Male 0.558903 1.518404 0.12891 
History of MRSA 1.306538 2.061606 0.03925 
No. of procedures 0.383498 1.838999 0.06592 
Postop admission 2.166304 5.228965 0.00000 
Preop hematocrit -0.07291 -1.99583 0.04627 

MRSA = methicillin-resistant Staphlococcus aureus; Postop = postoperative; Preop = preoperative 

 
Exhibit 43. Results of logistic regression using the combined dataset for only total knee surgery 
Variable Estimate tValue Probability 
Intercept -4.99176 -4.53387 0.00001 
Male 0.623433 2.577626 0.00995 
History of MRSA 1.593127 4.739078 0.00000 
No. of procedures 0.584536 4.752973 0.00000 
Postop admission 2.179504 7.873071 0.00000 
Preop hematocrit -0.05078 -2.00126 0.04697 

MRSA = methicillin-resistant Staphlococcus aureus; Postop = postoperative; Preop = preoperative 

 

3.4.6. Multivariate analysis of the dataset including only 
appendectomy surgery at Intermountain Healthcare. 

During the univariate analyses of the derivation dataset for appendectomy surgeries, seven 
different risk factors were included in the model. Each of those seven risk factors was then 
included in three different logistic regression analyses using the derivation, validation, and 
combined datasets (Exhibits 44–46). The probability of each of the seven potential risk factors 
changed during each test, using the three different datasets. For the derivation dataset, only two 
(postoperative admission within 30 days and postoperative hematocrit) of the seven univariate 
risk factors remained significant in the model, and only one (postoperative admission) remained 
in the validation set. For the combined datasets, the same two as the derivation set remained 
significant. Again, only postoperative admission within 30 days was significant in all three tests.  
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Exhibit 44. Results of logistic regression using the derivation dataset for only appendectomy 

surgeries. 
Variable Estimate tValue Probability 
Intercept -3.45066 -1.04967 0.31289 
History of cancer 0.896303 0.974859 0.32970 
Emergency surgery -0.62318 -0.96643 0.33384 
Male 0.488666 0.768574 0.44219 
Postop admission 2.453247 3.652926 0.00026 
Postop hematocrit -0.17629 -2.12084 0.04042 
Postop hemoglobin 0.272209 0.822076 0.42317 
Preop hemoglobin -0.0374 -0.26214 0.79751 

Postop = postoperative; Preop = preoperative 

 
Exhibit 45. Results of logistic regression using the validation dataset for only appendectomy 

surgeries 
Variable Estimate tValue Probability 
Intercept -4.59592 -2.06151 0.04255 
History of cancer 0.855832 0.736814 0.46124 
Emergency surgery 0.655977 1.172465 0.24101 
Male 0.586734 1.019488 0.30824 
Postop admission 2.572595 4.931689 0.00000 
Postop hematocrit -0.15581 -1.68912 0.09748 
Postop hemoglobin 0.310595 1.163695 0.24698 
Preop hemoglobin -0.04081 -0.31694 0.75426 

Postop = postoperative; Preop = preoperative 

 
Exhibit 46. Results of logistic regression using the combined dataset for only appendectomy 

surgeries 
Variable Estimate tValue Probability 
Intercept -3.90766 -2.4378 0.01642 
History of cancer 0.749083 1.068061 0.28549 
Emergency surgery 0.130644 0.331969 0.73991 
Male 0.619657 1.471467 0.14148 
Postop admission 2.515271 6.19406 0.00000 
Postop  hematocrit -0.15793 -2.74004 0.00744 
Postop hemoglobin 0.304609 1.439065 0.16263 
Preop hemoglobin -0.07631 -0.6829 0.51247 

Postop = postoperative; Preop = preoperative 

 

S ubtas k 3.6. S ummary 

3.6.1. Identified SSI risk factors using datasets from all four 
facilities/systems. 

This study examined a large number of potential risk factors contained in electronic medical 
records from four different facilities/systems in an effort to identify predictors for SSI. The 
potential risk factors were identified through surgeons’ experience and an extensive literature 
review for any potential risk factors for any surgical procedure during the past 10 years. Four 
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different surgical procedures (herniorrhaphy, CABG, total hip, total knee) were included in this 
study from all four facilities/systems, and appendectomy was also included from Intermountain 
Healthcare. Analyses of six different data partitions were conducted which included all data and 
each of the different surgical procedures as a potential risk factor, and then data from each 
surgical procedure separately. For each of the different data partitions, three iterations were 
conducted which included a 60-percent random derivation set, the remaining 40-percent 
validation set, and then the combined dataset. 

During the analyses of the three iterations that included the different surgical procedures as 
binary risk factors and the three iterations for the individual tests of each of the five different 
surgical procedures, 21 (64 percent) of the 33 potential risk factors tested were identified during 
the univariate analyses during at least one iteration. However, only 13 of the 21 were found to be 
significant in at least one of the derivation, validation, or combined multivariate logistic 
regression models. While herniorrhaphy was included as a risk factor during the univariate 
analysis that included surgery type as a binary variable, only CABG surgery was statistically 
significant in the validation and combined regression models. The most common risk factor 
(identified during 16 of the 18 different iterations) was postoperative admission within 30 days. 
Rather than a preoperative risk factor, this finding was indicative of the need for hospitalization 
for postoperative wound treatment. One might ask why was postop admission within 30 days 
included in the analysis for this study. First, it is a common risk factor or “trigger” used by many 
facilities that rely on manual SSI surveillance, including postdischarge phone calls to patients, 
for postdischarge SSI identification. This study shows that it is still a reliable method to identify 
SSIs. Second, since it was the most common risk factor identified in this study, that led us to feel 
the statistical analysis was working appropriately. If postoperative admission was not identified 
as a risk factor, it would have immediately led us to question our results and methods. The next 
most common risk factor was history of MRSA (identified seven times) followed by postop 
hematocrit (six times), number of procedures (five times), surgery duration (four times), and 
increased BMI and postop hemoglobin at three times each. It was interesting to note that the 
significant risk factors almost always varied between the derivation, validation, and combined 
datasets.  

This study indicates that risk factors for surgical site infections vary by the type of procedure. 
The risk models generated for each of the five different types of surgical procedure and the 
inclusion of procedure type varied. The number of risk factors included in the different models 
also varied from 5 to 13 in this study. We also found that the risk factors for total hip surgery 
differed from those for total knee surgery. Thus, total hip surgeries need to be compared with 
total hip surgeries, and not just the group of other orthopedic surgeries.  

3.6.2. Identified SSI risk factors, using data only from Intermountain 
Healthcare, and including eight additional potential risk factors 

The Intermountain data contributed 87 percent of the total dataset—including 57 percent of 
the data for herniorrhaphy, 85 percent of the total hip replacement data, 90 percent or the total 
knee replacement data, 95 percent of the CABG data, and all of the appendectomy data. The 
analysis with the Intermountain data only demonstrated the impact the other data had when 
included in the total dataset. It also reinforced the conclusion that risk factors can change, 
depending on the facilities data. As before, postop admission was the most common factor 
identified and was significant in all 18 iterations, followed again by history of MRSA 
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(significant nine times). This was possibly influenced by Intermountain’s ability to monitor 
postop admissions across all 22 hospitals and its enterprise-wide MRSA surveillance network 
that monitors all MRSA patient movement throughout the system. When each of the five surgical 
types was included in the analyses, only herniorrhaphy was significantly associated with SSI. 
While herniorrhaphy was identified in the univariate analysis of the total dataset, it was not 
significant in either the derivation or validation analyses, whereas CABG was significant in both 
the validation and combined analyses. Thus, the 13 percent of the data from the other facilities 
did have an impact on the risk factors identified by the univariate analyses and the significance 
of the risk factors in the multiple regression analyses. 

The inclusion of the eight new, potential risk factors in the analysis of only Intermountain 
data did not result in any major differences in the identification of risk factors. Charlson score, 
number of surgeons, and preop glucose were the only new risk factors that were identified in any 
of the univariate analyses, and only Charlson score and number of surgeons were ever found to 
be significant in the multiple regression. The number of procedures during the same surgery 
(concurrent procedures) was identified as a significant risk factor from the total dataset. It was 
significant during the derivation and combined analyses, which included the five surgical 
procedures as risk factors. The number of procedures was not identified in the univariate analysis 
using the Intermountain data only, and seems to have been replaced by the number of surgeons. 
The number of different surgeons would seem to be associated with the number of different 
procedures performed, and probably kept the number of procedures from remaining in the 
model.  

3.6.3. Conclusion. 
There is not a single set of risk factors that can be used to predict SSI across all types of 

surgical procedures or facilities. This study found that SSI risk factors are dependent on the type 
of surgical procedure. Thus, SSI rate comparison needs to be at the surgical procedure level and 
not the surgical service level (i.e., orthopedics, general surgery, thoracic, etc.). In addition, SSI 
rates should also be compared at the facility level against its own baseline rates. When compared 
at that level, the sets of risk factors identified for the five different surgical procedures in this 
study could be used to identify changes in SSI rates over time, and differences between surgeons. 
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Chapter 4. Assessing Surgeon Acceptance of Risk 
Adjustment Models  

The originally proposed approach for Chapter 4 was to solicit input from surgeons and IP 
nurses on the types of risk factors that should be examined. Due to delays in Institutional Review 
Board (IRB) approval at Intermountain for the nursing focus group, we used this opportunity 
(with permission from AHRQ and CDC) to repurpose the nursing focus group. Surgeon focus 
group inputs, as described below, were used to inform Chapter 3. Results of the nursing focus 
groups are being used to support adoption of the developed tools by offering greater insight into 
the decision to adopt and issues/challenges around implementation of the Chapter 2 surveillance 
tool. 

S ubtas k 4.1. Identify a R epres entative G roup of Ac tive 
S urgeons  in the United S tates .  

4.1.1. Identify surgeons to participate in a focus group and in-depth 
discussion 

Surgeons were identified based on their project-relevant professional expertise, and were 
selected from multiple health care settings and systems in order to maximize the representative 
nature of the focus group participants. Walter L. Biffl, M.D., recruited participant surgeons 
through use of a national conference-based professional networking strategy. National meeting 
organizers for the 5th annual Academic Surgical Congress were contacted to solicit their 
facilitation and ensure support, as well as to secure space to conduct the focus group adjacent to 
the national meeting on February 3, 2010, in San Antonio, TX. 

4.1.2. Identify nurses to participate in focus groups and in-depth 
discussion 

Two focus groups were conducted. The first was scheduled for Denver, CO, and infection 
control and/or infection preventionist nurses regularly working in SSI surveillance were recruited 
from the Mile High chapter of the Association for Professionals in Infection Control and 
Epidemiology (APIC). The second focus group was scheduled for Salt Lake City, UT, and 
infection control and/or infection preventionist nurses regularly working in SSI surveillance were 
recruited from the APIC Infection Control Association. Participants were given a $35 
honorarium for participation.  

S ubtas k 4.2. Develop a Mec hanis m to As c ertain Opinions  and 
Ideas  F rom S urgeons  and IP  Nurs es  About C urrent R is k-

Adjus tment Models  and P ropos ed C hanges   

4.2.1. Develop focus group guides 
Three distinct focus group guides were developed, one for use with each of the above- 

mentioned, homogeneous groups.  



54 
 

Surgeon focus group. The guide was designed to include a series of tailored, open-ended 
questions regarding surgeons’ attitudes towards current risk adjustment models; the variables 
that they consider important among their patients, and the appropriateness and relative risks of 
those variables; and ideas on optimizing feedback to enhance performance. The guide was 
developed through a process of iterative review by the project team, and was reviewed by the 
Colorado Multiple Institutional Review Board (COMIRB) prior to use (see Appendix N). 

Nursing focus groups. We developed two nursing focus group guides with the intent to 
explore the decision to adopt the e-detection tool and issues around its implementation (see 
Appendix O). A brief educational symposium on SSI detection and overview of our tool 
(developed in Chapter 2) was followed by an open discussion with infection control/prevention 
nurses—one group in Denver and one in Salt Lake City. Results were used to support 
development of an implementation manual for dissemination. 

4.2.2. Secure IRB approval 
IRB approval for the surgeon focus group was secured by Denver Health on January 29, 

2010, from COMIRB. An IRB exemption was secured by Intermountain Healthcare on January 
17, 2011, for the nursing focus groups.  

4.2.3. Secure Office of Management and Budget clearance or a 
clearance exemption 

Consultation was held with AHRQ’s Task Order Officer and the Office of Management and 
Budget (OMB) Liaison regarding the type of clearance exemption that would be required for the 
project. It was determined that OMB review and clearance was not required. No clinical 
exemption was necessary, because the clinical data used for the project was already required to 
be collected for other purposes. The new data collected through focus group sessions was not 
subject to OMB clearance requirements, as each focus group was designed to explore a topic 
area distinct from the other groups, and no group had more than nine participants. No further 
review was deemed necessary. 

4.2.4. Conduct focus groups 
Focus groups were conducted using a team approach, involving both a moderator and a 

trained qualitative researcher. The moderator promoted interaction and guided the discussion to 
ensure that the focus remained on the topic of interest, order was maintained, and all participants 
were engaged. The participation of an observing researcher in addition to the moderator allowed 
for an accurate record to be made without interrupting the flow of discussion.  

Each focus group was documented through summary notes taken by the researcher and 
through audio recording of the session. Documentation included both a record of spoken 
responses and observation of group members’ interactions. The use of redundant documentation 
methods to augment moderator and researcher recollection ensures the most complete set of data 
for analysis. Participant initials were recorded with individual responses to ensure accuracy of 
data analysis (i.e., not attributing a response to multiple individuals when a single individual 
raised the same point several times).  

Surgeon focus group. Six surgeons in addition to the facilitator participated in the focus 
group conducted on February 3, 2010, adjunct to the 5th annual Academic Surgical Congress in 
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San Antonio, TX. Participants were recruited by the facilitator based on their presence and 
involvement at the national meeting and interest in the topic under discussion. Surgeons 
represented multiple health system types and surgical specialties, as described in Exhibit 47 
below: 
 

Exhibit 47. Surgeon specialties and health system affiliations 

Surgeon ID Surgical Specialty Health System Type 
Surgeon #01 General Surgery Academic / Private 
Surgeon #02 General Surgery Academic 
Surgeon #03 General Surgery VA 
Surgeon #04 General Surgery – 

Trauma/Critical Care focus 
Academic / Safety Net 

Surgeon #05 General Surgery – 
Trauma/Critical Care focus 

Private 

Surgeon #06 Surgical Oncology Academic / Safety Net 
 

 
Nursing focus groups. Five infection control nurses in addition to the facilitator and an 

observing notetaker participated in the first focus group conducted on February 2, 2011, in 
Denver. Participants were recruited by the facilitator based on their involvement with the Mile 
High chapter of APIC and their interest in the topic to be discussed.  

Eight infection control nurses in addition to the facilitator participated in the second focus 
group conducted on February 25, 2011, in Salt Lake City. Participants were recruited from 
various hospitals from within Intermountain Healthcare. 

4.2.5. Conduct followup discussions with focus group participants 
No followup discussions were deemed necessary. 

S ubtas k 4.3. C ompile R es ults  of F oc us  G roups  to Make 
R ec ommendations  of S urgeon, Nurs e P ers pec tives  on R is k-

adjus tment Models  for S S I 

4.3.1. Independent analysis of focus group and discussion data  
Surgeon focus group. Focus group data were analyzed through an inductive approach that 

used an open, heuristic coding process to identify initial topics mentioned by participants. 
Individual topics were further categorized, based on the number of participants who conveyed 
agreement with the concept being discussed. A topic was identified as a theme based on the 
mention of or agreement with an item by three or more individual participants. 

Data were reviewed to the saturation point and discussed with the focus group facilitator and 
subject expert to ensure the most comprehensive identification of patterns. Topics identified as 
duplicative were combined into a single occurrence, and themes identified from the 
comprehensive topic list based on the number of individual mentions. 



56 
 

Nursing focus groups. Data from the first focus group were inductively analyzed by the 
group facilitator and content expert to elicit an understanding of current infection surveillance 
processes and to assess potential alteration of the standard process flow by the presence of an 
electronic SSI surveillance tool. A summary of key points emerging from the discussion was 
used to inform the second nursing focus group, centered on implementation, and conducted in 
Salt Lake City on February 25, 2011. Results from the second focus group informed the 
development of the implementation manual (Appendix R). 

4.3.2. Research team meeting and consensus discussion  
Results of the surgeon focus group were discussed on team calls and at the in-person meeting 

in October, 2010. Appendix P provides risk factor inputs from the surgeon focus group. 

4.3.3. Summary paper preparation and presentation  
Surgeon focus group. Draft and final versions of the results of the content analysis of focus 

group data were presented in report summary form to the research team, the TOO, and the 
Technical Experts. A copy of the final version is attached as Appendix Q. Results were used to 
inform the selection of common factors for Chapter 3, and to gain insight into how surgeons 
might use the risk adjustment tool and, thus, how dissemination and adoption might better be 
promoted. A limitation of these results is that the majority of focus group surgeon participants 
were primarily expert in general surgery. We acknowledge the possibility that additional risk 
factors specific to CABG or hip and knee arthroplasty procedures might have been identified in a 
more diverse group. 

The consensus among surgeon participants was that current models for SSI risk assessment 
were inadequate for their needs. Risk models either inappropriately accounted for the factors 
they included or included an excessive number of factors, such that items of actual significance 
were obscured. The surgeons expressed desire for the development of new models based on 
specific patient factors that are identified as significant in affecting risk rates. 

Surgeons agreed that infection rate assessments varied, based on items such as whether rates 
were determined based on process or outcome factors, what methods of documentation were 
used to report rates between private and public settings, whether or not rate data provided to an 
membership-based analysis database by participant hospitals are reflective of all populations, and 
whether or not there was variance in the interpretation of how risk factor measures were defined.  

Likewise, risks were determined to vary with some factors to a degree such that different 
broad categories of risk might be considered, such as risks for emergency surgery patients versus 
those for elective surgery patients; risks for a patient with managed comorbidities versus those 
for patients with poorly managed or undocumented comorbidities; risks for patients in 
compliance with medical recommendations versus risks for noncompliant patients; and 
whether—in some cases—scheduling considerations, operation timing, or the risk to a patient 
that might result from a delayed operation outweighed the risk of infection resulting from the 
operation itself. 

Finally, surgeons suggested approaches for improving risk assessment and management, such 
as giving provider-level feedback in a timely fashion; increasing risk awareness by drawing 
attention to measurement and tracking of risk factors; and intervening on one or more risk factor 
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variables, based on a patient’s risk level, instead of taking a “one size fits all” approach to risk. 
 
Exhibit 48. Original manual process flow for surgical site infection surveillance  

 
 

EMR = electronic medical record 

Nursing focus group results. The first of two focus groups was held on February 2, 2011. 
The purpose of this focus group was to cultivate an in-depth understanding of the decision to 
adopt an electronic SSI surveillance tool. A strawman flow diagram of unassisted SSI 
surveillance activities for IPs was amended as part of this process (see Exhibit 48 for the generic 
flow chart and Exhibit 49 for the amended flow chart). Overall, there was general acceptance and 
willingness to use an electronic cognitive-support tool. Themes gleaned from this focus group 
informed the second focus group on implementation, held in Salt Lake City on February 25, 
2011.  
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Exhibit 49. Revised manual process flow for surgical site infection surveillance  

 
EMR = electronic medical record 

The generalized model for continuous quality improvement in reducing SSIs is provided in 
Exhibit 50. Results from the focus groups, together with the outputs from Chapters 2 and 3, were 
used to develop an implementation manual (see Appendix R). The manual incorporates tools and 
strategies developed in both Tasks 2 and 3. As such, the manual is intended to describe how 
Chapter 2’s measures of surveillance allow you to determine if what you did as a result of 
Chapter 3’s risk factor assessment is working or not, as depicted in Exhibit 50. 
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S ubtas k 5.6. L is t of all R es ulting or Antic ipated S c ientific  
P res entations  and P ublic ations  F rom the P rojec t  

The broad-based dissemination of research results and tools developed through ACTION 
initiatives is an objective of primary importance. Throughout the duration of this project, our 
team has worked to identify a wide range of potential audiences and opportunities for 
dissemination at both local and national levels.  

In addition to the user manual described in Chapter 4, two poster presentations and one oral 
presentation have been given at national conferences, and a draft manuscript has been developed 
for submission to a peer-reviewed journal. An additional manuscript is currently in the initial 
design phase. Each of these activities is further described below. 

Poster presentations.  

• Surgeons' Acceptance of Surgical Site Infection Risk Adjustment Models. This poster 
was presented at the Society for Healthcare Epidemiology of America (SHEA), April 
1 – 4, 2011, in Dallas, TX. SHEA's mission is the prevention and control of infections 
in health care settings. SHEA is dedicated to advancing the science and practice of 

SSI 
Rate 

ID Risk 
Factors 

(T3) 

Targeted* 
Process 

Improvement 

Meas ure 
S urveillance 

(T 2) 

*Patient, surgery, environmental 
ID = identify; SSI = surgical site 
infection 
 

Exhibit 50. Model for continuous quality improvement in reducing surgical site infections 
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health care epidemiology and to the prevention and control of morbidity, mortality, 
and costs connected to health care-associated infections. Copies of the abstract and 
poster are included as Appendix S. 

• Performance of Two Surgical Site Infection Risk Stratification Models for Predicting 
Infection Risk in Publicly Reported Data from a Safety Net Hospital. This poster was 
presented at the Surgical Infection Society (SIS) annual conference, May 11-14, 
2011, in Palm Beach, FL. The mission of the SIS is “to educate health care providers 
and the public about infection in surgical patients and promote research in the 
understanding, prevention and management of surgical infections.”  Society members 
include physicians, nurses, allied health personnel, scientists and others with an 
interest in surgical infections. Copies of the abstract and poster are included as 
Appendix T. 

Oral presentations. Improving the Measurement of Surgical Site Infection (SSI) Risk 
Stratification and Outcome Detection. This oral presentation was given at the 2nd Annual HAI 
Investigators’ Meeting on September 18, 2011, which was held adjunct to the AHRQ 2011 
Annual Conference in Bethesda, MD. A copy of this presentation is included as Appendix U. 

Manuscripts.  

• “Screening for Surgical Site Infections by Applying Classification Trees to Electronic 
Data.” This draft manuscript, focused on the results from and methods utilized in 
Chapter 2 of this project, is being prepared for submission to the Journal of the 
American Medical Informatics Association (JAMIA). JAMIA is the premier peer-
reviewed journal of the American Medical Informatics Association (AMIA), and as 
such focuses on biomedical and health informatics topics that encompass the full 
breadth of the field, including clinical care and research, translational science, 
implementation science, imaging, education, consumer health, public health, and 
policy. Over 4,000 health care professionals are affiliated with AMIA. A copy of the 
draft manuscript is included as Appendix V. 

• A second manuscript focusing specifically on the results from and methods utilized 
for Chapter 3 of this project is currently in development. We anticipate finalizing this 
paper for submission to an open-access, peer-reviewed journal before the end of the 
calendar year, extending the discussion of methodological challenges encountered 
and solutions for overcoming these. 

Implementation manual. An implementation manual was developed to provide specific 
instructions on running the algorithm and conducting site-specific testing of that application. An 
illustrated case study for adapted use of the tool is included. We learned in Chapter 4  from focus 
groups with IP nurses that the Chapter 2 algorithm could serve as a valuable tool to allow them 
to work more efficiently, by reducing the number of unnecessary chart reviews and allowing 
them to more effectively concentrate on prevention activities. We then culled results from 
Chapter 2, together with an out-of-scope case study (see the following section, Project 
Expansion), to enrich the opportunity to disseminate the results of our work. The implementation 
manual is provided as Appendix R. The target audience for the manual is IP staff working in 
hospital settings. The DH-led team will work with the AHRQ Office of Communications and 
Knowledge Transfer (OCKT) to identify relevant dissemination channels for the manual.  
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Project expansion. The DH-led research team conducted two relevant analyses that extend 
our Chapter 2 and Chapter 3 work. These are summarized in Chapter 5.  

  



62 
 

  



63 
 

Chapter 5. Project Expansion 

E xpanding Tas k 2. Applic ation of a Modified Algorithm at 
Denver Health  

In addition to the activities described in previous chapters, the infection control team at 
Denver Health (DH) sought to further adapt, tailor, and validate the electronic detection 
algorithm created in Chapter 2 for use in everyday surveillance of surgical site infections at DH, 
to reduce the burden of chart review while also identifying a high percentage of SSI. The 
mandate for the Expansion algorithm was to maximize sensitivity at the expense of specificity, 
while realizing a meaningful reduction in the chart review burden experienced by infection 
control staff. “Meaningful” was loosely estimated as at least a 50 percent reduction while 
maintaining at least 95 percent specificity. The team focused specifically on the loose algorithm 
rule, as it was considered the more sensitive model in the main project. 

DH’s Infection Prevention Data Manager, Bryan Knepper, generated a retrospective cohort 
of procedures, including associated SSI as defined by NHSN definitions, using DH surveillance 
data from 2007-2010. Procedures included hip and knee arthroplasty, abdominal and vaginal 
hysterectomy, spinal fusion, craniotomy, and herniorrhaphy.  

The suggested algorithm components generated in Chapter 2 were reevaluated in a DH-
specific context. Mr. Knepper, who was not an original member of the project team, met with a 
group of clinical professionals to discuss the loose rule parameters that would be most useful—
given the DH patient population, clinical practices and prescribing and ordering tendencies—to 
determine which variables were most easily and reliably obtained through the DH centralized 
data warehouse. As a result of these discussions, along with subsequent validation of each 
parameter using an expanded dataset from DH, some factors from the main project’s loose 
algorithm were incorporated faithfully into the Expansion model while other parameters were 
deleted, altered or expanded. “NE_N”, “ESR”, and “postopabx” were deleted. “Postopcx” was 
incorporated faithfully. The cut-point for “wbc” was changed from 9,000 cells/ml to 10,000 
cells/ml. The biggest change to the models generated through the main project was to the 
parameter “postopadmit”. The Expansion algorithm was trained to look for both outpatient visits 
and inpatient admissions. Large gains were realized in sensitivity, with substantial decreases to 
specificity. To offset decreased specificity, only visits/admissions associated with a specific list 
of ICD-9 codes76 were searched for. The listed ICD-9 codes are generally associated with 
infection, with some directly related to surgical site infection (see Exhibit 51). 

Variables included in the DH modified algorithm were leukocytosis (white blood cell count > 
10,000 cells/mL), a culture (regardless of result), or a followup visit associated with any of a list 
of SSI-related ICD-9 codes (see Exhibit 51). 
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Exhibit 51. ICD-9 codes associated with followup visits in modified Denver Health algorithm 

Code Description 
338.18 Other acute postoperative pain 
998 codes Postoperative complications 
711 codes Arthropathy associated with infection 
996 codes Postoperative complications 
680 codes Carbuncle and furuncle 
682 codes Cellulitis and abscess 
789 codes Other symptoms involving abdomen and pelvis 
V51.8 Aftercare involving the use of plastic surgery 
V71.89 Observation for other specified suspected conditions 

 
From this, 2,179 procedures were included in the cohort. Sixty procedures were associated with 
SSI after manual chart review using NHSN methodology (Exhibit 52).  

 
Exhibit 52. Modified Denver Health algorithm performance data 

Procedure 
Type 

Total 
Procedures SSI 

Procedures 
Designated for 

Review by 
Algorithm 

Percent of 
Total 

Procedures 
CRAN 306 14 190 62% 
FUSN 191 8 88 46% 
HERN 760 10 112 15% 
HPRO 303 8 134 44% 
HYST 159 12 67 42% 
KPRO 349 7 182 52% 
VHYS 111 1 31 28% 
Overall 2,179 60 804 37% 
Estimated Minutes Per Procedure 20  
Number of Procedures Removed from Review 1,375  
Time Saved (8 hour days) 57.3  
Sensitivity 100%  
Specificity 72%  

 
Results. The modified algorithm flagged 804 procedures (37 percent of total charts) for 

review. The percent of total procedures flagged for review varied by procedure type, and ranged 
from 15 percent (herniorrhaphy) to 62 percent (craniotomy). The modified algorithm achieved 
100 percent sensitivity and 72 percent specificity in detecting SSI validated on 4 years of our 
manual SSI surveillance data using NHSN methodology.  

Potential for savings. Over the four year period, 1,375 unnecessary chart reviews would 
have been avoided without sacrificing detection of a single SSI. Assuming 20 minutes per chart 
for manual review, 57 full (8-hr.) days of chart review would have been eliminated using the 
algorithm for surveillance of SSI in hip and knee arthroplasty, abdominal and vaginal 
hysterectomy, spinal fusion, craniotomy, and herniorrhaphy.  
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Conclusions. DH was able to successfully adapt, tailor, and validate the electronic detection 
algorithm (generated in Chapter 2) to determine SSI rates for an expanded set of surgical 
procedures, including hip and knee arthroplasty, abdominal and vaginal hysterectomy, spinal 
fusion, craniotomy, and herniorrhaphy at Denver Health. The modified algorithm was tailored to 
our setting, to be 100 percent sensitive while still reducing overall chart review burden by 63 
percent.Over a 4-year period, this would have saved 57 full days of chart review at our 
institution, allowing more time for education and other active infection prevention interventions. 
The successful adaptation of the Chapter 2 algorithm to maximize sensitivity for utilization with 
both inpatient and outpatient visits instead of solely for postoperative admissions by an 
individual who was uninvolved in its development demonstrates the potential for translation into 
practice on a broad scale, which was one of the goals of this project.  

E xpanding Tas k 3. Tes ting additional ris k fac tors  us ing 
uniquely available Intermountain Healthc are data 

As an expansion of Subtask 3.5, we identified SSI risk factors using only the dataset from 
Intermountain that included eight additional potential risk factors. Since 87 percent of the data 
came from Intermountain, we also analyzed the Intermountain data alone to see if we could 
detect any differences in risk factors for SSI. The same statistical methods were used as for the 
previous analysis that included all the data from the three other facilities plus the Intermountain 
data. However, this analysis also included eight additional potential risk factors that were 
electronically available in the Intermountain EDW (Exhibit 24), but not available at all of the 
other three facilities. Thus, 41 potential risk factors were included. 

E3.5.1. Multivariate analysis of the datasets, including each procedure 
as a binary variable.  

During the univariate analyses of the derivation dataset, 11 different risk factors were 
included in the model compared to 13 for the total dataset. As before, that analysis also included 
each of the five different procedures as a binary variable (yes/no). Each of those 11 risk factors 
was then included in three different logistic regression analyses using a 60 percent derivation set, 
a 40 percent validation set and then the combined datasets (Exhibit 53, Exhibit 54, and Exhibit 
55). Again, the significance of each of the 11 potential risk factors changed during each test 
using the three different datasets. For the derivation dataset, eight of the 11 univariate risk factors 
remained significant in the model compared to five in the validation set and then 9 when both 
derivation and validation sets were combined. Not only were history of MRSA infection and a 
postoperative admission within 30 days significant in all three tests as in the previous analysis, 
but chronic kidney disease, preop hemoglobin, and herniorrhapy were also significant. Two of 
the eight new risk factors made it into the multivariate analysis—number of surgeons and preop 
glucose. While preop glucose was not found significant in any of the three analyses, number of 
surgeons was significant in the derivation and combined analyses. Compared to the previous 
combined analyses with the total dataset, the combined analysis with only the Intermountain data 
identified additional risk factors including emergency surgery, being male, number of surgeons, 
preop hemoglobin, surgery duration, and herniorrhaphy, while number of procedures, postop 
hematocrit, and CABG surgery were no longer significant. As before, postoperative admission 
was indicative for admission due to a postoperative wound.  
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Exhibit 53. Results of logistic regression using the 60% Derivation Set, including each of the 5 
surgical procedures as a possible risk factor. 

Variable Estimate tValue Probability 
Intercept -5.47 -4.82 0.0000 
Emergency surgery 0.74 3.05 0.0023 
Chronic kidney 
disease -1.84 -2.49 0.0130 
Male 0.52 2.37 0.0180 
History of MRSA 1.50 4.74 0.0000 
No. of surgeons* 0.79 2.39 0.0168 
Postop admission 2.58 9.73 0.0000 
Preop glucose* 0.00 0.55 0.5893 
Preop hemoglobin -0.24 -4.04 0.0001 
Preop stay 0.02 0.82 0.4096 
Surgery duration 0.00 1.61 0.1073 
Herniorrhaphy 0.88 2.90 0.0037 
*Additional Intermountain risk factor. 

Exhibit 54. Results of logistic regression using the 40% validation set, and including each of the 
five surgical procedures as a possible risk factor. 

Variable Estimate tValue Probability 
Intercept -4.97 -3.66 0.0003 
Emergency surgery 0.01 0.04 0.9686 
Chronic kidney 
disease -1.54 -2.05 0.0400 
Male 0.13 0.60 0.5510 
History of MRSA 1.12 3.10 0.0020 
No. of surgeons* 0.83 1.82 0.0695 
Postop admission 1.95 8.07 0.0000 
Preop glucose* 0.00 -1.00 0.3223 
Preop hemoglobin -0.17 -2.62 0.0090 
Preop stay 0.04 1.13 0.2574 
Surgery duration 0.00 3.07 0.0021 
Herniorrhaphy 0.84 2.76 0.0059 
*Additional Intermountain risk factor. 

Exhibit 55. Results of logistic regression using the combined derivation and validation sets and 
including each of the five surgical procedures as a possible risk factor. 

Variable Estimate tValue Probability 
Intercept -5.41 -6.37 0.0000 
Elective surgery 0.42 2.25 0.0246 
Chronic kidney 
disease -1.68 -3.20 0.0014 
Male 0.31 1.99 0.0469 
History of MRSA 1.35 5.70 0.0000 
No. of surgeons* 0.80 3.05 0.0023 
Postop admission 2.26 12.74 0.0000 
Preop glucose* 0.00 -0.27 0.7842 
Preop hemoglobin -0.19 -4.23 0.0000 
Preop stay 0.04 1.51 0.1308 
Surgery duration 0.00 3.42 0.0006 
Herniorrhaphy 0.86 4.02 0.0001 
*Additional Intermountain risk factor. 



67 
 

E3.5.2. Multivariate analysis of the datasets, including only CABG 
surgery. 

During the univariate analyses of the derivation dataset, 14 different risk factors were 
included in the model compared to only 7 for the previous total dataset. Each of those 14 risk 
factors was then included in three different logistic regression analyses using a 60 percent 
derivation set, a 40 percent validation set and then the combined datasets (Exhibit 56, Exhibit 57, 
and Exhibit 58). The significance of each of the 14 potential risk factors changed during each test 
using the three different datasets. For the derivation dataset, nine of the 14 univariate risk factors 
remained significant in the model compared to only two in the validation set and four when both 
derivation and validation sets were combined. In this case, only postoperative admission within 
30 days and BMI was significant in all three tests. Three of the eight new risk factors made it 
into the multivariate analysis but only number of surgeons was significant in the derivation 
analysis. Compared to the previous combined analyses with the total dataset, the combined 
analysis with only the Intermountain data  only identified  postop hemoglobin as an additional 
risk factor along with BMI, history of MRSA and postop admission which were included in the 
previous all site analysis. Surgery duration was the only significant risk factor from the previous 
analysis not included in the Intermountain data only. Thus the significant risk factors from the 
analysis with only the Intermountain data were very similar to those in the analysis with total 
dataset. This is not surprising since the Intermountain data contributed over 95 percent of the 
CABG surgeries in the total dataset. The difference would be attributed to the 78 CABG 
surgeries from the VA and the inclusion of the eight new risk factors. 
Exhibit 56. Results of logistic regression using the derivation dataset for only CABG surgeries. 

Variable Estimate tValue Probability 
Intercept -10.72 -2.92 0.0035 
Elective surgery -1.88 -2.43 0.0150 
BMI 0.12 3.21 0.0013 
History of cancer 3.30 2.56 0.0104 
Charlson score* -0.63 -1.88 0.0597 
Emergency surgery -1.31 -1.45 0.1479 
History of MRSA 3.02 3.57 0.0004 
No. of procedures -1.31 -1.99 0.0466 
No. of surgeons* 1.07 2.14 0.0326 
Postop admission 1.57 2.44 0.0149 
Postop glucose* 0.01 0.96 0.3370 
Postop hemoglobin -0.33 -1.99 0.0471 
Preop albumin 0.98 1.72 0.0863 
Preop glucose 0.01 2.02 0.0437 
Preop stay -0.45 -1.36 0.1745 
*Additional Intermountain risk factor. 
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Exhibit 57. Results of logistic regression using the validation dataset for only CABG surgeries. 

Variable Estimate tValue Probability 
Intercept -3.96 -1.18 0.2365 
Elective surgery -0.21 -0.35 0.7255 
BMI 0.09 2.55 0.0109 
History of cancer@       
Charlson score* -0.33 -1.26 0.2071 
Emergency surgery 1.08 1.83 0.0672 
History of MRSA 0.91 0.94 0.3456 
No. of procedures -0.22 -0.46 0.6476 
No. of surgeons* 0.50 0.65 0.5161 
Postop admission 1.58 2.75 0.0059 
Postop glucose* 0.00 -0.44 0.6635 
Postop hemoglobin -0.19 -1.35 0.1782 
Preop albumin -0.28 -0.49 0.6246 
Preop glucose* -0.01 -0.84 0.3995 
Preop stay 0.12 1.68 0.0923 
@No patients in this dataset with  had the specific risk factor and no probability could be calculated. 
*Additional Intermountain risk factor. 
 
Exhibit 58. Results of logistic regression using the combined dataset for only CABG surgeries. 

Variable Estimate tValue Probability 
Intercept -7.42 -3.28 0.0011 
admit_physician?? -0.53 -1.18 0.2365 
BMI 0.10 4.19 0.0000 
History of cancer 1.60 1.71 0.0875 
Charlson score* -0.45 -2.48 0.0132 
Emergency surgery 0.14 0.31 0.7555 
History of MRSA 1.90 3.37 0.0008 
No. of procedures -0.65 -1.68 0.0920 
No. of surgeons* 0.68 1.73 0.0831 
Postop admission 1.50 3.71 0.0002 
Postop glucose* 0.00 0.53 0.5975 
Postop hemoglobin -0.24 -2.35 0.0186 
Preop albumin 0.28 0.72 0.4716 
Preop glucose* 0.00 0.44 0.6570 
Preop stay 0.10 1.37 0.1712 
*Additional Intermountain risk factor. 

E3.5.3. Multivariate analysis of the datasets including only 
herniorrhaphy. 

During the univariate analyses of this derivation dataset, six different risk factors were 
included in the model compared to 7 for the previous total dataset. Each of those six risk factors 
was then included in three different logistic regression analyses using a 60 percent derivation set, 
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a 40 percent validation set and then the combined datasets (Exhibit 59, Exhibit 60, and Exhibit 
61). The significance of each of the six potential risk factors changed during each test using the 
three different datasets. For the derivation and validation datasets, only postop admission 
remained significant in the model. In the combined dataset, emergency surgery was significant in 
addition to postop admission. Only preop glucose from the eight new risk factors made it into the 
model, but was not found to be significant in any of the three separate analyses. Compared to the 
previous combined analyses with the total dataset, the combined analysis with only the 
Intermountain data only identified only emergency surgery  in addition to postop admission 
while postop admission was the only risk factor identified in the previous total dataset. Thus, 
while the risk factors included in the model were mostly different, only emergency surgery was 
different in the list of significant risk factors. Since Intermountain only contributed 57 percent of 
the herniorrhaphy data, this similar result was not due to a dominance of Intermountain data in 
this case. 
Exhibit 59. Results of logistic regression using the derivation dataset for only herniorrhaphy. 

Variable Estimate tValue Probability 
Intercept -3.04 -1.16 0.2480 
Emergency surgery 0.76 1.01 0.3111 
Previous DVT 1.26 1.87 0.0609 
Male 0.34 0.60 0.5500 
Postop admission 3.17 3.98 0.0001 
Preop albumin -0.75 -1.30 0.1965 
Preop glucose* 0.00 -0.44 0.6643 
*Additional Intermountain risk factor. 
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Exhibit 60. Results of logistic regression using the validation dataset for only herniorrhaphy. 

Variable Estimate tValue Probability 
Intercept -3.94 -0.92 0.3794 
Emergency surgery 1.21 1.83 0.0676 
Previous DVT@       
Male -0.87 -1.37 0.1703 
Postop admission 2.91 3.67 0.0002 
Preop albumin -0.44 -0.42 0.6821 
Preop glucose* 0.00 0.29 0.7724 
@No patients in this dataset with  had the specific risk factor and no probability could be calculated. 

*Additional Intermountain risk factor. 
 
Exhibit 61. Results of logistic regression using the combined dataset for only herniorrhaphy. 

Variable Estimate tValue Probability 
Intercept -4.00 -1.96 0.0561 
Emergency surgery 1.10 2.37 0.0178 
Previous DVT 0.52 0.88 0.3775 
Male -0.23 -0.55 0.5789 
Postop admission 3.08 5.53 0.0000 
Preop albumin -0.43 -0.96 0.3446 
Preop glucose* 0.00 -0.37 0.7127 
*Additional Intermountain risk factor. 

E3.5.4. Multivariate analysis of the datasets including only total hip 
surgery. 

During the univariate analyses of the derivation dataset, 12 different risk factors were 
included in the model compared to eight for the previous total dataset. Each of those 12 risk 
factors was then included in three different logistic regression analyses using a 60 percent 
derivation set, a 40 percent validation set and then the combined datasets (Exhibit 62, Exhibit 63, 
and Exhibit 64). The significance of each of the 12 potential risk factors changed during each test 
using the three different datasets. For the derivation dataset, only three of the 12 univariate risk 
factors remained significant in the model compared to only one in the validation set and then 
four when both derivation and validation sets were combined. Only postoperative admission 
within 30 days was significant in all three tests. Only two, Charlson score and preop glucose, of 
the eight new risk factors made it into the multivariate analysis but neither was significant in any 
of the three analyses. Of interest for total hip surgery, although not all of the risk factors 
identified during the univariate analyses were the same, the same four risk factors were 
significant in the logistic regression combined analyses using the Intermountain data alone and 
the previous combined analyses with the total dataset. Total hip surgeries from Intermountain 
contributed to 85 percent of the total dataset. 
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Exhibit 62. Results of logistic regression using the derivation dataset for only total hip surgery. 

Variable Estimate tValue Probability 
Intercept -3.76 -1.01 0.3183 
Age -0.02 -1.11 0.2674 
Chronic lung disease 1.85 2.33 0.0197 
Charlson score* -0.47 -1.07 0.2827 
Emergency surgery 1.75 2.38 0.0172 
General anesthesia 1.22 1.46 0.1447 
Male 1.11 1.85 0.0645 
Postop admission 3.55 3.36 0.0008 
Preop glucose* -0.01 -0.46 0.6616 
Preop hematocrit -0.03 -0.28 0.7829 
Preop hemoglobin -0.25 -0.68 0.4966 
Surgery duration 0.01 1.91 0.0571 
Wound class 0.54 1.38 0.1681 
*Additional Intermountain risk factor. 

 

Exhibit 63. Results of logistic regression using the validation dataset for only total hip surgery. 

Variable Estimate tValue Probability 
Intercept -3.87 -1.34 0.1815 
Age -0.01 -0.62 0.5327 
Chronic lung disease 0.44 0.67 0.4999 
Charlson score* 0.08 0.33 0.7412 
Emergency surgery 0.95 1.18 0.2372 
General anesthesia 1.12 1.44 0.1489 
Male -0.78 -1.33 0.1842 
Postop admission 1.37 2.63 0.0086 
Preop glucose* -0.01 -1.22 0.2331 
Preop hematocrit -0.06 -0.66 0.5089 
Preop hemoglobin 0.13 0.46 0.6480 
Surgery duration 0.01 1.75 0.0801 
Wound class 0.26 0.49 0.6263 
*Additional Intermountain risk factor. 



72 
 

Exhibit 64. Results of logistic regression using the combined dataset for only total hip surgery. 

Variable Estimate tValue Probability 
Intercept -3.87 -1.68 0.1005 
Age -0.02 -1.23 0.2195 
Chronic lung disease 1.07 2.32 0.0205 
Charlson score* -0.14 -0.63 0.5271 
Emergency surgery 1.31 2.60 0.0094 
General anesthesia 1.03 1.87 0.0618 
Male 0.11 0.28 0.7768 
Postop admission 2.04 4.70 0.0000 
Preop glucose* -0.01 -0.96 0.3454 
Preop hematocrit -0.05 -0.78 0.4367 
Preop hemoglobin -0.01 -0.03 0.9787 
Surgery duration 0.01 2.94 0.0033 
Wound class 0.34 1.13 0.2605 
*Additional Intermountain risk factor. 

E3.5.5. Multivariate analysis of the datasets including only total knee 
surgery. 

During the univariate analyses of this derivation dataset, eight different risk factors were 
included in the model compared to 5 for the previous total dataset. Each of those eight risk 
factors was then included in three different logistic regression analyses using a 60 percent 
derivation set, a 40 percent validation set and then the combined datasets (Exhibit 65, Exhibit 66, 
and Exhibit 67). The significance of each of the six potential risk factors changed during each 
test using the three different datasets. For the derivation dataset, Charlson score, male, history of 
MRSA and postop admission remained significant, only history of MRSA and postop admission 
were significant in the validation dataset and male was included along with history of MRSA and 
postop admission in the combined dataset. While it was included in many of the other 
Intermountain analyses, this was the first time Charlson score was found to be significant. 
Compared to the previous combined analyses with the total dataset, the combined analysis with 
only the Intermountain data only identified of the five risk factors identified in the previous total 
dataset. Number of procedures and preop hematocrit were additionally found significant in the 
total dataset. The Intermountain total knee data contributed to 90 percent of the total dataset. 
Exhibit 65. Results of logistic regression using the derivation dataset for only total knee surgery. 

Variable Estimate tValue Probability 
Intercept -6.27 -3.13 0.0025 
Charlson score* 0.32 2.03 0.0423 
General anesthesia -0.48 -1.22 0.2231 
Male 0.90 2.20 0.0280 
History of MRSA 1.49 2.69 0.0071 
Postop admission 2.97 4.83 0.0000 
Postop hematocrit 0.06 0.86 0.3922 
Preop hematocrit 0.09 0.57 0.5742 
Preop hemoglob -0.50 -1.09 0.2835 
Surgery duration 0.00 1.25 0.2104 
*Additional Intermountain risk factor. 
  



73 
 

Exhibit 66. Results of logistic regression using the validation dataset for only total knee surgery. 

Variable Estimate tValue Probability 
Intercept -3.76 -2.23 0.0256 
Charlson score* -0.51 -1.75 0.0793 
General anesthesia 0.53 1.33 0.1819 
Male 0.60 1.70 0.0896 
History of MRSA 2.12 4.45 0.0000 
Postop admission 1.74 4.66 0.0000 
Postop hematocrit -0.01 -0.10 0.9173 
Preop hematocrit 0.06 0.54 0.5918 
Preop hemoglob -0.37 -1.11 0.2670 
Surgery duration 0.01 1.64 0.1007 
*Additional Intermountain risk factor. 

Exhibit 67. Results of logistic regression using the combined dataset for only total knee surgery. 

Variable Estimate tValue Probability 
Intercept -4.57 -3.79 0.0002 
Charlson score* 0.03 0.19 0.8475 
General anesthesia 0.11 0.43 0.6692 
Male 0.73 2.75 0.0059 
History of MRSA 1.76 5.01 0.0000 
Postop admission 2.15 6.99 0.0000 
Postop hematocrit 0.02 0.46 0.6493 
Preop hematocrit 0.04 0.37 0.7176 
Preop hemoglob -0.33 -1.08 0.2875 
Surgery duration 0.00 1.78 0.0759 
*Additional Intermountain risk factor. 

E3.5.6. Multivariate analysis of the dataset including only 
appendectomy surgery at Intermountain healthcare 

Although all the appendectomy data in the total dataset was from Intermountain, we analyzed 
the appendectomy data again with the eight new potential risk factors included. During the 
univariate analyses of the derivation dataset, 10 different risk factors were included in the model 
compared to only seven for the previous dataset. Each of those 10 risk factors was then included 
again in three different logistic regression analyses using a 60 percent derivation set, a 40 percent 
validation set and then the combined datasets (Exhibit 68, Exhibit 69, and Exhibit 70). The 
significance of each of the 10 potential risk factors changed during each test using the three 
different datasets. For the derivation dataset, only three of the 10 univariate risk factors remained 
significant in the model compared to three in the validation set and three when both derivation 
and validation sets were combined. Postop hematocrit along with postoperative admission within 
30 days was significant in all three tests. While Charlson score and preop glucose were the only 
two of the eight new risk factors that made it into the multivariate analysis, only Charlson score 
was significant in the derivation analysis. The inclusion of the eight new potential risk factors in 
this analysis did impact the list of univariate risk factors included in the logistic analysis and the 
significance  of each. Postop hemoglobin was significant in the analysis that included the new 
risk factors in addition to the same other two, postop admission and postop hematocrit, that were 
significant in the previous analysis without them. 
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Exhibit 68. Results of logistic regression using the derivation dataset for only appendectomy 
surgeries. 

Variable Estimate tValue Probability 
Intercept -2.31 -0.88 0.3806 
Age 0.01 1.12 0.2634 
Charlson score* 0.20 1.96 0.0496 
Diabetes -1.07 -1.12 0.2646 
General anesthesia -1.25 -0.82 0.4100 
History of MRSA 1.51 1.32 0.1860 
Postop admission 2.21 4.56 0.0000 
Postop hematocrit -0.14 -2.00 0.0478 
Postop hemoglobin 0.27 1.02 0.3178 
Preop glucose* 0.01 0.99 0.3222 
Preop hemoglobin -0.16 -0.68 0.5045 
*Additional Intermountain risk factor. 

Exhibit 69. Results of logistic regression using the validation dataset for only appendectomy 
surgeries. 

Variable Estimate tValue Probability 
Intercept -4.95 -1.27 0.2050 
Age -0.01 -0.21 0.8311 
Charlson score* -0.32 -0.78 0.4367 
Diabetes 1.90 1.24 0.2134 
General anesthesia@       
History of MRSA@       
Postop admission 2.40 2.92 0.0035 
Postop hematocrit -0.28 -2.09 0.0392 
Postop hemoglobin 0.84 2.06 0.0434 
Preop glucose* -0.01 -0.92 0.3632 
Preop hemoglobin -0.09 -0.31 0.7564 
@No patients in this dataset with  had the specific risk factor and no probability could be calculated. 
*Additional Intermountain risk factor. 

Exhibit 70. Results of logistic regression using the combined dataset for only appendectomy 
surgeries. 

Variable Estimate tValue Probability 
Intercept -3.34 -1.48 0.1399 
Age 0.01 1.01 0.3142 
Charlson score* 0.16 1.65 0.0995 
Diabetes -0.62 -0.79 0.4299 
General anesthesia -1.72 -1.33 0.1823 
History of MRSA 0.97 0.89 0.3710 
Postop admission 2.27 5.43 0.0000 
Postop hematocrit -0.13 -2.24 0.0263 
Postop hemoglobin 0.40 2.15 0.0317 
Preop glucose* 0.00 0.65 0.5150 
Preop hemoglobin -0.16 -0.97 0.3379 
*Additional Intermountain risk factor. 
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Chapter 6. Conclusions and Recommendations 

C hallenges  E nc ountered, and S trategies  for  
Overc oming T hem 

Below we note specific challenges encountered in executing our work plan as planned and 
those strategies used to overcome these.  

November 2009 
Task 2: The VA system relies on CPT codes for administrative coding whereas other 

systems use ICD-9 codes. 

A mapping of ICD-9/CPT codes for the specific procedures being evaluated in the project 
was done to allow for a fully representative sample of surgeries at the VA system. 

February 2010 
Task 2 & 3: Craig Gale left Intermountain 

Jef Huntington, from Intermountain, joined the project team for the analytic work of tasks 2 
and 3.  

March 2010 
Task 3: Russ Staheli left Intermountain 

Jef Huntington was included to coordinate the data pulls for task 3.  

April 2010 
Task 3:  After completing the master risk factor list, many identified variables were 

dependent upon the definition of the variable, e.g. chronic diseases had to be clearly defined. 

An SSI risk comorbidity table was created using the ICD-9 /CPT map along with other 
identified factors ICD-9 codes to standardize the definitions. 

June 2010 
Task 3: Certain identified SSI risk factors were reevaluated for the data collection process, 

e.g. Anemia was identified as a risk factor and was to be recorded as a yes/no variable.  

Instead of initially defining conditions and providing a yes/no value, it was decided that 
measured values would be more useful. In the case of anemia, hemoglobin levels were to be 
recorded—from which a set definition of Anemia could be derived. 

July 2010 
Task 2: While algorithm development and testing was planned to use SLC VAMC and 

Intermountain NSPQIP data, the data was only available at SLC VAMC. 
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It was decided that National VA NSQIP data could be used to develop and test the algorithm, 
then validated at the other systems. 

Task 3: The risk factor data collection at each site was delayed due to continued refining of 
the master risk factor list. 

As data collection started, Intermountain did a provisional analysis of about 20,000 patients 
to determine collection reliability. All sites recorded the data collection process and noted any 
elements that were unreliable or difficult to obtain. The master risk factor list was updated as 
necessary to include reliable and obtainable elements. 

October 2010 
Task 1: A no-cost extension was considered to use funds for travel and conference 

attendance to present the work of the project after the project end date. 

The no cost extension was denied. However, the possibility of paying for expenses associated 
with the dissemination plan prior to the project end date was considered as a possible option and 
required further review from AHRQ Contract Officers.  

Task 3: As the data pulls progressed across the systems it was realized that the data sources 
varied between each system. 

In order to aid the implementation of the tool at other systems, it was decided to record, with 
detailed specificity, where the data were found at each organization.  

Task 4:  Given the delay of conducting the nursing focus group as originally planned, a 
repurposed focus group strategy was proposed. 

Repurposed focus groups were submitted for approval and approved to conduct 2 separate 
groups to solicit input from key stakeholders on adoption and implementation as well as 
developing use cases for the e-detection surveillance tool. 

January 2011 
Task 2: With IRB/Privacy Board requirements, data could not be sent to SLC VAMC for 

validation of the algorithm. 

The algorithm was sent to each organization to test and validate with their data where chart 
reviews will be performed on all positives produced by the algorithm. 

L es s ons  L earned and R ec ommendations  for Next S teps  

There are several lessons to be learned from this work, summarized in the following bullet 
points: 

Task 1 
 In-person meetings among project team members, held in addition to regularly  

scheduled teleconferences, confirmed our expectations of their value for promoting 
teambuilding and collaboration among geographically distributed team members. 
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Task 2: 
 The most appropriate use of automated systems, whether alone or in combination 

with manual surveillance, will take careful consideration of the purpose and 
requirements of the events being surveilled. The performance of automated systems 
may vary, particularly when attempting to detect events that occur in the outpatient 
setting where differences in data availability may be pronounced. More work is 
necessary to improve the discriminability index of electronic algorithms, but allowing 
IP to select rules that suit their own needs may be a reasonable measure in the 
interim. 

 Current estimates for national rates of SSI are unknown. Our smaller group of 
hospitals is only informative in a very limited way. More accurate estimates would 
require sophisticated patient case mix adjustment and a much larger sampling of 
hospitals.  

 There may be value in exploring natural language programming (NLP) and what 
could be added from text notes. A new study shows that NLP will be more beneficial 
for the electronic identification of hospital-acquired wounds than bacteremias, UTIs, 
respiratory infections, etc. (publication in progress). 

Task 3: 
 Postdischarge surveillance remains a challenge, requiring data from the full 

continuum of care (inpatient and outpatient). Postop admission within 30 days is a 
common “trigger” used by many facilities that rely on manual SSI surveillance for 
postdischarge infection identification. Integrated inpatient/outpatient medical records 
are expected to have more utility for electronic algorithms.   

 No single set of risk factors that can be used to predict SSI across all types of surgical 
procedures or facilities. This study found that SSI risk factors are dependent on the 
type of surgical procedure. Thus, SSI rate comparison needs to be at the surgical 
procedure level and not the surgical service level, i.e., orthopedics, general surgery, 
thoracic, etc. In addition, SSI rates should also be compared at the facility level 
against its own baseline rates.   

Task 4: 
 An extreme burden of unsupported practitioner SSI surveillance exists. 
 There is documented need for enhanced risk factor assessment (surgeon focus group) 

and receptivity toward cognitive support from an electronic surveillance tool (nurse 
focus groups). 

Task 5: 
 An analysis of DH publicly reported data revealed SIR was superior than the NHSN 

basic risk index in predicting SSI risk. The SIR uses logistic regression modeling and 
takes into account more variables and procedure-specific risk factors. We hypothesize 
that improved risk adjustment is due to consideration of these extra risk factors. 
Although superior, the SIR still is not broadly applicable to all procedures and 
settings. Based on this, we are now looking at surgery specific risk factor assessment, 
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accounting for differential impact of, e.g., smoking on infection risk for hernia vs. 
CABG, etc. We need to investigate risk factors as surgery specific. Now with more 
publicly reported data we can use that to get the needed large numbers. 

 

Several recommendations for next steps have emerged from our work. These are: 

1. Algorithms should be validated at each system to which they will be introduced, in a 
manner akin to the quality assurance policies regarding new laboratory equipment.  

2. Algorithms will need to be trained and validated on even broader scales that 
demonstrate more variation in clinical practice and electronic systems. 

3. Validate risk factors more broadly on a national scale. 
4. We should investigate ways to develop electronic algorithms that might search 

multiple inpatient and/or outpatient networks to help ascertain postdischarge SSIs. 
5. We need further validation of SIR on publicly reported data; perhaps validate on 

subgroups of settings (public health safety net, academic, community, etc.).  
6. Explore how risk factors may be more or less relevant to specific procedures (e.g., 

risk of smoking on herniorraphies vs. CABG. 
7. National estimates of SSI should not be pursued without larger datasets that are 

representative of the variation among the nation’s hospitals. 
8. We should explore natural language processing (NLP) methodology to extract more 

information from text notes. For instance, a recent study showed that NLP could 
identify a number of postoperative surgical complications in the Veterans Health 
Administration77.  

9. We should consider exploration of more sophisticated decision support methods that 
deliver the probability of SSI and/or important nuance information instead of binary 
yes/no information (which loses much of the original information content). 
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