
Page 1

MPI Optimization 
and Tips

Go to Menu



Page 2Page 2

Outline

Go to Menu

• Cray Message Passing Toolkit (MPT)

• Cray MPI Communication Tips

• MPI Environment Variables

• MPI Rank Placement

• MPI Programming Techniques

• Resources for Users



Page 3Page 3

Outline: Cray Message Passing Toolkit (MPT)

Go to Menu

– Cray Message Passing Toolkit (MPT) 3.2.0

– IMB PingPong Benchmark

– Key Cray MPI Environment Variables

– Key Cray MPI Environment Variables: Default Values

– Portals API

– Cray MPI XT Portals Communications

– Auto-Scaling MPI Environment Variables 

– Cray MPI XT Portals Communications: Default Values

– What does this mean?



Page 4Page 4

Cray Message Passing Toolkit (MPT) 3.2.0

• Cray Message Passing Toolkit (MPT) - Cray’s MPI library
• Toolkit includes MPI and SHMEM

– MPI based on MPICH2 version 1.0.6 from ANL
– Support for multiple compilers (CCE, PGI, Pathscale, GNU)
– Numerous Cray enhancements and optimizations

• What Unique Features does CRAY MPI provide for XT5?
– Custom Portals device driver
– Custom Shared Memory (SMP) device driver
– Multi-device implementation for a single job

• Optimal messaging path is selected automatically
– Optimized Collectives
– MPI I/O Enhancements
– Support for up to 256,000 MPI ranks
– Custom Process Manager Interface (PMI) for launching

• Interfaces with existing ALPs software (aprun)
• A PMI daemon process is started on each node
• Support for Process-to-CPU affinity
• Support for Rank Re-Ordering Go to Menu



Page 5Page 5

IMB PingPong Benchmark

Go to Menu



Page 6Page 6

Key Cray MPI Environment Variables

• Why use MPI environment variables?
– Allow users to tweak optimizations for specific application behavior
– Flexibility to choose cutoff values for collective optimizations
– Determine maximum size of internal MPI  resources - buffers/queues, etc.

• MPI Display Variables
– export MPICH_VERSION_DISPLAY=1

• Displays version of Cray MPI being used
• strings ./mpi.exe | grep VERSION

MPI VERSION : CRAY MPICH2 XT version 3.1.2 (ANL base 1.0.6)
BUILD INFO  : Built Mon Feb 16 10:20:17 2009 (svn rev 7304)

– export MPICH_ENV_DISPLAY=1
• Displays all MPI environment variables and their current values
• Helpful to determine what defaults are set to

Go to Menu



Page 7Page 7

MPI VERSION : CRAY MPICH2 XT version 3.1.2- 
pre (ANL base 1.0.6)
BUILD INFO  : Built Thu Feb 26  3:58:36 2009 
(svn rev 7308)
PE 0: MPICH environment settings:
PE 0:   MPICH_ENV_DISPLAY          = 1
PE 0:   MPICH_VERSION_DISPLAY      = 1
PE 0:   MPICH_ABORT_ON_ERROR       = 0
PE 0:   MPICH_CPU_YIELD            = 0
PE 0:   MPICH_RANK_REORDER_METHOD  = 1
PE 0:   MPICH_RANK_REORDER_DISPLAY = 0
PE 0:   MPICH_MAX_THREAD_SAFETY    = single
PE 0:   MPICH_MSGS_PER_PROC        = 16384
PE 0: MPICH/SMP environment settings:
PE 0:   MPICH_SMP_OFF              = 0
PE 0:   MPICH_SMPDEV_BUFS_PER_PROC = 32
PE 0:   MPICH_SMP_SINGLE_COPY_SIZE = 131072
PE 0:   MPICH_SMP_SINGLE_COPY_OFF  = 0
PE 0: MPICH/PORTALS environment settings:
PE 0:   MPICH_MAX_SHORT_MSG_SIZE   = 128000
PE 0:   MPICH_UNEX_BUFFER_SIZE     = 62914560
PE 0:   MPICH_PTL_UNEX_EVENTS      = 20480
PE 0:   MPICH_PTL_OTHER_EVENTS     = 2048

PE 0:   MPICH_VSHORT_OFF           = 0
PE 0:   MPICH_MAX_VSHORT_MSG_SIZE  = 1024
PE 0:   MPICH_VSHORT_BUFFERS       = 32
PE 0:   MPICH_PTL_EAGER_LONG       = 0
PE 0:   MPICH_PTL_MATCH_OFF        = 0
PE 0:   MPICH_PTL_SEND_CREDITS     = 0
PE 0: MPICH/COLLECTIVE environment settings:
PE 0:   MPICH_FAST_MEMCPY          = 0
PE 0:   MPICH_COLL_OPT_OFF         = 0
PE 0:   MPICH_COLL_SYNC            = 0
PE 0:   MPICH_BCAST_ONLY_TREE      = 1
PE 0:   MPICH_ALLTOALL_SHORT_MSG   = 1024
PE 0:   MPICH_REDUCE_SHORT_MSG     = 65536
PE 0:   MPICH_REDUCE_LARGE_MSG     = 131072
PE 0:   MPICH_ALLREDUCE_LARGE_MSG  = 262144
PE 0:   MPICH_ALLGATHER_VSHORT_MSG = 2048
PE 0:   MPICH_ALLTOALLVW_FCSIZE    = 32
PE 0:   MPICH_ALLTOALLVW_SENDWIN   = 20
PE 0:   MPICH_ALLTOALLVW_RECVWIN   = 20
PE 0: MPICH/MPIIO environment settings:
PE 0:   MPICH_MPIIO_HINTS_DISPLAY  = 0
PE 0:   MPICH_MPIIO_CB_ALIGN       = 0
PE 0:   MPICH_MPIIO_HINTS          = NULL

MPI Environment Variables: Default Values

Go to Menu

The default values of MPI environment variables:



Page 8

Portals API

• API designed to fit MPI message matching rules

• Emphasis on application bypass, off loading of 
message passing work from application process

• Emphasis on scalability

• Similar in concept to Quadrics t-ports

Go to Menu



Page 9Page 9

Cray MPI XT Portals Communications

• Short-message - Eager Protocol
– The sending rank “pushes” the message to the receiving rank
– Used for messages MPICH_MAX_SHORT_MSG_SIZE bytes or less
– Sender assumes that receiver can handle the message

• Matching receive is posted  - or -
• Has available event queue entries  

MPICH_PTL_UNEX_EVENTS and buffer space 
MPICH_UNEX_BUFFER_SIZE to store the message

• Long-message - Rendezvous Protocol
– Messages are “pulled” by the receiving rank
– Used for messages greater than MPICH_MAX_SHORT_MSG_SIZE 

bytes
– Sender sends MPI Header with information for the receiver to pull over 

the data
– Data is sent only after matching receive is posted by receiving rank

Go to Menu



Page 10Page 10

Auto-Scaling MPI Environment Variables

• Key MPI variables that change their default values dependent on job 
size (number of MPI processes)

– New in MPT 3.1
– Aids in scaling applications
– “Default” values are based on total number of ranks in job
– See MPI man page for specific formulas used

• The automatic values are not always the best
– Adjusted defaults aren't perfect for all applications
– Assumes a somewhat communication-balanced application
– Users should always test their applications and try to find the best 

values.

MPICH_MAX_SHORT_MSG_SIZE MPICH_PTL_UNEX_EVENTS

MPICH_UNEX_BUFFER_SIZE MPICH_PTL_OTHER_EVENTS

Go to Menu



Page 11Page 11

Cray MPI XT Portals Communications: Default Values

MPI Environment Variable Name 1,000 PEs 10,000 PEs 50,000 PEs 100,000 PEs

MPICH_MAX_SHORT_MSG_SIZE
(This size determines whether 
the message uses the Eager or 
Rendezvous protocol)

128,000
bytes

20,480 4096 2048

MPICH_UNEX_BUFFER_SIZE
(The buffer allocated to hold the 
unexpected Eager data)

60 MB 60 MB 150 MB 260 MB

MPICH_PTL_UNEX_EVENTS
(Portals generates two events for 
each unexpected message 
received)

20,480
events

22,000 110,000 220,000

MPICH_PTL_OTHER_EVENTS
(Portals send-side and expected 
events)

2048
events

2500 12,500 25,000

Go to Menu

Default values for various Cray MPI job sizes:



Page 12

What does this mean?

• If you see this error message:

internal ABORT - process 0: Other MPI error, error stack:

MPIDI_PortalsU_Request_PUPE(317): exhausted unexpected receive queue

buffering increase via env. var. MPICH_UNEX_BUFFER_SIZE

• It means:

The application is sending too many short, unexpected messages to a particular 
receiver.

• Try doing this to work around the problem:

Increase the amount of memory for MPI buffering using the 
MPICH_UNEX_BUFFER_SIZE variable(default is 60 MB) and/or decrease the 
short message threshold using the MPICH_MAX_SHORT_MSG_SIZE (default is 
128000 bytes) variable. May want to set MPICH_DBMASK to 0x200 to get a 
traceback/coredump to learn where in application this problem is occurring.

Go to Menu



Page 13

What does this mean? (continued)

• If you see this error message:

Assertion failed in file

/notbackedup/users/rsrel/rs64.REL_1_4_06.060419.Wed/pe/computelibs/m

pich2/src/mpid/portals32/src/portals_init.c at line 193:

MPIDI_Portals_unex_block_size > MPIDI_Portals_short_size

• It means:

The appearance of this assertion means that the size of the unexpected buffer space 
is too small to contain even 1 unexpected short message.

• Try doing this to work around the problem:

User needs to check their MPICH environment settings to make sure there are no 
conflicts between the setting of the MPICH_UNEX_BUFFER_SIZE variable and 
the setting for MPICH_MAX_SHORT_MSG_SIZE. Note setting 
MPICH_UNEX_BUFFER_SIZE too large ( > 2 GB) may confuse MPICH and also 
lead to this message. Go to Menu



Page 14

What does this mean? (continued)

• If you see this error message:

[0] MPIDI_PortalsU_Request_FDU_or_AEP: dropped event on unexpected

receive queue, increase

[0] queue size by setting the environment variable MPICH_PTL_UNEX_EVENTS

• It means:

You have exhausted the event queue entries associated with the unexpected queue. The 
default size is 20480.

• Try doing this to work around the problem:

You can increase the size of this queue by setting the environment variable 
MPICH_PTL_UNEX_EVENTS to some value higher than 20480.

Go to Menu



Page 15

What does this mean? (continued)

• If you see this error message:

[0] MPIDI_Portals_Progress: dropped event on "other" queue, increase

[0] queue size by setting the environment variable MPICH_PTL_OTHER_EVENTS

aborting job: Dropped Portals event

• It means:

You have exhausted the event queue entries associated with the “other” queue. This 
can happen if the application is posting many non-blocking sends, or a large number of 
pre-posted receives are being posted, or many MPI-2 RMA operations are posted in a 
single epoch. The default size of the other EQ is 2048.

• Try doing this to work around the problem:

You can increase the size of this queue by setting the environment variable 
MPICH_PTL_OTHER_EVENTS to some value higher than the 2048 default.

Go to Menu



Page 16

What does this mean? (continued)

• If you see this error message:

0:(/notbackedup/users/rsrel/rs64.REL_1_3_12.051214.Wed/pe/compute

libs/mpich2/src/mpid/portals32/src/portals_progress.c:642)

PtlEQAlloc failed : PTL_NO_SPACE

• It means:

You have requested so much EQ space for MPI (and possibly SHMEM if using both in 
same application) that there are not sufficient Portals resources to satisfy the request.

• Try doing this to work around the problem:

You can decrease the size of the event queues by setting the environment variable 
MPICH_PTL_UNEXPECTED_EVENTS and MPICH_PTL_OTHER_EVENTS to 
smaller values.

Go to Menu



Page 17

What does this mean? (continued)

• If you see this error message:

aborting job: Fatal error in MPI_Init: Other MPI error, error

stack: MPIR_Init_thread(195): Initialization failed

MPID_Init(170): failure during portals initialization

MPIDI_Portals_Init(321): progress_init failed

MPIDI_PortalsI_Progress_init(653): Out of memory

• It means:

There is not enough memory on the nodes for the program plus MPI buffers to fit.

• Try doing this to work around the problem:

You can decrease the amount of memory that MPI is using for buffers by using 
MPICH_UNEX_BUFFER_SIZE environment variable.

Go to Menu



Page 18Page 18

What does this mean? (continued)

• If an MPI rank exits abnormally, ideally, Process Manager 
Interface (PMI) daemon reports the error

• Rely on a single aprun error message for clues
• To quiet the PMI daemon, use:  export PMI_QUIET=1

• Recommendation: Subtract 128 from aprun exit code to get the 
fatal signal number.  In this case, signal 11 is a segmentation 
fault.  See aprun man page for more info.

_pmii_daemon(SIGCHLD): PE 1036 exit signal Segmentation fault
_pmii_daemon(SIGCHLD): PE 0 exit signal Killed
_pmii_daemon(SIGCHLD): PE 1 exit signal Killed
_pmii_daemon(SIGCHLD): PE 2 exit signal Killed

...
_pmii_daemon(SIGCHLD): PE 1035 exit signal Killed

[NID 3343]Apid 250839: initiated application termination
Application 250839 exit codes: 139
Application 250839 exit signals: Killed
Application 250839 resources: utime 0, stime 0

Go to Menu



Page 19Page 19

What does this mean? (continued)

• Recommendation: For fatal signals or Cray MPI/MPICH 
errors, get a corefile/traceback
– Unlimit coredumpsize limit
– export MPICH_ABORT_ON_ERROR=1
– One corefile is produced by first rank to hit the problem

• Recommendation: For Cray MPI/Portals out-of-resources 
errors, given by a message, follow the advice

Fatal error in MPI_Wait: Invalid MPI_Request, error stack:
MPI_Wait(156): MPI_Wait(request=0x7fffffb658cc,   

status0x7fffffff9dd0) failed
MPI_Wait(76) : Invalid MPI_Request

[193] MPICH PtlEQPoll error (PTL_EQ_DROPPED): An event was 
dropped on the UNEX EQ handle.  Try increasing the value of 
env var MPICH_PTL_UNEX_EVENTS (cur size is 20480).

Go to Menu



Page 20Page 20

Outline: Cray MPI Communication Tips

Go to Menu

– Cray MPI Point-to-Point Messaging Tips

– Cray MPI Collective Messaging Tips

– MPI Collectives: Memory Usage when Scaling Applications

– MPI Collectives: Memory Usage for MPI_Alltoall

– MPI Collectives: Memory Usage for Scaling MPI_Alltoall



Page 21Page 21

Cray MPI Point-to-Point Messaging Tips

• Pre-posting receives is generally a good idea (see the example on pp. 41-42)
– For EAGER messages, this avoids an extra memcpy
– Portals/Seastar handles the data copy directly into the user buffer
– Can off-load work from CPU
– Avoid posting thousands of receives

• Non-contiguous data types
– More efficient to use contiguous data types for message transfers
– If discontiguous, MPI must:

• Send side: Allocate temp buffer, pack user data into temp buffer
• Entire message is sent over network as contiguous 
• Recv side: Unpack temp buffer into user buffer

• Avoid “swamping” a busy rank with thousands of messages
– Reduce MPICH_MAX_SHORT_MSG_SIZE to force rendezvous protocol 
– Consider enabling MPICH_PTL_SEND_CREDITS “flow-control” feature 
– Modify code to use explicit handshaking to minimize number of in-flight 

messages

Go to Menu



Page 22Page 22

Cray MPI Collective Messaging Tips

• Cray Optimized Collectives
– Work for any intra-communicator (not just MPI_COMM_WORLD)
– Enabled by default
– Many have user-adjustable cross-over points (see man page)
– Can be selectively disabled via MPICH_COLL_OPT_OFF

• export MPICH_COLL_OPT_OFF=mpi_bcast,mpi_allgather
• Cray MPI_Alltoallv / MPI_Alltoallw algorithm 

– Pairwise exchange with windows
– Default window sizes set to allow 20 simultaneous sends/recvs
– Set window sizes to 1 when scaling with medium/large messages

• export MPICH_ALLTOALLVW_SENDWIN=1
• export MPICH_ALLTOALLVW_RECVWIN=1

• Cray-Optimized SMP-aware Collectives
– MPI_Allreduce
– MPI_Barrier
– MPI_Bcast ( new in MPT 3.1.1 )
– MPI_Reduce ( new in MPT 3.1.2 )

Go to Menu



Page 23Page 23

MPI Collectives: Memory Usage when Scaling Applications

• Watch Memory Footprint per node as Applications Scale
– Understand application memory usage as process count per node increases
– MPI unexpected buffers the largest consumer for MPI internally

• Default is 260MB per process for 150,000 rank job
• Decrease by reducing size of MPICH_UNEX_BUFFER_SIZE

• MPI Collective Memory Usage
– When scaling, watch use of collectives that accumulate data on a 

per-rank basis 
– MPI_Alltoall, MPI_Allgather, MPI_Gather, etc.

• Options to Decrease Memory Footprint
– Decrease process density per node (-N8 vs –N6, –N4, –N2, –N1)

• For more information on aprun command, please, refer to A Guide to Using 
NCCS Jaguar System at http://www.nccs.gov/user-support/training- 
education/hpcparallel-computing-links/ or man page by typing “man aprun”.

• Specify aprun options to use both NUMA nodes on a socket
– Consider hybrid MPI + OMP approach

Go to Menu

http://www.nccs.gov/user-support/training-education/hpcparallel-computing-links/
http://www.nccs.gov/user-support/training-education/hpcparallel-computing-links/


Page 24Page 24

MPI Collectives: Memory Usage for MPI_Alltoall

• Alltoall function requires sendbuf and recvbuf parameters
– Each rank needs to allocate:

(count * sizeof(datatype) * num_ranks ) bytes for each buffer
– This adds up quickly when scaling to extreme process counts!

Consider the following code snippet...

MPI_Comm_rank( MPI_COMM_WORLD, &rank );
MPI_Comm_size( MPI_COMM_WORLD, &size );

count   = 1024;
sendbuf = (double *) malloc(count * sizeof(double) * size);
recvbuf = (double *) malloc(count * sizeof(double) * size);

…
MPI_Alltoall(sendbuf, count, MPI_DOUBLE, recvbuf, 

count, MPI_DOUBLE, MPI_COMM_WORLD);

Go to Menu



Page 25Page 25

MPI Collectives: Memory Usage for Scaling MPI_Alltoall

Go to Menu



Page 26Page 26

Outline: MPI Environment Variables

Go to Menu

– Some MPI Environment Variable Tips

– MPICH_FAST_MEMCPY

– MPICH_COLL_SYNC

– MPICH_MPIIO_HINTS

– MPICH_MPIIO_HINTS (2)

– MPICH_MPIIO_CB_ALIGN

– MPICH_ENV_DISPLAY

– MPICH_SMP_OFF

– MPICH_PTL_MATCH_OFF and MPICH_PTL_SEND_CREDITS

– MPICH_PTL_MATCH_OFF



Page 27Page 27

Some MPI Environment Variables Tips

• Current version of MPT: 3.2.0 (Aug 2009)

• MPT attempts to set the right buffer sizes at 
launch time (rather than static settings)

• Suggestion: if you use env vars based on MPT 
3.0 or earlier, comment them out and try out 
3.2.0 without env vars.

Go to Menu



Page 28Page 28

Some MPI Environment Variables Tips (continued)

• Next few slides cover environment variables that are 
associated with MPI performance

• Default settings are set based on the best performance 
on most codes.
– Some codes may benefit from setting or adjusting 

environment variable settings.
• Find much of this information with “man mpi”
• As shown on previous slide, the MPI environment 

has changed significantly, thus it is important to re- 
read the MPI man pages and other related documents.

Go to Menu



Page 29Page 29

MPI Environment Variables: MPICH_ENV_DISPLAY

• If set, causes rank 0 to display all Cray MPI/MPICH 
environment variables and their current settings at 
MPI initialization time.

• Default: Not enabled.

• Useful for debugging purposes.

• MPICH_VERSION_DISPLAY - displays the version 
of Cray MPT being used

Go to Menu



Page 30Page 30

MPI Environment Variables: MPICH_FAST_MEMCPY

• If set, enables an optimized memcpy routine in MPI. The 
routine is used for node-local memory copies in the point- 
to-point and collective MPI operations.

– This can increase the performance of some collectives 
that send large (256K and greater) messages.

• Collectives are almost always faster

• Speedup varies by message size

– By default - is not enabled. There are few cases where 
it  causes performance degradation

– To enable, export MPICH_FAST_MEMCPY=1
Go to Menu



Page 31Page 31

MPI Environment Variables: MPICH_COLL_SYNC

• If set, a Barrier is performed at the beginning of each 
specified MPI collective function. This forces all 
processes participating in that collective to sync up 
before the collective communication can begin.
– To enable this feature for all MPI collectives, set the 

value to 1. Default is off.
• Can be enabled for a selected list of MPI collectives
• There are rare cases where this variable helps

– If a code has lots of collectives and MPI profiling 
shows imbalance (sync time is an issue), this may 
help

Go to Menu



Page 32Page 32

MPI Environment Variables: MPICH_MPIIO_HINTS

• If set, override the default value of 
one or more MPI-IO hints. This also 
overrides any value set in the 
application code with calls to the 
MPI_Info_set routine.

• The hints are applied to the file 
when it is opened with an 
MPI_File_open() call.

• MPICH_MPIIO_HINTS_DISPLAY
– If set, causes rank 0 in the 

participating communicator to 
display the names and values of 
all MPI-IO hints that are set for 
the file being opened with the 
MPI_File_open call.

Default settings:

PE 0: MPIIO hints for
c2F.TILT3d.hdf5:
cb_buffer_size = 16777216
romio_cb_read = automatic
romio_cb_write = automatic
cb_nodes = #nodes/8
romio_no_indep_rw = false
ind_rd_buffer_size= 4194304
ind_wr_buffer_size= 524288
romio_ds_read = automatic
romio_ds_write = automatic
direct_io = false
cb_config_list = *:1

Go to Menu



Page 33Page 33

MPI Environment Variables: MPICH_MPIIO_HINTS (continued)

Examples:
• Syntax

– export MPICH_MPIIO_HINTS=data.hdf5:direct_io=true
• For FlashIO at 5000 processes writing out 500MB per MPI thread, the following 

improved performance:
romio_cb_write = “ENABLE”
romio_cb_read = “ENABLE”
cb_buffer_size = 32M
– When enabled, all collective reads/writes will use collective buffering. When 

disabled, all collective reads/writes will be serviced with individual operations by 
each process. When set to automatic, ROMIO will use heuristics to determine 
when to enable the optimization.

• For S3D at 10K cores:
romio_ds_write = ‘disable’ - specifies if data sieving is to be done on read.
Data sieving is a technique for efficiently accessing noncontiguous regions of data 
romio_no_indep_rw = ‘true’ - specifies whether deferred open is used.
– Romio docs say that this indicates no independent read or write operations will be 

performed. This can be used to limit the number of processes that open the file.

Go to Menu



Page 34Page 34

MPI Environment Variables: MPICH_MPIIO_CB_ALIGN

• If set to 1, new algorithms that take into account physical I/O 
boundaries and the size of I/O requests are used to determine 
how to divide the I/O workload when collective buffering is 
enabled.
– This can improve performance by causing the I/O requests 

of each collective buffering node (aggregator) to start and 
end on physical I/O boundaries and by preventing more 
than one aggregator making reference to any given stripe 
on a single collective I/O call.

– If set to zero or not defined, the algorithms used prior to 
MPT release 3.1 are used.

– Default: not set

Go to Menu



Page 35Page 35

MPI Environment Variables: MPICH_SMP_OFF

• If set, disable the on-node SMP device and use the 
Portals device for all MPI message transfers

• Use in a rare cases where code benefits from using 
Portals matching instead of MPI matching.

• Default: Not enabled.

• Useful for debugging reproducibility issues.

Go to Menu



Page 36Page 36

MPICH_PTL_MATCH_OFF and MPICH_PTL_SEND_CREDITS

MPICH_PTL_MATCH_OFF
• If set, disables registration of receive requests with portals.

– Setting this allows MPI to perform the message matching for the 
portals device. It may be beneficial to set this variable when an 
application exhausts portals internal resources and for latency- 
sensitive applications.

MPICH_PTL_SEND_CREDITS
• Enables flow control to prevent the Portals event queue from being 

overflowed.
– Value of ‘-1’ should prevent queue overflow in any situation
– Should only be used as needed, as flow control will result in less 

optimal performing code. If the Portals unexpected event queue 
can not be increased enough, then flow control may need to be 
enabled.

Go to Menu



Page 37Page 37

MPI Environment Variable: MPICH_PTL_MATCH_OFF

• Case where MPICH_PTL_MATCH_OFF fixed an MPI problem 
[3683] : (/tmp/ulib/mpt/nightly/3.0/042108/xt/trunk/mpich2/src/

mpid/cray/src/adi/ptldev.c:2693)
PtlMEMDPost() failed : PTL_NO_SPACE

• For this, try MATCH, OTHER_EVENTS or SEND_CREDITS env var
[43] MPICH PtlEQPoll error (PTL_EQ_DROPPED): An event was 
dropped on the OTHER EQ handle. Try increasing the value of env var 
MPICH_PTL_OTHER_EVENTS (cur size is 2048).
aborting job:
PtlEQPoll/PtlEQGet error

– Attempts to increase OTHER_EVENTS did not help though (in 
this case)

Go to Menu



Page 38Page 38

Outline: MPI Rank Placement

Go to Menu

– Rank Placement Tips

– Rank order and CrayPAT

– Reordering Workflow

– CrayPAT example



Page 39Page 39

Rank Placement Tips

• In some cases changing how the processes are laid out on the 
machine may affect performance, by relieving 
synchronization/imbalance time.

• The default is currently SMP-style placement. This means that 
for or a multi-node core, sequential MPI ranks are placed on 
the same node.
– In general, MPI codes perform better using SMP placement 
– Collectives have been optimized to be SMP aware

• For example, an 12-process job launched on a XT5 node with 
two 6-core processors would be placed as:

PROCESSOR 0, 1
RANK 0,1,2,3 4,5,6,7,8,9,10,11,12

Go to Menu



Page 40Page 40

Rank Placement Tips (continued)

• The default ordering can be changed using the following environment variable:
MPICH_RANK_REORDER_METHOD

• These are the different values that you can set it to:
0: Round-robin placement. Sequential MPI ranks are placed on the next node in the 

list.
1: SMP-style placement. All cores from all nodes are allocated in a sequential 

order.
2: Folded rank placement. Similar to default ordering except that the tasks N+1 ... 

2N are mapped to slave cores of nodes N ... 1.
3: Custom ordering. The ordering is specified in a file named 

MPICH_RANK_ORDER.
• When to use?

– Point-to-point communication consumes significant fraction of program time 
and load imbalance detected

– Also shown to help for collectives (alltoall) on subcommunicators (GYRO)
– Spread out IO across nodes (POP)

Go to Menu



Page 41Page 41

Rank order and CrayPAT

• One can also use the CrayPat performance measurement tools 
to generate a suggested custom ordering.
– Available if MPI functions are traced (-g mpi or –O apa)
– pat_build –O apa my_program

• see Examples section of pat_build man page
• pat_report options:

– mpi_sm_rank_order
• Uses message data from tracing MPI to generate 

suggested MPI rank order. Requires the program to be 
instrumented using the pat_build -g mpi option.

– mpi_rank_order
• Uses time in user functions, or alternatively, any other 

metric specified by using the -s mro_metric options, to 
generate suggested MPI rank order.

Go to Menu



Page 42Page 42

Using CrayPat: Reordering Workflow

• module load xt-craypat/4.4.1
• Rebuild your code
• pat_build –O apa a.out
• Run a.out+pat
• pat_report –Ompi_sm_rank_order a.out+pat+…sdt/ > pat.report
• Creates MPICH_RANK_REORDER_METHOD.x file
• Then set env var MPICH_RANK_REORDER_METHOD=3 AND
• Link the file MPICH_RANK_ORDER.x to 

MPICH_RANK_ORDER
• Rerun code

Go to Menu



Page 43Page 43

CrayPAT example

Table 1: Suggested MPI Rank Order

Eight cores per node: USER Samp per node
Rank        Max    Max/        Avg Avg/  Max Node

Order  USER Samp SMP  USER Samp SMP  Ranks
d      17062   97.6%      16907  100.0%  832,328,820,797,113,478,898,600
2      17213   98.4%      16907  100.0%  53,202,309,458,565,714,821,970
0      17282   98.8%      16907  100.0%  53,181,309,437,565,693,821,949
1      17489  100.0%      16907  100.0%  0,1,2,3,4,5,6,7

• This suggests that
1. the custom ordering “d” might be the best
2. Folded-rank next best
3. Round-robin 3rd best
4. Default ordering last

Go to Menu



Page 44Page 44

Outline: MPI Programming Techniques

Go to Menu

– Pre-posting receives

– Overlapping communication with computation

– Example: 9-pt stencil pseudo-code

– Example: 9-pt stencil update

– Aggregating data

– Aggregating data: Example from CFD



Page 45Page 45

Pre-posting receives

• If possible, pre-post receives before sender posts the 
matching send
– Optimization - typically useful technique for all 

MPICH installations
• But be careful with excessive pre-posting of the 

receives though, as it will hit Portals internal resource 
limitations eventually (see slide 15 for resource 
limits).

Go to Menu



Page 46Page 46

Overlapping communication with computation

• The basic idea of overlapping communication with computation (though not all 
systems support it) is that one initiates communication and, while data is being 
transferred, does some computation instead of waiting. Ideally, by the time the 
computation is done the communication is also done.  

• Highly algorithmic dependent - you can't overlap everything!
• This is a corollary of pre-posting receives because using “isends” and “irecvs” is a 

common way of trying to do overlapped communication and computation.
• Use non-blocking send/recv calls when it is possible to overlap communication 

with computation.
• In some cases it may be better to replace collective operations with point to point 

communications in order to overlap communication with computation.
– Caution: Not suggesting every collective be re-programmed by hand
– It may be that a certain part of your algorithm has computation that could 

overlap the point to point communications that would not happen with a 
[blocking] collective.

• For more information search the internet on “Overlapping communication with 
computation”

Go to Menu



Page 47Page 47

Example: 9-pt stencil pseudo-code

Basic:

9 pt computation
Update ghost cell boundaries
East/West IRECV, ISEND,
WAITALL
North/South IRECV, ISEND,
WAITALL

Maximal Irecv preposting:

Prepost all IRECV
9 pt computation
Update ghost cell boundaries
East/West ISEND, 
Wait on E/W IRECV only
North/South ISEND,
Wait on the rest

9-point stencil

Go to Menu



Page 48Page 48

Example: 9-pt stencil update
!compute stencil
…

!update ghost cell boundaries.
!East/West
MPI_IRECV(XOUT(1,1), 1, mpi_ew_type, nbr_west, 

mpitag_wshift, COMM_OCN, request(3))
MPI_IRECV(XOUT(iphys_e+1,1), 1, mpi_ew_type, 

nbr_east, mpitag_eshift, COMM_OCN, 
request(4))

MPI_ISEND(XOUT(iphys_e+1-num_ghost_cells,1), 
1, mpi_ew_type, nbr_east, mpitag_wshift, 
COMM_OCN, request(1))

MPI_ISEND(XOUT(iphys_b,1), 1, mpi_ew_type, 
nbr_west, mpitag_eshift, COMM_OCN, 
request(2))

MPI_WAITALL(4, request, status)

!North/South
MPI_IRECV(XOUT(1,jphys_e+1), 1, mpi_ns_type, 

nbr_north, mpitag_nshift, COMM_OCN, 
request(3))

MPI_IRECV(XOUT(1,1), 1, mpi_ns_type, 
nbr_south, mpitag_sshift, COMM_OCN, 
request(4))

MPI_ISEND(XOUT(1,jphys_b), 1, mpi_ns_type, 
nbr_south, mpitag_nshift, COMM_OCN, 
request(1))

MPI_ISEND(XOUT(1,jphys_e+1-num_ghost_cells), 
1, mpi_ns_type, nbr_north, mpitag_sshift, 
COMM_OCN, request(2))

MPI_WAITALL(4, request, status)

! Prepost receive requests
MPI_IRECV(buf_west_rcv, buf_len_ew, 

MPI_DOUBLE_PRECISION, nbr_west, & 
mpitag_wshift, COMM_OCN, request(7))

MPI_IRECV(buf_east_rcv, buf_len_ew, 
MPI_DOUBLE_PRECISION, nbr_east, 
mpitag_eshift, COMM_OCN, request(8))

MPI_IRECV(XOUT(1,jphys_e+1), buf_len_ns, 
MPI_DOUBLE_PRECISION, nbr_north, 
mpitag_nshift, COMM_OCN, request(5))

MPI_IRECV(XOUT(1,1), buf_len_ns, 
MPI_DOUBLE_PRECISION, nbr_south, 
mpitag_sshift, COMM_OCN, request(6))

! compute stencil
…
! send east-west boundary info
MPI_ISEND(buf_east_snd, buf_len_ew, 

MPI_DOUBLE_PRECISION, nbr_east, 
mpitag_wshift, COMM_OCN, request(1))

MPI_ISEND(buf_west_snd, buf_len_ew, 
MPI_DOUBLE_PRECISION, nbr_west, 
mpitag_eshift, COMM_OCN, request(2))

MPI_WAITALL(2, request(7), status_wait)
! send north-south boundary info
MPI_ISEND(XOUT(1,jphys_e+1-num_ghost_cells), 

buf_len_ns, MPI_DOUBLE_PRECISION, 
nbr_north, mpitag_sshift, COMM_OCN, 
request(3))

MPI_ISEND(XOUT(1,jphys_b), buf_len_ns, 
MPI_DOUBLE_PRECISION, nbr_south, 
mpitag_nshift, COMM_OCN, request(4))

MPI_WAITALL(6, request, status_wait) Go to Menu



Page 49Page 49

Aggregating data

• For very small buffers, aggregate data into fewer MPI 
calls (especially for collectives)
– Ex. 1 alltoall with an array of 3 reals is clearly better 

than 3 alltoalls with 1 real
– Do not aggregate too much. The MPI protocol 

switches from an short (eager) protocol to a long 
message protocol using a receiver pull method once 
the message is larger than the eager limit. This limit is 
by default 128000 bytes, but it can be changed with 
the MPICH_MAX_SHORT_MSG_SIZE environment 
variable. The optimal size for messages most of the 
time is less than the eager limit.

Go to Menu



Page 50Page 50

Aggregating data: Example from CFD
***Original***

for (index = 0; index < No; index++){
double tmp;
tmp = 0.0;
out_area[index] = Bndry_Area_out(A, 
labels[index]);
gdsum(&outlet_area[index],1,&tmp);

}
for (index = 0; index < Ni; index++){

double tmp;
tmp = 0.0;
in_area[index] = Bndry_Area_in(A, 
labels[index]);
gdsum(&inlet_area[index],1,&tmp);

}
void gdsum (double *x,int n,double *work)
{

register int i;
MPI_Allreduce (x, work, n, 
MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
/* *x = *work; */
dcopy(n,work,1,x,1);
return;

}

***Improved***

for (index = 0; index < No; index++)
{out_area[index] = Bndry_Area_out(A, 
labels[index]);
}

/* Get gdsum out of for loop */
tmp = new double[No];
gdsum (outlet_area, No, tmp);
delete tmp;
for (index = 0; index < Nin; index++)

{in_area[index] = Bndry_Area_in(A,
labels[index]);
}

/* Get gdsum out of for loop */
tmp = new double[Ni];
gdsum(inlet_area, Ni, tmp);
delete tmp;

Go to Menu



Page 51Page 51Page 51

Go to Menu

– man pages and MPI web-sites

– MPI Books

– Getting Started

– Advanced Topics

– More Information

Outline: Resources for Users



Page 52Page 52

Resources for Users: man pages and MPI web-sites

• There are man pages available for MPI which should be installed in your 
MANPATH. The following man pages have some introductory information 
about MPI. 

% man MPI
% man cc 
% man ftn
% man qsub
% man MPI_Init
% man MPI_Finalize

• MPI man pages are also available online. 
http://www.mcs.anl.gov/mpi/www/

• Main MPI web page at Argonne National Laboratory 
http://www-unix.mcs.anl.gov/mpi

• Set of guided exercises 
http://www-unix.mcs.anl.gov/mpi/tutorial/mpiexmpl

• MPI tutorial at Lawrence Livermore National Laboratory 
https://computing.llnl.gov/tutorials/mpi/

• MPI Forum home page contains the official copies of the MPI standard. 
http://www.mpi-forum.org/

Go to Menu

http://www.mcs.anl.gov/mpi/www/
http://www-unix.mcs.anl.gov/mpi
http://www-unix.mcs.anl.gov/mpi/tutorial/mpiexmpl
https://computing.llnl.gov/tutorials/mpi/
http://www.mpi-forum.org/


Page 53Page 53

Resources for Users: MPI Books

• Books on and about MPI 

– Using MPI, 2nd Edition by William Gropp, Ewing Lusk, and Anthony Skjellum, published by MIT Press 
ISBN 0-262-57132-3. The example programs from this book are available at 
ftp://ftp.mcs.anl.gov/pub/mpi/using/UsingMPI.tar.gz. 
The Table of Contents is also available. An errata for the book is available. Information on the first edition of 
Using MPI is also available, including the errata. Also of interest may be The LAM companion to ``Using 
MPI...'' by Zdzislaw Meglicki (gustav@arp.anu.edu.au). 

– Designing and Building Parallel Programs is Ian Foster's online book that includes a chapter on MPI. It 
provides a succinct introduction to an MPI subset. (ISBN 0-201-57594-9; Published by Addison-Wesley>) 

– MPI: The Complete Reference, by Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack 
Dongarra, The MIT Press . 

– MPI: The Complete Reference - 2nd Edition: Volume 2 - The MPI-2 Extensions, by William Gropp, Steven 
Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir, and Marc Snir, The MIT 
Press. 

– Parallel Programming With MPI, by Peter S. Pacheco, published by Morgan Kaufmann. 

– RS/6000 SP: Practical MPI Programming, by Yukiya Aoyama and Jun Nakano (IBM Japan), and available as 
an IBM Redbook. 

– Supercomputing Simplified: The Bare Necessities for Parallel C Programming with MPI, by William B. 
Levy and Andrew G. Howe, ISBN: 978-0-9802-4210-2. See the website for more information.

Go to Menu

http://mitpress.mit.edu/book-home.tcl?isbn=0262571323
http://www-mitpress.mit.edu/
http://www-mitpress.mit.edu/
http://www-mitpress.mit.edu/
http://www-mitpress.mit.edu/
http://www.cs.usfca.edu/mpi/
http://www.mkp.com/
http://www.redbooks.ibm.com/abstracts/sg245380.html
http://www.supercomputingsimplified.com/


Page 54Page 54Page 54

Resources for Users: Getting Started

• About Jaguar

http://www.nccs.gov/computing-resources/jaguar/

• Quad Core AMD Opteron Processor Overview

http://www.nccs.gov/wp-content/uploads/2008/04/amd_craywkshp_apr2008.pdf

• PGI Compilers for XT5

http://www.nccs.gov/wp-content/uploads/2008/04/compilers.ppt

• NCCS Training & Education – archives of NCCS workshops and seminar series, 
HPC/parallel computing references

http://www.nccs.gov/user-support/training-education/

• 2009 Cray XT5 Quad-core Workshop

http://www.nccs.gov/user-support/training-education/workshops/2008-cray-xt5-quad- 
core-workshop/

Go to Menu



Page 55Page 55Page 55

Resources for Users: Advanced Topics

• Debugging Applications Using TotalView

http://www.nccs.gov/user-support/general-support/software/totalview

• Using Cray Performance Tools - CrayPat

http://www.nccs.gov/computing-resources/jaguar/debugging- 
optimization/cray-pat/

• I/O Tips for Cray XT4

http://www.nccs.gov/computing-resources/jaguar/debugging-optimization/io- 
tips/

• NCCS Software

http://www.nccs.gov/computing-resources/jaguar/software/

Go to Menu



Page 56Page 56Page 56

Resources for Users: More Information

• NCCS website

http://www.nccs.gov/

• Cray Documentation

http://docs.cray.com/

• Contact us

help@nccs.gov

Go to Menu


	MPI Optimization �and Tips
	Outline
	Outline: Cray Message Passing Toolkit (MPT)
	Cray Message Passing Toolkit (MPT) 3.2.0
	IMB PingPong Benchmark
	Key Cray MPI Environment Variables
	MPI Environment Variables: Default Values
	Portals API
	Cray MPI XT Portals Communications
	Auto-Scaling MPI Environment Variables�
	Cray MPI XT Portals Communications: Default Values
	What does this mean?
	What does this mean? (continued)
	What does this mean? (continued)
	What does this mean? (continued)
	What does this mean? (continued)
	What does this mean? (continued)
	What does this mean? (continued)
	What does this mean? (continued)
	Outline: Cray MPI Communication Tips
	Cray MPI Point-to-Point Messaging Tips
	Cray MPI Collective Messaging Tips
	MPI Collectives: Memory Usage when Scaling Applications
	MPI Collectives: Memory Usage for MPI_Alltoall
	MPI Collectives: Memory Usage for Scaling MPI_Alltoall
	Outline: MPI Environment Variables
	Some MPI Environment Variables Tips
	Some MPI Environment Variables Tips (continued)
	MPI Environment Variables: MPICH_ENV_DISPLAY
	MPI Environment Variables: MPICH_FAST_MEMCPY
	MPI Environment Variables: MPICH_COLL_SYNC
	MPI Environment Variables: MPICH_MPIIO_HINTS
	MPI Environment Variables: MPICH_MPIIO_HINTS (continued)
	MPI Environment Variables: MPICH_MPIIO_CB_ALIGN
	MPI Environment Variables: MPICH_SMP_OFF
	MPICH_PTL_MATCH_OFF and MPICH_PTL_SEND_CREDITS
	MPI Environment Variable: MPICH_PTL_MATCH_OFF
	Outline: MPI Rank Placement
	Rank Placement Tips
	Rank Placement Tips (continued)
	Rank order and CrayPAT
	Using CrayPat: Reordering Workflow
	CrayPAT example
	Outline: MPI Programming Techniques
	Pre-posting receives
	Overlapping communication with computation
	Example: 9-pt stencil pseudo-code
	Example: 9-pt stencil update
	Aggregating data
	Aggregating data: Example from CFD
	Outline: Resources for Users
	Resources for Users: man pages and MPI web-sites
	Resources for Users: MPI Books
	Resources for Users: Getting Started
	Resources for Users: Advanced Topics
	Resources for Users: More Information

