

Massachusetts Monitoring Program Traditional program Gross pollution Point Sources Emerging Program Nonpoint Sources Trends More coverage

SMART Monitoring Networks

Tier	Schedule	Scale
Statewide	Continuous	Large scale
		Long term
Basins	Rotating Basin	NPDES Program
Local	Flexible	Small scale
		Rain events

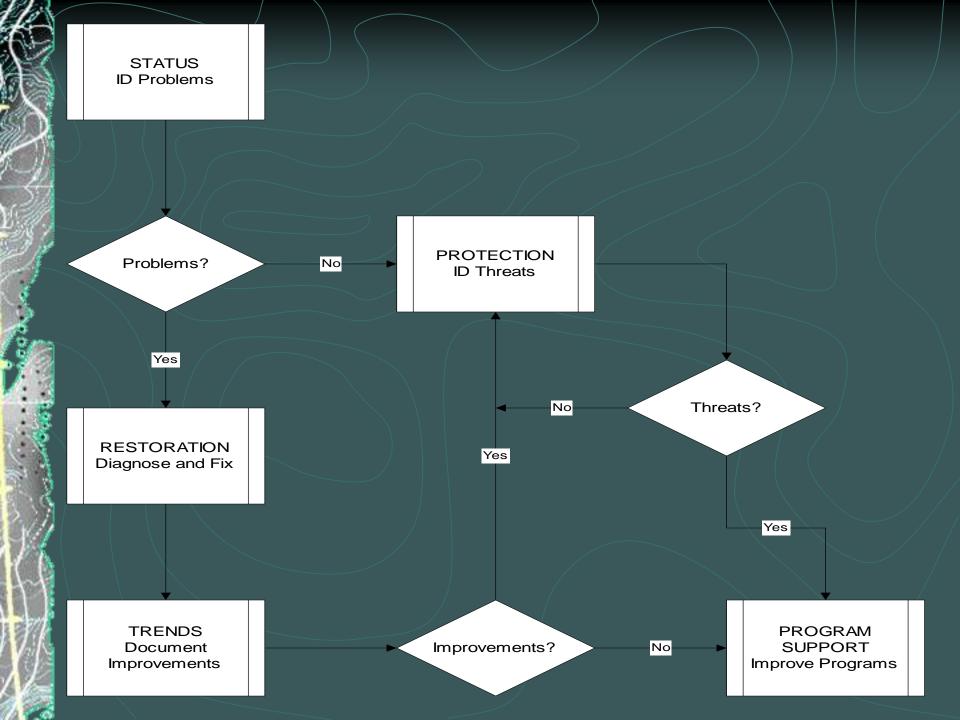
Outline

Goals Strategies Sites Frequency Indicators Traditional program Successes /failures Proposed SMART Program

Why We Monitor

<u>Question</u>

> What is the condition of the resource?
> Is the condition changing over time?
> How do we restore and enhance the resource?
> How do we protect and maintain the resource?
> How do we improve our programs?


Status

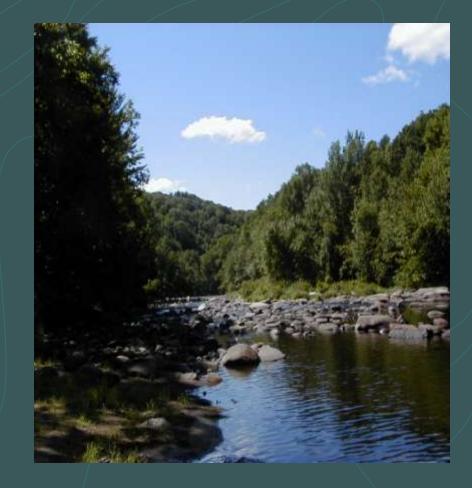
Trends

Restoration

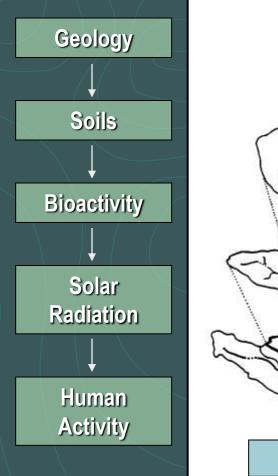
Protection

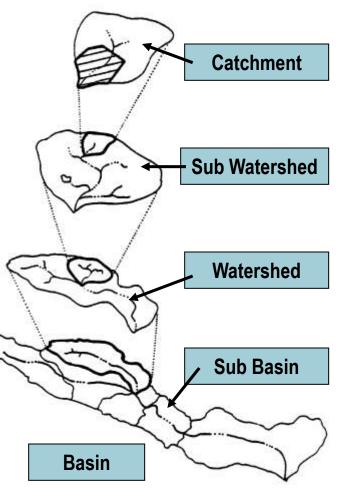
Program Support

Outline

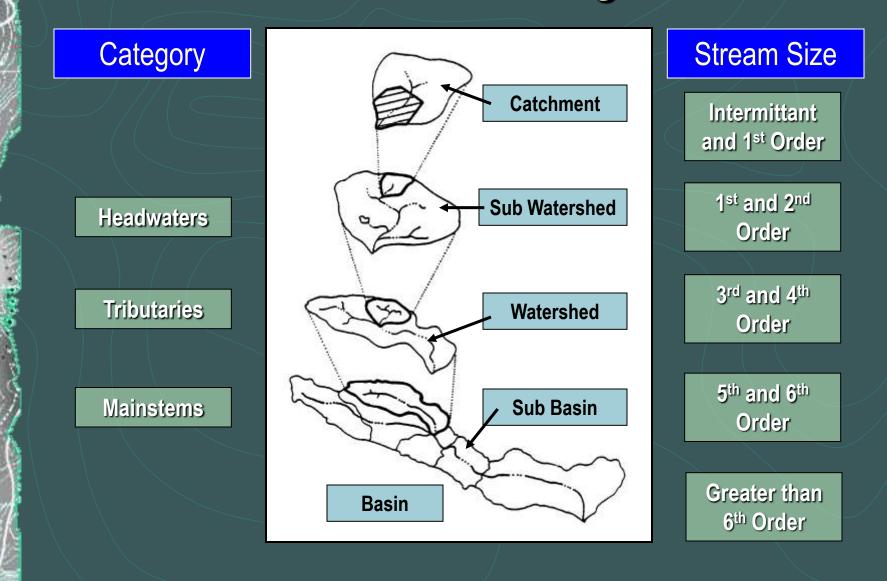

Goals Strategies Sites Frequency Indicators Traditional program Successes /failures Proposed SMART Program

Monitoring Strategies


Sampling siteswhere


Sampling frequencywhen

Indicatorswhat


Space Scales: where we monitor

Stream Size Categories:

River Continuum Concept

Headwaters (detritus)	Mid Reaches (photosynthesis)	Downstream (sediment)
Erosion	Transport	Deposition
Stony	Gravelly/Sandy	Muddy
Shady	Light	Turbid
Cold	Diurnal Swing	Warm
Shredders	Collectors/Grazers	Collectors/Large Predators

Stream Segments

	Mainstems	Tributaries	Headwaters
% Miles	15%	10%	75%
Total Miles	1,323	882	6,615
Segments	250	350	> 4,000

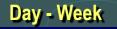
SMART Lesson #1

It is useful to stratify your rivers by stream size

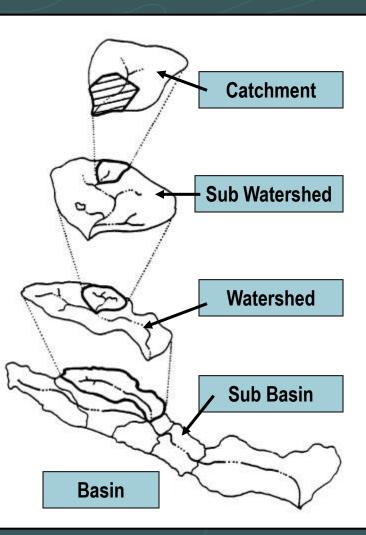
River Continuum Concept

75% of river miles in headwaters

Increasing monitoring coverage = headwaters


Time Scales: "You cannot step in the same river twice"

Nashua River, Pepperell – Station NM29A, 8/4/99



Nashua River, Pepperell - Station NM29A, 9/1/99

Time Scales: WHEN WE MONITOR

Rainfall

Month - Season

Hydrograph

Climatic Effects

Year - Year

Diurnal Effects

Day - Week

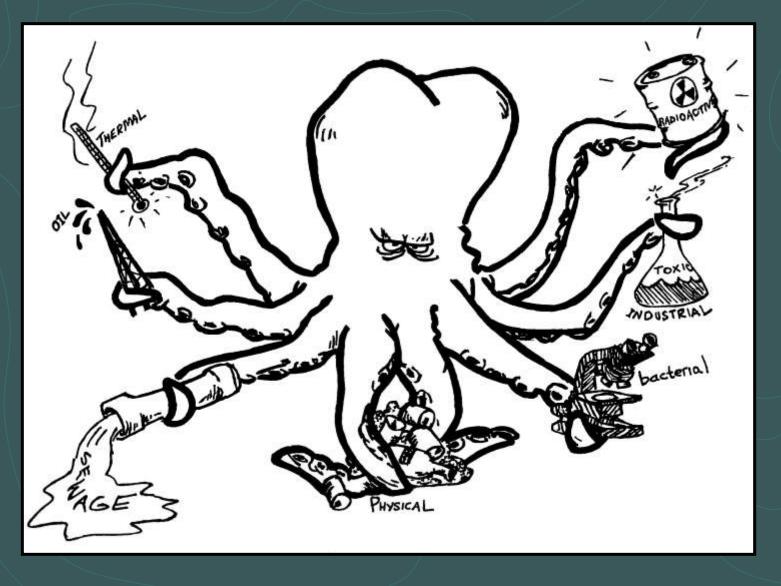
Capturing Variability Year to year Within the year Seasonal Ø Daily Timing of variability

Massachusetts Bioperiods

Oct-Nov	Fall salmonid spawning
Dec-Feb	Overwintering
Mar-Apr	Spring flood
Мау	Migratory fish spawning
June	Resident spawning
July-Sept	Rearing and growth

Sampling Frequency

	Mainstems	Tributaries	Headwaters
Year to Year	X		
Annual Cycle	X	X	X
Diurnal Cycle	X	X	
Rain Events		X	XX
Visits/Year	6-12	12-24	> 24


SMART Lesson #2

Sampling frequency increases as stream size decreases (capturing variability):

It is unrealistic to hand sample headwater streams

4000 segments x 24 visits/segment= 96,000 visits

What We Monitor: Indicators

Indicators

Response	Biota
	Bacteria
Exposure	Water Chemistry
	Sediment Chemistry
	Flow Regime
	Physical Habitat
	Fish Tissue
Stressor	Land Use
	Loadings
Administrative	Permits
	WWTF Construction

SMART Lesson #3 Response Indicators -status Exposure Indicators- diagnose and fix Exposure Indicators- trends and protection Catch threats before they become problems Measure progress by causes not uses

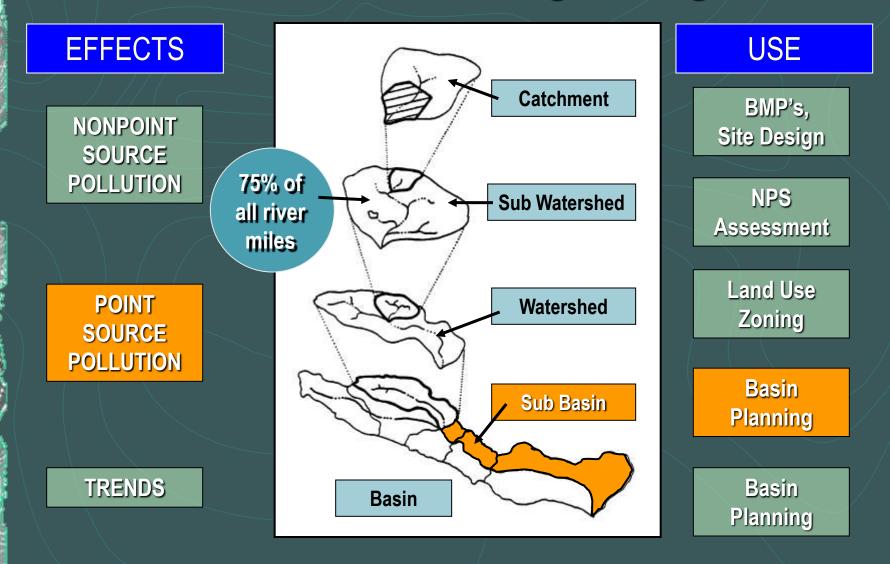
Nashua River Watershed Water Quality 1973	Above Clinton WWTP	Below Clinton WWTP	Above Leominster WWTP	Below Leominster WWTP	Above Pepperell Pond	Below Pepperell Pond	Pepperell Pond	Nissitissit and Squannacook	
I. Ecological Health	35	35	20	35	30	35	35	90	
A. Biology	NS	NS	NS	NS	NS	NS	NS	S	
B. Chemistry	NS	NS	NS	NS	NS	NS	NS	S	
Baseline	NS	NS	NS	NS	NS	NS	NS	S	
Nutrients	NS	NS	NS	NS	NS	NS	NS	S	
Toxics	NS	NS	NS	NS	NS	NS	NS	S	
C. Sediments	NA	NA	NA	NA	NA	NA	NS	NA	
D. Hydrology	S	S	S	S	S	S	S	S	
E. Habitat	NS	NS	NS	NS	NS	NS	NS	S	
II. Public Health	65	65	30	30	30	50	40	80	
A. Bacteria	NS	NS	NS	NS	NS	NS	NS	Р	
Sw imming	NS	NS	NS	NS	NS	NS	NS	Р	
Boating	NS	NS	NS	NS	NS	NS	NS	S	
B. Aesthetics	S	S	NS	NS	NS	Р	NS	S	
C. Toxics in Fish	NA	NA	NA	NA	NA	NA	NA	NA	

SNSPSNSSNSSNSSANA	ton WWTP	ton WWTP	nster WWTP	ster WWTP	erell Pond	erell Pond	ll Pond	Squannacook
Water Quality 1993	Above Clinton WWTP	Below Clinton WWTP	Above Leominster WWTP	Below Leominster WWTP	Above Pepperell Pond	Below Pepperell Pond	Pepperell Pond	Nissitissit and Squannacook
I. Ecological Health	90	75	65	70	70	90	90	85
A. Biology	S	Р	NS	NA	NS	S	NA	S
B. Chemistry	S	Р	NS	NA	NS	S	S	S
Baseline	S	S	S	S	S	S	S	T(pH)
Nutrients	S	Р	S	S	S	S	S	S
Toxics	?	Р	NS	NA	NS	S	S	S
C. Sediments	NA	NA	NA	NA	NA	NA	NA	NA
D. Hydrology	S	S	S	S	S	S	?	S
E. Habitat	S	S	Р	S	S	S	?	S
II. Public Health	95	70	50	95	80	95	75	95
A. Bacteria	S	NS	NS	S	Р	S	S	S
Sw imming	S	NS	NS	S	Р	S	S	S
Boating	S	S	NS	S	S	S	S	S
B. Aesthetics	S	S	Р	S	S	S	S	S
C. Toxics in Fish	S	S	NA	NA	S	S	NS	S

Sampling Strategies

Goal	Segments	Frequency	Indicators
Status	All	Low Flow	Response
Trends	Impaired	Continuous	Exposure
Restoration	PS Impaired	Low Flow	Exposure
	NPS Impaired	Annual Cycle Rainfall	Exposure
Protection	Clean	Continuous	Exposure
Programs	All	Continuous	Exposure

Smart Lesson #4


 Different monitoring goals require different monitoring programs.

Meeting multiple goals requires several (very efficient) programs

Outline

Goals Strategies Sites Frequency Indicators Traditional program Successes /failures Proposed SMART Program

Current Monitoring Program

Traditional Program Strategy

Goal	Segments	Frequency	Indicators
Status	All	Low Flow	Response
Trends	Impaired	Continuous	Exposure
Restoration	PS Impaired	Low Flow	Exposure
	NPS Impaired	Annual Cycle Rainfall	Exposure
Protection	Clean	Continuous	Exposure
Programs	All	Continuous	Exposure

Traditional Program Success

Goals	Attained	Issues
ID Problems	18% river miles	82% unmonitored
Diag. Problems	Point Sources	NPS
Document Improvements	No	\$ 4.5 Billion in WWTF's
ID Threats	No	Acid Rain
		Mercury
		Climate Change
Improve Programs	No	Nutrients
		Toxics

5 Year Rotating Basin Approach

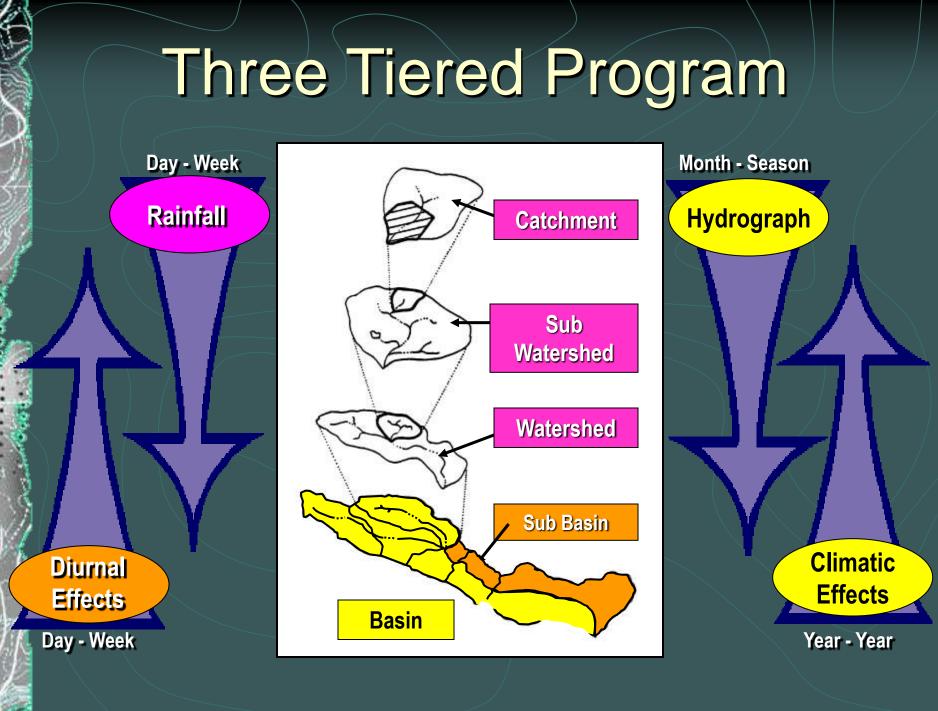
Gain Spatial Density

- 5-6 basins/year
- Summer low flow
- Multiple sites
- 15 years for trends
- Avoid clean sites
- Avoid small streams

- Lose Temporal Continuity
- Multiple visits/site
- Seasonality
- Hydrograph
- Long term cycles (El Nino)

SMART Lesson # 5

There is a basic resource conflict between monitoring strategies that require:


multiple sites - Status, Restoration verses multiple visits – Trends, Protection, Program Support

What's Missing?

Goal	Segments	Frequency	Indicators
Status	All	Low Flow	Response
Trends	Impaired	Continuous	Exposure
Restoration	PS Impaired	Low Flow	Exposure
	NPS Impaired	Annual Cycle Rain/events	Exposure
Protection	Clean	Continuous	Exposure
Programs	All	Continuous	Exposure

Outline

Goals Strategies Sites Frequency Indicators Traditional program Successes /failures Proposed SMART Program

3 Coordinated Programs Mainstems ø periodic variables -hydrograph, climatic effects Mainstems /Tributaries ø periodic variables- diurnal effects Tributaries/ Headwaters Random events- rainfall/runoff

Statewide Network

Goal	Segments	Frequency	Indicators
Status	All	Low Flow	Response
Trends	Impaired	Continuous	Exposure
Restoration	PS Impaired	Low Flow	Exposure
	NPS Impaired	Annual Cycle Rainfall	Exposure
Protection	Clean	Continuous	Exposure
Programs	All	Continuous	Exposure

Large Scale Programs

NAWQA NASQUAN NARS NEON FEMA Nat. Weather Service Climate Change

FERC **MDL** STREON HBN COE Flood Control MWRA Reservoirs LTM ⊗ 305b

Multipurpose Monitoring

NAWQA NSIP

NARS

Stream Gages are the Sweet Spot Frequency Continuous-Long term Continuous Flow Monitoring Weight Hydrologic context Real time reporting Surrogate sampling

Strategic Site Selection Modeling Concepts-3 Mass Balance Points Inputs – Upstream reference station Sources and sinks- Most impacted site (largest) source or sink) Outputs- Loadings exported from the basin

Strategic Site Selection Clean water – 13 ecoregions Impacts sites – 18 major abatement projects Loading sites – 19 locations, 67 % of land area All historical stations

Modeling calibration points

Strategic Stations

Reference distributions for ecoregions Developing criteria-nutrients, toxics Trends at major abatement projects Point source program success Loadings exported from the state NPS Program success Sentinel stations for threats Acid rain, mercury, climate change

SMART Lesson #6

A small number of multipurpose (workhorse) stations can be selected using
 Modeling concepts
 Historical data
 Continuous Stream Gages

Basins Network

Goal	Sites	Frequency	Indicators
Status	All	Low Flow	Response
Trends	Impaired	Continuous	Exposure
Restoration	PS Impaired	Low Flow	Exposure
	NPS Impaired	Annual Cycle Rainfall	Exposure
Protection	Clean	Continuous	Exposure
Programs	All	Continuous	Exposure

Basin Network Sites Point Sources (NPDES Program) Summer low flow 5 basins/year Basin approach-sampling economy Entire state every 5 years Bracket major point sources Work in concert with Statewide stations Recalibrate model every 5 years

Basin Network Sites 134 major point sources ø 5 point sources/ basin Sites / basin = 2(# PS) +1 = 11 11sites/basin x 27 basins = 300 sites 300 sites statewide – 50 Statewide sites = 250 sites So sites /year

Local Network

Goal	Sites	Frequency	Indicators
Status	All	Low Flow	Response
Trends	Impaired	Continuous	Exposure
Restoration	PS Impaired	Low Flow	Exposure
	NPS Impaired	Annual Cycle	Exposure
		Rain Events	
Protection	Clean	Continuous	Exposure
Programs	All	Continuous	Exposure

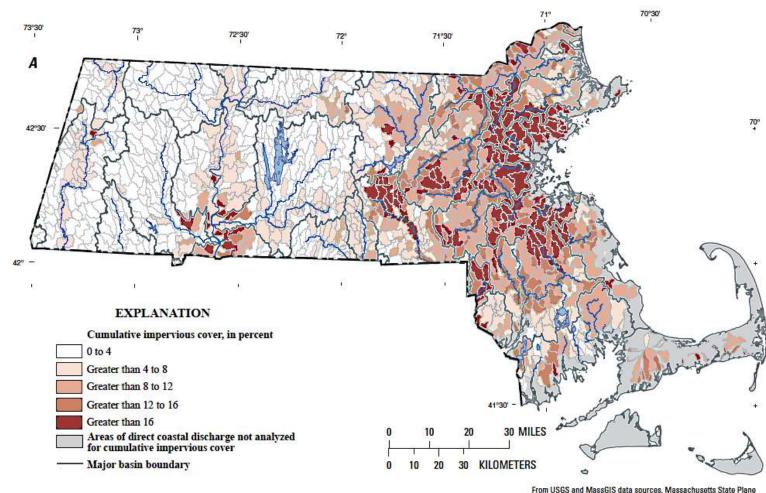
Local Network Sites
350 tributary segments
50 sampled by Basins Network
Point sources
300 sites or 11 / basin

Direct volunteer effort to these sites

Volunteer SMART Lessons Prescheduled sampling can (randomly) catch random events Time/ space scale analysis for indicators Bacteria Aesthetics Habitat Stream walks/ Colilert[™] System

The Problem with Headwaters NPS diagnosis 75% river miles 4,000 segments Any realistic state monitoring program for response or exposure indicators will leave the vast majority of streams unsampled.


Headwater Monitoring Options Probabilistic (generic) ID problems ID Threats Targeted (site specific) Geo-target solutions Diagnose and fix Track Improvements


Indicator Levels

Response	Biota	
	Bacteria	
Exposure Water Chemistry		
Sediment Chemistry		
	Flow Regime	
	Physical Habitat	
	Fish Tissue	
Stressor	Land Use	
	Loadings	
Administrative	Permits	
	WWTF Construction	

Impervious Cover Method

Surrogate for Impacts
 Physical
 Chemical
 Biological
 Hydrological

From USGS and MassGIS data sources, Massachusetts State Plane Coordinate System, Mainland Zone

Figure 24. (A) Cumulative percent impervious cover in Massachusetts subbasins. (B) Cumulative percent impervious cover in Massachusetts 12-digit Hydrologic Unit Code (HUC-12) basins.

Headwaters Strategy

ID problems	Impervious Cover Model
ID threats	
Diagnose and fix Improve programs	National Studies
Document improvements	Geo-targeted monitoring ?
	Volunteers/Watershed Associations?

SMART Networks

Goal	Segments	Frequency	Indicators
Status	Mainstems Tributaries	Low Flow	Response
Trends	Strategic	Continuous	Exposure
Restoration	PS Impaired	Low Flow	Exposure
	NPS Impaired	Annual Cycle Rain/events	Exposure
Protection	Strategic	Continuous	Exposure
Programs	Strategic	Continuous	Exposure

SMART Networks Summary

Tier	Schedule	Purpose
Statewide	Continuous	Trends
50 sites		Protection
		Program Support
Basins	5 year Cycle	Point Source
50 sites/year	Summer Low	Restoration
	Flow	
Local	Flexible	Nonpoint Source
11 sites /basin	Rain Events	Restoration

Natural Partnerships

Program	Partners Indicators		
Statewide	Federal/State Flow		
	(USGS) Sediment		
	Nutrient loading		
Basins	State/Municipal Biology		
	(POTW's)	Chemistry	
Local	State/Local Habitat		
	(Volunteers) Bacteria		
		Aesthetics	

Features

Stratified Sites (River Continuum Concept) Mainstem-periodic variables, point sources Tributaries- random variables, nonpoint sources Meadwaters- land use ,ICM Mass Balance Modeling (calibration points) 50 workhorse stations 50 NPDES sites /year River model recalibration every 5 years

Features Continued

Partnerships
 Federal- Stream gaging stations
 Municipal-POTW's
 Local- volunteer monitoring
 Doing more with less
 SMART

Program Summary

	STATE-WIDE	BASINS	LOCAL	
1. Who	Federal/State	State/Regional	Regional/Local	
2. What				
Biology	High Level	Rapid Assessment	Low level	
Water Quality	Х	Х	(X)	
Sediment Quality	Х	Х		
Flow	Х	Х	(X)	
Fish Tissue	Х	Х		
Habitat		(X)	Х	
Bacteria		(X)	Х	
Aesthetics			Х	
3. Where				
Mainstem (5+)	Х	Х		
Tributaries (3+4)	(X)	Х	Х	
Headwaters (1+2)			Х	
4. When	Continuous	Every 5 Yrs	As Needed	
Year	Х			
Season	Х			
Month		Х		
Week		Х	Х	
Day			Х	
5. Why				
Status	Х	Х	Х	
Trends	Х			
Program Support	Х			
Remediation		X (PS)	X (NPS)	
6. How	6. How			
Fixed Station	Х	Х	(X)	
Synoptic		(X)	Х	

