
Page 1

Using Parallel I/O

Go to Menu

Page 2

Acknowledgements

• This document is based on the material originally presented by
– Rajeev Thakur. Mathematics and Computer Science Division

Argonne National Laboratory
• MPI-2 Tutorial

– Lonnie Crosby and Mark Fahey. National Institute for
Computational Sciences (NICS)

• 2009 Cray XT5 Quad-core Workshop

Page 3

Outline

• Introduction
• Parallel I/O Support for MPI: MPI-IO
• Parallel File System: Lustre
• Resources for Users

Go to Menu

Page 4

Outline: Introduction

• Factors which affect I/O
• Typical application I/O Patterns
• I/O Parallelism
• Types of Parallelism
• Limits of I/O
• I/O for Computational Science

– High Level Libraries
– I/O Middleware
– Parallel File System

Go to Menu

Page 5

Factors Which Affect I/O

• I/O is simply data migration.
– Memory Disk

• Cache (L1, L2, L3)
• RAM
• Disk

• Size of write/read operations
– Bandwidth vs. Latency

• Data continuity and locality on disk
– Bandwidth vs. Latency

• Number of processes performing I/O
• Characteristics of the file system

– Distributed or Shared
Go to Menu

Page 6

Typical Application I/O Patterns

Serial I/O
• Spokesperson

– One process performs I/O.

Parallel I/O
• File per Process

– Each process performs I/O to a single file.

• Single Shared File
– Each process collectively performs I/O to a single shared

file.

• Multiple Shared Files
– Groups of processes perform I/O to a single shared file. Go to Menu

Page 7

I/O Parallelism

Processes

Filesystem

Go to Menu

Page 8

Types of Parallelism

• Process level parallelism
– MPI
– IO Libraries (HDF5, MPI-IO, p-netCDF)

• File System parallelism
– Distributed File System
– Shared Parallel File System (GPFS, Lustre)

Go to Menu

Page 9

Limits of I/O

• Serial I/O
– is limited by the single process which performs I/O.

• Parallel Process I/O
– is limited by the number of disks which are concurrently

utilized.
– Contention for file system resources.

• Distributed File System
– Files are localized on a single disk.

• Parallel File System
– Files are localized on a single disk.
– Files are striped across multiple disks.

Go to Menu

Page 10

I/O for Computational Science

• Break up support into multiple layers:
– High level I/O library maps app. abstractions to a structured,

portable file format (e.g. HDF5, Parallel netCDF)
– Middleware layer deals with organizing access by many processes

(e.g. MPI-IO, UPC-IO)
– Parallel file system maintains logical space, provides efficient

access to data (e.g. PVFS, GPFS, Lustre)

MPI−IO Implementation

High−Level I/O Library

Parallel File System

Storage Hardware

Application

Parallel File System

Storage Hardware

Application

Go to Menu

Page 11

High Level Libraries

• Provide an appropriate
abstraction for domain
– Multidimensional datasets
– Typed variables
– Attributes

• Self-describing, structured file
format

• Map to middleware interface
– Encourage collective I/O

• Provide optimizations that
middleware cannot

• Examples: HDF5, Parallel
netCDF, ADI05

MPI−IO Implementation

High−Level I/O Library

Parallel File System

Storage Hardware

Application

Go to Menu

Page 12

I/O Middleware

• Facilitate concurrent access by
groups of processes
– Collective I/O
– Atomicity rules

• Expose a generic interface
– Good building block for high-level

libraries

• Match the underlying
programming model (e.g. MPI)

• Efficiently map middleware
operations into PFS ones
– Leverage any rich PFS access

constructs

MPI−IO Implementation

High−Level I/O Library

Parallel File System

Storage Hardware

Application

Go to Menu

Page 13

Parallel File System

• Manage storage hardware
– Present single view
– Focus on concurrent, independent

access
– Knowledge of collective I/O

usually very limited

• Publish an interface that
middleware can use effectively
– Rich I/O language
– Relaxed but sufficient semantics

MPI−IO Implementation

High−Level I/O Library

Parallel File System

Storage Hardware

Application

Go to Menu

Page 14

Outline: MPI-IO

• Introduction
• Common Ways of Doing I/O in Parallel

Programs
• Pros and Cons of Sequential I/O
• Another Way
• What is Parallel I/O?
• Why Parallel I/O?
• Why is MPI a Good Setting for Parallel

I/O?
• Using MPI for Simple I/O

– Individual File Pointers
– Explicit Offsets
– Writing to a File
– Using File Views
– File Views
– MPI_File_set_view
– Other Ways to Write to a Shared File

• Noncontiguous I/O
• Example: Distributed Array Access
• A Simple Noncontiguous File View

Example
• File View Code

• Collective I/O
• Under the Covers of MPI-IO
• Data Sieving
• Data Sieving Writes
• Two-Phase Collective I/O
• Two-Phase Writes
• Aggregation
• Accessing Arrays Stored in Files
• Using the “Distributed Array” (Darray)

Datatype
• A Word of Warning about Darray
• Using the Subarray Datatype
• Local Array with Ghost Area in Memory
• Accessing Irregularly Distributed Arrays
• Nonblocking I/O
• Split Collective I/O
• Shared File Pointers

Go to Menu

Page 15

Introduction

• Goals of this section
– introduce the important features of MPI-IO in the form of

example programs, following the outline of the Parallel I/O
chapter in Using MPI-2

– focus on how to achieve high performance
– learn how to use MPI-IO
– be able to immediately use MPI-IO in your applications
– get much higher I/O performance than what you have been

getting so far using other techniques

Go to Menu

Page 16

Common Ways of Doing I/O in Parallel Programs

• Sequential I/O:
– All processes send data to rank 0, and 0 writes it to the file

Go to Menu

Page 17

Pros and Cons of Sequential I/O

• Pros:
– parallel machine may not support parallel file system (e.g.,

no common file)
– some I/O libraries (e.g. HDF-4, NetCDF) not parallel
– resulting single file is handy for local file system utilities:
ftp, mv

– big blocks improve performance
– short distance from original, serial code

• Cons:
– lack of parallelism limits scalability, performance (single

node bottleneck)
Go to Menu

Page 18

Another Way

• Each process writes to a separate file

• Pros:
– parallelism, high performance

• Cons:
– potentially lots of files to manage – bottleneck with large process

counts
– difficult to read back data from different number of processes Go to Menu

Page 19

What is Parallel I/O?

• Multiple processes of a parallel program
accessing data (reading or writing) from a
common file

FILE

P0 P1 P2 P(n-1)

Go to Menu

Page 20

Why Parallel I/O?

• Non-parallel I/O is simple but
– Poor performance (single process writes to one

file) or
– Awkward and not interoperable with other tools

(each process writes a separate file)
• Parallel I/O

– Provides high performance
– Can provide a single file that can be used with

other tools (such as visualization programs)

Go to Menu

Page 21

Why is MPI a Good Setting for Parallel I/O?

• Writing is like sending a message and reading is like
receiving

• Any parallel I/O system will need a mechanism to
– define collective operations (MPI communicators)
– define noncontiguous data layout in memory and file (MPI

datatypes)
– Test completion of nonblocking operations (MPI request

objects)

• Lots of MPI-like machinery

Go to Menu

Page 22

Using MPI for Simple IO

Page 23

Using MPI for Simple IO: Individual File Pointers

MPI_File fh;
MPI_Status status;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

bufsize = FILESIZE/nprocs;
nints = bufsize/sizeof(int);

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);

MPI_File_seek(fh, rank * bufsize, MPI_SEEK_SET);
MPI_File_read(fh, buf, nints, MPI_INT, &status);
MPI_File_close(&fh); Go to Menu

FILE

P0 P1 P2 P(n-1)

Each process needs to read a chunk of data from a common file

Page 24

Using MPI for Simple IO: Explicit Offsets

include 'mpif.h'

integer status(MPI_STATUS_SIZE)
integer (kind=MPI_OFFSET_KIND) offset

C in F77, see implementation notes (might be integer*8)

call MPI_FILE_OPEN(MPI_COMM_WORLD, '/pfs/datafile', &
MPI_MODE_RDONLY, MPI_INFO_NULL, fh, ierr)

nints = FILESIZE / (nprocs*INTSIZE)
offset = rank * nints * INTSIZE
call MPI_FILE_READ_AT(fh, offset, buf, nints,

MPI_INTEGER, status, ierr)
call MPI_GET_COUNT(status, MPI_INTEGER, count, ierr)
print *, 'process ', rank, 'read ', count, 'integers'

call MPI_FILE_CLOSE(fh, ierr)

Go to Menu

Page 25

Using MPI for Simple IO: Writing to a File

• Use MPI_File_write or
MPI_File_write_at

• Use MPI_MODE_WRONLY or MPI_MODE_RDWR as
the flags to MPI_File_open

• If the file doesn’t exist previously, the flag
MPI_MODE_CREATE must also be passed to
MPI_File_open

• We can pass multiple flags by using bitwise-or ‘|’ in
C, or addition ‘+” in Fortran

Go to Menu

Page 26

Using MPI for Simple IO: Using File Views

• Processes write to shared file

• MPI_File_set_view assigns regions of
the file to separate processes

Go to Menu

Page 27

Using MPI for Simple IO: File Views

• Specified by a triplet (displacement, etype, and
filetype) passed to MPI_File_set_view

• displacement = number of bytes to be skipped
from the start of the file

• etype = basic unit of data access (can be any
basic or derived datatype)

• filetype = specifies which portion of the file is
visible to the process

Go to Menu

Page 28

Using MPI for Simple IO: File View Example

MPI_File thefile;

for (i=0; i<BUFSIZE; i++)
buf[i] = myrank * BUFSIZE + i;

MPI_File_open(MPI_COMM_WORLD, "testfile",
MPI_MODE_CREATE | MPI_MODE_WRONLY,
MPI_INFO_NULL, &thefile);

MPI_File_set_view(thefile, myrank * BUFSIZE *
sizeof(int), MPI_INT,
MPI_INT, "native", MPI_INFO_NULL);

MPI_File_write(thefile, buf, BUFSIZE, MPI_INT,
MPI_STATUS_IGNORE);

MPI_File_close(&thefile);

Go to Menu

Page 29

Using MPI for Simple IO: MPI_File_set_view

• Describes that part of the file accessed by a
single MPI process.

• Arguments to MPI_File_set_view:
– MPI_File file
– MPI_Offset disp
– MPI_Datatype etype
– MPI_Datatype filetype
– char *datarep
– MPI_Info info

Go to Menu

Page 30

Using MPI for Simple IO: Fortran Example

PROGRAM main

use mpi

integer ierr, i, myrank, BUFSIZE, thefile
parameter (BUFSIZE=100)
integer buf(BUFSIZE)
integer(kind=MPI_OFFSET_KIND) disp

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
do i = 0, BUFSIZE

buf(i) = myrank * BUFSIZE + i
enddo

* in F77, see implementation notes (might be integer*8)
Go to Menu

Page 31

Using MPI for Simple IO: Fortran Example (continued)

call MPI_FILE_OPEN(MPI_COMM_WORLD, 'testfile', &
MPI_MODE_WRONLY + MPI_MODE_CREATE, &
MPI_INFO_NULL, thefile, ierr)

call MPI_TYPE_SIZE(MPI_INTEGER, intsize)
disp = myrank * BUFSIZE * intsize
call MPI_FILE_SET_VIEW(thefile, disp, MPI_INTEGER, &

MPI_INTEGER, 'native', &
MPI_INFO_NULL, ierr)

call MPI_FILE_WRITE(thefile, buf, BUFSIZE, MPI_INTEGER, &
MPI_STATUS_IGNORE, ierr)

call MPI_FILE_CLOSE(thefile, ierr)
call MPI_FINALIZE(ierr)

END PROGRAM main

Go to Menu

Page 32

Using MPI for Simple IO: C++ Example

// example of parallel MPI read from single file
#include <iostream.h>
#include "mpi.h"

int main(int argc, char *argv[])
{

int bufsize, *buf, count;
char filename[128];
MPI::Status status;

MPI::Init();
int myrank = MPI::COMM_WORLD.Get_rank();
int numprocs = MPI::COMM_WORLD.Get_size();
MPI::File thefile = MPI::File::Open(MPI::COMM_WORLD,

"testfile",
MPI::MODE_RDONLY,
MPI::INFO_NULL);

Go to Menu

Page 33

Using MPI for Simple IO: C++ Example (continued)

MPI::Offset filesize = thefile.Get_size();
filesize = filesize / sizeof(int);
bufsize = filesize / numprocs + 1;
buf = new int[bufsize];
thefile.Set_view(myrank * bufsize * sizeof(int),

MPI_INT, MPI_INT, "native",
MPI::INFO_NULL);

thefile.Read(buf, bufsize, MPI_INT, &status);
count = status.Get_count(MPI_INT);
cout << "process " << myrank << " read " << count

<< " ints" << endl;
thefile.Close();
delete [] buf;
MPI::Finalize();
return 0;

}
Go to Menu

Page 34

Using MPI for Simple IO: Other Ways to Write to a Shared File

• MPI_File_seek
• MPI_File_read_at
• MPI_File_write_at
• MPI_File_read_shared
• MPI_File_write_shared

• Collective operations

combine seek and I/O
for thread safety

use shared file pointer

like Unix seek

Go to Menu

Page 35

Noncontiguous I/O

• Contiguous I/O moves data from a single block in memory
into a single region of storage

• Noncontiguous I/O has three forms:
– Noncontiguous in memory, noncontiguous in file, or noncontiguous in

both

• Structured data leads naturally to noncontiguous I/O

p0 p0 p0p0

Contiguous Noncontiguous Noncontiguous Noncontiguous
in Memory in File in Both

Go to Menu

Page 36

Example: Distributed Array Access

File containing the global array in row-major order

P3P2

P1P0

2D array distributed among four processes

Go to Menu

Page 37

A Simple Noncontiguous File View Example

etype = MPI_INT

filetype = two MPI_INTs followed by
a gap of four MPI_INTs

displacement filetype filetype and so on...

FILE
head of file

Go to Menu

Page 38

File View Code

MPI_Aint lb, extent;
MPI_Datatype etype, filetype, contig;
MPI_Offset disp;

MPI_Type_contiguous(2, MPI_INT, &contig);
lb = 0; extent = 6 * sizeof(int);
MPI_Type_create_resized(contig, lb, extent, &filetype);
MPI_Type_commit(&filetype);
disp = 5 * sizeof(int); etype = MPI_INT;

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
MPI_MODE_CREATE | MPI_MODE_RDWR, MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, disp, etype, filetype, "native",
MPI_INFO_NULL);

MPI_File_write(fh, buf, 1000, MPI_INT, MPI_STATUS_IGNORE);

Go to Menu

Page 39

Collective I/O

• Many applications have phases of computation and I/O
• During I/O phases, all processes read/write data

– We can say they are collectively accessing storage
• Collective I/O is coordinated access to storage by a group of processes

– Collective I/O functions must be called by all processes participating in I/O
– Allows I/O layers to know more about access as a whole

• Independent I/O is not organized in this way
• No apparent order or structure to accesses

n0 n1 n2 n3 n4 n5 n6n0 n1 n2 n3 n4 n5 n6

Independent I/O Collective I/O
Go to Menu

Page 40

Collective I/O (continued)

• MPI_File_read_all,
MPI_File_read_at_all, etc

• _all indicates that all processes in the group
specified by the communicator passed to
MPI_File_open will call this function

• Each process specifies only its own access
information -- the argument list is the same as
for the non-collective functions

Go to Menu

Page 41

Under the Covers of MPI-IO

• MPI-IO implementation is given a lot of
information in this case:
– Collection of processes reading data
– Structured description of the regions

• Implementation has some options for how to
obtain this data
– Noncontiguous data access optimizations
– Collective I/O optimizations

Go to Menu

Page 42

Data Sieving

• Data sieving is used to combine lots of small accesses into a
single larger one
– Remote file systems (parallel or not) tend to have high latencies
– Reducing # of operations important

• Generally very effective, but not as good as having a PFS that
supports noncontiguous access

Region desired by application

Holes

Region accessed with data sieving

Go to Menu

Page 43

Data Sieving Writes

• Using data sieving for writes is more complicated
– Must read the entire region first
– Then make our changes
– Then write the block back

• Requires locking in the file system
– Can result in false sharing (interleaved access)
– PFS supporting noncontiguous writes is preferred

p0 p0 p0p0

(1) Read (2) Modify (3) Write(0) Initial State
Go to Menu

Page 44

Two-Phase Collective I/O

• Problems with independent, noncontiguous access
– Lots of small accesses
– Independent data sieving reads lots of extra data

• Idea: Reorganize access to match layout on disks
– Single processes use data sieving to get data for many
– Often reduces total I/O through sharing of common blocks

• Second ``phase'' moves data to final destinations

p0 p1 p2 p0 p1 p2 p0 p1 p2

Phase 1Initial State Phase 2 Go to Menu

Page 45

Two-Phase Writes

• Similarly to data sieving, we need to perform a
read/modify/write for two-phase writes if combined
data is noncontiguous

• Overhead is substantially lower than independent
access to the same regions because there is little or no
false sharing

• Note that two-phase is usually applied to file regions,
not to actual blocks

Go to Menu

Page 46

Aggregation

• Aggregation refers to the more general application of this
concept of moving data through intermediate nodes
– Different #s of nodes performing I/O
– Could also be applied to independent I/O

• Can also be used for remote I/O, where aggregator processes
are on an entirely different system

p0 p1 p2 p0 p1 p2 p0 p1 p2

ReadInitial State Redistribute
Go to Menu

Page 47

Accessing Arrays Stored in Files

P0

P5P4

P2P1

P3

coords = (0,0)

coords = (1,0)

coords = (0,1)

coords = (1,1) coords = (1,2)

coords = (0,2)

m

n columns

nproc(1) = 2, nproc(2) = 3

rows

Go to Menu

Page 48

Using the “Distributed Array” (Darray) Datatype

int gsizes[2], distribs[2], dargs[2], psizes[2];

gsizes[0] = m; /* no. of rows in global array */
gsizes[1] = n; /* no. of columns in global array*/

distribs[0] = MPI_DISTRIBUTE_BLOCK;
distribs[1] = MPI_DISTRIBUTE_BLOCK;

dargs[0] = MPI_DISTRIBUTE_DFLT_DARG;
dargs[1] = MPI_DISTRIBUTE_DFLT_DARG;

psizes[0] = 2; /* no. of processes in vertical dimension
of process grid */

psizes[1] = 3; /* no. of processes in horizontal dimension
of process grid */

Go to Menu

Page 49

Darray (continued)

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Type_create_darray(6, rank, 2, gsizes, distribs, dargs,

psizes, MPI_ORDER_C, MPI_FLOAT, &filetype);
MPI_Type_commit(&filetype);

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
MPI_MODE_CREATE | MPI_MODE_WRONLY,
MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, 0, MPI_FLOAT, filetype, "native",
MPI_INFO_NULL);

local_array_size = num_local_rows * num_local_cols;
MPI_File_write_all(fh, local_array, local_array_size,

MPI_FLOAT, &status);

MPI_File_close(&fh);

Go to Menu

Page 50

A Word of Warning about Darray

• The darray datatype assumes a very specific definition of data
distribution -- the exact definition as in HPF

• For example, if the array size is not divisible by the number of
processes, darray calculates the block size using a ceiling
division (20 / 6 = 4)

• darray assumes a row-major ordering of processes in the
logical grid, as assumed by cartesian process topologies in
MPI-1

• If your application uses a different definition for data
distribution or logical grid ordering, you cannot use darray.
Use subarray instead.

Go to Menu

Page 51

Using the Subarray Datatype

gsizes[0] = m; /* no. of rows in global array */
gsizes[1] = n; /* no. of columns in global array*/

psizes[0] = 2; /* no. of procs. in vertical dimension */
psizes[1] = 3; /* no. of procs. in horizontal dimension */

lsizes[0] = m/psizes[0]; /* no. of rows in local array */
lsizes[1] = n/psizes[1]; /* no. of columns in local array */

dims[0] = 2; dims[1] = 3;
periods[0] = periods[1] = 1;
MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 0, &comm);
MPI_Comm_rank(comm, &rank);
MPI_Cart_coords(comm, rank, 2, coords);

Go to Menu

Page 52

Subarray Datatype (continued)

/* global indices of first element of local array */
start_indices[0] = coords[0] * lsizes[0];
start_indices[1] = coords[1] * lsizes[1];

MPI_Type_create_subarray(2, gsizes, lsizes, start_indices,
MPI_ORDER_C, MPI_FLOAT, &filetype);

MPI_Type_commit(&filetype);

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
MPI_MODE_CREATE | MPI_MODE_WRONLY,
MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, 0, MPI_FLOAT, filetype, "native",
MPI_INFO_NULL);

local_array_size = lsizes[0] * lsizes[1];
MPI_File_write_all(fh, local_array, local_array_size,

MPI_FLOAT, &status);

Go to Menu

Page 53

Local Array with Ghost Area
in Memory
• Use a subarray datatype to describe the noncontiguous layout

in memory
• Pass this datatype as argument to MPI_File_write_all

(0,0)

(107,0) (107,107)

(0,107)

(103,4)

(4,103)(4,4)

(103,103)

local data

ghost area for storing
off-process elements

Go to Menu

Page 54

Local Array with Ghost Area

memsizes[0] = lsizes[0] + 8;
/* no. of rows in allocated array */

memsizes[1] = lsizes[1] + 8;
/* no. of columns in allocated array */

start_indices[0] = start_indices[1] = 4;
/* indices of the first element of the local array

in the allocated array */

MPI_Type_create_subarray(2, memsizes, lsizes,
start_indices, MPI_ORDER_C, MPI_FLOAT, &memtype);

MPI_Type_commit(&memtype);

/* create filetype and set file view exactly as in the
subarray example */

MPI_File_write_all(fh, local_array, 1, memtype, &status);

Go to Menu

Page 55

Accessing Irregularly Distributed Arrays

Process 0’s data array Process 1’s data array Process 2’s data array

Process 0’s map array Process 1’s map array Process 2’s map array
0 14137421183 1051

The map array describes the location of each element
of the data array in the common file

Go to Menu

Page 56

Accessing Irregularly Distributed Arrays (continued)

integer (kind=MPI_OFFSET_KIND) disp

call MPI_FILE_OPEN(MPI_COMM_WORLD, '/pfs/datafile', &
MPI_MODE_CREATE + MPI_MODE_RDWR, &
MPI_INFO_NULL, fh, ierr)

call MPI_TYPE_CREATE_INDEXED_BLOCK(bufsize, 1, map, &
MPI_DOUBLE_PRECISION, filetype, ierr)

call MPI_TYPE_COMMIT(filetype, ierr)
disp = 0
call MPI_FILE_SET_VIEW(fh, disp, MPI_DOUBLE_PRECISION, &

filetype, 'native', MPI_INFO_NULL, ierr)

call MPI_FILE_WRITE_ALL(fh, buf, bufsize, &
MPI_DOUBLE_PRECISION, status, ierr)

call MPI_FILE_CLOSE(fh, ierr)
Go to Menu

Page 57

Nonblocking I/O

MPI_Request request;
MPI_Status status;

MPI_File_iwrite_at(fh, offset, buf, count, datatype,
&request);

for (i=0; i<1000; i++) {
/* perform computation */

}

MPI_Wait(&request, &status);

Go to Menu

Page 58

Split Collective I/O

• A restricted form of nonblocking collective I/O
• Only one active nonblocking collective operation

allowed at a time on a file handle
• Therefore, no request object necessary

MPI_File_write_all_begin(fh, buf, count, datatype);

for (i=0; i<1000; i++) {
/* perform computation */

}

MPI_File_write_all_end(fh, buf, &status);

Go to Menu

Page 59

Shared File Pointers

#include "mpi.h"
// C++ example
int main(int argc, char *argv[])
{

int buf[1000];
MPI::File fh;

MPI::Init();

MPI::File fh = MPI::File::Open(MPI::COMM_WORLD,
"/pfs/datafile", MPI::MODE_RDONLY, MPI::INFO_NULL);

fh.Write_shared(buf, 1000, MPI_INT);
fh.Close();

MPI::Finalize();
return 0;

}
Go to Menu

Page 60

Outline: Parallel File System - Lustre
• Introduction
• Luster Concepts
• A Bigger Picture
• Lustre Striping
• File Parallelism
• Default Configuration
• lfs getstripe
• Modifications of the Defaults: setstripe
• General Optimization Tips
• Lustre Best Practices for Users
• Lustre Best Practices for Developers
• Spokesperson – Serial I/O: importance

of data locality
• Serial I/O: Data Locality and

Continuity
• Single Shared File

– Shared File Layouts
– Results
– Data Locality and Continuity

Go to Menu

• Scalability: File Per Process
• Scalability: Single Shared File
• Scalability: Summary
• Buffered I/O
• Standard Output and Error
• Binary Files and Endianness
• Case Study: Parallel I/O
• Case Study: Buffered I/O
• Fault Tolerance

Page 61

Introduction

• The parallel file system available on jaguarpf is called Lustre
(/tmp/work/$USER), which offers a set of user-level commands to tune and
optimize file access operations.

• For many applications a technique called file striping will increase I/O
performance. File striping will primarily improve performance for codes
doing serial I/O from a single node or parallel I/O from multiple nodes
writing to a single shared file, such as with MPI-IO, parallel HDF5, or
parallel NetCDF.

• The Lustre file system is made up of an underlying set of I/O servers and
disks called Object Storage Servers (OSSs) and Object Storage Targets
(OSTs) respectively. A file is said to be striped when read and write
operations access multiple OST's concurrently. File striping is a way to
increase I/O performance since writing or reading from multiple OST's
simultaneously increases the available I/O bandwidth.

• Details about the Lustre file system and its configurations are available at
http://wiki.lustre.org/. Go to Menu

Page 62

Luster Concepts

• Two types of servers
– Metadata server (MDS)

• Holds the directory tree
• Stores metadata about each file (except for size)
• Once file is opened, I/O to file does not involve the

MDS
– Object storage server (OSS)

• Manages OSTs (think single disk/LUN)
• OSTs hold stripes of the file contents

– Think RAID0
• Maintains the locking for the file contents it is

responsible for
Go to Menu

Page 63

A Bigger Picture

Computational Nodes
– Jaguarpf: 18,688

Object Storage
Server (OSS) Nodes

– Jaguarpf: 168
– 100 GB/s

Object Storage
Target (OST)

– Jaguarpf: 672
– 6.2 TB Disk
– 4.1 PB

Go to Menu

Page 64

Lustre Striping

Go to Menu

Page 65

File Parallelism

Go to Menu

Page 66

Default Configuration

• The following command displays the IDs of the 672 file servers (called OSTs) on
jaguarpf (as of 9/04/09), as well as the default stripe count, stripe size and stripe
offset:

> lfs osts
OBDS:
0: widow1-OST0000_UUID ACTIVE
1: widow1-OST0001_UUID ACTIVE
2: widow1-OST0002_UUID ACTIVE
……………………………………….…
671: widow1-OST029f_UUID ACTIVE
/lustre/widow1
(Default) stripe_count: 4 stripe_size: 1048576 stripe_offset: 0

• The stripe count defines how many file servers a single file can be distributed over;
the default stripe count on jaguarpf is 4. The stripe size (default, 1MB=1048576
bytes) is the number of bytes written on one OST before targeting the next (where
applicable). The stripe offset is the starting OST ID.

Go to Menu

Page 67

lfs getstripe

• To find out striping information for files and directories, the
following command can be used: lfs getstripe --quiet <dir|file>
For exemple,

> lfs getstripe --quiet file.txt
539 831832 0xcb158 0

502 831934 0xcb1be 0

248 832342 0xcb356 0
632 830997 0xcae15 0

• This example shows IDs for 4 target OSTs on the system.

Go to Menu

Page 68

Modifications of the Defaults: setstripe

• Lustre provides a user command setstripe for modifying one or more
striping parameters for individual files or directories.

• Syntax:
>lfs setstripe filename [stripe-size] [OST-offset] [stripe-count]

• For example, the following command would change the default stripe size to
2MB:

> lfs setstripe <dir|file> 2m -1 4

• Where dir is an existing directory, and file is a file that does not yet exist.
The first parameter (2m) represents the stripe size, the second parameter is the
stripe offset (-1 is for round robin assignment starting at OST 0), while the
third parameter represents the default stripe count.

• It is HIGHLY recommended that the default offset value is left unchanged.
Go to Menu

Page 69

Modifications of the Defaults: setstripe (continued)

• When the setstripe is invoked on an existing directory, any new files
that are created in that directory in the future will inherit the newly defined
striping parameters. Existing files in that directory are not affected,
however. When setstripe is invoked for a new file the file is created
with the new striping parameters. Setstripe cannot be invoked for an
existing file.
For example, to limit the number of OSTs to 1 issue the following
command:
> lfs setstripe <dir|file> 1m -1 1

and to use all available OSTs:
> lfs setstripe <dir|file> 1m -1 -1

• Details of the supported Lustre commands are available on the lfs man
page.

• Note that the commands relevant to system administrators may not work in
user mode.

Go to Menu

Page 70

General Optimization Tips

• There are different strategies for optimizing I/O performance on Rosa
depending on the implementation of file I/O operations in an application
and the behavior and sizes of data transfers as well as the file sizes. The
table below lists some suggestions for commonly used file I/O
implementations in scientific applications.

lfs setstripe <dir|file> 1m -1 40 Single shared file accessed by multiple MPI tasks/core >100 GB

Potential scaling bottleneck Single file (read/written by a single MPI task) >100 GB

Potential scaling bottleneck Single file per MPI task/core>100 GB

lfs setstripe <dir|file> 1m -1 10 Single shared file accessed by multiple MPI tasks/core < 100GB

DefaultSingle file (read/written by a single MPI task)< 100GB

DefaultSingle file per MPI task/core< 100GB

DefaultSingle shared file accessed by multiple MPI tasks/core< 1GB

lfs setstripe <dir|file> 1m -1 1Single file (read/written by a single MPI task) < 1GB

lfs setstripe <dir|file> 1m -1 1Single file per MPI task/core < 1GB

Recommended settingI/O patternFile size

Go to Menu

Page 71

Lustre Best Practices for Users

• Use lfs setstripe in a safe manner
• Set striping appropriately for your use
• Choose stripe width for your application
• Avoid “excessively” large numbers of files in directories
• Avoid using ls -l repeatedly
• More information on website

– http://www.nccs.gov/user-support/general-support/file-systems/spider

Go to Menu

Page 72

Lustre Best Practices for Users (continued…)

• Use lfs setstripe in a safe manner
– Always use the explicit options, not the relative ones
– Avoid specifying a starting OST index
– Use –s for stripe width (default is 1MB)

• Can specify in bytes, kilobytes (k), megabytes (m), or gigabytes (g)
– Use –c for stripe count (default is 4)
– Not specifying an option keeps the current value

• Bad:
– lfs setstripe $NAME 1m -1 16

• Good:
– lfs setstripe $NAME -s 1m -c 16

Go to Menu

Page 73

Lustre Best Practices for Users (continued…)

• Use lfs getstripe to check the striping on a file
• Example: extracting source code

mkdir source
lfs setstripe source c 1
cd source
tar -x –f $TARFILE

• Example: fixing incorrect striping
lfs setstripe newfile -c 16
cp oldfile newfile
rm oldfile
mv newfile oldfile Go to Menu

Page 74

Lustre Best Practices for Users (continued…)

• Set striping appropriately for your use
– Default stripe count is 4, but may not match your

usage
– Small files (< 250 MB) should use a single stripe
– Large files accessed in parallel (single shared-file)

should have a stripe count that is a factor of the
number of writers (e.g. 20 vs. 21 for 400 writers)

• Cannot use more than 160 stripes currently
– Maximum number of OSTs currently available

Go to Menu

Page 75

Lustre Best Practices for Users (continued…)

• For single shared-file, choose per-writer data
size as stripe width if possible
– If each rank will write 256 MB, then use 256 MB

as the stripe width
– Minimizes lock contention
– NCCS SciComp Liaison can help determine best

stripe size
– May not always be possible to pick a winner

Go to Menu

Page 76

Lustre Best Practices for Users (continued…)

• Avoid directories with “excessive” numbers of
files in them
– “Excessive” is a fuzzy number
– Greater 1M - definitely excessive
– 100k - probably excessive
– 50k - borderline
– 10k - OK

Go to Menu

Page 77

Lustre Best Practices for Users (continued…)

• Avoid doing ls –l repeatedly
– Especially in an excessively large directory!
– If you are just looking to see if a file exists, use

plain ls
– Better yet – look for that file explicitly
– Avoid options that sort by time stamp or add color

to the listing

Go to Menu

Page 78

Lustre Best Practices for Developers

• Open files read-only when possible
• Read small, shared files once
• Use a directory hierarchy to limit files in a single

directory
• Use access(), not stat() to check for existence
• Avoid flock()
• Consider using libLUT or middleware I/O libraries
• Stripe-align I/O if possible

Go to Menu

Page 79

Lustre Best Practices for Developers (continued…)

• Open files read-only when possible
– Fortran defaults to READWRITE if no ACTION

is given
– Fortran adds O_CREAT if opening file for writing

• O_CREAT requests an exclusive lock for the
file (not contents)
– Lock ping-pong championships when large job

opens the file from all ranks at once

Go to Menu

Page 80

Lustre Best Practices for Developers (continued…)

• If all ranks need data from a single file, it is better to have
one reader and then broadcast the contents than have
everyone read the file.

Fortran example, without error handling and assuming
known file size:

CALL MPI_COMM_RANK(MPI_COMM_WORLD, my_rank, ierr)
IF (my_rank .eq. 0) THEN

OPEN(UNIT=1,FILE=PathName,ACTION='READ')
READ(1,*) buffer

ENDIF
CALL MPI_BCAST(buffer,SIZE,MPI_CHAR,0,MPI_COMM_WORLD,ierr)

Go to Menu

Page 81

• Use a directory hierarchy to limit files in a
single directory
– Opening a file currently keeps a lock on the parent

directory for one message round-trip
– Split directory up to avoid contention
– For two level hierarchy, square root of the total

number of files provides best balance

Lustre Best Practices for Developers (continued…)

Go to Menu

Page 82

• Use access(), not stat() to check for existence
– Size is not kept on metadata server, so using stat()

requires communication with each object storage
server that has a portion of the file

– access() only needs one request

Lustre Best Practices for Developers (continued…)

Go to Menu

Page 83

• Avoid flock()
– O(N**2) algorithm for number of lockers on file
– Ok, if N is small
– Does not scale to systems the size of Jaguar or

JaguarPF

Lustre Best Practices for Developers (continued…)

Go to Menu

Page 84

• Consider using libLUT or middleware I/O
libraries such as ADIOS
– Extracting full performance from the file system

requires knowledge of the environment
– Maintaining performance during concurrent access

from other users requires constant adaptation
– Do you really want to write all of this?

• And maintain it for multiple systems?

Lustre Best Practices for Developers (continued…)

Go to Menu

Page 85

• Stripe-align I/O if possible
– Lustre is a POSIX-compliant file system
– Overlapping writes are 'last-to-write wins‘
– This requires locking of the contents
– Unaligned writes require obtaining locks from

multiple servers

Lustre Best Practices for Developers (continued…)

Go to Menu

Page 86

Spokesperson – Serial I/O: importance of data locality

• 32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size

Lustre

Go to Menu

Page 87

Spokesperson – Serial I/O: importance of data continuity (cont.)

• Single OST, 256 MB File Size

Lustre

Go to Menu

Page 88

Serial I/O: Data Locality and Continuity

• Data Locality
– Performance is decreased when a single process

accesses multiple disks.
– Is limited by the single process which performs I/O.

• Data Continuity
– Larger read/write operations improve performance.
– Larger stripe sizes improve performance (places

data contiguously on disk).
– Either may become a limiting factor.

Go to Menu

Page 89

Single Shared File

• Important Considerations
– Data locality
– Data continuity

• Parallel file Structure Lustre

Go to Menu

Page 90

Single Shared File: Shared File Layouts

32 or 64 MB
Proc. 1

32 or 64 MB
Proc. 2

32 or 64 MB
Proc. 3

32 or 64 MB
Proc. 4

…

32 or 64 MB
Proc. 32

Shared File Layout #1

Go to Menu

1 or 2 MB
Proc. 1

1 or 2 MB
Proc. 2

1 or 2 MB
Repetition #1 Proc. 3

1 or 2 MB
Proc. 4

…
1 or 2 MB
Proc. 32

Repetition #2 ‐ #31 …

1 or 2 MB
Proc. 1

1 or 2 MB
Proc. 2

1 or 2 MB
Repetition #32 Proc. 3

1 or 2 MB
Proc. 4

…
1 or 2 MB
Proc. 32

Shared File Layout #2

Page 91

Single Shared File: Results

Lustre

Go to Menu

Page 92

Single Shared File: Data Locality and Continuity

• Data Locality
– Performance is increased when portions of

a shared file are localized on a single drive.

• Data Continuity
– Larger read/write operations improve

performance.
– Larger stripe sizes improve performance

(places data contiguously on disk).
– Either may become a limiting factor.

Go to Menu

Page 93

Scalability: File Per Process

• 128 MB per file and a 32 MB Transfer size

Go to Menu

Page 94

Scalability: Single Shared File

• 32 MB per process, 32 MB Transfer size and Stripe size

Go to Menu

Page 95

Scalability: Summary

• Serial I/O
– Is not scalable. Limited by single process which

performs I/O.
• File per Process

– Limited at large process/file counts by:
• Metadata Operations
• Contention on a single drive

• Single Shared File
– Limited at large process counts by contention on a

single drive.
– File striping limitation of 160 OSTs in Lustre

Go to Menu

Page 96

Buffered I/O

• Advantages
– Aggregates smaller read/write operations

into larger operations.
– Examples: OS Kernel Buffer, MPI-IO

Collective Buffering

• Disadvantages
– Requires additional memory for the

buffer.
– Can tend to serialize I/O.

• Caution
– Frequent buffer flushes can adversely

affect performance.

Buffer

Go to Menu

Page 97

Standard Output and Error

• Standard Ouput and Error streams are
effectively serial I/O.

• Generally, the MPI launcher will aggregate
these requests. (Example: mpirun, mpiexec,
aprun, ibrun, etc..)

• Disable debugging messages when running in
production mode.
– “Hello, I’m task 32000!”
– “Task 64000, made it through loop.”

Go to Menu

Page 98

Binary Files and Endianness

• Writing a big-endian binary file with compiler flag
byteswapio

File “XXXXXX"
Calls Megabytes Avg Size

Open 1
Write 5918150 23071.28062 4088
Close 1
Total 5918152 23071.28062 4088

• Writing a little-endian binary
File “XXXXXX"

Calls Megabytes Avg Size
Open 1
Write 350 23071.28062 69120000
Close 1
Total 352 23071.28062 69120000

• Can use more portable file formats such as HDF5,
NetCDF, or MPI-IO.

Go to Menu

Page 99

Case Study: Parallel I/O

• A particular code both reads and writes a 377 GB file.
Runs on 6000 cores.
– Total I/O volume (reads and writes) is 850 GB.
– Utilizes parallel HDF5

• Default Stripe settings: count 4, size 1M, index -1.
– 1800 s run time (~ 30 minutes)

• Stripe settings: count -1, size 1M, index -1.
– 625 s run time (~ 10 minutes)

• Results
– 66% decrease in run time.

Go to Menu

Page 100

Case Study: Buffered I/O

• A post processing application writes a 1GB file.
• This occurs from one writer, but occurs in many small write operations.

– Takes 1080 s (~ 18 minutes) to complete.
• IOBUF was utilized to intercept these writes with 64 MB buffers.

– Takes 4.5 s to complete. A 99.6% reduction in time.

File "ssef_cn_2008052600f000"
Calls Seconds Megabytes Megabytes/sec Avg Size

Open 1 0.001119
Read 217 0.247026 0.105957 0.428931 512
Write 2083634 1.453222 1017.398927 700.098632 512
Close 1 0.220755
Total 2083853 1.922122 1017.504884 529.365466 512
Sys Read 6 0.655251 384.000000 586.035160 67108864
Sys Write 17 3.848807 1081.145508 280.904052 66686072
Buffers used 4 (256 MB)
Prefetches 6
Preflushes 15

Lustre

Go to Menu

Page 101

Fault Tolerance

• Allow application to generate checkpoint files.
– Should be minimal in size.
– Should not be written too often.

• Keeping checkpoint files minimal
– Only incorporate unique information. Allow application to

calculate or derive appropriate information.

• Keeping the checkpoint generation low.
– The goal isn’t to keep all information at all times.

(checkpointing after every iteration.)
– Pick a write frequency which allows for a reasonable loss of

computation time.
101 Go to Menu

Page 102

Outline: Resources for Users

Go to Menu

– I/O-Related References

– Getting Started

– Advanced Topics

– More Information

Page 103

Resources for Users: I/O-Related References

• PVFS and PVFS2 (open source)
– www.parl.clemson.edu/pvfs/
– www.pvfs.org/pvfs2/

• Lustre File System
– www.lustre.org

• GPFS
– www.almaden.ibm.com/storagesystems/file_systems/GPFS/

• Lustre File System – White Paper October 2008
– http://www.sun.com/software/products/lustre/docs/lustrefilesystem_wp.pdf

• GPFS: Concepts, Planning, and Installation Guide
– http://www.publib.boulder.ibm.com/epubs/pdf/a7604132.pbf

• Introduction to HDF5
– http://www.hdfgroup.org/HDF5/doc/H5.intro.html

• The NetCDF Tutorial
– http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial.pdf

• John May, Parallel I/O for High Performance Computing, Morgan Kaufmann, 2000.
– Good coverage of basic concepts, some MPI-IO, HDF5, and serial netCDF Go to Menu

Page 104

Resources for Users: Getting Started

• About Jaguar

http://www.nccs.gov/computing-resources/jaguar/

• Quad Core AMD Opteron Processor Overview

http://www.nccs.gov/wp-content/uploads/2008/04/amd_craywkshp_apr2008.pdf

• PGI Compilers for XT5

http://www.nccs.gov/wp-content/uploads/2008/04/compilers.ppt

• NCCS Training & Education – archives of NCCS workshops and seminar series,
HPC/parallel computing references

http://www.nccs.gov/user-support/training-education/

• 2009 Cray XT5 Quad-core Workshop

http://www.nccs.gov/user-support/training-education/workshops/2008-cray-xt5-quad-
core-workshop/

Go to Menu

Page 105

Resources for Users: Advanced Topics

• Debugging Applications Using TotalView

http://www.nccs.gov/user-support/general-support/software/totalview

• Using Cray Performance Tools - CrayPat

http://www.nccs.gov/computing-resources/jaguar/debugging-
optimization/cray-pat/

• I/O Tips for Cray XT4

http://www.nccs.gov/computing-resources/jaguar/debugging-optimization/io-
tips/

• NCCS Software

http://www.nccs.gov/computing-resources/jaguar/software/
Go to Menu

Page 106

Resources for Users: More Information

• NCCS website

http://www.nccs.gov/

• Cray Documentation

http://docs.cray.com/

• Contact us

help@nccs.gov

Go to Menu

