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ABSTRACT 

 
Water quality monitoring is being used in local, regional, and national scales to measure 

how water quality variables behave in the natural environment. A common problem, which arises 
from monitoring, is how to relate information contained in data to the information needed by 
water resource management for decision-making. This is generally attempted through statistical 
analysis of the monitoring data. However, how the selection of methods with which to routinely 
analyze the data affects the quality and comparability of information produced is not as well 
understood as may first appear. 

 
To help understand the connectivity between the selection of methods for routine data 

analysis and the information produced to support management, the following three tasks were 
performed. 

 
�� An examination of the methods that are currently being used to analyze water quality 

monitoring data, including published criticisms of them. 
 

�� An exploration of how the selection of methods to analyze water quality data can impact 
the comparability of information used for water quality management purposes. 
 

�� Development of options by which data analysis methods employed in water quality 
management can be made more transparent and auditable. 
 
These tasks were accomplished through a literature review of texts, guidance and journals 

related to water quality. Then, the common analysis methods found were applied to portions of a 
river water quality dataset from New Zealand. The purpose of this was to establish how 
information changes as analysis methods change, and to determine if the information produced 
from different analysis methods is comparable. 

 
The results of the literature review and data analysis are then discussed and 

recommendations are made addressing problems with current data analysis procedures. Options 
are listed through which to begin solving these problems and produce better information for water 
quality management. 

 
It was found that null hypothesis testing is the most popular method through which to 

produce information, yet assumptions and hypotheses are loosely explained and alternatives 
rarely explored to determine the validity and comparability of the results. Other data analysis 
methods (using graphical, non-null hypotheses or Bayesian methods) that might be more 
appropriate for producing more comparable information are discussed, along with 
recommendations for further research and cooperative efforts to establish water quality data 
analysis protocols for producing information for management. 
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Introduction 
 
Measuring water quality conditions, as a means of defining water quality problems and 

developing solutions, has been a part of water pollution control efforts since the mid-1900s. 
States established water pollution control policies and institutional arrangements to control water 
pollution as well as designed the means to measure the quality of the water to implement the 
policies. Passage of the Federal Water Quality Act of 1965 initiated legally defined requirements 
for states to ‘monitor’ water quality as part of an enhanced federal role in the nation’s water 
quality management efforts. 

 
Before the federally required, state-based monitoring programs could mature, a major 

change in the United States’ approach to water quality management occurred with passage of the 
Federal Water Pollution Control Act Amendments of 1972 (commonly referred to as the Clean 
Water Act). While appearing to be an update of existing law, the 1972 Act revolutionized water 
quality management in the U.S. Management of water quality now involved the issuing of 
discharge permits that, in cases of water-quality limited streams, required large volumes of 
information about water quality conditions in the impacted water body. Furthermore, lists of 
water bodies not meeting standards were required to be assembled (Section 303d) and periodic 
assessments of a state’s water quality conditions had to be prepared and submitted to the U.S. 
Environmental Protection Agency (Section 305b). At the same time the new law required that 
discharge permits, where the receiving water was not water-quality limited, be ‘technology 
based’. Considerable effort, in the early years of implementing the new ‘Clean Water Act’, was 
consumed with controlling ‘point sources’ of pollution. It has only been in the last 10 years that 
attention has returned to the ‘water-quality’ limited water bodies in such a way as to highlight 
anew the need for extensive data and information about the nation’s water quality conditions and 
the impacts of ‘non-point sources’ of pollution. 

 
Today, defensible information based on sound water quality data is becoming 

increasingly important as numerous lawsuits are directing renewed nationwide attention to the 
cleanup of water quality problems through the development of total maximum daily loads 
(TMDLs) for section 303(d) (GAO, 2000). 

 
In order to evaluate the status of their waters, and comply with 303(d) and 305(b) 

reporting requirements of the Clean Water Act, states and other entities have collected water 
quality data and prepared water quality assessments. However, there is a view that the 
assessments and reporting of this data do not provide indisputable information about the true 
quality of the nation’s waters (PEER, 1999; GAO, 2000). “All too often, monitoring projects are 
initiated with a minimum of forethought, and result in a collection of poorly-documented data 
which are never analyzed, [and if they are] provide little or any feedback to resource managers, 
and contribute little or nothing to our understanding of the systems being monitored” 
(MacDonald, 1994). 

 
This raises the question: how should data analysis methods be chosen to produce 

information from the data and increase our understanding of the monitored system? Answering 
this question often raises concerns about the validity of the assumptions that are implicit in most 
statistical analysis procedures, thus calling into question the appropriateness of the analysis 
procedures chosen. The ad hoc selection of data analysis methods also hurts the validity of the 
results and the comparability of the information produced. Another, more common, concern is 
that if the analysis methods are not determined prior to the collection of data, then the analyst has 
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freedom to choose the methods that will produce the most favorable outcome (e.g., by adjusting 
hypothesis tests’ significance level).1 

 
 

Purpose 
 
The purpose of this report is to review the current statistical analysis procedures used by 

a variety of monitoring entities to produce water quality information and to provide insight into 
the issues surrounding the difficult task of selecting methods to analyze water quality data in 
support of management’s ‘legal’ monitoring requirements. 

 
More specifically, the following sections will: (1) inventory the data analysis methods 

that are currently being employed to analyze water quality monitoring data, as well as the 
criticisms of current methods; (2) explore how the selection of methods to analyze water quality 
data can impact the comparability (i.e., similarity or suitability for comparison) of information 
used for water quality management purposes, and; (3) offer options by which data analysis 
methods employed in water quality management can be made more transparent and auditable 
(i.e., the methods can be reviewed, easily understood, and verified). 

 
These tasks will be accomplished through a literature review of texts, guidance 

documents, and journals related to water quality monitoring. Then, the more common data 
analysis methods found will be applied to a portion of the New Zealand Water Quality River 
Network data set. The purpose of this is to establish how information changes as analysis 
methods change, and to determine if the information produced from different analysis methods is 
comparable. The results of the literature review and data analysis comparisons will be discussed 
and recommendations made for addressing potential problems resulting from the production of 
‘non-comparable’ information within water quality management efforts in the United States. 

 
 

Scope 
 
Data analysis, from a water quality management perspective, can be approached from one 

of two directions: (1) production of information from transparent and auditable data analysis 
protocols that are comparable over time and space; or (2) exploration of an existing data set to see 
“what the data say” about water quality conditions in a water body. Statistical methods are used 
in both situations, but in different ways. This study addresses the first approach, i.e., routine data 
analysis according to a stated protocol, but realizes that the use of statistics in water quality 
management often mixes the two. 

 
An argument that often falls out of the above confusion is that there should never be 

“recommendations” of routine analysis methods, as this censors the methods that might be used 
for exploratory data analysis. However, the data analysis methods discussed in this report will be 
limited to those methods that are used routinely by water quality management to assess water 

                                                      
1Throughout this report we use “null hypothesis test” rather than “significance test”. These terms are most 
usually used interchangeably, but this is unfortunate (Goodman, 1993). One of last century’s greatest 
statisticians (R.A. Fisher) coined the term “significance test” in the context of not having an alternative 
hypothesis and never “accepting” the null hypothesis. Other notable statisticians (Neyman and Pearson) 
used “hypothesis test” in the context of having an alternative hypothesis (the complement of the null) and 
allowing the possibility of accepting the null—but for making decisions, not for making scientific 
inference. 

 4



quality for: (1) temporal trends, (2) differences in populations (e.g., upstream/downstream 
differences and step trends), and (3) standards violations. These are the three types of information 
that are most often utilized in legally mandated management efforts (Ward et al., 1990), and 
which can be used to interpret the quality of the water for regulatory, economic and legal 
purposes. Therefore, statistical methods used in modeling analyses (including multivariate 
analyses, time-series analyses and multiple regression techniques) were not included in this 
research, as these are used more often in exploratory studies and/or as predictive tools. 
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Part I.  Current Routine Water Quality Data Analysis Methods 
 
 

Criticisms of Water Quality Assessments 
 
Water quality monitoring, and its attendant data analysis processes, are the primary 

means through which information about our nation’s waters is developed. The manner in which 
monitoring is conducted and data analyzed has been the subject of considerable discussion, 
debate and criticism over the years (Ward, 1996). The latest two reports along this line are PEER 
(1999) and GAO (2000). Such criticism is not limited to water quality monitoring. The methods 
through which data in the medical and behavioral sciences are analyzed and interpreted are 
increasingly questioned (i.e., Nunnally, 1960; Carver, 1978; Berger & Berry, 1988; Fleiss, 1987; 
Chow & Liu, 1992; Goodman, 1993;Royall 1997; Veiland & Hodge 1998, Johnson, 1999) and 
some of these criticisms are now being applied to the means employed to traditionally analyze 
and interpret water quality data. 

 
A recent report by an anonymous group of EPA and other agency employees criticizes 

the water quality assessments made by the States. It states that “inconsistencies in the amounts of 
waters monitored or evaluated as well as variations in how impairment and designated use 
attainment are measured, produce a hodgepodge of information that is of little value in 
determining national water quality trends or comparing water quality among individual States” 
(PEER, 1999). 

 
Another report produced by the U.S. General Accounting Office reaches similar 

conclusions about the validity the EPA’s National Water Quality Inventory, a compilation of all 
state water quality assessments [305(b) and 303(d) reports]. GAO (2000) states that this report 
can not meaningfully compare information across states because of considerable variation in: (1) 
the way states select their monitoring sites; (2) the kinds of tests states perform and how the 
results of these tests are interpreted; (3) the methods used to determine causes and sources of 
pollution; and (4) the analytical methods chosen to evaluate water quality (i.e., chemical, 
physical, or biological properties of water). “By aggregating these states’ data, EPA is implicitly 
suggesting that these data can, in fact, be compared and in doing so is increasing the likelihood 
that the data will be misused or misinterpreted” (GAO, 2000). 

 
While 15 recommendations are made in the PEER (1999) report to improve the 305(b) 

reports produced by states, as well as several recommendations by GAO (2000) to improve the 
usefulness of the National Water Quality Inventory, no recommendation is made in either report 
about how to improve the quality of information produced from states’ monitoring systems. One 
key to such improvement involves better connecting the data analysis and interpretation methods 
with the management information sought. Though data analysis methods are rarely questioned, 
there are a small number of researchers and academics questioning the methods used to produce 
water quality information. The following review compiles the arguments brought forth by these 
critiques. 

 
Similar to PEER (1999), a report of the Virginia Water Quality Academic Advisory 

Committee (Shabman et al., 1998) makes 17 recommendations to the Virginia Department of 
Environmental Quality to meet the General Assembly’s Water Quality Monitoring, Information 
and Restoration Act requirements. These recommendations cover the water quality assessments 
used for 303(d) and 305(b) reporting. However, several of the recommendations directly address 
the statistical analysis methods used to produce information from water quality monitoring 
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systems. Although it never recommends specific analysis methods for trend detection, in general 
the report recommends “improved explanations of current use of statistical inference procedures”. 
It recommends incorporating the relationship to flow in the analyses for trends, and critiques 
current EPA recommended procedures for determining standards compliance, arguing an 
improved statistical procedure for determining this information. (Shabman et al., 1998) 

 
A third recommendation from the Virginia committee is that the statistical power (i.e., 

sensitivity) of various temporal sampling patterns should be carefully reviewed in order to design 
a monitoring program which will optimize analysis opportunities (Shabman et al., 1998). This is 
a common theme in statistics, and more criticisms of testing without considering power will be 
discussed below. It is important to realize that when using common null hypothesis tests, 
obtaining a statistically significant result does not necessarily imply that one has found an 
environmentally significant result.2 

 
The process through which water quality information is produced has become more 

targeted in the academic field in recent years. Many researchers are criticizing the appropriateness 
of the statistical procedures used to produce water quality information. From discrediting specific 
methods for inappropriate use, to rejecting entire categories of methods for inappropriate theory, 
the typical standard data analysis methods are increasingly being examined in an effort to 
improve information produced from monitoring. 

 
The EPA Guidance (EPA, 1989 & 1992) prompted one critique of incorrect use of 

methods for Statistical Analysis of Groundwater Monitoring at RCRA (Resource Conservation 
and Recovery Act) sites. In this guidance it is recommended that for a data set with large numbers 
of non-detects, Poisson prediction limits and Poisson tolerance limits be used. Loftis et al. (1999) 
find that neither the Poisson distribution nor associated tolerance or prediction limits should be 
used with concentration data. 

 
Another type of criticism is the issue of statistical power in monitoring design. “Many 

have noted the lack of attention paid to statistical power in research and monitoring programs” 
(Santillo et al., 1998). Statistical power is defined as the probability of detecting an effect where 
one exists. To be useful, the analysis tests chosen should have good power to detect 
environmentally important effects or trends. 

 
Standard statistical procedures minimize Type I errors (error of a false positive), by 

specifying the significance level (�) before the tests are performed. However, efforts to minimize 
Type I errors lead to increases in Type II errors (denoted as �), an error of accepting the tested 
hypothesis when it is actually false. Power is therefore defined as 1 – ���the probability of 
rejecting the null hypothesis when it is truly false. 

 
This lack of attention to power considerations draws doubts to the capability of many 

monitoring programs to properly detect trends, because too few data points are available to give 
the analysis adequate power to detect important trends (Santillo et al., 1998).  On the flip side of 
this argument is the fact that as databases grow in size, tests become too powerful, detecting ever-

                                                      
2 A statistically significant result is obtained when a sufficiently small “p-value” is obtained (i.e., p � �, 
where � is the specified significance level). The p-value is defined as the probability of getting data at least 
as extreme as was obtained if the tested hypothesis were true (in the one-sided case the hypothesis is 
assumed to be only just true). This probability is typically obtained from tables prepared from standard 
results of mathematical statistics. 
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smaller differences, leading to unimportant differences turning out to be judged as statistically 
significant (McBride, 1999a). 

 
Some promote the practice of using a power analysis after statistical tests have been 

applied (e.g., Zar, 1984), in order to determine the ‘sensitivity’ of the analysis method. Another 
publication (Johnson, 1999), made available on the Internet by the Northern Prairie Wildlife 
Research Center and the USGS, is critical of power analysis. As mentioned above, power analysis 
is used to determine the sample size needed to have a specified probability (power) of declaring 
as significant a particular difference or effect (Johnson, 1999). However, when power is 
determined after a test has been performed to guard against wrongly declaring the null hypothesis 
to be true, he claims that the results can be misleading. This retrospective power analysis, 
estimated with the actual data used and the observed effect size, is meaningless, as a high p-value 
will result in a low estimated power (Johnson, 1999). Power analysis programs, however, assume 
the input values for effect and variance are known, rather than estimated, so they may give 
misleadingly high estimates of power. The author states that the questions about the likely size of 
true effects can be better addressed with confidence intervals than retrospective power analysis 
(Johnson, 1999). 

 
The criticism with potentially the most far-reaching force implies that null hypothesis 

testing can be inappropriate for environmental data. Such testing is the category of statistical 
analyses that examines a null hypothesis (positing no effect or trend whatsoever) or its alternative 
(positing a non-zero effect or trend), and determines if data constitute significant evidence against 
the null (via the p-value, as explained in footnote 2). “Unfortunately, when applied in a cookbook 
fashion, such significance tests do not extract the maximum amount of information available from 
the data” (McBride, Loftis & Adkins, 1993). 

 
McBride et al. (1993) claim that null hypothesis testing has three problems, which are 

applicable in environmental monitoring: 
1. A conclusion that there is a significant result can often be reached merely by collecting 

enough samples (increasing sample size increases chance of rejecting the null); 
2. A statistically significant result is not necessarily practically significant; and 
3. Reports of the presence or absence of significant differences for multiple tests are not 

comparable unless identical sample sizes are used. 
 
For the past several years, the use of hypothesis testing in the medical profession has 

been questioned. The argument has been made that comparing p-values with “arbitrary” 
significance values (typically � = 0.05) does not objectively prove that the data are displaying a 
characteristic that is not merely chance. In fact, it has been suggested by certain statisticians that 
p-values are “startlingly prone” to attribute significance to fluke results (Matthews, 1998). 
Discussions have been raised over the “evidential value” of a p-value, and what it really means in 
terms of proving anything (Gibbons & Pratt, 1975; Berger, 1986; Goodman & Royall, 1988; 
Schervish, 1996; Royall, 1997; Veiland & Hodge, 1998). Those with less knowledge of statistical 
theory mistakenly confuse it with the Type I error of hypothesis testing (�), and this link between 
the two has become standard, but misleading practice (Goodman, 1993). Some data analysts are 
questioning the appropriateness of using p-values at all with hypothesis testing (i.e., Berger, 
1986; Berger & Berry, 1988; Goodman, 1993; Royall, 1997; Matthews, 1998), favoring instead a 
Bayesian or likelihood approach.3 
                                                      
3Null hypothesis testing uses “classical statistics”, wherein probability is defined as frequency of events in 
the long run. This class of methods can therefore only contemplate probability of data given an assumed 
hypothesis (e.g., as in footnote 2, the p-value is the probability of gaining data at least as extreme as was 
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The water quality and biology fields are also addressing the confusion over using p-

values to support significant findings. Johnson (1999) states that: (1) the p-value is often used as 
the probability that the results obtained were due to chance, (2) 1-p is often used as the 
“reliability” of the result, and (3) p is the probability that the null hypothesis is true. 

 
“Unfortunately, all of these conclusions are wrong. The p-value is the probability of the 

observed data or more extreme data, given that the null hypothesis is true, the assumed model is 
correct, and the sampling done randomly” (Johnson, 1999). Determining which outcomes of an 
experiment or survey are more extreme than the observed one, so a p-value can be calculated, 
may require knowledge of the intentions of the investigator (i.e., the stopping rule) (Berger & 
Berry, 1988). “Hence, p, the outcome of a statistical hypothesis test, depends on results that were 
not obtained, that is, something that did not happen, and what the intentions of the investigator 
were” (Johnson, 1999). Such information and intentions are often not easily obtained. 

 
Another common mistake in hypothesis testing is the notion that null hypotheses can be 

“accepted”. But failing to reject a null hypothesis does not prove that it is true (Zar, 1984; 
Johnson, 1999). Especially with small samples, one must be careful not to accept the null 
hypothesis, as this is most probably merely a reflection of the lack of power (Johnson, 1999). 
Even more arbitrary is the designation that a result is “significant” if the p-value falls below some 
cut-off value, usually given as the maximum acceptable Type I error risk, �. This means that for 
tests using � = 5%, a p-value of 0.049 is significant for a one-sided test, whereas a p-value of 
0.051 is not (Johnson, 1999). Such a minor difference can be deceptive, as it is derived from tests 
whose assumptions are often only approximately met (Preece, 1990). 

 
Null hypotheses state that some parameter equals zero, or that some set of parameters are 

all numerically equal. Such hypotheses are almost invariably known to be false before any data 
are collected (Berkson, 1938; Savage, 1957; Johnson, 1995). If these hypotheses are not rejected, 
it is usually because sample size is too small (Nunnally, 1960) and so power is too low (Johnson, 
1999). This is why such null hypotheses should never be “accepted”. 

 
In the field of drug testing, it has been agreed that testing a null hypothesis between 

means (which is standard practice in water quality data analysis) is not appropriate, as it is 
evident that the probability of rejecting the null hypothesis tends always to increase with sample 
size (Chow & Liu, 1992—the p-value grows smaller as the number of samples increases). A 
solution to this problem was suggested by Good (1982), who proposed that p-values be 
standardized to a sample size of 100, by replacing the p-value with p�(n/100), where n is the 
“sample size” (i.e., the number of data). 

 
An even more pertinent question would be: why test a null hypothesis at all, if it seems 

virtually impossible for two different drugs to have the same effect (McBride, 1998)? It has 
become common practice in drug testing to test whether or not a difference between 
means/medians might be within a prescribed interval, instead of exactly zero (Chow & Liu, 

                                                                                                                                                              
obtained if the tested hypothesis is true). Bayesian methods invert this, to calculate the probability of a 
hypothesis given the data obtained. In doing so they use Bayes’ rule, whereby a prior belief (in the form of 
a probability distribution) is updated by the data to obtain a posterior probability distribution. Hence, this 
probability contains some personalistic content, with which some statisticians are uncomfortable. 
Likelihood methods use a form of Bayesian analysis restricted to the relative merits of competing 
hypotheses, rather than their absolute probabilities. 
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1992). As a consequence the p-value does not necessarily keep on decreasing as the number of 
samples is increased, and it is valid to infer that the tested hypothesis could be accepted. 

 
Water quality guidance documents, such as the EPA’s for statistical analysis of 

monitoring data at RCRA sites (1989, 1992) often recommend hypothesis testing, such as 
ANOVA. This type of test can be stated as the following: For the time period given, are the 
means of a water quality variable equal in all the wells sampled? Or is one or more different from 
the others? McBride et al. (1993) point out that as in drug testing, we know in advance there will 
be differences, so why perform the test at all? If there exists a statistically significant difference, 
this may not translate to a practical significant difference from a management point of view 
unless power is properly considered (not the norm). 

 
McBride (1999a) explores this option further. He states that a recurring issue in statistical 

analysis has been the failure to use power analysis to select an appropriate sample size so as to 
minimize the risk either of failing to detect important differences or of detecting the unimportant. 
“Advocates of power analysis have been increasing in environmental science and management. 
However, there is discomfort with tests becoming too powerful, i.e., as sample size increases, 
tests of point hypotheses will tend to detect ever-smaller differences. One response is to de-
emphasize the role of tests and rely on confidence intervals.” However, McBride (1999a) chooses 
to support interval testing as a solution to the inappropriateness of testing a point null hypothesis. 

 
Such problems, as discussed above, have led to a “significant test controversy” (Morrison 

& Henkel, 1970; Harlow et al., 1997) in the social and behavioral sciences, as well as water 
quality and biology, with the following remedial measures proposed: 

1. Abandonment of testing hypotheses about differences in favor of estimation of 
differences (Oakes, 1986); 

2. Use of interval tests (McBride, 1999a); and 
3. Using a combination of estimation and testing with greater emphasis on statistical power 

in the design of monitoring systems and interpretation of significant test results (Millard, 
1987). 
 
McBride et al. (1993) suggest that the entrenchment of hypothesis testing in the 

environmental field makes its abandonment unrealistic, but do make several other 
recommendations related to those in the social and behavioral sciences. One recommendation 
supports the emphasis on statistical power, stating that both types of errors (Type I and Type II) 
should be considered when designing a sampling program. “In this way one can seek to have a 
higher probability of detecting a difference of practical significance (because Type II error is 
related to the difference in means), corresponding to a particular effect size (chosen by the 
analyzer), as well as a low probability of raising false alarms”. 

 
Another recommendation is to rely more on interval estimation rather than hypothesis 

testing. “In trend detection, more information is conveyed by plotting a trend line with confidence 
limits through a time series than by simplistic yes/no of hypothesis testing.” 

 
The final recommendation by McBride et al. (1993) refers to interval testing, in which 

the analysts test whether or not the difference in means is greater than some prescribed interval. 
“An advantage of this test is that the analyst must state the difference of practical significance to 
management, also the failure to reject the null no longer induces complacency”. This is because 
the results now mean something, ecologically and environmentally. 
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Despite its criticisms, null hypothesis testing is still widely used and accepted to develop 
information from all sorts of data, especially in the water quality field. This prevalence will be 
demonstrated in the next section. Despite its drawbacks, some advocate more appropriate types of 
hypothesis testing (i.e., the discussion of interval testing by McBride et al., 1993), as well as 
greater attention to the details of the test, including power analysis, sample size and stating the 
hypothesis. All of these discussions and criticisms help to illustrate the need for more careful 
attention paid to the selection of analysis methods when the ultimate goal is defensible and 
comparable information. 

 
 

Current Water Quality Data Analysis Procedures 
 
In this section, current practice and “state-of-the-art” procedures used to analyze water 

quality data for information purposes are examined. The review of literature focuses on the use of 
statistics to produce information, not summary statistics. This information, as discussed below, is 
limited to common information needed by management, i.e., temporal trends, differences in 
populations, and standards compliance. The extent of the review covers the major entities 
involved in water quality monitoring assessments, including the United States Geological Survey 
(USGS), U.S. Environmental Protection Agency (EPA), private groups and academia, and 
determines if there are ‘standards’ emerging for the analysis of water quality data, as a whole or 
within organizational structures. The review covers environmental statistics textbooks, agency 
publications, water quality reports from state environmental agencies, and refereed journals. 

 
When beginning this literature review it was thought there might be de facto standards for 

data analysis developing in the water quality field. Use of the term standard is not meant to imply 
that there is an established set of statistically based data analysis methods that have been 
reviewed and recommended for all water quality monitoring situations. However, this section will 
attempt to establish that there are certain methods being used time and time again by a variety of 
monitoring entities, depending on the type of information sought. Conclusions will address 
whether or not de facto data analysis standards are emerging in the analysis of water quality data. 

 
 

Recommended Guidance for Statistical Analysis of Water Quality Data 
 
The first step in trying to establish whether de facto standard procedures exist was to 

search for guidance, or widely available and accepted protocols, for water quality data analysis. 
In the search for guidance on data analysis methods, it appears that no major entity has 
established a set of comprehensive standard data analysis methods, or methods with which to 
interpret results of data analysis into information for management. 

 
There exist several textbooks that directly address statistical analysis procedures for 

environmental data (e.g., Gilbert, 1987; Ward et al., 1990; Helsel & Hirsch, 1992). These texts 
provide numerous options for analyzing data, often categorized by the information needed (in 
statistical terms). The inclusion or omission of certain methods in the texts might be viewed as a 
type of guidance, yet none of these methods outline protocols through which to infer information 
for management decision making from the analysis results. 

 
The USGS has no published defined guidance for analysis of water quality data, but does 

have the largest collection of published water-quality assessments. In these studies, authors often 
site USGS publications as the basis for selecting data analysis methods. For example, Helsel & 
Hirsch (1992), the textbook mentioned above, is commonly cited as a reference for using the 
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Seasonal Kendall test for detecting trend. In Hirsch (1988), the Hodges-Lehmann class of 
estimators is found to be robust in comparison to other nonparametric and moment based 
estimators for determining the magnitude of changes of various constituents between two time 
periods (step trends). By the fact that they are commonly cited in many USGS water quality 
studies, these types of publications serve as guidance for water quality data analysis in the USGS. 

 
In an academic study, Montgomery & Reckhow (1984) recommend certain techniques 

for detecting trends in lake water quality, and go on to recommend these procedures for other 
water bodies as well. Another academic study, Montgomery & Loftis (1987), explored the 
applicability of the t-test for detecting trends in water quality variables. The results of this study 
“suggest that the t-test is robust for non-normal distributions if the distributions have the same 
shape and sample sizes are equal”. It is also robust for unequal variances if the sample sizes are 
equal. If either of these considerations is not met, as well as the presence of serial dependence or 
seasonality, then the t-test is not a robust test to detect a step trend. Another non-agency study, 
Harcum et al. (1992), recommends using the Seasonal Kendall and Mann-Kendall tests for trend 
detection, depending on the data attributes. 

 
Using a study conducted in New Zealand to determine effects of alluvial gold mining 

operations on benthic invertebrate communities, McBride (1998) demonstrated that traditional 
point hypothesis tests may not provide satisfactory answers to questions of environmental impact, 
because they might not be asking or addressing the right questions. Using the theories of interval 
testing, it is possible to set-up the data analysis in two different ways, one with a hypothesis that 
the differences between population means are equivalent (within a prescribed interval), or one in 
which they are inequivalent (beyond that interval). The information produced from using each of 
these hypotheses is very different, and reflects an emphasis or non-emphasis on environmental 
protection, a key point to environmental management. Testing the hypothesis that the streams are 
equivalent (which is therefore not a null hypothesis) protects the environmental user’s risk, 
resting the “burden of proof” on the monitoring system to show that an impact has occurred. 
However, the latter approach of testing a null hypothesis of inequivalence is a more 
“precautionary” approach, assuming the stream has been impacted, unless proven otherwise 
(McBride, 1998). This study serves as guidance by demonstrating the importance of complete 
understanding of the implications behind each hypothesis to management decision-making, as 
well as the importance of determining the test hypothesis before analysis, as information can 
change depending on the structure of the hypothesis. 

 
A type of graphical display that has become more widely recommended and used in data 

analysis is the box plot. McGill et al. (1978) describes three variants of the box plot display, 
which are used in exploratory data analysis and visual summaries. Although the authors explain 
that the user’s personal preference is the best criterion for interpretation, this article suggests that 
graphical displays of data “provide insight into the meaning of the data without the possibility of 
misinterpretation due to unwarranted assumptions”. 

 
The largest collection of guidance for data analysis was found in publications by the U.S. 

Environmental Protection Agency. Guidance has been published by the EPA for the states’ 
submittal of 303(d) lists and 305(b) reports. Numerical and narrative criteria to determine use 
support are recommended in the biannual guidelines, however no specific statistical or 
scientifically defensible data analysis methods appear to be endorsed by the organization for the 
information required in these reports. 

 
EPA appears to publish guidance that helps the states and other reporting entities compile 

and interpret information to support specific EPA rules and programs (e.g., Information 
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Collection Rule: Draft Data Analysis Plan: EPA, 1997b; The Monitoring Guidance for the 
National Estuary Program: EPA, 1992; Monitoring Guidance for Determining the Effectiveness 
of Nonpoint Source Controls: EPA, 1997c; and Statistical Analysis of Groundwater Monitoring 
Data at RCRA (Resource Conservation Recovery Act) Facilities: EPA, 1989;1992). 

 
EPA also has research publications that can be viewed as recommendations for particular 

methods. In Loftis (1989), seven statistical tests for trend were evaluated under various conditions 
and performance was compared using actual significance level and power. The evaluations 
resulted in the following recommendation by the authors: for annual sampling use the Mann-
Kendall test for trend, and for seasonal sampling, use either the Seasonal Kendall test or the 
Analysis of Covariance (ANOCOV) on ranks test. A guidance document for determining 
improvements from agricultural non-point source control programs was developed and published 
by North Carolina State University for the EPA (Spooner et al., 1985). These authors give 
recommendations on monitoring design, appropriate hypotheses, data requirements, assumptions, 
and testing procedures. 

 
With the exceptions discussed above, attempts to produce standard sets of guidance 

procedures for water quality data analysis are relatively few and uncoordinated between agencies. 
To illustrate, in the field of groundwater monitoring, Adkins (1992) states that “due to the wide 
variety of information needs and site conditions, it is impractical to expect a single data analysis 
protocol to be suitable for all groundwater quality monitoring systems…[and that] no generally 
acceptable design framework for the development of groundwater quality data analysis protocols 
exists today”. Therefore, instead of producing a guidance recommending specific analysis 
procedures, Adkins (1992) presents a framework for individual development of groundwater 
quality data analysis protocols, a positive step towards making information more comparable. 

 
 

Peer Reviewed Water Quality Assessments 
 
Although general ‘standard’ methods for water quality monitoring analysis may not be 

published, it is hypothesized that they are established through common practice, especially within 
organizations and types of monitoring entities. 

 
This section reviews the current use of statistics, beyond guidance, in the water quality 

field. To gain an overview of the use of statistics, recent issues of five major environmental 
refereed journals were examined: Journal of the American Water Resources Association, 
Environmental Monitoring and Assessment, Environmental Management, Water Resources 
Research, and Marine Pollution Bulletin. The peer-reviewed studies included here are limited to 
those that sought information related to environmental management: temporal trends, differences 
in population (including upstream/downstream differences, before/after differences, and spatial 
differences), and standards compliance. 

 
 

Trend Analyses 
 
Most trend analyses were performed with non-parametric tests for trend in order to avoid 

complications in the data set and assumptions of normality, and, to make the tests more robust. 
The most popular method was the Seasonal Kendall test (seasonal extension of the nonparametric 
Mann-Kendall test) for monotonic trend, used in 12 out of the 19 studies where trend was 
determined (highlighted in gray, Table I). It is especially popular with USGS studies. The USGS 
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is also very thorough about performing the test on both the original data and flow-adjusted 
concentrations, but only if a strong correlation exists between concentration and flow. All trend 
detection studies reviewed are summarized in Table I. 

 
 

Differences in Populations 
 
There were a greater variety of tests chosen to determine differences in population. Three 

major groups of analyses prevailed: (1) using Signed Rank, Rank Sum or variations of those 
procedures, (2) using cluster type analyses, and (3) using ANOVA or variations. The most 
popular tests were the Wilcoxon Rank-sum/Mann-Whitney test or its extension for more than 2 
populations, the Kruskal-Wallis test (8 out of 20 studies reviewed, light gray highlight in Table 
II) and the Analysis of Variance test (ANOVA used in 5 out of 20 studies, dark gray highlight in 
Table II). Most studies tested for normality before choosing a hypothesis test, though some just 
assumed nonparametric statistics should be used. Almost all the tests used were for nonparametric 
distributed data. With the exception of Dennehy et al. (1995), no hypotheses were stated. But it 
was evident by the testing that all performed a hypothesis test with a point null hypothesis of the 
means/medians between groups being equal. The USGS studies seemed to prefer the Wilcoxon 
Rank-Sum (Berndt, 1996; Abeyta & Roybal, 1996) or Kruskal-Wallis test (Abeyta & Roybal, 
1996; Dennehy et al., 1995; McMahon & Harned, 1998; Mueller, 1995). All of the studies 
reviewed are summarized in Table II. 

 
 

Standards Compliance 
 
Determination of standards compliance was not commonly sought via statistical tests in 

the research type assessments reviewed (see Table III for summary of assessments which 
involved standards compliance). Therefore, part of this literature review attempts to describe how 
states generate this information for their 303(d) and 305(b) reporting requirements, especially in 
light of the current 303(d) listings and Total Maximum Daily Load (TMDL) debate. Many states 
do not publish their assessment methodologies, so personal communication via the phone and/or 
email was the primary venue through which such information was gathered. The purpose was to 
try and establish if there are common methods used by the states for their water quality 
assessments, not to document every detail of every state’s assessment methodology. The 
following states responded: New York, New Jersey, Region III (Delaware, Pennsylvania, 
Maryland, Virginia, West Virginia, District of Columbia), Oklahoma, Arizona, Hawaii, Virginia, 
Kentucky, California, South Carolina, Florida, Tennessee, North Carolina, Alabama. It was 
found that documented analysis methods or statistical tests are rarely used to determine use 
support assessments or standards violations. Often only simple “percentage of standard 
exceedences” is used to assess a water body, along with subjective evaluation of the waterbody 
according to narrative criteria. For summaries of each state’s methodologies, refer to Martin 
(2000). 
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Table I: Water Quality Assessments Involving Trend Detection 

Author Monitoring 
Entity 

Distribution 
Assumption

Actual Hypothesis Stated Test Used 

Clow & Mast 
(1999) 

USGS NP None stated Seasonal Kendall Tau or Mann-Kendall 

Baldys, et al. 
(1995) 

USGS NP Null hypothesis of no 
significant trend 

FAC Seasonal Kendall Tau or Mann-
Kendall  

Mattraw, et al. 
(1987) 

USGS, NPS and 
SFWMD 

NP None stated FAC Seasonal Kendall Tau or Mann-
Kendall 

 

Rinella (1986) USGS NP None stated FAC Seasonal Kendall Tau or Mann-
Kendall 

Berndt (1996) USGS NP None stated Seasonal Kendall Tau or Mann-Kendall 
Mueller (1995) USGS NP None stated FAC Seasonal Kendall Tau or Mann-

Kendall 
Mueller (1990) USGS NP None stated FAC Seasonal Kendall Tau or Mann-

Kendall 
Snyder et al. 
(1998) 

Academia NP, 
Parametric 

Null = no tendency for 
one sampling location to 
have nutrients greater than 
another location 

Duncan's new multiple range test (Ott, 
1988) - test of the difference in means of 
multiple populations, % reduction of 
means 

Stoddard et al. 
(1998) 

EPA, 
Academia, 
Vermont DEC 

NP None stated SKT, Analysis of Chi-squares and meta-
analysis 

Pinsky et al. 
(1997) 

EPA, Academia NP, 
Parametric 

None stated Auto-regressive first order process, 
comparing means/medians 

Takita (1998) Susquehanna NP None needed Double mass comparison 

Havens et al. 
(1996) 

SFWMD Parametric None stated Satterthwaite's corrected t-test 

Dennehy et al. 
(1995) 

USGS NP Null states that no trend 
exists 

LOWESS (to highlight patterns), FAC 
SKT 

Butler (1996) USGS NP, 
Parametric, 
Parametric, 
NP 

Null means there is no 
trend or no sig. diff 
between means/medians 

FAC SKT (periodic & monthly), FAC LR 
(annual), Step Trend two sample t-tests, 
Wilcoxon Rank Sum 

Smith, et al. 
(1987) 

USGS NP None stated SKT and FAC SKT 

Vaill & Butler 
(1999) 

USGS NP Null hypothesis of no 
trend 

monotonic trends: SKT and FAC SKT, 
Sen Slope estimator, Lowess to determine 
in what part of the record the trend 
occurred. Step trends: Parametric 2-
sample t-test and NP Wilcoxon rank-sum 
test applied to raw data 

Heiskary, et al. 
(1994) 

Minnesota 
Pollution 
Control Agency 

NP Null hypothesis of no 
trend 

Kendall's tau-b (Gilbert, 1987) 

Lavenstein & 
Daskalakis 
(1998) 

NOAA NP None stated Kendall-tau test for linear correlation 

Brown et al. 
(1998) 

NOAA NP None Stated Spearman-rank Correlation method, meta-
analysis 
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Table II: Water Quality Assessments Involving Differences in Populations 

Author Monitoring 
Entity 

Distribution 
Assumption

Actual Hypothesis Stated Test Used 

Younos et al. 
(1998) 

VWRRC, 
Academia 

NP None stated Wilcoxon Test (Hollander & Wolfe 73) 

Arthur, et al. 
(1998) 

Academia NP None stated Wilcoxon Signed Rank 

Berndt (1996) USGS NP None stated Wilcoxon Rank-Sum 
Pinsky et al. 
(1997) 

EPA, Academia NP, 
Parametric 

None stated Wilcoxon Rank-Sum, Chi-Square test of 
hypothesis of equal proportions in 
population 

Abeyta & Roybal 
(1996) 

USGS NP, NP, NP, 
Parametric 

None stated Wilcoxon Rank-Sum, Kruskal-Wallis, 
ANOVA, ANOVA & paired t-tests 

Sample et al. 
(1998) 

USDA NRCS NP, NP, NP None stated Rank Sum, Signed Rank, Hodges-
Lehmann Estimator 

McMahon & 
Harned (1998) 

USGS NP None stated Kruskal-Wallis, and Tukey's Multiple 
Comparison 

Mueller (1995) USGS NP None stated Kruskal-Wallis  
Koebel, et al. 
(1999) 

SFWMD NP, NP None stated TSS, Turbidity, Nutrients - Kruskal-
Wallis, Dunn's test, ANOVA & paired t-
tests 

Momen et al. 
(1997) 

Academia Parametric, 
Parametric 

None stated Tukey's multiple comparison for mean 
separation, ANOVA (temporal and 
spatial) 

Takita (1998) Susquehanna NP None needed Plotted Annual Loads vs. Discharge Ratio

Dennehy et al. 
(1995) 

USGS NP Null states that no 
difference exists 

Kruskal-Wallis test 

Snyder et al. 
(1998) 

Academia NP? None stated Friedman's test (Gilbert, 1987), Cluster 
Analysis (Davis, 1986), Cross-Correlation 
Analysis 

Stoe (1998) Susquehanna Parametric? None stated PCA, Cluster analysis, Habitat 
Assessment scores and Biological 
Condition scores 

Nimmo et al. 
(1998) 

USGS, EPA, 
Academia, 
CDOW 

Parametric None stated ANOVA & paired t-tests, Student-
Newman-Keuls method of separating 
means 

Colman & Clark 
(1994) 

USGS NP None stated ANOVA  

Rinella (1986) USGS NP None stated Tukey's multiple comparison  

Kennedy (1995) TxDOT, North 
Central Texas 
COG 

NP None stated Kruskal-Wallis test, Mann-Whitney test 

Kress, et al. 
(1998) 

Israel 
Oceanographic 
and 
Limnological 
Research 

Parametric None stated GLM least squares, t-test, Mann-Whitney 
a-parametric test 

Brown et al. 
(1998) 

NOAA NP None stated GT2 multiple comparison method 
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Table III: Water Quality Assessments Involving Standards Compliance 

Author Monitoring 
Entity 

Distribution Hypothesis Stated Test Used 

Berndt (1996) USGS NP None stated % exceedence of MCL, highest means 
reported 

Lapp et al. 
(1998) 

Academia NP None stated observed mean does not exceed DW 
standard in Canada 

Nimmo et al. 
(1998) 

USGS, EPA, 
Academia, 
CDOW 

Parametric None stated average concentrations compared to 
chronic 4-day aquatic life criterion 
(USEPA) 

 
 

Literature Review Summary 
 
This review indicates that many types of analyses are being used to provide information 

about water quality. The first major conclusion is that although there are some who criticize null 
hypothesis testing, this type of analysis is alive and well in the field of water quality. It is 
interesting to note that although it does seem to be popular, as evidenced by its inclusion in 
guidance documents and water quality studies, the actual hypothesis tested is rarely reported, 
despite recommendations to the contrary in many of the guidance documents (Gilbert, 1987; 
Ward et al., 1990; Helsel & Hirsch, 1992; Montgomery & Reckhow, 1984; EPA, 1992; EPA, 
1997c). 

 
With a few exceptions (Heiskary et al., 1994; Momen et al., 1997; EPA, 1992; EPA, 

1997c), the power of hypothesis testing is not considered. The weight of evidence in making a 
decision about trends or differences in populations relies solely on the acceptable Type I error (�) 
and the obtained p-value. 

 
The literature review does not support the conclusion that there exist de facto standards 

for data analysis. The review of refereed journals found a large variety of graphical, statistical, 
and estimation analysis techniques. EPA provides many types of guidance for different regulatory 
programs, yet the analysis recommendations differ between programs, and efforts do not seem to 
be coordinated between programs. It was apparent that specific methods were preferred by the 
USGS for trend detection (Seasonal Kendall test) and differences in populations (Wilcoxon Rank-
Sum/Kruskal-Wallis and ANOVA). 

 
The major commonalties to all the data analyses performed was that with a few 

exceptions: (1) justification was rarely given for choosing a certain test beyond the data being 
parametric or nonparametric, (2) the hypothesis tested was rarely stated, (3) alternative analysis 
methods, if explored, were not reported, and (4) the power (or sensitivity) of the hypothesis test 
was rarely calculated. 

 
Given the extremely wide array of data analysis methods being employed in producing 

information about water quality conditions, there is little reason to expect that comparable 
information is being produced in support of water quality management decision-making. 
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Part II.  Information Comparability of Data Analysis Methods 
 
The previous section was dedicated to compilation of information in order to determine 

how water quality data are being analyzed for information purposes. Recent criticisms of 
statistical hypothesis testing have questioned the main process through which information is 
produced from water quality data, i.e., hypothesis testing. Nevertheless, the literature review of 
current practice established that using hypothesis testing (often called “significance testing”) is 
accepted in texts, guidance documents, and water quality studies published in refereed journals. 

 
The literature review also establishes that there are a wide variety of methods that are 

available for data analysis. Many times, those who are analyzing water quality data are not 
statisticians, and rely on these texts, guidance documents, and observations of previous studies to 
select the analysis methods. 

 
The purpose of this section is to document the connections between selection of data 

analysis methods and the comparability of the information produced. Using a high quality data set 
provided by the New Zealand National Institute of Water & Atmospheric Research (NIWA), 
several different analysis methods were performed in the areas of trend detection, differences in 
populations, and standards compliance. The results of the different methods within each area 
were compared in order to illustrate how information changes depending on the analysis methods 
used. 

 
Three statistical packages were utilized in the data analysis procedures. WQStat Plus� 

(Version 1.56, developed by Intelligent Decision Technologies Ltd., Loveland, Colorado) was 
chosen for its inclusion of nonparametric procedures, easy flow-adjustment and water quality data 
analysis focus. Minitab� (Release 12, developed by Minitab Inc.) was chosen because of its 
broad base of statistical procedures, both parametric and nonparametric. MS-Excel� (part of the 
Microsoft Office package) was also used for its basic statistical functions and ease of data 
manipulation (the data used was originally received in MS-Excel� format). Comparison of 
results of like tests between statistical packages should also help to demonstrate the variability of 
information. 

 
 

Demonstrating Various Statistical Methods on New Zealand Data 
 
The New Zealand River Network data set was chosen for analysis because of its high 

quality and accessibility. The data record is from a 77 river-site monitoring network distributed 
throughout New Zealand’s North and South Islands (Smith et al., 1996). The monitoring 
network’s design is well documented and the network has been operated consistently over its 10-
year life with excellent quality control procedures in place. The data was readily made available, 
in an easy to use format (MS-Excel� Spreadsheets) for purposes of this study (refer to Martin, 
2000 for actual data used in this study). 

 
The format of the New Zealand data allowed for easy transition to data analysis, a reason 

that this particular set was chosen. The New Zealand data was accompanied by meta-data that 
described the monitoring sites, how the samples were collected and analyzed, and all other 
ancillary data that would be of use to a data analyst (i.e., dates and units of measurement). 
Censored data (e.g., nondetects) were not used in this data, as all concentrations were reported. A 
few sites had missing data for certain dates, which were represented with a period (.) in the 
appropriate worksheet cell. 
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The only manipulation required for importation of the data into WQStat Plus� and 

Minitab�, was cutting and pasting of the data columns into the appropriate format for the 
respective software. The required formats were described in the software user manuals.  

 
 

Selection of Three Sites and Constituents for Data Analysis 
 
Not all sites or constituents of the River Network were analyzed as part of this 

demonstration. Sites and constituents were chosen upon review of Smith et al. (1996) and with 
input from Graham McBride, NIWA, Hamilton, New Zealand. Descriptions of the sites were 
provided in the appendices of the New Zealand data set (Bryers, 1999) and are given below. For 
purposes of this study four data records at four sites were selected, as follows: 

 
A. Site HM4 for BOD5. This site is on the Waikato River, and is located downstream of the 

catchment area. It has potential impacts from agriculture, paper and pulp industries, and 
has additional inputs from Hamilton, Ngaruawahia, Huntly, thermal power stations, 
swamps, pasture and coal mining. (Bryers, 1999) The New Zealand Trends paper (Smith 
et al., 1996) failed to detect any trends for BOD5 after the first 5 years at this site. 
 

B. Site RO2 for NH4 analysis.4 This site is on the Tarawera River, a major river in the area, 
downstream of major pulp and paper industries and exotic forest plantations. There is 
agricultural pasture in the valley. (Bryers, 1999) The New Zealand Trends paper (Smith 
et al., 1996) showed an upward trend in NH4 at the 5% level (i.e., using a significance 
level of � = 5%) for the first 5 years at this site. 
 

C. Site RO1 for NH4 analysis. This site will only be used in the differences in population 
analysis. RO1 is upstream of site RO2 (above) on the Tarawera River. Between the two 
sites are potential environmental impacts from pulp mills (especially the Tasman Pulp 
and Paper Company’s Kraft pulp mill), farming, a town (Kawerau), and a geothermal 
area (Bryers, 1999). This site was used as an upstream site for differences in population’s 
analysis only. 
 

D. Site HM6 for NOx data.5 This site is not downstream of any urban sources, but is a major 
tributary of the Waihou River. It contains or will contain discharges from several large 
gold mining operations as well as agricultural impacts from some pasture usage. (Bryers, 
1999) The New Zealand Trends paper (Smith et al., 1996) showed an upward trend of 
NO3 at the (p<5%) level after the first 5 years. 
 
In order to illustrate the importance of distribution assumption in hypothesis testing, it 

was each data set was tested for normality. This was accomplished using the Chi-Squared 
Goodness-of-Fit Procedure in WQStat Plus� (IDT, 1998), which tests the following hypothesis: 

 
H0: the data are normally distributed vs. HA: the data are not normally distributed 

 
Flow adjustment of the raw data was performed only in WQStat Plus�, as this was the 

only package that had the ability to directly approximate the flow-adjusted concentrations. This 

                                                      
4 Ammoniacal nitrogen, i.e., NH4 = NH3-N + NH4

+-N  
5 Oxidized nitrogen, i.e., NOx = NO2-N and NO3-N  
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procedure was used to help determine how flow can affect or change the information produced 
from the monitoring data. Flow adjusted concentrations (FAC) were used in normality testing, 
and trend detection testing in order to give an indication of how information can change when 
flow effects are taken into account.  

 
 

Statistical Methods Used to Determine Trends 
 
Analysis of the New Zealand data set for trends includes data from all ten years. As a 

means of additional quality control on the information being produced, analysis of the first 5 
years was compared to the same analysis performed by a study published after the first 5 years of 
New Zealand’s monitoring effort, entitled Trends in New Zealand’s National River Water Quality 
Network (Smith et al., 1996). The second 5-year data was also analyzed separately, as well as a 
comparison of both 5-year analyses to an analysis of the 10-year data. Analyses were performed 
on raw data and flow-adjusted concentrations (FAC). The following statistical trend tests were 
performed, both testing the following hypothesis. 

 
�� Mann-Kendall Test/Sen Slope Estimator – WQStat Plus�. 
�� Seasonal Kendall Test – WQStat Plus�. The Seasonal Kendall Test was also used to test 

for trends in flow data at the three sites chosen: HM4, RO2 and HM6 for both 10-year 
data and each 5-year data set. This was performed to help in interpretation of the flow-
adjusted trend results. 
 
Both tests apply to these hypotheses: 
 

H0: No trend exists over time vs. HA: An upward or downward trend exists over time 
 
 

Statistical Methods Used to Determine Differences in Populations 
 
The difference in population analysis was performed between the first 5-year and second 

5-year data sets for the sites HM4, HM6 and RO2, as well as a test between sites RO1 (upstream) 
and RO2 (downstream) for NH4. The following tests, listed below, were performed for 
comparability of results. For further demonstration of comparability of results, the two-sample t-
test was performed in both MS-Excel� and Minitab�, and the Mann-Whitney test was 
performed in WQStat Plus� and Minitab�. 

 
�� Two sample parametric t-test—MS-Excel� and Minitab�. The t-test assuming equal 

variances was performed for site HM4, HM6 and RO2 data. For comparison of RO1 to 
RO2, the t-test for unequal variances was used, based on F-test for equal variances results 
(see Martin, 2000). The following hypotheses are tested: 

 
H0: �x = �y (the means for groups x and y are identical) vs. 
HA: �x � �y (the means for groups x and y are not equal). 

 
�� Mann-Whitney test – WQStat Plus� and Minitab�. This nonparametric method tests the 

following hypotheses: 
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H0: the medians of two populations are equal vs. 
HA: the medians of the two populations are not equal.6 
 

�� Interval Tests – MS-Excel�. This is a slightly more elaborate form of a parametric t-test. 
Interval tests are largely used in the pharmaceutical industry involved in drug-testing 
analyses (Chow & Liu, 1992). The hypothesis for an interval test can take one of two 
forms, one testing for equivalence between groups, and one testing for inequivalence 
(McBride, 1999a). The difference between these two tests is that in the equivalence test, 
the tested hypothesis is that the populations are ecologically equivalent (in which case the 
difference is no greater than the interval), whereas in the inequivalence test, the tested 
hypothesis is that they are not (in which case the difference is greater than the interval). 
The former hypothesis adopts the conservative stance commonly used in science; the 
latter is precautionary. Both tests recognize that the means will be different, but not 
necessarily equivalent. (McBride, 1999a) 
 
The interval chosen for these tests in this analysis was �20% of the mean of the upstream 
or background data. While this was arbitrarily chosen, the estimates provided in McBride 
(1998) served as a guide for the magnitude (in which the �20% figure was nominated by 
a benthic ecologist—Dr J. Quinn, NIWA). The purpose is to illustrate how different data 
analysis methods affect information. Establishing an equivalence interval requires 
knowledge of the behavior and effect of each constituent in the environment, something 
which is beyond the scope of this study. 
 
A highly detailed explanation of the development of this type of testing used for 
environmental data can be found in McBride (1999a). The algorithm through which the 
tests were performed in MS-Excel� can be found in Martin (2000). These procedures use 
the following hypotheses for testing the equivalence hypothesis (McBride, 1999a), where 
dL and dU are the lower and upper bounds of the equivalence interval and d = �x – �y is 
the actual difference in means:� 
 

H0: dL � d � dU (the difference in means lies within the equivalence interval), 
HA: d 	 dL or d > dU (the difference in means lies beyond the equivalence interval). 

 
The hypotheses for an inequivalence test is: 
 

H0: d � dL or d 
 dU (the difference in means lies beyond the equivalence interval), 
HA: dL � d � dU (the difference in means lies within the equivalence interval).7 

 
 

Statistical Methods Used to Determine Compliance (Standards Violations) 
 
For these tests the New Zealand standard for BOD5 was compared to the data for BOD5 

from site HM4. Although the country has few national numerical standards, 2 or 3 ppm is often 
the accepted limit set by waste load allocations (McBride, 1999b). The data set for site HM4 

                                                      
6 Note that with stricter assumptions (i.e., distributions are identical in shape but shifter in location), this is 
also a test on means (not just medians, Conover 1980:217), as in WQStat Plus. 
7 Some authors use “<” in place of “�”, and vice versa. Similarly for “>” and “�”. This is of no 
consequence for continuous variables, and the probability of equality is zero. 
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never exceeded 3 ppm, so for the purposes of this illustration, the excursion limit was set at 2 
ppm. The following estimations (not hypothesis testing) were used (all using WQStat Plus�): 

 
�� Proportions 
�� Tolerance Limits 
�� Tolerance Interval 
�� Confidence Interval 
�� Prediction Limits 

 
 

Results of Data Analysis 
 
The following section examines the results of applying the methods discussed above. 

Particular attention is paid to comparing the differences in results (i.e., information) that are 
consequences of changing the analysis method. It is the lack of comparable information resulting 
from arbitrary selection of data analysis methods that is the focus of the results presentation. 

 
 

Testing for Normality 
 
All data sets were tested for normality in order to interpret the resulting information from 

parametric and nonparametric hypothesis tests. Raw vs. flow-adjusted concentrations (FAC) 
affected the outcome of this test (Table 4). Most data sets tested failed to reject the null 
hypothesis that they were normally distributed. However, as discussed earlier, failure to reject a 
null hypothesis does not prove that it is true. This is why there is a question as to whether these 
data are normally distributed or not (a common problem in water quality data analysis). (see 
Martin, 2000 for detailed results)  

 
Table 4: Normality Testing Results 

Site_Constituent Hypothesis Test Result Conclusion 
RO1_NH4 (raw) Reject the null hypothesis Not normal 
RO2_NH4 (raw) Fail to reject the null Cannot prove normal 
RO2_NH4 (FAC) Fail to reject the null Cannot prove normal 
HM4_BOD5 (raw) Reject the null hypothesis Not normal 
HM4_BOD5 (FAC) Fail to reject the null Cannot prove normal 
HM6_NOx (raw) Fail to reject the null Cannot prove normal 
HM6_ NOx (FAC) Fail to reject the null Cannot prove normal 

 
 

Results for Trend Detection 
 
This analysis compared the Mann-Kendall/Sen’s Slope Estimator (MK) for trend with the 

Seasonal Kendall (SKT) test on 10-year data, raw and flow-adjusted (FAC), as well as the 1st and 
2nd 5-year data. All calculations were performed using WQStat Plus� (see Tables 5-7).  
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Table 5: Trend Detection Results for Site HM6, Constituent NOx 

Data Test Results Slope Estimate 
10 yr – flow SKT � (p < 0.2) -0.11 units/year 
10 yr – raw MK Fail to reject null of no trend 3.0 units/year 
10 yr – raw SKT Fail to reject null of no trend 1.9 units/year 
10 yr - FAC MK � (p < 0.05) 11.1 units/year 
10 yr - FAC SKT � (p < 0.1) 9.0 units/year 
1st 5 yr – flow SKT � (p < 0.05) -0.88 units/year 
1st 5 yr – raw MK Fail to reject null of no trend -9.4 units/year 
1st 5 yr – raw SKT � (p < 0.2) -28.3 units/year 
1st 5 yr - FAC MK � (p < 0.05) 36.8 units/year 
1st 5 yr - FAC SKT � (p < 0.1) 28.4 units/year 
2nd 5 yr – flow SKT Fail to reject null of no trend -0.13 units/year 
2nd 5 yr - raw MK Fail to reject null of no trend 8.0 units/year 
2nd 5 yr - raw SKT Fail to reject null of no trend 20.1 units/year 
2nd 5 yr - FAC MK � (p < 0.1) 27.2 units/year 
2nd 5 yr - FAC SKT � (p < 0.2) 23.3 units/year 

Statistically significant results on flow values are italicized. 
 
In Table 5, findings are similar for both tests, but not exactly so. It is often standard 

practice to choose an acceptable significance level as � = 0.05 (stated in WQStat Plus as “95% 
Confidence Level”). If that were the case in this analysis, only the Mann-Kendall test would have 
detected any trends in the 10-year flow-adjusted concentrations and the 1st 5-year flow-adjusted 
concentrations. WQStat� gives results for various alphas up to 0.2 (i.e., minimum 80% 
confidence) and so allows the user to see the alpha giving a significant result. These results 
illustrate that findings can change by choosing a significance level (�) after results are obtained. 

 
Flow-adjusted concentrations changed the outcome of the trend test upon examination of 

the trendline in the time series plot and in the 1st 5-year hypothesis test, as the direction changed 
from downward to upward trend. The slope estimators seem to have similar (i.e., comparable) 
results (see Martin, 2000 for Trend Analysis results). It is interesting to note that where a 
downward trend in flow existed, so did an upward trend in constituent concentration in flow-
adjusted concentrations, but not exclusively. This finding could aid in the interpretation of the 
temporal behavior of the constituent.   
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Table 6: Trend Detection Results for Site HM4, Constituent BOD5 

Data Test Results Slope Estimate 
10 yr – flow SKT Fail to reject null of no trend -4.69 units/year 
10 yr – raw MK � (p < 0.01) -0.033 units/year 
10 yr – raw SKT � (p < 0.05) -0.033 units/year 
10 yr – FAC MK � (p < 0.01) -0.034 units/year 
10 yr – FAC SKT � (p < 0.05) -0.036 units/year 
1st 5 yr – flow SKT � (p < 0.05) -45.2  units/year 
1st 5 yr – raw MK Fail to reject null of no trend -0.016 units/year 
1st 5 yr – raw SKT Fail to reject null of no trend 0.0 units/year 
1st 5 yr – FAC MK Fail to reject null of no trend -0.039 units/year 
1st 5 yr – FAC SKT Fail to reject null of no trend -0.031 units/year 
2nd 5 yr – flow SKT Fail to reject null of no trend 1.21 units/year 
2nd 5 yr – raw MK Fail to reject null of no trend -0.028 units/year 
2nd 5 yr – raw SKT Fail to reject null of no trend -0.046 units/year 
2nd 5 yr – FAC MK Fail to reject null of no trend -0.025 units/year 
2nd 5 yr – FAC SKT Fail to reject null of no trend -0.044 units/year 

Note that the slopes for the MK test on the raw data for the first and last five years (-0.016 and -0.028 units/year) do not 
straddle the 10-year result (-0.033 units per year). This is not an error; one may easily demonstrate that such straddling 
does not always occur. 

 
These findings (i.e., Table 6) illustrate how hypothesis tests are more likely to detect a 

trend as sample size increases, a phenomenon common to all the tests performed in this chapter. 
No trend was detected in either 5 years of data, but was detected in the 10-year data. However, 
because the sample sizes are different, results (i.e. the p-value) from these two sample sets can 
not be directly compared. (See Martin, 2000 for complete results) Determination of flow trend did 
not reveal anything about flow-adjusted constituent behavior. 

 
 

Table 7: Trend Detection Results for Site RO2, Constituent NH4 

Data Test Results Slope Estimate 
10 yr – flow SKT Fail to reject null of no trend 0.01 units/year 
10 yr – raw MK � (p < 0.1) 1 unit/year 
10 yr – raw SKT � (p < 0.05) 1 unit/year 
10 yr – FAC MK � (p < 0.05) 1 unit/year 
10 yr – FAC SKT � (p < 0.05) 1 unit/year 
1st 5 yr – flow SKT � (p < 0.05) -2 units/year 
1st 5 yr – raw MK � (p < 0.01) 7 units/year 
1st 5 yr – raw SKT � (p < 0.05) 7 units/year 
1st 5 yr – FAC MK � (p < 0.01) 6 units/year 
1st 5 yr – FAC SKT � (p < 0.05) 5 units/year 
2nd 5 yr – flow SKT � (p < 0.05) 2 units/year 
2nd 5 yr – raw MK � (p < 0.01) -5 units/year 
2nd 5 yr – raw SKT � (p < 0.05) -4 units/year 
2nd 5 yr – FAC MK � (p < 0.05) -4 units/year 
2nd 5 yr – FAC SKT � (p < 0.1) -3 units/year 
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These findings (i.e., Table 7) illustrate how an upward trend in the first half of the 
constituent data record and a downward trend in the second half of the record might reconcile 
itself. The upward trend was stronger than the downward trend, and so was detected in the overall 
10-year data. Again, the level of detection of trend was different for both tests. However, in this 
RO2 analysis, the Seasonal Kendall test was more sensitive in the 10-year HM4 data set, as 
opposed to results for site HM6, in which the Mann-Kendall test seemed more sensitive. The 
Mann-Kendall test detected a trend at a smaller alpha level in both the 1st and 2nd 5-year raw and 
flow-adjusted concentrations. This is not surprising, as the Mann-Kendall test is sensitive to any 
type of temporal dependence and is detecting seasonality as trend.  The slope estimates are very 
comparable at this site. (See Martin, 2000 for complete results) Again, a downward trend in flow 
correlated to an upward constituent trend, and vice versa, in both the raw and flow-adjusted 
constituent concentrations. 

 
It is obvious from these results that as methods change, so can the outcome for trend 

analyses.  This emphasizes the importance of understanding the assumptions of the analysis 
method (i.e. is the data seasonally dependent? If so, use the more appropriate Seasonal Kendall 
test), and the impact of sample size and significance level on detecting a true ‘long-term’ trend. 

 
 

Results for Differences in Populations Analysis 
 
This series of analyses compared the first 5-year data to the second 5-year data for BOD5 

(site HM4), NOx (site HM6) and NH4 (site RO2). To illustrate an analysis for spatial differences, 
a comparison was made between upstream and downstream NH4 values for sites RO1 and RO2. 

 
 
Table 8: Differences in Population Results for Site HM4, Constituent BOD5 

Test Results 
MS-Excel� t-test (1st 5-yrs vs. 2nd 5-yrs) Significant Difference (p = 0.019) 
Minitab� t-test (1st 5-yrs vs. 2nd 5-yrs) Significant Difference (p = 0.019) 
Equivalence Interval test  Equivalent (2nd 5-yrs within interval of ±20% of 1st 

5-yrs mean – p < 0.05) 
Inequivalence Interval test Inequivalent (2nd 5-yrs not within interval of ±20% 

of 1st 5-yrs mean – p < 0.05) 
Minitab� Mann-Whitney Significant difference (p = 0.0148) 
WQStat� Plus Mann-Whitney Significant difference (p < 0.05) 

 
These findings (i.e., Table 8) vary depending on alpha level, test and hypothesis. This 

illustrates how important assumptions of distribution and hypothesis are when testing, as well as 
selection of an acceptable Type I error (�). Again it illustrates that choosing the significance level 
after results are obtained can change the information obtained. 

 
Minitab� and WQStat Plus� gave comparable results for the Mann-Whitney test. (Note: 

WQStat only detects a significant difference for the two-tailed test.) In general the results from 
different statistical packages are comparable, though results are presented differently in each one. 

 
At the beginning of this section it was found that the raw data for site HM4_BOD5 are 

not normally distributed. This could mean that a parametric t-test is not appropriate, and a 
nonparametric procedure could be more powerful. Therefore, the best information from this 
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analysis may come from the Mann-Whitney test. (See Martin, 2000 for detailed Differences in 
Populations results) 

 
 

Table 9: Differences in Population Results for Site HM6, Constituent NOx 

Test Result 
MS-Excel� t-test (1st 5-yrs vs. 2nd 5-yrs) Fail to reject the null of equal means 
Minitab� t-test (1st 5-yrs vs. 2nd 5-yrs) Fail to reject the null of equal means 
Equivalence Interval test  Fail to reject the null of equivalence 
Inequivalence Interval test 
 

Rejected the null of inequivalence (2nd 5-yrs within 
interval of ±20% of 1st 5-yrs mean – p < 0.05) 

Minitab� Mann-Whitney Fail to reject the null of equal medians 
WQStat� Plus Mann-Whitney Fail to reject the null of equal means 

 
All of the tests in Table 9 failed to reject the null hypotheses of equal central tendency 

between the first and second 5-year data. This data also failed to reject the null of normal 
distribution, so the t-tests are likely to be more powerful tests of the difference in the two 
populations. However, failure to reject the null of equal means in the standard t-test does not 
prove that they are equal. The best information in this analysis comes from the equivalence test 
with the null hypothesis that the two populations are inequivalent. Rejection of this null indicates 
that the second 5-year data lay within an interval of ±20% of the first 5-year data mean, making 
them equivalent. Of course, this is supposing that the ±20% change is an ecologically acceptable 
change in NOx. (See Martin, 2000 for complete results)  

 
Table 10: Differences in Population Results for Site RO2, Constituent NH4 

Test Result 
MS-Excel� t-test (1st 5-yrs vs. 2nd 5-yrs) Fail to reject the null of equal means 
Minitab� t-test (1st 5-yrs vs. 2nd 5-yrs) Fail to reject the null of equal means 
Equivalence Interval test  Fail to reject the null of equivalence 
Inequivalence Interval test Rejected the null of inequivalence (2nd 5-yrs within 

interval of ±20% of 1st 5-yrs mean – p < 0.05) 
Minitab� Mann-Whitney Fail to reject the null of equal medians (p = 0.259) 
WQStat� Plus Mann-Whitney Fail to reject the null of equal means 

 
These NH4 data failed to reject the null of normal distribution (Table 10), so the t-test is 

an appropriate and powerful test. However, as in the analysis at the previous site (HM6), failure 
to reject the null of equal means does not prove that the means are in fact exactly equal. Again the 
best information comes from the equivalence test with the null hypothesis that the two 
populations are inequivalent. Rejection of this null proves at the 95% level that the mean of the 
second 5-year NH4 data lies within an interval of ±20% of the first 5-year NH4 data mean, making 
them equivalent. (See Martin, 2000 for complete results) 
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Table 11: Analysis of Differences Between NH4 at RO1 and RO2 

Test Result 
MS-Excel� t-test (1st 5-yrs vs. 2nd 5-yrs) Significant Difference (p � 0.001) 
Minitab� t-test (1st 5-yrs vs. 2nd 5-yrs) Significant Difference (p � 0.001) 
Equivalence Interval test  Rejected the null of equivalence (RO2 not 

within interval of ±20% of RO1 – 95% 
confidence) 

Inequivalence Interval test Fail to reject the null of inequivalence 
Minitab� Mann-Whitney Significant Difference (p � 0.001) 
WQStat� Plus Mann-Whitney Significant Difference (p � 0.01) 

 
This analysis (Table 11) shows that when the concentration differences are large between 

populations, distribution assumptions, hypotheses and alphas do not have a great affect on the 
results. Although NH4 at site RO2 failed to reject the null of normal distribution, the Mann-
Whitney test is most appropriate because NH4 at site RO1 is not normally distributed. (See 
Martin, 2000 for complete results) 

 
 

Results for Standards Compliance 
 

Table 12: Standards Compliance Results for Site HM4, Constituent BOD5 

Test Compliance Results 
Proportion Estimate – raw  3.3% excursions (0,7%) CI 
Parametric Tolerance Limit – raw  Exceeded limit 
Nonparametric Tolerance Limit – raw  Compliant 
Parametric Tolerance Interval – raw  Compliant 
Nonparametric Tolerance Interval – raw  Exceeded limit 
Parametric Prediction Limit – raw Exceeded limit 
Nonparametric Prediction Limit – raw Compliant 
Parametric Confidence Interval for the mean - raw Compliant 
Nonparametric Confidence Interval for the median - raw Compliant 

“CI” means 95% confidence interval. 
 
Each of these analyses (Table 12) gives different kinds of information about the data. The 

most straightforward is the proportion estimate, which tells exactly the proportion of excursion, 
along with a confidence interval so that the data can be representative of not only the sample, but 
also the population as a whole. These findings show that 3.3% of the data exceeded the excursion, 
and that up to 7% exceedance can be expected at the 95% confidence level. 

 
The other procedures’ outcomes (Tolerance Limit, Tolerance Interval, Prediction Limit 

and Confidence Interval) were highly influenced by the distribution assumption. The raw BOD5 
data was shown to be not normal in the “Testing for Normality” section, so the nonparametric 
results are more appropriate in assessing compliance. The Tolerance Limit/Interval and Prediction 
Limit procedures are more appropriate for determining if a single sample exceeds a compliance 
limit or interval based on background data. Whereas the Confidence Interval is more appropriate 
for determining if the mean/median of a population exceeds a standard that is based on central 
tendency. The variety of results again illustrates the non-comparability of information produced 
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from different analysis methods.  It is important to note that all of these methods were performed 
on raw concentrations, which is the basis for most water quality standards.  However, with the 
upcoming emphasis on TMDLs, mass loadings is another important measure of pollutant levels 
which could easily be incorporated into these methods, and not be dependent on flow.  In this 
way, pollutant levels in streams with differing flows could be compared. 

 
 

Discussion of Data Analysis Methods Selection 
 
The previous sections have established that: (1) there are a large variety of methods 

employed in water quality data analysis to produce information; (2) hypothesis testing is by far 
the most popular type of analysis used to interpret water quality monitoring data (used in 17 of 19 
Trend Studies and 16 of 20 Differences in Population Studies), and; (3) many of these common 
methods, when applied to one set of data, do not produce comparable results. 

 
When completing a water quality assessment, it is usually assumed that the analyst will 

make an independent decision based on his or her interpretation of the data and information 
needs, after the data are collected. This fact introduces considerable uncertainty into the analysis 
of water quality data and results in non-comparable information. This raises concerns about the 
actual management decision, stemming from the information on which it was based. If there is a 
lack of confidence in the methods used to produce information for management, then there will 
be a lack of confidence in the ultimate decision as well. The only way to instill confidence in the 
management decision is to remove the concerns over the process through which information for 
the decision was created. 

 
 

‘Standard’ Data Analysis Methods? 
 
This issue raises the question: Is it feasible to develop a set of ‘standard’ water quality 

data analysis methods for specific forms of management information (i.e., trends, differences, 
standards compliance) that can produce comparable information that is defensible? The simple 
answer is yes, as this question is not new to water quality management. “Perhaps the best way to 
ensure that data collected during different studies are comparable is to encourage all investigators 
to use standardized sampling and analysis protocols whenever possible” (Becker & Armstrong, 
1988). Currently there are professionals in the field who have been charged with determining 
which sampling and laboratory analysis methods result in comparable information (see Methods 
and Data Comparability Board of the National Water Quality Monitoring Council; 
http://wi.water.usgs.gov/pmethods). This is an especially pertinent issue as the interest in data 
sharing continues to rise. 

 
This suggestion is not made without reservation. A natural conflict stems from the need 

to obtain comparable information, and permitting site-specific conditions to be considered in how 
data are analyzed and interpreted. The answer to this issue is not readily apparent, nor are 
professionals studying the problem and its solutions. At present, the discussions of ‘appropriate’ 
use of statistics in water quality monitoring tend to be within various water-management related 
agencies. The literature review in Chapter III clearly illustrates that some agencies have produced 
guidance for data analysis over the years, yet without much coordination within or outside of the 
agency. The National Water Quality Monitoring Council is currently facing the issue described 
here, and exploring the mechanisms that could help monitoring systems produce comparable 
information. 
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Several issues besides the methods selection itself will need to be addressed. Although 

some advise to the contrary (Ward et al., 1986), many analysts select the analysis methods after 
examining the data and its distribution. In fact, this is recommended by existing guidance (i.e., 
Montgomery & Reckhow, 1984; Chatfield, 1985). The latter author recommends the following 
process: (1) Clarify the objectives of the investigation; (2) Collect the data in an appropriate way; 
(3) Investigate the structure and quality of the data; (4) Carry out an initial examination of the 
data; (5) Select and carry out an appropriate formal statistical analysis; (6) Compare the findings 
with previous results or acquire further data if necessary; and (7) Interpret and communicate the 
results." If ‘standard’ data analysis methods are developed, should they follow this same line of 
thinking? 

 
There are good arguments for both sides of this issue. Choosing the analysis method 

before examining the data allows for impartial agreement and approval of the process by all 
interested parties without the bias of data appearance. However, choosing the method after 
analysis allows for selection of the most scientifically appropriate methods for the type of data 
gathered, without prior assumptions, but also allows for post-hoc selection of �, which, as 
illustrated in the previous section, can greatly influence the results. This issue in and of itself begs 
the assistance of professionals who are knowledgeable about water management to provide 
guidance for data analysis protocols. 

 
Another topic that develops from the suggestion of standardizing data analysis methods 

deals with the extent that the analyst is allowed to produce information that directly relates to the 
management decision-making. Most management decision-makers are not statisticians. Should 
results of analyses only be presented (such as a rejection of a null hypothesis and obtained p-
value), or an interpretation in terms of meaning presented as well? Should management be 
allowed to decipher statistical results, without the bias of the analyst? Guidance is needed for 
these questions to be resolved. Only those involved in water management know the expertise of 
their colleagues in understanding these scientific issues. Comprehension will vary among 
managers, and so may the role of the analyst in interpreting information produced from the data 
analysis. EPA (1998) dealt with this issue in the development of their Guidelines for Ecological 
Risk Assessment. The following process was recommended: “To ensure mutual understanding 
between risk assessor [i.e., analysts] and managers, a good risk characterization will express 
results clearly, articulate major assumptions and uncertainties, identify reasonable alternative 
interpretations, and separate scientific conclusions from policy judgments. Risk managers use risk 
assessment results, along with other factors (e.g., economic or other legal concerns), in making 
risk management decisions and as a basis for communicating risks to interested parties and the 
general public.” 

 
Finally, the question that directly pertains to the work presented in this paper is: What 

would these ‘standard’ data analysis methods look like? With the exception of a few estimation 
and graphical procedures, the methods used in the previous chapter were all based on the 
statistical theory of null hypothesis testing, which the beginning of Part I established is “under 
fire” in some parts of the scientific world. It is easy to see in the results of the New Zealand data 
analysis that information changes depending on the method selection, but why? The answer lies 
in several flaws of applying hypothesis testing to environmental (observational) data. 

 
One flaw, which is rarely understood, is that results based on p-values from tests with 

different sample sizes are not comparable.  Another flaw lies in the dependence of results on the 
validity of the assumptions (i.e. is the data serially dependent or normally distributed?).  
However, the greatest of these flaws, which has been mentioned previously, is that the resource 
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managers and analysts of water quality monitoring data are often not statisticians, and so are 
repeatedly choosing analysis methods without a thorough understanding of the underlying 
assumptions, meaning of test parameters, or interpretation of results. Johnson (1999) states, 
“While many of the arguments against hypothesis tests stem from their misuse, rather than 
intrinsic value, I believe that one of their intrinsic problems is that they encourage misuse”. 

 
 

Why Use Null Hypothesis Testing? 
 
Nester (1996) suggests several reasons why null hypothesis tests are so widely used: (1) 

they appear to be objective and exact; (2) they are readily available and easily invoked in many 
commercial statistics packages; (3) everyone else seems to use them; (4) students, statisticians 
and scientists are taught to use them; and (5) some journals and editors and thesis supervisors 
demand them. The research in the previous chapters validates these claims. Yet perhaps the best 
explanation of why null hypothesis testing is so popular rests on the foundation of the scientific 
method. Under that method, a theory is postulated, which generates predictions, or hypotheses. 
Experiments and surveys are conducted to ‘test’ the hypothesis. The results of the experiment 
either refute the hypothesis, indicating that the theory is incorrect, or do not refute the hypothesis, 
letting the theory stand. Null hypothesis testing appears to be in harmony with this. But there are 
strong arguments that in fact it is not. This is particularly because the tested hypothesis, being 
null, does not correspond to the competing hypotheses science would wish to consider. Because 
these hypotheses are known often to be a priori false (Johnson, 1999) we can obtain conflicting 
and confusing signals about the validity of the hypotheses we actually wish to test. 

 
So why test null hypotheses at all? McBride (2000) states that comparison of p-values for 

tests with similar numbers of samples does provide an elegant way of ranking the importance of 
differences measured, if sample sizes are identical. He also acknowledges that in constructing 
models, p-values are most useful in determining important explanatory variables in statistical 
models. However, this is more a function of exploratory data analysis, and not data analysis that 
better connects water quality information to management decision-making. 

 
One answer would be that a statistical test could be only one factor in evidence of 

interpretation of the data. In this way, a single rejection of a point null hypothesis, or a p-value, 
would not be the only information leading to a management decision. Other pieces of information 
would need to be gathered to either support or refute the findings of the statistical test. EPA 
(1998) has produced guidance for ecological risk assessment that follows this type of process. 

 
“Ecological risk assessment evaluates the likelihood that adverse ecological effect may 

occur or are occurring as a result of exposure to one or more stressors. It is a flexible process for 
organizing and analyzing data, information, assumptions and uncertainties. Ecological risk 
assessment provides a critical element for environmental decision making by giving risk 
managers an approach for considering available scientific information along with the other factors 
they need to consider (e.g., social, political, legal or economic), in selecting a course of action.” 
(EPA, 1998) 

 
There exist alternatives to statistical testing that can provide scientifically defensible 

information to management about the quality of the water being monitored (e.g., likelihood 
methods, randomization tests, Bayesian methods). It is not within the scope of this report to 
provide great detail about analysis alternatives, but the following section will outline some of the 
other pieces of information that could accompany or even replace statistical tests in order to make 
the information more comparable and meaningful to management. 
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Data Analysis Tools to Make Information More Comparable 
 
There are many procedures that can be applied along with statistical tests in order to give 

more meaning to the results beyond the p-value. It might be assumed that these procedures are 
already mandatory for statistical analysis of water quality data, yet the literature review in the 
previous section suggests that they are not. The following is a list of procedures and methods that 
could aid in the interpretation of water quality data, especially in combination with hypothesis 
testing. 

 
�� Graph the data (e.g. time-series, Q-Q plots, box plots, etc…) for visual interpretation 

and to aid in developing assumptions (i.e. correlation, seasonality).  
�� Test data for normality to aid in methods selection (parametric vs. nonparametric 

methods) 
�� Use flow-adjusted concentrations where appropriate (i.e. trends) 
�� Consider power when choosing tests and determining sample size (but realize that 

power increases with sample size, and many samples can make a test too “sensitive”) 
�� Use estimation and confidence interval techniques in lieu of hypothesis testing, or as 

a compliment to the results 
 
There also exist alternative analysis methods to hypothesis testing that, although not as 

prevalent, may provide more comparable results and more pertinent information for management 
decision making. More thorough explanations of each type of method, listed below, are provided 
in Martin (2000). 

 
�� Meta-analysis 
�� Interval testing (discussed in Part I) 
�� Decision Theory 
�� Likelihood ratios 
��  Bayesian Methods 
 
 

Comparable Information in Other Fields of Data Collection 
 
One excellent example of the goal for the water quality field is the area of weather 

reporting. Atmospheric scientists have developed, from a large list of variables and processes, a 
graphical interpretation of weather conditions that conveys instantly to the user the current state 
of the weather, what has occurred in the past, and what is likely to happen in the future. The 
importance of weather in our immediate lives has perhaps been the impetus to create consensus in 
atmospheric condition assessment. These weather interpretations are transparent, comparable and 
auditable, as they are standardized and accepted to convey the best information upon which to 
act. 

 
Another example is the area of economic reporting. Several different indicators and 

indexes have been developed to aid in interpretation of the daily/monthly/yearly flux of the 
economy. Graphics, in the form of time series plots of these indexes, are used to convey 
understanding of trends in various sectors of the economy (Ward, 1998). For example, the Dow 
Jones Index has become an accepted ‘standard’ method for reporting a type of economic 
information upon which management and business decisions are based. 
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“The indicators and indices have been developed through well-documented and reviewed 

protocols. This is not to say that there are not disagreements over how the indices are computed, 
but it does reflect these debates occurring away from day-to-day reporting of the information” 
(Ward, 1998). “In other words, the science that underpins economic reporting is well developed 
and documented in protocols that are established on their scientific merit and not their particular 
outcome” (Ward, 1998). 

 
The above section has outlined just a few of the analysis alternatives that can either 

replace, or supplement statistical data analysis methods. However, the entrenchment of 
hypothesis testing in the scientific world, combined with the plethora of analysis alternatives, 
make it difficult for data analysts to produce comparable information from water quality data 
analysis. 

 
The subject of this discussion has focused on developing ‘standard’ guidance for data 

analysis methods, and how some methods might improve the comparability of information from 
monitoring. It is obvious that there are many ‘right’ methods for analysis, yet management is 
often missing comparable information for decision-making. Management needs information that 
is dependable, concise, comparable and bias-free in order to make fair and auditable decisions 
regarding the environment. Arguments about the process through which the information 
underlying management decision-making was created can only be eliminated through acquisition 
of comparable information in a manner that is transparent and auditable. Does this call for the 
development of ‘standard’ analysis methods? 

 
Development of ‘standard’ protocols for water quality data analysis is suggested as a 

means to help this field mature to the same point of confidence about information for 
management decision-making as observed in weather and economic reporting. This, in turn, 
could perhaps bring the water quality field closer to the public, allowing water quality monitoring 
information to be broadly examined, and increasing public support for monitoring efforts. 

 
 

Summary 
 
The previous sections have fulfilled the tasks outlined in the introduction: (1) to examine 

the data analysis methods that are currently being used to analyze water quality monitoring data, 
as well as the criticisms of using those types of methods; (2) to explore how the selection of 
methods to analyze water quality data can impact the comparability of information used for water 
quality management purposes, and; (3) to offer options by which data analysis methods employed 
in water quality management can be made more transparent and auditable. 

 
These tasks were accomplished through a literature review of criticisms of current data 

analysis methods, as well as texts, guidance and journals dealing with water quality assessments. 
Then, the common statistical analysis methods found were applied to the New Zealand Water 
Quality River Network data set. The purpose being to establish how information changes as 
analysis methods change, and to determine if the information produced from different data 
analysis methods was comparable. The results of the literature review and data analysis were then 
discussed, highlighting problems with the prevalent use of hypothesis testing in the water quality 
field. Part II further discussed options through which to begin solving these problems and 
produce comparable information for water quality management decision-making. 
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Conclusions 

 
For several years it has been known or suspected that current methods for producing 

information from water quality data are subject to misuse and inappropriate application. Lack of 
statistical knowledge has caused poorly planned method selection and results that are not always 
comparable. This thesis has documented the problems associated with data analysis method 
selection for water quality monitoring, in an effort to provide problem definition as the first step 
in creating a solution. The process of documenting these problems has led to the conclusions 
discussed below: 

 
1. Reviewing literature on water quality monitoring reveals the frequent use of a common 

class of statistical procedures (i.e., hypothesis testing) to produce information about water 
quality from the raw data. The majority of reviewed analysis methods use the concept of 
“statistical significance” to validate the information produced, be it comparison of 
means/medians (e.g., upstream/downstream averages), or evaluation of trends, or 
detection of extremes. It is with these methods that most of our knowledge about the 
water quality of our nation has been derived. From government monitoring projects to 
private monitoring studies, it appears from the literature review (Part I) that despite recent 
efforts to provide auditable information, data analysis procedures are often loosely 
planned and documented and statistical results rarely explained. Except for a few studies 
of water quality statistics (Harcum et al., 1992; Hirsch, 1988; Montgomery & Reckhow, 
1984, Montgomery & Loftis, 1987; Loftis, 1989; McBride, 1998, 1999a), alternative 
analysis methods with which to compare results are never explored, their significance is 
rarely explained, and information, once produced, never questioned, just reported as is. 
Of course discussions that led up to publication, if they questioned the methods, are 
rarely shared with the reader. 
 

2. Through EPA’s requirements for State 303(d) reports and 305(b) listing of impaired 
waters, it is apparent that the vision is being developed to create monitoring systems that 
will produce information that will answer basic questions about our nation’s water 
quality. But when reviewing state assessment methodologies and other water quality 
studies, it is evident that the analysis procedures fall short of providing indisputable 
information due to the fact that the assessments are often based on subjective narrative 
criteria or relatively small monitoring data sets, and lack broadly peer-reviewed and 
agreed upon data analysis methods. 
 

3. Although the methods selected to produce water quality information are generally being 
used correctly, they may not be universally accepted, or appropriate for the type of 
information about the environment that is needed. The availability of numerous analysis 
procedures means that methods selected to produce the same type of information (i.e., 
trends) may be different, resulting in a non-comparable basis for the same management 
decisions. 
 

4. Because hypothesis-testing methods have been available and widely accepted, their 
appropriateness has been rarely questioned in the field of water quality monitoring. An 
argument that is at the forefront of the medical sciences is whether to use hypothesis 
testing at all (Berger & Berry, 1988; Loftus, 1991; Chow & Liu, 1992; Royall, 1992; 
Royall 1997). The value of these discussions in medicine is that they illustrate to other 
scientific fields that there are concerns with creating valid information using hypothesis 
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testing methods for data analysis (McBride et al, 1993; McBride 1998, 1999a; Johnson, 
1999). 
 

5. The solution to producing more valid information for management decision-making 
depends on the appropriateness of the methods chosen for the type of questions being 
asked, and the comparability of these methods with other, similar assessments. Many of 
the supplemental and alternative methods to hypothesis testing discussed in the previous 
chapters (e.g. graphical, estimation, Bayesian methods) could be utilized to aid in the 
interpretation of monitoring data, data which is influenced by so many unknown 
variables that interpretation is often difficult. The use of new methods that are more 
appropriate in creating scientifically defensible information is becoming more common in 
the medical field (Chow & Liu, 1992). However, these methods have not managed to 
effectively infiltrate water quality monitoring. Medical and epidemiological studies have 
shown that the use of methods such as meta-analyses, Bayesian statistics, and 
equivalence testing can produce more objective and valid information from the data than 
standard hypothesis testing. These alternatives, as well as others, need to be explored for 
applicability to water quality data analysis, in an effort to produce more comparable 
information from monitoring. 

 
6. Solutions to the problems documented in this research may not come through common 

analysis methods, but instead require a deeper understanding of statistical theory, closer 
connections to the use of the information (i.e., management input), as well as new 
thinking about data analysis procedures. These considerations in the development of 
‘standard’ water quality data analysis protocols will help to ensure that the procedures are 
transparent and auditable, and that results are comparable. 
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Recommendations 
 
The following recommendations are suggested to help further the endeavor of providing 

better data analysis methods through which to produce information for management decision-
making. These suggestions could be fulfilled through further academic study, interagency 
cooperative efforts (e.g., state and national water quality monitoring councils), or through a single 
entity taking the lead in providing guidance for water quality data analysis. 

 
1. The subjects explored in this thesis established that there are many methods available for 

analysis and interpretation of water quality data. Not only are there classical hypothesis 
testing methods, but estimation, likelihood and Bayesian methods, to name a few. It was 
beyond the scope of this thesis to explore the applicability of these methods to water 
quality data and compare the results with those from hypothesis testing, but such an 
examination could prove very useful. 
 

2. If null hypothesis testing is to continue to be the main venue through which water quality 
data are interpreted, better attention must be paid to distribution assumptions, flow-
adjustment, and power analysis. The first two are easily handled, but the third, power 
analysis, is a complex subject. Power can be used to determine effective sample sizes to 
detect a significant difference fairly easily. However, calculation of the power of certain 
tests given a sample size can be complicated for parametric statistics, and even more so 
for nonparametric. It is important to note that, with the exception of interval testing, 
power tends to increase with sample size, so that trends tend to be detected more often 
merely because the number of samples has increased. This poses a substantial problem 
for accumulating data programs. Furthermore, in performing power analyses a consensus 
is needed on the magnitude of effect (or impact or trend) that is important to be detected 
(the same information as is needed to define the interval for an equivalence test). Elicting 
such information can be difficult. Power analysis tools (software, internet calculators) can 
aid greatly, but a broad review of these tools for comparability of results must first take 
place in order to ensure quality of results. 
 

3. The recent development of protocols for biological monitoring and assessment 
methodologies could prove to be the most informative way to assess water quality. These 
methods are relatively new, and so have not been scrutinized like the methods used to 
interpret chemical data. Although not discussed in this paper, many of the same statistical 
issues discussed in this thesis apply to biological data as well. The movement towards 
establishing broadly peer-reviewed methods for data analysis is impending, and all 
avenues of analysis methods should be thoroughly explored.  

 
 

The bottom line is that the application of science, individually administered, is not going 
to make data analysis any easier, or results more comparable. There are too many variables 
involved, and too many methods through which to explore data. Nevertheless, if management 
requires accepted, scientifically defensible methods that produce comparable results upon which 
to base their decisions, consensus about what those methods should be is highly desirable. Several 
documents have been developed for standard methods for sampling protocols and laboratory 
analysis. Following this trend, it seems only natural to develop harmonized methods of data 
analysis as well. As discussed in the Scope section of Part I, this should only include methods 
used for management decision-making. Exploratory data analysis employed by researchers needs 
to remain untethered and flexible. 
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This is an issue that can only partially be resolved through science. Research can 

establish that there are common methods being used, compare the results obtained with differing 
methods, and document that there are problems with current data analysis procedures. But the 
decision-makers who are knowledgeable about monitoring resources, costs, and consequences of 
individual decisions will need to be the ones who, through a fair and open process, develop a 
guidance of acceptable methods for water quality monitoring data analysis. 
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