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Abstract

Which provides a better estimates of the growth rate of “true” U.S. output,

gross domestic product (GDP) or gross domestic income (GDI)? Past work has

assumed the idiosyncratic variation in each estimate is pure noise, taking greater

variability to imply lower reliability. We develop models that relax this assump-

tion, allowing the idiosyncratic variation in the estimates to be partly or pure

news; then greater variability may imply higher information content and greater

reliability. Based on evidence from revisions, we reject the pure noise assump-

tion for GDI growth, and our results favor placing sizable weight on GDI growth

because of its relatively large idiosyncratic variability. This calls into question

the suitability of the pure noise assumption in other contexts, including dynamic

factor models.
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1 Introduction

For analysts of economic fluctuations, estimating the true state of the economy from

imperfectly measured official statistics is an ever-present problem. Since no one statistic

is a perfect gauge of the state of the economy, taking some type of weighted average

of multiple imperfectly measured statistics seems sensible. Examples include composite

indexes of coincident indicators,1 and averages of the different measures of aggregate

output. For the case of U.S. output growth, the NBER Business Cycle Dating Commit-

tee’s announcement of a peak in December 2007 noted marked differences between two

different estimates, GDP and GDI, and essentially decided to give each estimate some

implicit weight: “in examining the behavior of domestic production, we consider not

only the conventional product-side GDP estimates, but also the conceptually equivalent

income-side GDI estimates. The differences between these two sets of estimates were

particularly evident in 2007 and 2008.” In this paper, we take the state of the economy

to mean the growth rate of output as traditionally defined in the U.S. National Income

and Product Accounts (NIPAs), and work out methodologies for reconciling differences

between these two estimates.2

1See Stock and Watson (1989) and the subsequent literature on dynamic factor models referenced
below.

2National Income accountants face two fundamental problems. First, they must define an interesting
and useful measure of aggregate economic activity, and second, they must design methods for estimating
the value of that measure, taking the definition as fixed. Our concern in this paper is with the second
issue, using the definition of economic activity (output) traditionally employed by National Income
accountants. It is a value-added measure with the private sector component restricted to marketed
economic activity for the most part - i.e. non-market activities such home production and changes
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The main point of our paper is as follows. To our knowledge, all prior attempts to

produce such a weighted average of imperfectly measured statistics have made a strong

implicit assumption that drives their weighting: that the idiosyncratic variation in each

measured statistic is pure noise, or completely uncorrelated with information about the

true state of the economy. Under this assumption, a statistic with greater idiosyncratic

variance is given a smaller weight because it is assumed to contain more noise. We con-

sider the implications of relaxing this assumption, allowing the idiosyncratic variation

in each measured statistic to contain news, or information about the true state of the

economy.3 If the idiosyncratic variation is mostly news, the implied weighting is dia-

metrically opposite that of the noise assumption: a statistic with greater idiosyncratic

variance should be given a larger weight because it contains more information about the

true state of the economy. The implicit noise assumption relied upon in numerous prior

papers is arbitrary, and more information must be brought to bear on this issue.

Focusing on GDP and GDI allows us to make this basic point in a simple bivariate

context. These two measures of the size of the U.S. economy would equal one another if

all the transactions in the economy were observed, but measurement difficulties lead to

the statistical discrepancy between the two; their quarterly growth rates often diverge

significantly. Weale (1992) and others4 have estimated the growth rate of “true” unob-

served output as a combination of measured GDP growth and GDI growth, generally

concluding that GDI growth should be given more weight than measured GDP growth.

in natural resources are excluded. For more discussion and references, see Sir Richard Stone’s Nobel
Memorial lecture, Stone (1984).

3Our terminology follows Mankiw and Shapiro (1986) and Mankiw, Runkle and Shapiro (1984),
who coined the news and noise terminology describing revisions. Subsequent work on revisions includes
Dynan and Elmendorf (2001), Faust, Rogers and Wright (2005), and Fixler and Grimm (2006). Sargent
(1989) contrasts noisy and optimally filtered estimates of income, consumption, and investment in the
context of an accelerator model of investment demand.

4See Howrey (2003) and the related work of Weale (1985) and Smith, Weale, and Satchell (1998).
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Is GDI really the more accurate measure? We argue for caution, as the results are driven

entirely by the noise assumption: the models implicitly assume that since GDP growth

has higher variance than GDI growth over their sample period, it must be noisier, and

so should receive a smaller weight. However GDP may have higher variance because it

contains more information about “true” unobserved output (this is the essence of the

news assumption); then measured GDP should receive the higher weight.

In the general version of our model that allows the idiosyncratic component of each

measured statistic to be a mixture of news and noise, virtually any set of weights can be

rationalized by making untestable assumptions about the mixtures. More information

must be brought to bear on the problem; otherwise the choice of weights will be arbitrary.

While this fundamental indeterminancy is somewhat disturbing, in the case of combining

GDP and GDI we bring more information to bear on the problem to help pin down the

weights. Contrary to the sample employed in Weale (1992), GDI growth has more

idiosyncratic variation than GDP growth in our sample, which starts in the mid 1980s

after the marked reduction in the variance of the measured estimates - see McConnell

and Perez-Quiros (2000). However the initial GDI growth estimates have negligible

idiosyncratic variance (i.e. its variance is close to its covariance with GDP growth);

it is only through revisions that the variance of GDI growth becomes relatively large.

If the revisions add news, and not noise - an assumption that is consistent with our

knowledge of the revisions process and that follows previous research such as Mankiw,

Runkle and Shapiro (1984) and Mankiw and Shapiro (1986) - then there must be a

strong presumption that the relatively large variance of GDI growth represents news,

news derived from the revisions.

In this paper we develop new techniques for decomposing revisions into news and

noise, and show how to place bounds on the shares of the idiosyncratic variation in

GDP and GDI that are news. Based on these bounds we test the assumptions of the
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pure noise model, rejecting them at conventional significance levels. Due to its relatively

large idiosyncratic variation, GDI growth should be weighted more heavily, not less, in

estimating “true” unobserved output growth. Measured GDP growth then understates

the true variability of the economy’s growth rate, a finding with implications for real

business cycle, asset pricing, and other models.

Weighting GDI growth more heavily leads to some interesting modifications to the

time series of output growth. For example, both before and after the 1990-1991 recession,

economic growth is weaker than indicated by measured GDP growth, and the 2001

recession was substantially deeper than indicated by measured GDP growth. For the

2007-2008 episode discussed by the NBER business cycle dating committee, we reserve

judgment until the data have passed through more revisions, which may eliminate the

large discrepancies between the growth rates of GDP and GDI. But if they do not, our

results provide a rigorous methodology for reconciling these discrepancies, which could

prove quite useful for historical analysis of business cycles.

The rest of the paper is organized as follows. Section 2 discusses the news vs noise

assumptions in the bivariate context of GDP and GDI, drawing out their implications

for constructing weighted averages. Section 3 describes the GDP and GDI data and dis-

cusses the information content of revisions. Section 4 shows how to decompose revisions

into news and noise, and place bounds on the fractions of GDP and GDI that are news

or noise. Section 5 constructs estimates of “true” unobserved output growth as weighted

averages of GDP and GDI, and tests the assumption that the idiosyncratic variation in

GDI is noise. Section 6 draws conclusions.
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2 Theory: The Competing News and Noise Models

2.1 Review of News and Noise

Let ∆y?
t be the true growth rate of the economy, let ∆yi

t be one of its measured estimates,

and let εi
t be the difference between the two, so:

∆yi
t = ∆y?

t + εi
t.

The noise model makes the classical measurement error assumption that cov (∆y?
t , ε

i
t) =

0; this is the precise meaning of the statement that εi
t is noise. One implication of a

noisy estimate ∆yi
t is that it’s variance is greater than the variance of the true growth

rate of the economy, or var (∆yi
t) > var (∆y?

t ).

In contrast, if an estimate ∆yi
t were constructed efficiently with respect to a set of

information about ∆y?
t (call it F i

t ), then ∆yi
t would be the conditional expectation of

∆y?
t given that information set:

∆yi
t = E

(
∆y?

t |F i
t

)
.

Writing:

∆y?
t = ∆yi

t + ζ i
t ,

the term ζ i
t represents the information about ∆y?

t that is unavailable in the construc-

tion of ∆yi
t. Then ∆yi

t and ζ i
t represent mutually orthogonal pieces of news about

∆y?
t , employing the terminology in Mankiw and Shapiro (1986), and cov (∆yi

t, ζ
i
t) = 0.

This leads us to an implication of the news model that we employ later, namely that

cov (∆yi
t,∆y

?
t ) = var (∆yi

t). We also have var (∆y?
t ) > var (∆yi

t), an implication opposite
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to that of the noise model.

These two models are clearly extremes; the next section considers a general model

that allows differing degrees of news and noise in the estimates.

2.2 The Mixed News and Noise Model

We consider a model with two estimates of “true” unobserved output growth, each an

efficient estimate plus noise:

∆y1
t = E

(
∆y?

t |F1
t

)
+ ε1

t , and

∆y2
t = E

(
∆y?

t |F2
t

)
+ ε2

t .

The noise components ε1
t and ε2

t are mutually uncorrelated and, naturally, uncorrelated

with true unobserved GDP. Taking ∆y1
t to be GDP and ∆y2

t to be GDI, the informa-

tion in F1
t likely would consist of personal consumption expenditures, investment, net

exports, and the other components that sum to GDP, while the information in F2
t likely

would consist of wage and salary income, corporate profits, proprietors’ income, and

the other components that sum to GDI.5 We assume each information set includes a

constant, so both ∆y1
t and ∆y2

t consistently estimate the mean µ of ∆y?
t , and there may

be a substantial amount of additional overlap between the two information sets. Con-

sumption growth may be highly correlated with the growth rate of wages and salaries,

for example. However a key feature of our model is that it recognizes that the two

5We should note that our efficiency assumption is weaker than some others that have been tested in
the literature, such as those in Dynan and Elmendorf (2001) and Fixler and Grimm (2006). We only
assume that the estimates are efficient with respect to the internal information used to compute them,
not with respect to the entire universe of available information - we do not consider efficiency with
respect to the slope of the yield curve, stock prices, and so on.
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information sets are not necessarily identical.6

To clearly illustrate the main points of the paper, we focus on the simple case where

all variables are jointly normally distributed, and where measured GDP and GDI are

serially uncorrelated.7 With normality, the conditional expectation of the true growth

rate of the economy is a weighted average of GDP and GDI; netting out means yields:

E
(
∆y?

t − µ|∆y1
t ,∆y

2
t , µ

)
=

∆̂y?
t − µ = ω1

(
∆y1

t − µ
)

+ ω2

(
∆y2

t − µ
)
,(1)

calling the conditional expectation ∆̂y?
t . The weights ωi can be derived using standard

formulas for the population version of ordinary least squares:

 ω1

ω2

 =

 var (∆y1
t ) cov (∆y1

t ,∆y
2
t )

cov (∆y1
t ,∆y

2
t ) var (∆y2

t )


−1  cov (∆y1

t ,∆y
?
t )

cov (∆y2
t ,∆y

?
t )

(2)

=

 var (∆y1
t ) cov (∆y1

t ,∆y
2
t )

cov (∆y1
t ,∆y

2
t ) var (∆y2

t )


−1  var (E (∆y?

t |F1
t ))

var (E (∆y?
t |F2

t ))

 ,

6It is natural to ask whether it is possible to compute an efficient estimate of ∆y?
t given that it is

unobserved. A couple of things should be kept in mind. First, though ∆y?
t itself is unobserved, it is

defined quite precisely - see footnote 2. Second, the BEA and statisticians in general draw on a large
stock of knowledge about the data they employ, and it’s reliability. More reliable data sources are
generally given greater weight, and less reliable data sources less weight; through such procedures it
may be possible to produce estimates that are close to efficient even though ∆y?

t is never observed. To
illustrate, suppose that the source data used to compute a component of GDP is contaminated with
sampling error, and the variance of the sampling error is known (as is often the case); then procedures
may be employed to downweight the estimate in proportion to the variance of the sampling error,
producing an efficient estimate for that component even though it’s true value is never observed. See
Sargent (1989).

7In a set of additional results available from the authors, the model is extended to allow for serial
correlation of arbitrary linear form in GDP and GDI. The main points of the paper carry through in
this setting, and the empirical estimates with dynamics are similar to the empirical estimates of the
static models presented here.
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using cov (∆y?
t , ε

i
t) = 0 and the property of efficient estimates that their covariance with

the variable they estimate is simply their variance.

It is useful to introduce some additional notation. Call the covariance between the

two estimates σ2; this arises from the overlap between the information sets used to

compute the efficient estimates, and correlation between the measurement errors ε1
t and

ε2
t . The model imposes the condition that the variance of each estimate is at least as

large as their covariance; let σ2 + τ 2
1 and σ2 + τ 2

2 be the variances of the ∆y1
t and ∆y2

t ,

respectively. The idiosyncratic variance in each estimate, the τ 2
i for i = 1, 2, arises from

two potential sources. The first source is the idiosyncratic news in each estimate - the

information in each efficient estimate missing from the other, and the second source is

noise.

Let the share of the covariance between the two estimates that is news, or common

information, be χ. Similarly, let the news share of the idiosyncratic variance in the ith

estimate be χi, so (1− χi) is the fraction of the idiosyncratic variance that is noise.

Then equation (2) becomes:

 ω1

ω2

 =

 σ2 + τ 2
1 σ2

σ2 σ2 + τ 2
2


−1  χσ2 + χ1τ

2
1

χσ2 + χ2τ
2
2

 .

Solving and substituting into (2) gives:

∆̂y?
t − µ =

(
χ1τ

2
1 + (χ− χ2) τ

2
2 + χ1

τ2
1 τ2

2

σ2

)
(∆y1

t − µ)

τ 2
1 + τ 2

2 +
τ2
1 τ2

2

σ2

+

(
χ2τ

2
2 + (χ− χ1) τ

2
1 + χ2

τ2
1 τ2

2

σ2

)
(∆y2

t − µ)

τ 2
1 + τ 2

2 +
τ2
1 τ2

2

σ2

.(3)

Before examing (3) in greater depth, note that the weights on the two component
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variables here do not necessarily sum to one; the weights on the two components variables

and the mean µ sum to one. But in some situations the econometrician may have little

confidence in the estimated mean µ, so it may be inadvisable to use it as the third

component in the weighted average. One way around this problem is to force the weights

on ∆y1
t and ∆y2

t to sum to one, with ω2 = 1− ω1; substituting into (1) and rearranging

yields:

E
(
∆y?

t −∆y2
t |∆y1

t ,∆y
2
t

)
= ω1

(
∆y1

t −∆y2
t

)
.(1’)

Adding back in ∆y2
t to equation (1’) yields ∆̂y?

t . The solution to the general model then

becomes:

∆̂y?
t =

(χ1τ
2
1 + (1− χ2) τ

2
2 ) ∆y1

t + (χ2τ
2
2 + (1− χ1) τ

2
1 ) ∆y2

t

τ 2
1 + τ 2

2

.(3’)

With the assumptions of the pure noise model discussed below, this particular estimator

is equivalent to the estimator proposed by Weale (1992) and Stone et al (1942). Appendix

A clarifies the relation between these earlier estimators and those derived here.

It is clear that not all of the parameters of the unconstrained model are identified: we

observe three moments from the variance-covariance matrix of [∆y1
t ∆y2

t ], which is not

enough to pin down the six parameters σ2, τ 2
1 , τ 2

2 , χ, χ1, and χ2. Imposing values for χ,

χ1, and χ2 allows identification of the remaining parameters. Some illuminating special

cases are examined next, which show how assumptions about the idiosyncratic news

shares χ1 and χ2 are critical for determining the relative weights on the two component

variables.
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2.2.1 The Pure Noise Model

Previous attempts to estimate models of this kind have focused on one particular as-

sumption for the idiosyncratic news shares: χ1 = χ2 = 0. The implication is that the two

information sets must coincide, at least in the universe of information that is relevant

for predicting ∆y?
t , so E (∆y?

t |F1
t ) = E (∆y?

t |F2
t ). We call this the pure noise model;

equation (3) is then:8

(4) ∆̂y?
t − µ =

χτ 2
2 (∆y1

t − µ) + χτ 2
1 (∆y2

t − µ)

τ 2
1 + τ 2

2 +
τ2
1 τ2

2

σ2

.

In the pure noise model, the weight for one measure is proportional to the idiosyn-

cratic variance of the other measure - since the idiosyncratic variance in each estimate

is assumed to be noise, the “noisier” measure is downweighted. The weights on the (net

of mean) estimates sum to less than one; as is typical in the classical measurement er-

ror model, coefficients on noisy explanatory variables are downweighted. In fact, as the

common variance χσ2 approaches zero, the signal-to-noise ratio in the model approaches

zero as well, and the formula instructs us to give up on the estimates of GDP and GDI

for any given time period, using the overall sample mean as the best estimate for each

and every period.

8Previous work typically has imposed the additional assumption that E
(
∆y?

t |F i
t

)
= ∆y?

t , for i = 1, 2,
leading to the first case in subsection 2.1. Equation (4) holds with or without this additional assumption;
the only difference lies in the interpretation of the parameters. With this assumption, σ2 identifies the
variance of “true” GDP growth; without it, σ2 merely identifies var

(
E

(
∆y?

t |F1
t

))
= var

(
E

(
∆y?

t |F2
t

))
,

which must be less than the variance of “true” GDP growth.
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2.2.2 The Pure News Model

The opposite case is what we call the pure news model, where χ1 = χ2 = 1. Equation

(3) then becomes:

∆̂y?
t − µ =

(
τ 2
1 + (χ− 1) τ 2

2 +
τ2
1 τ2

2

σ2

)
(∆y1

t − µ)

τ 2
1 + τ 2

2 +
τ2
1 τ2

2

σ2

+

(
τ 2
2 + (χ− 1) τ 2

1 +
τ2
1 τ2

2

σ2

)
(∆y2

t − µ)

τ 2
1 + τ 2

2 +
τ2
1 τ2

2

σ2

.(5)

The weight for each measure is now proportional to its own idiosyncratic variance - the

estimate with greater variance contains more news and hence receives a larger weight.

This result is diametrically opposed to that of the noise model.

Under some circumstances it may be reasonable to assume that the covariance be-

tween the estimates is pure news, in which case the (χ− 1) terms vanish; then the

weights (on the net of mean estimates) sum to a number greater than unity, again oppo-

site the pure noise model. As σ2 → 0 (i.e. as the variance common to the two estimates

approaches zero), the weight for each estimate approaches unity. In this case, we are

essentially adding together two independent pieces of information about GDP growth.

To illustrate, suppose we receive news of a shock that moves ∆y?
t two percent above

its mean, and then receive news of another, independent shock that moves ∆y?
t one

percent below its mean. The logical estimate of ∆y?
t is then the mean plus one percent

- i.e. the sum of the two shocks. In Appendix B we work through another example,

of two estimates of GDP growth, each based on the growth rate of a different sector of

the economy; if the growth rates of the sectors are uncorrelated, we simply add up the

net-of-mean contributions to GDP growth of the two sectors, and then add back in the

mean.
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2.2.3 Arbitrary Weights

Finally, consider another case of interest: if χi = χ and χj = 0, then ωi = χ and ωj = 0,

placing all the weight on variable i. If placing all the weight on either variable can be

justified with such assumptions about the idiosyncratic news shares, perhaps any set of

weights is possible. This turns out to be the case. Let the ratio of the weights ω1

ω2
= r,

so:

(6) r (χ, χ1, χ2) =
χ1τ

2
1 + (χ− χ2) τ

2
2 + χ1

τ2
1 τ2

2

σ2

χ2τ 2
2 + (χ− χ1) τ 2

1 + χ2
τ2
1 τ2

2

σ2

,

where we’ve expressed r as a function of χ, χ1 and χ2. The following proposition shows

that, for any 0 < χ ≤ 1, any set of weights can be rationalized by making untestable

assumptions about the degree of news and noise in the idiosyncratic components of the

two variables:

Proposition 1 Let r be any non-negative real number, and let r (χ, χ1, χ2) be given by

(6), where τ 2
1 , τ 2

2 , and σ2 are each constant, positive real numbers, and 0 < χ ≤ 1. Then

there exists a pair (χ?
1, χ

?
2), with χ?

1 ∈ [0, 1) and χ?
2 ∈ (0, 1], such that r (χ?

1, χ
?
2) = r.

Proof: Consider an example that meets the conditions of the proposition, where χ2 =

χ − χ1. Then r (χ1, χ2) = χ1

χ−χ1
. Since r (χ1, χ2) is a continuous function, r (0, χ) = 0,

and limχ1→χr (χ1, χ− χ1) = ∞, the result holds by theorem 4.23 of Rudin (1953). We

have χ1 = χr
1+r

, which produces the desired χ?
1 ∈ [0, 1) and χ?

2 ∈ (0, 1] for any

non-negative real r.

One set of weights is as justifiable as any other; without further information about

the estimates, the choice of weights will be arbitrary. In the empirical work below on

GDP and GDI, we do bring further information to bear on the problem, and examine

which news shares are likely closest to reality.
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3 Data

The most widely-used statistic produced by the U.S. Bureau of Economic Analysis

(BEA) is GDP, its expenditure-based estimate of the size of the economy; this statistic

is the sum of personal consumption expenditures, investment, government expenditures,

and net exports. However the BEA also produces an income-based estimate of the size

of the economy, gross domestic income (GDI), from different information. National in-

come is the sum of employee compensation, proprietors’ income, rental income, corporate

profits and net interest; adding consumption of fixed capital and a few other balancing

items to national income produces GDI. Computing the value of GDP and GDI would

be straightforward if it were possible to record the value of all the underlying transac-

tions included in the NIPA definition of the size of the economy, in which case the two

measures would coincide. However all the underlying transactions are not recorded: the

BEA relies on various surveys, censuses and administrative records, each imperfect, to

compute the estimates, and differences between the data sources used to produce GDP

and GDI, as well as other measurement difficulties, lead to the statistical discrepancy

between the two measures.

Likelihood-ratio tests show breaks in the means and variances of our GDP and GDI

growth series in 1984Q3; in this version of the paper we restrict our attention to the

post-1984Q3 period. Figure 1 plots the annualized quarterly growth rates of the “latest

available” versions of nominal GDP (solid) and GDI (dashed) from 1984Q3 to 2005,

pulled from the BEA web site in September 2009.9 These “latest available” estimates

have been revised numerous times by the BEA. The “final current quarterly” estimates,

released for each quarter about three months after the quarter ends, is the first set of

9We choose to focus on nominal data because the BEA does not produce a deflator for GDI. Our
results using GDP and GDI deflated by the GDP deflator were broadly similar to those reported.
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estimates with a complete time series of both GDP and GDI growth over our sample

period. Because the “final current quarterly” nomenclature is somewhat confusing (in-

deed, the BEA changed it in 2009), we call this the “first” set of estimates, and the

“latest” available vintage as of 2009 the “last” set of estimates. Historically, each “first”

estimate has been revised three times at annual revisions, and then periodically every

five years at benchmark revisions. We restrict our sample to end in 2005 so that all of

our “last” vintage observations have passed through the three annual revisions; the time

series we employ was last benchmarked in the summer of 2009, to the 2002 input-output

tables.10

At each of the annual revisions and at a benchmark revision, the BEA incorporates

more comprehensive and accurate source data. For the “first” estimates, most available

source data is based on samples, which may contain some noise from sampling errors.

Later vintages are based on more comprehensive samples, or sometimes universe counts,

so incorporation of these data has the potential to reduce noise.

In addition to potentially noisy data, at the time of the current quarterly estimates

the BEA has little hard data at all on some components of GDP and GDI, including

much of services consumption.11 For these components the BEA often resorts to “trend

extrapolations,” assuming the growth rate for the current quarter some average of past

growth rates, which can be thought of as approximating conditional expectations based

on past history. In later vintages when the BEA receives and substitutes actual data

for these extrapolated components, news is added to the estimates. For some missing

components the BEA substitutes related data instead of “trend extrapolations”; for

example the BEA borrows data from the income-side, using employment, hours and

10One could argue that we should cut our sample off in 2002 instead of 2005, since 2002 is the last
year to which the data have been benchmarked. Results were similar using this smaller sample.

11For a detailed description of the missing GDP data, see Grimm and Weadock (2006).
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earnings as an extrapolator from some components of services consumption. These

estimates may be thought of as approximating conditional expectations based on related

labor market information, although if the labor market data contain noise, it is possible

that these procedures may introduce common noise into the current quarterly estimates.

4 Identifying News vs. Noise from Revisions

Our model for “first” and “last” vintage GDP and GDI growth (i = 1, 2) is:

∆yi,f
t = E

(
∆y?

t |F
i,f
t

)
+ εi,f

t

∆yi,l
t = E

(
∆y?

t |F
i,l
t

)
+ εi,l

t .

Our working assumption is that the revision from “first” to “last” brings the estimates

closer to the truth ∆y?
t , through some combination of increased news and decreased

noise.12 On the news side, we assume F i,f
t is strictly smaller than F i,l

t , so F i,f
t ⊂ F i,l

t .

Writing:

E
(
∆y?

t |F
i,l
t

)
= E

(
∆y?

t |F
i,f
t

)
+ ζ i,f l

t ,

the term ζ i,f l
t is the increase in news embedded in the revision, and is uncorrelated with

E
(
∆y?

t |F
i,f
t

)
. This increase in news increases the variance of the estimates. On the

noise side, var
(
εi,l

t

)
< var

(
ε1,f

t

)
, and we write this as:

εi,f
t = εi,l

t + εi,f l
t ,

12This assumption need not hold for each individual annual and benchmark revision, only for the
sum of all these revisions that we consider; we assume that if a revision adds some noise, that noise is
revised away over subsequent revisions.
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εi,f l
t uncorrelated with εi,l

t . This reduction in noise decreases the variance of “last” rela-

tive to “first”. These noise terms are assumed uncorrelated with all relevant conditional

expectations.

If the revision from “first” to “last” reflects increased news, the variance of “last”

should exceed the variance of “first,” and if the revision reflects decreased noise, the

opposite should hold, as discussed in Mankiw and Shapiro (1986). Here we show how

to identify the fraction of revision variance that stems from increased news, and the

fraction that stems from decreased noise. The variance of the revision is:

var(∆yi,l
t −∆yi,f

t ) = var(ζ i,f l
t − εi,f l

t )

= var(ζ i,f l
t ) + var(εi,f l

t ),(7)

since ζ i,f l
t and εi,f l

t are independent. Contrast this with the change in the variance of the

estimate:

var(∆yi,l
t )− var(∆yi,f

t ) = var
(
E

(
∆y?

t |F
i,l
t

)
+ εi,l

t

)
− var

(
E

(
∆y?

t |F
i,f
t

)
+ εi,f

t

)
= var

(
E

(
∆y?

t |F
i,f
t

)
+ ζ i,f l

t + εi,l
t

)
− var

(
E

(
∆y?

t |F
i,f
t

)
+ εi,f l

t + εi,l
t

)
= var

(
E

(
∆y?

t |F
i,f
t

))
+ var(ζ i,f l

t ) + var(εi,l
t )

− var
(
E

(
∆y?

t |F
i,f
t

))
− var(εi,f l

t )− var(εi,l
t )

= var(ζ i,f l
t )− var(εi,f l

t ),(8)

again relying on the lack of covariance between various terms. Equations (7) and (8)

pin down the news increase var(ζ i,f l
t ) and noise decrease var(εi,f l

t ).

Pinning down the news increase and noise decrease from revision is interesting be-

cause it allows us to place bounds on the fraction of the variance in an estimate that is
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news. For example, if the “first” estimate starts out with little variance relative to the

“last” estimate, then most of the variance of the “last” estimate must be news, since it

came from revision. Similarly, if the noise decrease from revision is close to the variance

of the “first” estimate, then most of the variance of that “first” estimate must be noise.

The revisions identify noise in the “first” estimate and news in the “last” estimate, plac-

ing an upper bound on the fraction of variance of “first” that is news and a lower bound

on the fraction of variance of “last” that is news.

The first two rows of Table 1 show, for GDP growth and GDI growth, the variances

of their “first” and “last” vintages, the change in variance (equation 8), the revision

variance (equation 7), and the increase in news and decrease in noise implied by these

statistics. For GDP growth, the variance of “last” is only slightly larger than the variance

of “first”, implying the increase in variance from greater news is only slightly larger than

the decrease in variance from less noise. The variance of the revision then tells us that a

little less than a percentage point of the variance of the “first” estimate of GDP growth

must be noise, and a little more than a percentage point of the variance of the “last”

estimate must be news. For GDI growth, the variance of “last” is substantially larger

than the variance of “first”, implying most of the revision variance stems from increased

news. More than two percentage points of the variance of the “last” estimate of GDI

growth must be news.

Note that “first” GDI growth has little idiosyncratic variance - its variance is about

equal to its covariance with GDP growth - but after passing through revisions its id-

iosyncratic variance is substantial. Since the idiosyncratic variance of this “last” estimate

stems from revisions, which add news variance but not noise variance, it is tempting to

conclude that this idiosyncratic variance must be news. However, as the equations in Ap-

pendix C illustrate, the increase in news covariance and decrease in noise covariance are

not identified, as would be necessary to pin down precisely the increase in idiosyncratic
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news. Some of the intuition developed earlier for variances applies to the covariance

as well: an increase in news can only increase the covariance, while a decrease in noise

can only decrease the covariance. The third line of the table shows that the covariance

falls after the revision, implying that the “first” estimates must contain some common

noise eliminated through revision. One possibility is that this common noise is elimi-

nated from GDP growth but not GDI growth, so it becomes idiosyncratic noise in GDI

growth. This possibility prevents us from concluding definitively that the idiosyncratic

variation in the “last” estimate of GDI growth is news.

For the “first” estimates of GDP and GDI growth, let χ1,f , χ2,f and χf be the shares of

their idiosyncratic variances and covariances that are news, and for the “last” estimates,

let these news shares be χ1,l, χ2,l and χl. Despite the complications described above, the

revisions do place some bounds on these news shares; since the revisions must add news

or subtract noise, and the news increases and noise decreases must appear somewhere, in

either the covariance between the estimates or their idiosyncratic variances. The bounds

are defined by the equations in Appendix C. We make one additional assumption, that

the covariance between the estimates is news unless explicitly identified as noise by the

revisions; formally, we assume equation (C.10) holds with equality. This is certainly in

the spirit of popular dynamic factor models that assume that covariance is signal.

The first column on table 2 shows news shares resulting from minimization of the total

idiosyncratic news in the “last” estimates, subject to the revision equations described

in Appendix C. For the “last” estimates, the pure noise model cannot be squared with

the revisions: the idiosyncratic news share for GDI growth of 0.67 is its lowest possible

value. Under this set of assumptions, all of the 0.93 reduction in the noise variance of

“first” GDP is assumed to come from a reduction in common noise, with none of that

noise removed from GDI growth so all of it becomes idiosyncratic noise in the “last”

GDI estimate. The remainder of this idiosyncratic variance, about two-thirds, must be
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news. However, the true idiosyncratic news share is likely well above this lower bound,

since two of the assumptions made in this case are unlikely: (i) that all of the decrease

in GDP noise occurs in the common component, and (ii) that none of the common

noise removed from GDP growth is removed from GDI growth. Regarding (i), some

of the idiosyncratic variance of “first” GDP growth is likely noise, since it relies on

noisy samples not employed in estimating GDI growth, and revisions likely eliminating

some of that. And regarding (ii), the revisions to GDI growth likely reduce its noise from

sampling errors as well, since they incorporate virtual census counts from administrative

and tax records.

The second column on table 2 shows news shares resulting from maximizing the total

idiosyncratic news in the “last” estimates. While the pure news model cannot be squared

with the revisions evidence either, something close to the pure news model with (χ1,l, χ2,l)

equal to (1, 0.87) is admissable. Of the 0.93 reduction in noise variance in the “first”

GDP growth estimate, part stems from a reduction in idiosyncratic GDP noise, part

stems from a reduction in common noise also removed from GDI growth, and part stems

from a reduction in common noise not also removed from GDI growth. This appears

quite reasonable to us, and we take this case as our preferred set of assumptions.13

The last two columns show news shares resulting from minimization of the ratio of

optimal weights on the two components, with determined by equation (3). Minimizing

the relative weight on GDP growth amounts to minimizing the overall idiosyncratic

news shares, and minimizing the relative weight on GDI growth yields results similar to

maximizing the idiosyncratic news shares, except for the assumption on χ2,f .

13The assumption that χ2,f = 1 is unlikely in this scenario, but given the small size of that idiosyn-
cratic component, this assumption makes very little difference to the optimal combination formulas.
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5 Estimates of “True” Unobserved Output Growth

Table 3 reports maximum likelihood estimates of the means, covariances, and idiosyn-

cratic variances of GDP and GDI growth, with standard errors beneath the the estimates.

These are slightly different from the statistics reported in table 1, because the estimation

here imposes equality of mean GDP growth and mean GDI growth for each vintage.14

The statistics for the two vintages are estimated jointly, along with covariances between

vintages. This allows us to decompose the revision variances into news and noise as

in the previous section, and recompute the bounds on the news shares implied by the

equations in Appendix C; these bounds were very similar to those reported in in table 2.

The news shares corresponding to each of these bounds imply optimal weights for GDP

and GDI growth via equation (3); these are reported in table 3 with standard errors.15

Consider first the weights for the “first” vintage estimates. Under all sets of as-

sumptions considered, the weights on GDP and GDI growth sum to less than one: it is

optimal to downweight the “first” estimates, shrinking them back towards their mean.

This is a consequence of the common noise in the “first” estimates implied by the re-

visions evidence - the fact that revisions reduce the covariance between the estimates.

The down-weighting filters some of this noise out of the data. Regarding the relative

weight to be placed on the GDP vs GDI for the “first” estimates, the bounds do not rule

out weighting schemes that place most of the relative weight on either GDP or GDI.16

14Since “true” output growth ∆y?
t has only one unconditional mean, imposing this through the

estimation seemed natural.

15As in the previous section, these weights assume equation (C.10) holds with equality; the weights
for the “last” estimates assume χl = 1, making the assumption typical of dynamic factor models that
covariance is signal.

16However, Nalewaik (2007a) uses real-time data to show that GDI growth has tended to recognize
cyclical turning points faster than GDP growth, suggesting that it is optimal to place at least some
weight on the “first” estimates of GDI growth.

21



Consider next the weights for the “last” estimates. Two main points stand out. First,

the weights on GDP and GDI growth exceed one, opposite the usual noise result that

down-weighting is optimal; see section 2.2.2. Second, and probably more important,

GDI receives a substantial weight, no matter what set of assumptions we make. In

fact, the weights on GDI growth are remarkably uniform across these different sets of

assumptions, ranging from 0.59 to 0.65. Even when we minimize the relative weight on

GDI growth, its weight is 0.59 and about equal to the weight on GDP growth. In the

other sets of assumptions, GDI growth receives a larger weight than GDP growth.17

In the first or third set of assumptions, the lower bound of χ2,l based on the revisions

evidence is binding. This lower bound shows that the pure noise model for the “last”

estimates is inconsistent with the assumption that revisions either add news or decrease

noise, but the bound is a function of estimated parameters, so there is some uncertainty

about whether this lower bound is really above zero. A statistical test of whether

χ2,l > 0 is equivalent to a test of whether the difference between τ2,l and the estimated

reduction in noise in ∆y1,f
t is greater than zero (since that noise reduction in GDP may

add idiosyncratic noise to GDI), where the noise reduction is computed as σ2
f + τ 2

1,f −

cov(∆y1,l
t ,∆y

1,f
t ). This difference is 1.63, with a standard error of 0.58; we reject the

pure noise model at conventional significance levels based on evidence from revisions,

even taking on board the unlikely assumption that all of the reduction in noise in “final”

GDP growth stems from the common component, with none of that noise removed from

GDI growth.

As discussed in the previous section, the second set of assumptions is the set we

17One sensible way to proceed may be to choose the midpoint of this range of feasible relative weights,
which would place a greater weight on GDI. Minimax estimation over the unidentified parameters of
the model may lead one to choose such a midpoint of the feasible set of relative weights. Thanks to
Mark Watson suggesting the Minimax approach; see Watson (1987) and Lehmann and Casella (1998)
for an example and description of the Minimax approach.
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consider most likely. In this case, the informativeness of GDI relative to GDP increases

in the revision from “first” to “last”, as a greater amount of useful information is incor-

porated into GDI. This interpretation is consistent with the findings in Nalewaik (2007a,

2007b), who shows that although GDI appears to be more informative than GDP in rec-

ognizing recessions (or, more precisely, more informative in recognizing the state of the

world in a two-state Markov switching model for the economy’s growth rate), much of

that greater information content comes from the information in annual and benchmark

revisions.

Placing a greater weight on GDI growth in analyzing the historical behavior of the

economy leads to some interesting modifications of economic history, as illustrated in

Figures 2 and 3. These figures show “last” GDP and GDI growth, and a weighted

average of the two using the weights from our preferred set of news shares in table 3,

with the three series deflated by the GDP deflator. Compared with GDP, the composite

estimate shows weaker recoveries from the recessions of 1990-1991 and 2001. Average

annualized output growth over the last three quarters of 1991 was about three-quarters

of a percentage point less than recorded by measured GDP. The economy leading up to

the 1990-1991 recession was also weaker, with growth over the four quarters of 1989 a full

percentage point less than measured GDP. Finally, the 2001 recession was substantially

more severe than GDP indicates, with output over the four quarters of 2001 contracting

0.6%; GDP shows an expansion of 0.4%. In fitting structural economic relationships,

these results should be useful.

It is interesting to note that in the fourth quarter of 1999, the growth rate of the

combined estimate exceeds the growth rate of both GDP and GDI, while in the third

quarter of 2001, the combined growth is less than each estimate. These examples reflect

weights on the component series that sum to more than one, a consequence of the

assumption that the idiosyncratic variances of the component series are largely news.
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χ1,lτ1,l and χ2,lτ2,l are independent pieces of information about “true” output growth,

independent of each other and the common information σ2
l . Adding these three terms

together gives an estimate of the variance of “true” GDP growth ∆y?
t , based on the

information in GDP and GDI growth, and this represents a lower bound on the actual

variance of ∆y?
t since there is likely additional information about ∆y?

t contained in

neither estimate. This lower bound of 6.50 is greater than the variance of either GDP

growth (4.30) or GDI growth (5.50), a fact with potentially important implications for

a wide class of economic models that depend importantly on the variance of the growth

rate of the economy, for example many real business cycle and asset pricing models.

6 Conclusions

The main contributions and insights of this paper are the following;

• The paper derives a simple decomposition of revisions into news and noise, which

uses only the variance of the revision, and the variance of the pre- and post-revision

estimates. This decomposition should help sharpen such studies in the future.

• Using the revision decomposition, we obtain interesting implications for GDP

growth and GDI growth, two measures of output growth that differ due to dif-

ferences in source data. The paper shows how to use revisions to place bounds on

the share of the idiosyncratic variation in each measure that is news or signal about

“true” output growth. The initial GDI growth estimates have little idiosyncratic

variation, less than GDP growth, but after passing through revisions the idiosyn-

cratic variance of GDI increases substantially. The fact that this idiosyncratic

variation stems from revisions, combined with the assumption that revisions add
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news but not noise,18 leads to the strong presumption that this variation is news.

Formally testing the hypothesis that the idiosyncratic variation in GDI growth is

noise, we reject at conventional significance levels.

• The fact that some of the idiosyncratic variation in GDI growth is news or signal

runs contrary to heretofore implicit assumptions employed in taking weighted av-

erages of imperfectly measured statisics. Previous attempts to produce the best

possible estimate of “true” output growth by combining measured GDP growth

and GDI growth have made the strong implicit assumption that the idiosyncratic

variation in each measured statistic is pure noise, or completely uncorrelated with

“true” output. We develop new models that relax this assumption, allowing the

idiosyncratic variation in each measured statistic to be partly or pure news - i.e.

correlated with “true” output. This generalized model may weight more heav-

ily the statistic with higher idiosyncratic variance, since it may contain a greater

amount of information about “true” output, in contrast to previous models which

weight less heavily the statistic with higher idiosyncratic variance, assuming it

contains more noise. In fact, we show that absent evidence shedding some light

whether variation is news or noise, the weights in any weighted average of imper-

fectly measured statisics are totally arbitrary.

• When combining the GDP and GDI growth estimates in the period after the mid-

1980s, we show that placing a large weight on GDI is optimal, precisely because

of its relatively large idiosyncratic variation. Doing so alters economic history in

interesting ways. For example, the 2001 recession was more severe than indicated

by measured GDP growth, and economic growth around the 1990-1991 recession

18This assumption is that of Mankiw, Runkle, and Shapiro (1984), Mankiw and Shapiro (1986), and
numerous other papers following their seminal work.
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was weaker than measured GDP growth. Over other time periods, such as the

mid- and late-1990s, GDP understated output growth. In sorting out the large

discrepancies between GDP and GDI growth in 2007 and 2008, we await more

evidence from revisions, but our results suggest the NBER Business Cycle Dating

Committee was right to place at least some weight on the relatively weak GDI

growth estimates.

• Our results indicate that the true variance of the growth rate of the economy is

not equal to the variance of measured GDP growth, as is often assumed in real

business cycle, asset pricing, and other models; the true variance is actually higher.

The news vs. noise considerations highlighted here are ubiquitous when attempting

to estimate unobserveables. Take the well known index of coincident indicators as con-

structed by Stock and Watson (1989), used by Diebold and Rudebusch (1996) and many

other economists. Stock and Watson decompose each of four time series into a common

factor plus an idiosyncratic component; a time series that covaries relatively less with the

other three will receive less weight in the common factor and have higher idiosyncratic

variance. Stock and Watson define the state of the economy as this common factor, so a

series with greater (relative) idiosyncratic variance receives less weight in this construct.

Is this best weighting? There may be good reasons to define the state of the economy

as this common factor, following the venerable tradition of Burns and Mitchell (1946).

However if we define the state of the economy as something other than this common

factor, the answer to this question is unclear: if the idiosyncratic components of the

time series are noise, the Stock and Watson approach is appropriate, but if the idiosyn-

cratic components are news, then time series that contain much idiosyncratic variation

are uniquely informative about the state of the economy, and should be weighted more

heavily.

26



Unfortunately, before such issues can be sorted out, a clearer definition of what we

are attempting to measure in a factor analysis must be forthcoming. Without a clear

definition of the unobserveable of interest, it is not even clear which variables to include

in a factor analysis, let alone how we should weight them with factor loadings.

Similar issues obviously arise in the burgeoning literature on dynamic factor mod-

els using large datasets. Often the common factors are used for pure forecasting as in

Stock and Watson (2002a,b), and our results have little relevance for those applications.

But sometimes they are equated with unobserveables of interest, assuming the idiosyn-

cratic components of the variables in the dataset are uninteresting noise.19 For example,

Bernanke et al (2005) equate linear combinations of common factors with four unob-

served variables: (1) the output gap, (2) a cost-push shock, (3) output, and (4) inflation.

They take these last two as unobserveable due to measurement difficulties, in the same

spirit as our work here. However it is unlikely that the idiosyncratic components of all

120 time series they use to extract the common factors are uncorrelated with these four

unobserveables. For example, our results indicate that information from the income side

of the national accounts probably contains useful information about the growth rate of

output, above and beyond the information contained in expenditure-side variables. So it

may be possible to improve the results in Bernanke et al (2005), for example by allowing

correlation between unobserveables (1) or (3) and the idiosyncratic components of their

employment and income variables.

These examples illustrate that the noise assumption, treating idiosyncratic variance

as a bad, is often implicit in models of imperfect measurement. We have identified

19We have heard that some of the consistency results in this literature do not rely on the idiosyncratic
terms being uncorrelated with the factors. Apparently, as N,T →∞, the factors estimated by principle
components converge to the “true” underlying factors even if the idiosyncratic terms are correlated with
the “true” factors. The issue we raise is different: whether the weightings on a fixed set of N time series
are optimal, in the sense that they minimize the squared deviations of the estimated factors from the
“true” factors.
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circumstances where this assumption is inappropriate, where some idiosyncratic varia-

tion should be treated as a good rather than a bad. While realizing this leads to some

fundamental indeterminancies, we have taken some initial steps here towards resolving

them.
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Appendix A: Relation to Earlier Work Based on

Stone, Champernowne, and Meade (1942)

Equation (3’) with the pure noise assumptions yields ∆̂y?
t =

τ2
2 ∆y1

t +τ2
1 ∆y2

t

τ2
1 +τ2

2
, essentially

the estimator presented in Weale (1992).20 This paper applied to the case of U.S. GDP

and GDI the techniques developed in Stone, Champernowne, and Meade (1942) and

Byron (1978); see also Weale (1985), and Smith, Satchell, and Weale (1998). In the

general case, Stone et al (1942) considered a row vector of estimates x that should

but do not satisfy the set of accounting constraints Ax = 0. They produce a new

set of estimates x̃? that satisfy the constraints by solving the constrained quadratic

minimization problem:

MIN
x̃?

(
x̃? − x

)′
V −1

(
x̃? − x

)
(A.1)

S.T. Ax̃? = 0.

The matrix V represents a variance-covariance matrix of x? − x, where x? is the vector

of “true” values estimated by x, so V −1 is an estimate of “precision”. The case at hand

maps to this framework with the minimization problem looking like:

MIN

∆̃y1?

t , ∆̃y
2?

t

(
∆̃y1?

t −∆y1
t ∆̃y2?

t −∆y2
t

)
V −1

 ∆̃y1?

t −∆y1
t

∆̃y2?

t −∆y2
t


S.T. ∆̃y1?

t − ∆̃y2?

t = 0.

20Weale (1992) allowed for covariance between the measurement errors ε1t and ε2t . This has no impact
on the weights when they are constrained to sum to one.
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Substituting the constraint into the objective function, we have:

MIN
∆̃y?

t

(
∆̃y?

t −∆y1
t ∆̃y?

t −∆y2
t

)
V −1

 ∆̃y?
t −∆y1

t

∆̃y?
t −∆y2

t

 ,(A.2)

with ∆̃y?
t = ∆̃y1?

t = ∆̃y2?

t . The judgement in this approach involves the choice of V .

Stone et al (1942) are not so specific in their recommendations, but it seems logical to

use estimates of the variance of measurement errors, as defined in the noise model, to

compute V , and this is the tack taken by much of the literature following Stone et al

(1942). The main point of this paper is that it is also important to consider the relative

information content of the different estimates: if one estimate contains much more news

than the other estimate, we may want to adjust that estimate less than the other, even

if it contains more noise as well. Weale (1992) assumes the idiosyncratic variances of

GDP and GDI, the τ 2
i , are measurement errors, as in the noise model above. Under

these assumptions, we have:

V =

 τ 2
1 0

0 τ 2
2

 .

Solving the quadratic minimization problem with this V , we have ∆̃y?
t =

τ2
2 ∆y1

t +τ2
1 ∆y2

t

τ2
1 +τ2

2
,

the same result as the restricted pure noise model.

Problem (A.2) is a different minimization problem than the least squares minimiza-

tion problems that we solve in this paper, where we solve for the weights in (1) or (1’) and

then compute the predicted values ∆̂y?
t ; problem (A.2) solves for ∆̃y?

t directly, leaving

the weights implicit. In solving for the weights in (1) or (1’), assumptions must be made

about the covariances between ∆y?
t and the estimates ∆yi

t, whereas in (A.2) assumptions

must be made about V ; as we have seen, when these assumptions are equivalent and
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when some constraints are applied to (1), the two approaches can give the same result.

Comparing the Stone, Champernowne, and Meade (1942) approach with the approach

taken here, in a more general setting such as in (A.1), is beyond the scope of this paper,

but is an interesting avenue for future research.

Appendix B: A Simple Example of the Bivariate News Model

We will consider two efficient estimates of true GDP growth, one based on consump-

tion growth, and the other based on the growth rate of investment. After constructing

each efficient estimate, we will discuss how to produce the improved estimate of true

GDP growth by combining them with equation (5).

Let ∆Ct, ∆It, ∆Gt, and ∆NXt be the contributions to true GDP growth ∆y?
t of

consumption, investment, government, and net exports, so:

∆y?
t = ∆Ct + ∆It + ∆Gt + ∆NXt.

Our first efficient estimate of y?
t , ∆y1

t , is based on F1
t = [1, ∆Ct], a constant and con-

sumption growth, and the second is based on F2
t = [1, ∆It], a constant and investment

growth; the constant in either information set reveals µ, the mean of y?
t , as well as the

means of the component growth rates. Then our efficient estimates will take the form:

∆y1
t = µ+ (∆Ct − µC) + E

(
∆It − µI |F1

t

)
+ E

(
∆Gt + ∆NXt − µG − µNX |F1

t

)
;

∆y2
t = µ+ (∆It − µI) + E

(
∆Ct − µC |F2

t

)
+ E

(
∆Gt + ∆NXt − µG − µNX |F2

t

)
.

For simplicity, we will examine the case where neither F1
t nor F2

t contains any useful

information about ∆Gt + ∆NXt − µG − µNX , so the last term in each of the above

expressions is zero, and ∆Gt + ∆NXt − µG − µNX represents the information about y?
t
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contained in neither of our two estimates.

The relation between ∆Ct and ∆It determines the nature of the efficient estimates

and weights on ∆y1
t and ∆y2

t in equation (5). Consider first the case where these variables

are independent. Then:

∆y1
t = µ+ (∆Ct − µC) and:

∆y2
t = µ+ (∆It − µI) .

There is no information common to F1
t and F2

t , no covariance between the estimates,

so σ2 = 0. Equation (5) instructs us to remove the mean from each estimate, and then

simply add them. Adding back in the mean, we have the natural result:

∆̂y?
t = µ+ (∆Ct − µC) + (∆It − µI) .

The weight on each estimate (net of mean) is just one; as mentioned in the previous

subsection, this is the case where we are essentially adding independent contributions

to GDP growth.

Next consider the case where ∆Ct and ∆It are perfectly correlated, so:

(∆It − µI) = a (∆Ct − µC) ,

where a is some constant. Then:

∆y1
t = µ+ (1 + a) (∆Ct − µC) = µ+ (∆Ct − µC) + (∆It − µI) and:

∆y2
t = µ+ (1 + 1

a
) (∆It − µI) = µ+ (∆Ct − µC) + (∆It − µI) .
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Given that ∆y1
t = ∆y2

t , taking a weighted average of the two produces the same estimate

as long as the weights in the average sum to one. There is no idiosyncratic variance to

either estimate, so τ 2
1 = τ 2

2 = 0, and equation (5) instructs us to use a weight of 0.5 for

each estimate.21

Finally consider the general linear case. In this case:

E
(
∆It − µI |F1

t

)
= a (∆Ct − µC) and:

E
(
∆Ct − µC |F2

t

)
= b (∆It − µI)

Least squares projections tell us that a = σci

σ2
c
, where σci is the covariance between ∆It

and ∆Ct, and σ2
c is the variance of ∆Ct. Similarly, b = σci

σ2
i
, where σ2

i is the variance of

∆It, and the fraction of the variance of each variable explained by the other, R2, is
σ2

ci

σ2
i σ2

c
.

The efficient estimates of ∆y?
t are:

∆y1
t = µ+ (1 + a) (∆Ct − µC) and:

∆y2
t = µ+ (1 + b) (∆It − µI) .

The variance parameters of the news model are identified from the following relations:

σ2 = cov
(
∆y1

t ,∆y
2
t

)
= (1 + a)(1 + b)σci,

τ 2
1 = var

(
∆y1

t

)
− cov

(
∆y1

t ,∆y
2
t

)
= (1 + a)2σ2

c − (1 + a)(1 + b)σci and:

τ 2
2 = var

(
∆y2

t

)
− cov

(
∆y1

t ,∆y
2
t

)
= (1 + b)2σ2

i − (1 + a)(1 + b)σci.

Substituting a = σci

σ2
c

and b = σci

σ2
i
, we see that both τ 2

1 > 0 and τ 2
2 > 0 if σ2

ci < σ2
i σ

2
c , or if

R2 < 1. If R2 = 1, we are back to the perfect correlation case with τ 2
1 = 0 and τ 2

2 = 0;

21These weights can be derived through application of L’Hopital’s rule.
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if R2 = 0, we are back to independence with σ2 = 0. In all intermediate cases, the sum

of the two weights (net of mean) will range between 1 and 2.

It should be pointed out that, when combining ∆y1
t and ∆y2

t in this particular ex-

ample, using equation (5) is not the most natural way to proceed. An easier and more

intuitive procedure would be to set a (∆Ct − µC) to zero in ∆y1
t , set b (∆It − µI) to zero

in ∆y2
t , and then combine, producing:

∆̂y?
t = µ+ (∆Ct − µC) + (∆It − µI) .

This is the best possible estimate of ∆̂y?
t given the information in F1

t and F2
t , so any es-

timate based on (5) can only be worse. This result highlights one of the key assumptions

of the model: it assumes that the econometrician does not have enough information to

set to zero or re-weight individual components of either estimate ∆yi
t; the econometrician

must take each ∆yi
t in its totality. Considering different weights for different components

of GDP and GDI is another interesting avenue for future research.

Appendix C: Revision Equations Determining Bounds on χ Parameters

Consider first the covariance between the revision to GDP growth and the revision

to GDI growth:

cov(∆y1,l
t −∆y1,f

t ,∆y2,l
t −∆y2,f

t ) = cov(ζ1,f l
t − ε1,f l

t , ζ2,f l
t − ε2,f l

t )

= cov(ζ1,f l
t , ζ2,f l

t ) + cov(ε1,f l
t , ε2,f l

t ).(C.1)
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The change in the covariance between GDP growth and GDI growth (pre- and post-

revision) is a more complicated expression:

cov(∆y1,l
t ,∆y2,l

t )− cov(∆y1,f
t ,∆y2,f

t ) = cov
(
E

(
∆y?

t |F
1,l
t

)
+ ε1,l

t , E
(
∆y?

t |F
2,l
t

)
+ ε2,l

t

)
− cov

(
E

(
∆y?

t |F
1,f
t

)
+ ε1,f , E

(
∆y?

t |F
2,f
t

)
+ ε2,f

)
.

= cov
(
E

(
∆y?

t |F
1,l
t

)
, E

(
∆y?

t |F
2,l
t

))
+ cov(ε1,l

t , ε2,l
t )(C.2)

− cov
(
E

(
∆y?

t |F
1,f
t

)
, E

(
∆y?

t |F
2,f
t

))
− cov(ε1,f

t , ε2,f
t ),

using the independence of the noise terms from the conditional expectations.

Drilling down further, for the covariance between the conditional expectations in

(C.2), we have cov
(
E

(
∆y?

t |F
1,f
t

)
, E

(
∆y?

t |F
2,f
t

))
= χfσ

2
f , and:

cov
(
E

(
∆y?

t |F
1,l
t

)
, E

(
∆y?

t |F
2,l
t

))
= cov

(
E

(
∆y?

t |F
1,f
t

)
+ ζ1,f l

t , E
(
∆y?

t |F
2,f
t

)
+ ζ2,f l

t

)
= χfσ

2
f + cov

(
E

(
∆y?

t |F
1,f
t

)
, ζ2,f l

t

)
+cov

(
ζ1,f l
t , E

(
∆y?

t |F
2,f
t

))
+ cov(ζ1,f l

t , ζ2,f l
t )(C.3)

= χlσ
2
l .

The common news in the “last” estimates is equal to the common news in the “first”

estimates plus terms stemming from the revisions. The last term cov(ζ1,f l
t , ζ2,f l

t ) is

information revealed to both estimates that was reflected in neither “first” estimate. The

two cov
(
E

(
∆y?

t |F
j,f
t

)
, ζ i,f l

t

)
terms are information reflected in one “first” estimate but

not the other, that is then revealed to the other estimate through revisions, thus making

the information common to the “last” estimates. Put differently, this is information

in F j,f
t (and thus F j,l

t since these information sets can only increase), not in F i,f
t , but

in F i,l
t . Each of these terms is positive, so common news can only increase through

revisions.
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Similarly, for the noise terms in (C.2), cov(ε1,l
t , ε

2,l
t ) = (1− χl)σ

2
l , and:

cov
(
ε1,f
t , ε2,f

t

)
= cov

(
ε1,l
t + ε1,f l

t , ε2,l
t + ε2,f l

t

)
= (1− χl)σ2

l + cov
(
ε1,f l
t , ε2,l

t

)
+ cov

(
ε1,l
t , ε2,f l

t

)
+ cov(ε1,f l

t , ε2,f l
t )

= (1− χf )σ2
f , so:

(1− χl)σ2
l = (1− χf )σ2

f − cov
(
ε1,f l
t , ε2,l

t

)
− cov

(
ε1,l
t , ε2,f l

t

)
− cov(ε1,f l

t , ε2,f l
t ).(C.4)

The common noise in the “last” estimates equals the common noise in the “first”

estimates minus three revision terms. The last term cov(ε1,f l
t , ε2,f l

t ) is the common noise

in the “final” estimates removed from both estimates by revision. The two cov
(
εi,l

t , ε
j,fl
t

)
terms are common noise in the “first” estimates removed from one estimate by revision,

but not the other. These three terms all reduce the common noise in the “last” estimates,

so common noise can only fall through revision.

Substituting (C.3) and (C.4) into (C.2) yields:

cov(∆y1,l
t ,∆y2,l

t )− cov(∆y1,f
t ,∆y2,f

t ) = cov
(
E

(
∆y?

t |F
1,f
t

)
, ζ2,f l

t

)
+cov

(
ζ1,f l
t , E

(
∆y?

t |F
2,f
t

))
+ cov(ζ1,f l

t , ζ2,f l
t )

− cov
(
ε1,f l
t , ε2,l

t

)
− cov

(
ε1,l
t , ε2,f l

t

)
− cov(ε1,f l

t , ε2,f l
t ).(C.5)

The relation between (C.1) and (C.5) is evidently a bit more complicated than the

relation between (7) and (8). The covariances between the revisions and the initial

estimates provides some additional information:

cov(∆y1,f
t ,∆y2,l

t −∆y2,l
t ) = cov

(
E

(
∆y?

t |F
1,f
t

)
+ ε1,f

t , ζ2,f l
t − ε2,f l

t

)
= cov

(
E

(
∆y?

t |F
1,f
t

)
+ ε1,l

t + ε1,f l
t , ζ2,f l

t − ε2,f l
t

)
= cov

(
E

(
∆y?

t |F
1,f
t

)
, ζ2,f l

t

)
− cov

(
ε1,l
t , ε2,f l

t

)
− cov

(
ε1,f l
t , ε2,f l

t

)
.(C.5’)
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Similarly:

cov(∆y2,f
t ,∆y1,l

t −∆y1,l
t ) = cov

(
E

(
∆y?

t |F
2,f
t

)
, ζ1,f l

t

)
(C.5”)

− cov
(
ε2,l
t , ε1,f l

t

)
− cov

(
ε2,f l
t , ε1,f l

t

)
.

However, (C.1), (C.5), (C.5’) and (C.5”) are linearly dependent, and we have been un-

able to discover additional restrictions on the six unknowns appearing in these equations,

leaving us with no unique solution.

Next consider the idiosyncratic news in the “last” estimate of i. This is equal to

the idiosyncratic news in the “first” estimate of i, minus the part of this idiosyncratic

news revealed to j by revision (and hence transforming it to common news), plus the

idiosyncratic news added to i by revision, γi,f lτ
2
i,l:

χi,lτ
2
i,l = χi,fτ

2
i,f − cov

(
E

(
∆y?

t |F
i,f
t

)
, ζj,fl

t

)
+ γi,f lτ

2
i,l,(C.6)

The overall increase in news from revisions, computed from (7) and (8), is the sum of

this change in idiosyncratic news (C.6) and the change in common news as computed

from (C.3):

var(ζi,f l
t ) = var(ζi,l

t )− var(ζi,f
t )

=
(
χlσ

2
l − χfσ

2
f

)
+

(
χi,lτ

2
i,l − χi,fτ

2
i,f

)
= cov

(
E

(
∆y?

t |F
i,f
t

)
, ζj,fl

t

)
+ cov

(
ζi,f l
t , E

(
∆y?

t |F
j,f
t

))
+ cov(ζi,f l

t , ζj,fl
t )

− cov
(
E

(
∆y?

t |F
i,f
t

)
, ζj,fl

t

)
+ γi,f lτ

2
i,l

= cov
(
ζi,f l
t , E

(
∆y?

t |F
j,f
t

))
+ cov(ζi,f l

t , ζj,fl
t ) + γi,f lτ

2
i,l.(C.7)
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Finally consider the idiosyncratic noise in each “last” estimate. Let (1−ψi,f l)τ
2
i,f be

the idiosyncratic noise in ∆yi,f
t eliminated by revision. Noise common to the two “first”

estimates that is eliminated from j but not i now appears as idiosyncratic noise in the

“last” i estimate, so:

(1− χi,l)τ2
i,l = (1− χi,f )τ2

i,f + cov
(
εj,fl
t , εi,lt

)
− (1− ψi,f l)τ2

i,f .(C.8)

The overall noise reduction from revisions, computed from (7) and (8), is the sum of

this change in idiosyncratic noise (C.8) and the change in common noise as computed

from (C.4):

var(εi,f l
t ) = var(εi,ft )− var(εi,lt )

=
(
(1− χf )σ2

f − (1− χl)σ2
l

)
+

(
(1− χi,f )τ2

i,f − (1− χi,l)τ2
i,l

)
= cov

(
εj,fl
t , εi,lt

)
+ cov

(
εj,lt , ε

i,f l
t

)
+ cov(εj,fl

t , εi,f l
t )

− cov
(
εj,fl
t , εi,lt

)
+ (1− ψi,f l)τ2

i,f

= cov
(
εj,lt , ε

i,f l
t

)
+ cov(εj,fl

t , εi,f l
t ) + (1− ψi,f l)τ2

i,f .(C.9)

Equations (C.7) and (C.9) for i = 1, 2, (C.1), (C.5), (C.5’) and (C.5”) are eight

linearly dependent equations in ten unknowns (ψi,f l and γi,f l for i = 1, 2 and the six

terms on the right-hand side of (C.5)). These equations limit the admissable values for

the ten unknowns, which in turn limit the range of admissable values for χi,l and (1−χi,l)

as can be seen from (C.6) and (C.8). For the “first” estimates, the admissable values

for (1− χi,f ) are constrained by (1− ψi,f l)τ
2
i,f ≤ (1− χi,f )τ

2
i,f , while χi,f is constrained
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by cov
(
E

(
∆y?

t |F
j,f
t

)
, ζ i,f l

t

)
≤ χi,fτ

2
i,f . We also have:

(C.10) (1− χf )σ2
f ≥ cov

(
ε1,f l
t , ε2,l

t

)
+ cov

(
ε1,l
t , ε2,f l

t

)
+ cov(ε1,f l

t , ε2,f l
t ).
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Table 1: Summary Statistics: Variances and Covariances,

Growth Rates of GDP and GDI, 1984Q3-2005

(1) (2) (3) (4) (5) (6)

Variance Measure: First Last (2)-(1) Revision Variance:

Total ↑ News ↓ Noise

var (GDP ) , i = 1 4.06 4.30 0.24 2.10 1.17 0.93

var (GDI) , i = 2 3.60 5.50 1.90 2.58 2.24 0.34

cov (GDP,GDI) 3.42 2.91 -0.51 0.39 ? ?

Notes: ∆yi,f is the “first” available estimate of either GDP growth (i = 1) or GDI

growth (i = 2). ∆yi,l is the “last” or “latest” available estimate of either GDP or GDI growth.

Table 2:

Lower and Upper Bounds on News Shares

min
(

χ1,lτ1,l+
χ2,lτ2,l

)
max

(
χ1,lτ1,l+
χ2,lτ2,l

)
min

(
w1,l

w2,l

)
min

(
w2,l

w1,l

)
χ1,l 0.43 1.00 0.43 1.00

χ2,l 0.67 0.87 0.67 0.80

χ1,f 0.17 0.58 0.17 0.63

χ2,f 1.00 1.00 1.00 0.14

χf 0.65 0.81 0.65 0.80

Notes: τ1,l and τ2,l are the idiosyncratic variances of the “last” estimates of GDP

and GDI growth, where idiosyncratic variance means the variance of the estimate minus its

covariance with the other estimate. χ1,l and χ2,l are the shares of the idiosyncratic variances of

“last” GDP and GDI that are news, or signal, rather than noise. w1,l and w2,l are the optimal
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weights on “last” GDP and GDI growth, using equation (3). χ1,f , χ2,f , and χf are the shares

of the idiosyncratic variances and covariance of the “first” estimates of GDP and GDI growth

that are news.

Table 3: Estimates of True Unobserved GDP Growth

min
(

χ1,lτ1,l+
χ2,lτ2,l

)
max

(
χ1,lτ1,l+
χ2,lτ2,l

)
Vintage µ σ τ2

1 τ2
2 w1 w2 w1 w2

First 5.60 3.37 0.67 0.19 0.06 0.61 0.42 0.42

(0.21) (0.55) (0.22) (0.19) (0.11) (0.12) (0.16) (0.19)

Last 5.83 2.88 1.38 2.56 0.37 0.65 0.57 0.64

(0.21) (0.60) (0.47) (0.57) (0.01) (0.01) (0.09) (0.06)

min
(

w1,l

w2,l

)
min

(
w2,l

w1,l

)
Vintage w1 w2 w1 w2

First 0.06 0.61 0.63 0.16

(0.11) (0.12) (0.01) (0.01)

Last 0.37 0.65 0.60 0.59

(0.01) (0.01) (0.09) (0.06)

Notes: Vintage subscripts are suppressed in the “Vintage” row (the second subscript

elsewhere, either f or l). µ is mean growth, σ is the covariance between the estimates, τ1 and

τ2 are idiosyncratic variances of GDP and GDI growth, while w1 and w2 are the weights on

GDP and GDI growth, respectively, using equation (3). See the notes to table 2 for further

notation definitions.
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Figure 1:
1985 to 2005 Growth Rates of Nominal GDP and GDI, 

Latest Available data as of September 2009
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Figure 2:
1989Q1-1991Q4 Growth Rates of Real GDP, Real GDI, and 

Estimated "True" Growth Rate,
Latest Available data as of September 2009
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Figure 3:
1999Q4-2003Q2 Growth Rates of Real GDP, Real GDI, and 

Estimated "True" Growth Rate,
Latest Available data as of September 2009
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