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Outline: Introduction

• Factors which affect I/O
• Typical application I/O Patterns
• I/O Parallelism 
• Types of Parallelism
• Limits of I/O
• I/O for Computational Science

– High Level Libraries
– I/O Middleware
– Parallel File System
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Factors Which Affect I/O

• I/O is simply data migration.
– Memory Disk

• Cache (L1, L2, L3)
• RAM 
• Disk

• Size of write/read operations
– Bandwidth vs. Latency

• Data continuity and locality on disk
– Bandwidth vs. Latency

• Number of processes performing I/O
• Characteristics of the file system

– Distributed or Shared
Go to Menu



Page 6

Typical Application I/O Patterns

Serial I/O
• Spokesperson

– One process performs I/O.

Parallel I/O
• File per Process

– Each process performs I/O to a single file.

• Single Shared File
– Each process collectively performs I/O to a single shared 

file.

• Multiple Shared Files
– Groups of processes perform I/O to a single shared file. Go to Menu
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I/O Parallelism 

Processes

Filesystem
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Types of Parallelism

• Process level parallelism
– MPI
– IO Libraries (HDF5, MPI-IO, p-netCDF)

• File System parallelism
– Distributed File System
– Shared Parallel File System (GPFS, Lustre)

Go to Menu
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Limits of I/O

• Serial I/O
– is limited by the single process which performs I/O.

• Parallel Process I/O
– is limited by the number of disks which are concurrently 

utilized.
– Contention for file system resources.

• Distributed File System
– Files are localized on a single disk.

• Parallel File System
– Files are localized on a single disk.
– Files are striped across multiple disks.

Go to Menu
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I/O for Computational Science

• Break up support into multiple layers:
– High level I/O library maps app. abstractions to a structured, 

portable file format (e.g. HDF5, Parallel netCDF)
– Middleware layer deals with organizing access by many processes 

(e.g. MPI-IO, UPC-IO)
– Parallel file system maintains logical space, provides efficient 

access to data (e.g. PVFS, GPFS, Lustre)

MPI−IO Implementation

High−Level I/O Library

Parallel File System

Storage Hardware

Application

Parallel File System

Storage Hardware

Application
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High Level Libraries

• Provide an appropriate 
abstraction for domain
– Multidimensional datasets
– Typed variables
– Attributes

• Self-describing, structured file 
format

• Map to middleware interface
– Encourage collective I/O

• Provide optimizations that 
middleware cannot

• Examples: HDF5, Parallel 
netCDF, ADI05

MPI−IO Implementation

High−Level I/O Library

Parallel File System

Storage Hardware

Application
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I/O Middleware

• Facilitate concurrent access by 
groups of processes
– Collective I/O
– Atomicity rules

• Expose a generic interface
– Good building block for high-level 

libraries

• Match the underlying 
programming model (e.g. MPI)

• Efficiently map middleware 
operations into PFS ones
– Leverage any rich PFS access 

constructs

MPI−IO Implementation

High−Level I/O Library

Parallel File System

Storage Hardware

Application
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Parallel File System

• Manage storage hardware
– Present single view
– Focus on concurrent, independent 

access
– Knowledge of collective I/O 

usually very limited

• Publish an interface that 
middleware can use effectively
– Rich I/O language
– Relaxed but sufficient semantics

MPI−IO Implementation

High−Level I/O Library

Parallel File System

Storage Hardware

Application
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Outline: MPI-IO

• Introduction
• Common Ways of Doing I/O in Parallel 

Programs
• Pros and Cons of Sequential I/O
• Another Way
• What is Parallel I/O?
• Why Parallel I/O?
• Why is MPI a Good Setting for Parallel 

I/O?
• Using MPI for Simple I/O

– Individual File Pointers
– Explicit Offsets
– Writing to a File
– Using File Views
– File Views
– MPI_File_set_view
– Other Ways to Write to a Shared File

• Noncontiguous I/O
• Example: Distributed Array Access
• A Simple Noncontiguous File View 

Example
• File View Code

• Collective I/O
• Under the Covers of MPI-IO
• Data Sieving
• Data Sieving Writes
• Two-Phase Collective I/O
• Two-Phase Writes
• Aggregation
• Accessing Arrays Stored in Files
• Using the “Distributed Array” (Darray) 

Datatype
• A Word of Warning about Darray
• Using the Subarray Datatype
• Local Array with Ghost Area in Memory
• Accessing Irregularly Distributed Arrays
• Nonblocking I/O
• Split Collective I/O
• Shared File Pointers
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Introduction

• Goals of this section
– introduce the important features of MPI-IO in the form of 

example programs, following the outline of the Parallel I/O 
chapter in Using MPI-2

– focus on how to achieve high performance
– learn how to use MPI-IO
– be able to immediately use MPI-IO in your applications
– get much higher I/O performance than what you have been 

getting so far using other techniques 

Go to Menu
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Common Ways of Doing I/O in Parallel Programs

• Sequential I/O:
– All processes send data to rank 0, and 0 writes it to the file

Go to Menu
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Pros and Cons of Sequential I/O

• Pros:
– parallel machine may not support parallel file system (e.g., 

no common file)
– some I/O libraries (e.g. HDF-4, NetCDF) not parallel
– resulting single file is handy for local file system utilities: 
ftp, mv

– big blocks improve performance
– short distance from original, serial code

• Cons:
– lack of parallelism limits scalability, performance (single 

node bottleneck)
Go to Menu
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Another Way

• Each process writes to a separate file

• Pros: 
– parallelism, high performance

• Cons:  
– potentially lots of files to manage – bottleneck with large process 

counts
– difficult to read back data from different number of processes Go to Menu
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What is Parallel I/O?

• Multiple processes of a parallel program 
accessing data (reading or writing) from a 
common file

FILE

P0 P1 P2 P(n-1)
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Why Parallel I/O?

• Non-parallel I/O is simple but
– Poor performance (single process writes to one 

file) or
– Awkward and not interoperable with other tools 

(each process writes a separate file)
• Parallel I/O

– Provides high performance
– Can provide a single file that can be used with 

other tools (such as visualization programs)

Go to Menu
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Why is MPI a Good Setting for Parallel I/O?

• Writing is like sending a message and reading is like 
receiving

• Any parallel I/O system will need a mechanism to
– define collective operations (MPI communicators)
– define noncontiguous data layout in memory and file (MPI 

datatypes)
– Test completion of nonblocking operations (MPI request 

objects)

• Lots of MPI-like machinery

Go to Menu
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Using MPI for Simple IO
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Using MPI for Simple IO: Individual File Pointers

MPI_File fh;
MPI_Status status;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

bufsize = FILESIZE/nprocs;
nints = bufsize/sizeof(int);

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile", 
MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);

MPI_File_seek(fh, rank * bufsize, MPI_SEEK_SET);
MPI_File_read(fh, buf, nints, MPI_INT, &status);
MPI_File_close(&fh); Go to Menu

FILE

P0 P1 P2 P(n-1)

Each process needs to read a chunk of data from a common file
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Using MPI for Simple IO: Explicit Offsets

include 'mpif.h'

integer status(MPI_STATUS_SIZE)
integer (kind=MPI_OFFSET_KIND) offset

C in F77, see implementation notes (might be integer*8)

call MPI_FILE_OPEN(MPI_COMM_WORLD, '/pfs/datafile', &
MPI_MODE_RDONLY, MPI_INFO_NULL, fh, ierr)

nints = FILESIZE / (nprocs*INTSIZE)
offset = rank * nints * INTSIZE
call MPI_FILE_READ_AT(fh, offset, buf, nints, 

MPI_INTEGER, status, ierr)
call MPI_GET_COUNT(status, MPI_INTEGER, count, ierr)
print *, 'process ', rank, 'read ', count, 'integers'

call MPI_FILE_CLOSE(fh, ierr)

Go to Menu
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Using MPI for Simple IO: Writing to a File

• Use MPI_File_write or 
MPI_File_write_at

• Use MPI_MODE_WRONLY or MPI_MODE_RDWR as 
the flags to MPI_File_open

• If the file doesn’t exist previously, the flag 
MPI_MODE_CREATE must also be passed to
MPI_File_open

• We can pass multiple flags by using bitwise-or ‘|’ in 
C, or addition ‘+” in Fortran

Go to Menu
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Using MPI for Simple IO: Using File Views

• Processes write to shared file

• MPI_File_set_view assigns regions of 
the file to separate processes

Go to Menu



Page 27

Using MPI for Simple IO: File Views

• Specified by a triplet (displacement, etype, and 
filetype) passed to MPI_File_set_view

• displacement = number of bytes to be skipped 
from the start of the file

• etype = basic unit of data access (can be any 
basic or derived datatype)

• filetype = specifies which portion of the file is 
visible to the process

Go to Menu
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Using MPI for Simple IO: File View Example

MPI_File thefile;

for (i=0; i<BUFSIZE; i++)
buf[i] = myrank * BUFSIZE + i;

MPI_File_open(MPI_COMM_WORLD, "testfile",
MPI_MODE_CREATE | MPI_MODE_WRONLY,
MPI_INFO_NULL, &thefile);

MPI_File_set_view(thefile, myrank * BUFSIZE * 
sizeof(int), MPI_INT,
MPI_INT, "native", MPI_INFO_NULL);

MPI_File_write(thefile, buf, BUFSIZE, MPI_INT,
MPI_STATUS_IGNORE);

MPI_File_close(&thefile);
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Using MPI for Simple IO: MPI_File_set_view

• Describes that part of the file accessed by a 
single MPI process.

• Arguments to MPI_File_set_view:
– MPI_File file
– MPI_Offset disp
– MPI_Datatype etype
– MPI_Datatype filetype
– char *datarep
– MPI_Info info

Go to Menu
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Using MPI for Simple IO: Fortran Example

PROGRAM main

use mpi

integer ierr, i, myrank, BUFSIZE, thefile
parameter (BUFSIZE=100)
integer buf(BUFSIZE)
integer(kind=MPI_OFFSET_KIND) disp

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
do i = 0, BUFSIZE

buf(i) = myrank * BUFSIZE + i
enddo

* in F77, see implementation notes (might be integer*8)   
Go to Menu
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Using MPI for Simple IO: Fortran Example (continued)

call MPI_FILE_OPEN(MPI_COMM_WORLD, 'testfile', &
MPI_MODE_WRONLY + MPI_MODE_CREATE, &
MPI_INFO_NULL, thefile, ierr)

call MPI_TYPE_SIZE(MPI_INTEGER, intsize)
disp = myrank * BUFSIZE * intsize
call MPI_FILE_SET_VIEW(thefile, disp, MPI_INTEGER, &

MPI_INTEGER, 'native', &
MPI_INFO_NULL, ierr)

call MPI_FILE_WRITE(thefile, buf, BUFSIZE, MPI_INTEGER, &
MPI_STATUS_IGNORE, ierr)

call MPI_FILE_CLOSE(thefile, ierr)
call MPI_FINALIZE(ierr)

END PROGRAM main
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Using MPI for Simple IO: C++ Example

// example of parallel MPI read from single file
#include <iostream.h>
#include "mpi.h"

int main(int argc, char *argv[])
{

int bufsize, *buf, count;
char filename[128];
MPI::Status status;

MPI::Init();
int myrank = MPI::COMM_WORLD.Get_rank();
int numprocs = MPI::COMM_WORLD.Get_size();
MPI::File thefile = MPI::File::Open(MPI::COMM_WORLD, 

"testfile",
MPI::MODE_RDONLY,
MPI::INFO_NULL);   
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Using MPI for Simple IO: C++ Example (continued)

MPI::Offset filesize = thefile.Get_size();  
filesize = filesize / sizeof(int);    
bufsize = filesize / numprocs + 1;   
buf = new int[bufsize];
thefile.Set_view(myrank * bufsize * sizeof(int),

MPI_INT, MPI_INT, "native",
MPI::INFO_NULL);

thefile.Read(buf, bufsize, MPI_INT, &status);
count = status.Get_count(MPI_INT);
cout << "process " << myrank << " read " << count 

<< " ints" << endl;
thefile.Close();
delete [] buf;
MPI::Finalize();
return 0;

}
Go to Menu
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Using MPI for Simple IO: Other Ways to Write to a Shared File

• MPI_File_seek
• MPI_File_read_at
• MPI_File_write_at
• MPI_File_read_shared
• MPI_File_write_shared

• Collective operations

combine seek and I/O
for thread safety

use shared file pointer

like Unix seek

Go to Menu
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Noncontiguous I/O

• Contiguous I/O moves data from a single block in memory 
into a single region of storage

• Noncontiguous I/O has three forms:
– Noncontiguous in memory, noncontiguous in file, or noncontiguous in 

both

• Structured data leads naturally to noncontiguous I/O

p0 p0 p0p0

Contiguous Noncontiguous Noncontiguous Noncontiguous
in Memory in File in Both
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Example: Distributed Array Access

File containing the global array in row-major order

P3P2

P1P0

2D array distributed among four processes

Go to Menu
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A Simple Noncontiguous File View Example

etype = MPI_INT

filetype = two MPI_INTs followed by
a gap of four MPI_INTs

displacement filetype filetype and so on...

FILE
head of file

Go to Menu
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File View Code

MPI_Aint lb, extent;
MPI_Datatype etype, filetype, contig;
MPI_Offset disp;

MPI_Type_contiguous(2, MPI_INT, &contig);
lb = 0; extent = 6 * sizeof(int);
MPI_Type_create_resized(contig, lb, extent, &filetype);
MPI_Type_commit(&filetype);
disp = 5 * sizeof(int); etype = MPI_INT;

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile", 
MPI_MODE_CREATE | MPI_MODE_RDWR, MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, disp, etype, filetype, "native", 
MPI_INFO_NULL);

MPI_File_write(fh, buf, 1000, MPI_INT, MPI_STATUS_IGNORE);

Go to Menu
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Collective I/O

• Many applications have phases of computation and I/O
• During I/O phases, all processes read/write data

– We can say they are collectively accessing storage
• Collective I/O is coordinated access to storage by a group of processes

– Collective I/O functions must be called by all processes participating in I/O
– Allows I/O layers to know more about access as a whole

• Independent I/O is not organized in this way
• No apparent order or structure to accesses

n0 n1 n2 n3 n4 n5 n6n0 n1 n2 n3 n4 n5 n6

Independent I/O Collective I/O
Go to Menu
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Collective I/O (continued)

• MPI_File_read_all, 
MPI_File_read_at_all, etc

• _all indicates that all processes in the group 
specified by the communicator passed to 
MPI_File_open will call this function

• Each process specifies only its own access 
information -- the argument list is the same as 
for the non-collective functions

Go to Menu
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Under the Covers of MPI-IO

• MPI-IO implementation is given a lot of 
information in this case:
– Collection of processes reading data
– Structured description of the regions

• Implementation has some options for how to 
obtain this data
– Noncontiguous data access optimizations
– Collective I/O optimizations

Go to Menu



Page 42

Data Sieving

• Data sieving is used to combine lots of small accesses into a 
single larger one
– Remote file systems (parallel or not) tend to have high latencies
– Reducing # of operations important

• Generally very effective, but not as good as having a PFS that 
supports noncontiguous access

Region desired by application

Holes

Region accessed with data sieving

Go to Menu
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Data Sieving Writes

• Using data sieving for writes is more complicated
– Must read the entire region first
– Then make our changes
– Then write the block back

• Requires locking in the file system
– Can result in false sharing (interleaved access)
– PFS supporting noncontiguous writes is preferred

p0 p0 p0p0

(1) Read (2) Modify (3) Write(0) Initial State
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Two-Phase Collective I/O

• Problems with independent, noncontiguous access
– Lots of small accesses
– Independent data sieving reads lots of extra data

• Idea: Reorganize access to match layout on disks
– Single processes use data sieving to get data for many
– Often reduces total I/O through sharing of common blocks

• Second ``phase'' moves data to final destinations

p0 p1 p2 p0 p1 p2 p0 p1 p2

Phase 1Initial State Phase 2 Go to Menu
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Two-Phase Writes

• Similarly to data sieving, we need to perform a 
read/modify/write for two-phase writes if combined
data is noncontiguous

• Overhead is substantially lower than independent 
access to the same regions because there is little or no 
false sharing

• Note that two-phase is usually applied to file regions, 
not to actual blocks

Go to Menu
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Aggregation

• Aggregation refers to the more general application of this 
concept of moving data through intermediate nodes
– Different #s of nodes performing I/O
– Could also be applied to independent I/O

• Can also be used for remote I/O, where aggregator processes 
are on an entirely different system

p0 p1 p2 p0 p1 p2 p0 p1 p2

ReadInitial State Redistribute
Go to Menu
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Accessing Arrays Stored in Files

P0

P5P4

P2P1

P3

coords = (0,0)

coords = (1,0)

coords = (0,1)

coords = (1,1) coords = (1,2)

coords = (0,2)

m

n columns

nproc(1) = 2,  nproc(2) = 3

rows
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Using the “Distributed Array” (Darray) Datatype

int gsizes[2], distribs[2], dargs[2], psizes[2];

gsizes[0] = m;    /* no. of rows in global array */
gsizes[1] = n;    /* no. of columns in global array*/

distribs[0] = MPI_DISTRIBUTE_BLOCK; 
distribs[1] = MPI_DISTRIBUTE_BLOCK;  

dargs[0] = MPI_DISTRIBUTE_DFLT_DARG; 
dargs[1] = MPI_DISTRIBUTE_DFLT_DARG; 

psizes[0] = 2; /* no. of processes in vertical dimension 
of process grid */

psizes[1] = 3; /* no. of processes in horizontal dimension 
of process grid */
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Darray (continued)

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Type_create_darray(6, rank, 2, gsizes, distribs, dargs, 

psizes, MPI_ORDER_C, MPI_FLOAT, &filetype);
MPI_Type_commit(&filetype);

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile", 
MPI_MODE_CREATE | MPI_MODE_WRONLY, 
MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, 0, MPI_FLOAT, filetype, "native", 
MPI_INFO_NULL);

local_array_size = num_local_rows * num_local_cols;
MPI_File_write_all(fh, local_array, local_array_size, 

MPI_FLOAT, &status);

MPI_File_close(&fh);
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A Word of Warning about Darray

• The darray datatype assumes a very specific definition of data 
distribution -- the exact definition as in HPF

• For example, if the array size is not divisible by the number of
processes, darray calculates the block size using a ceiling
division (20 / 6 = 4 )

• darray assumes a row-major ordering of processes in the 
logical grid, as assumed by cartesian process topologies in 
MPI-1

• If your application uses a different definition for data 
distribution or logical grid ordering, you cannot use darray. 
Use subarray instead.

Go to Menu



Page 51

Using the Subarray Datatype

gsizes[0] = m;  /* no. of rows in global array */
gsizes[1] = n;  /* no. of columns in global array*/

psizes[0] = 2; /* no. of procs. in vertical dimension */
psizes[1] = 3; /* no. of procs. in horizontal dimension */

lsizes[0] = m/psizes[0]; /* no. of rows in local array */
lsizes[1] = n/psizes[1]; /* no. of columns in local array */

dims[0] = 2; dims[1] = 3;
periods[0] = periods[1] = 1;
MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 0, &comm);
MPI_Comm_rank(comm, &rank);
MPI_Cart_coords(comm, rank, 2, coords);
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Subarray Datatype (continued)

/* global indices of first element of local array */
start_indices[0] = coords[0] * lsizes[0];
start_indices[1] = coords[1] * lsizes[1];

MPI_Type_create_subarray(2, gsizes, lsizes, start_indices, 
MPI_ORDER_C, MPI_FLOAT, &filetype);

MPI_Type_commit(&filetype);

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile", 
MPI_MODE_CREATE | MPI_MODE_WRONLY, 
MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, 0, MPI_FLOAT, filetype, "native", 
MPI_INFO_NULL);

local_array_size = lsizes[0] * lsizes[1];
MPI_File_write_all(fh, local_array, local_array_size, 

MPI_FLOAT, &status);

Go to Menu



Page 53

Local Array with Ghost Area
in Memory
• Use a subarray datatype to describe the noncontiguous layout 

in memory
• Pass this datatype as argument to MPI_File_write_all

(0,0)

(107,0) (107,107)

(0,107)

(103,4)

(4,103)(4,4)

(103,103)

local data

ghost area for storing
off-process elements
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Local Array with Ghost Area

memsizes[0] = lsizes[0] + 8; 
/* no. of rows in allocated array */

memsizes[1] = lsizes[1] + 8; 
/* no. of columns in allocated array */

start_indices[0] = start_indices[1] = 4; 
/* indices of the first element of the local array 

in the allocated array */

MPI_Type_create_subarray(2, memsizes, lsizes, 
start_indices, MPI_ORDER_C, MPI_FLOAT, &memtype);

MPI_Type_commit(&memtype);

/* create filetype and set file view exactly as in the
subarray example */

MPI_File_write_all(fh, local_array, 1, memtype, &status);
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Accessing Irregularly Distributed Arrays

Process 0’s data array Process 1’s data array Process 2’s data array

Process 0’s map array Process 1’s map array Process 2’s map array
0 14137421183 1051

The map array describes the location of each element 
of the data array in the common file
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Accessing Irregularly Distributed Arrays (continued)

integer (kind=MPI_OFFSET_KIND) disp

call MPI_FILE_OPEN(MPI_COMM_WORLD, '/pfs/datafile', &
MPI_MODE_CREATE + MPI_MODE_RDWR, &
MPI_INFO_NULL, fh, ierr)

call MPI_TYPE_CREATE_INDEXED_BLOCK(bufsize, 1, map, &
MPI_DOUBLE_PRECISION, filetype, ierr)

call MPI_TYPE_COMMIT(filetype, ierr)
disp = 0
call MPI_FILE_SET_VIEW(fh, disp, MPI_DOUBLE_PRECISION, &

filetype, 'native', MPI_INFO_NULL, ierr)

call MPI_FILE_WRITE_ALL(fh, buf, bufsize, &
MPI_DOUBLE_PRECISION, status, ierr)

call MPI_FILE_CLOSE(fh, ierr)  
Go to Menu
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Nonblocking I/O

MPI_Request request;
MPI_Status status;

MPI_File_iwrite_at(fh, offset, buf, count, datatype,
&request);

for (i=0; i<1000; i++) {
/* perform computation */

}

MPI_Wait(&request, &status);
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Split Collective I/O

• A restricted form of nonblocking collective I/O
• Only one active nonblocking collective operation 

allowed at a time on a file handle
• Therefore, no request object necessary

MPI_File_write_all_begin(fh, buf, count, datatype);

for (i=0; i<1000; i++) {
/* perform computation */

}

MPI_File_write_all_end(fh, buf, &status);
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Shared File Pointers

#include "mpi.h"
// C++ example
int main(int argc, char *argv[])
{

int buf[1000];
MPI::File fh;

MPI::Init();

MPI::File fh = MPI::File::Open(MPI::COMM_WORLD, 
"/pfs/datafile", MPI::MODE_RDONLY, MPI::INFO_NULL);

fh.Write_shared(buf, 1000, MPI_INT);
fh.Close();

MPI::Finalize();
return 0;

}
Go to Menu
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Outline: Parallel File System - Lustre
• Introduction
• Luster Concepts
• A Bigger Picture
• Lustre Striping
• File Parallelism
• Default Configuration
• lfs getstripe
• Modifications of the Defaults: setstripe
• General Optimization Tips
• Lustre Best Practices for Users
• Lustre Best Practices for Developers
• Spokesperson – Serial I/O: importance 

of data locality
• Serial I/O: Data Locality and 

Continuity
• Single Shared File

– Shared File Layouts
– Results
– Data Locality and Continuity

Go to Menu

• Scalability:  File Per Process
• Scalability:  Single Shared File
• Scalability: Summary
• Buffered I/O
• Standard Output and Error
• Binary Files and Endianness
• Case Study:  Parallel I/O
• Case Study:  Buffered I/O
• Fault Tolerance



Page 61

Introduction

• The parallel file system available on jaguarpf is called Lustre 
(/tmp/work/$USER), which offers a set of user-level commands to tune and 
optimize file access operations.

• For many applications a technique called file striping will increase I/O 
performance. File striping will primarily improve performance for codes 
doing serial I/O from a single node or parallel I/O from multiple nodes 
writing to a single shared file, such as with MPI-IO, parallel HDF5, or 
parallel NetCDF. 

• The Lustre file system is made up of an underlying set of I/O servers and 
disks called Object Storage Servers (OSSs) and Object Storage Targets 
(OSTs) respectively. A file is said to be striped when read and write
operations access multiple OST's concurrently. File striping is a way to 
increase I/O performance since writing or reading from multiple OST's
simultaneously increases the available I/O bandwidth. 

• Details about the Lustre file system and its configurations are available at 
http://wiki.lustre.org/. Go to Menu
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Luster Concepts

• Two types of servers
– Metadata server (MDS)

• Holds the directory tree
• Stores metadata about each file (except for size)
• Once file is opened, I/O to file does not involve the 

MDS
– Object storage server (OSS)

• Manages OSTs (think single disk/LUN)
• OSTs hold stripes of the file contents

– Think RAID0
• Maintains the locking for the file contents it is 

responsible for
Go to Menu
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A Bigger Picture

Computational Nodes
– Jaguarpf:  18,688

Object Storage 
Server (OSS) Nodes

– Jaguarpf:  168
– 100 GB/s

Object Storage 
Target (OST)

– Jaguarpf:  672
– 6.2 TB Disk
– 4.1 PB

Go to Menu
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Lustre Striping

Go to Menu
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File Parallelism

Go to Menu
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Default Configuration

• The following command displays the IDs of the 672 file servers (called OSTs) on 
jaguarpf (as of 9/04/09), as well as the default stripe count, stripe size and stripe 
offset:

> lfs osts
OBDS:
0: widow1-OST0000_UUID ACTIVE
1: widow1-OST0001_UUID ACTIVE
2: widow1-OST0002_UUID ACTIVE
……………………………………….…
671: widow1-OST029f_UUID ACTIVE
/lustre/widow1
(Default) stripe_count: 4 stripe_size: 1048576 stripe_offset: 0

• The stripe count defines how many file servers a single file can be distributed over; 
the default stripe count on jaguarpf is 4. The stripe size (default, 1MB=1048576 
bytes) is the number of bytes written on one OST before targeting the next (where 
applicable). The stripe offset is the starting OST ID.
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lfs getstripe

• To find out striping information for files and directories, the 
following command can be used: lfs getstripe --quiet <dir|file>
For exemple,

> lfs getstripe --quiet file.txt
539          831832        0xcb158                0

502          831934        0xcb1be                0

248          832342        0xcb356                0
632          830997        0xcae15                0

• This example shows IDs for 4 target OSTs on the system. 
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Modifications of the Defaults: setstripe

• Lustre provides a user command setstripe for modifying one or more 
striping parameters for individual files or directories.

• Syntax: 
>lfs setstripe filename [stripe-size] [OST-offset] [stripe-count]

• For example, the following command would change the default stripe size to 
2MB: 

> lfs setstripe <dir|file> 2m -1 4 

• Where dir is an existing directory, and file is a file that does not yet exist. 
The first parameter (2m) represents the stripe size, the second parameter is the 
stripe offset (-1 is for round robin assignment starting at OST 0), while the 
third parameter represents the default stripe count.

• It is HIGHLY recommended that the default offset value is left unchanged. 
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Modifications of the Defaults: setstripe (continued)

• When the setstripe is invoked on an existing directory, any new files 
that are created in that directory in the future will inherit the newly defined 
striping parameters. Existing files in that directory are not affected, 
however. When setstripe is invoked for a new file the file is created 
with the new striping parameters. Setstripe cannot be invoked for an 
existing file. 
For example, to limit the number of OSTs to 1 issue the following 
command: 
> lfs setstripe <dir|file> 1m -1 1 

and to use all available OSTs: 
> lfs setstripe <dir|file> 1m -1 -1

• Details of the supported Lustre commands are available on the lfs man 
page.

• Note that the commands relevant to system administrators may not work in 
user mode. 
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General Optimization Tips

• There are different strategies for optimizing I/O performance on Rosa 
depending on the implementation of file I/O operations in an application 
and the behavior and sizes of data transfers as well as the file sizes. The 
table below lists some suggestions for commonly used file I/O 
implementations in scientific applications. 

lfs setstripe <dir|file> 1m -1 40 Single shared file accessed by multiple MPI tasks/core >100 GB 

Potential scaling bottleneck Single file (read/written by a single MPI task) >100 GB 

Potential scaling bottleneck Single file per MPI task/core>100 GB 

lfs setstripe <dir|file> 1m -1 10 Single shared file accessed by multiple MPI tasks/core < 100GB 

DefaultSingle file (read/written by a single MPI task)< 100GB 

DefaultSingle file per MPI task/core< 100GB 

DefaultSingle shared file accessed by multiple MPI tasks/core< 1GB 

lfs setstripe <dir|file> 1m -1 1Single file (read/written by a single MPI task) < 1GB 

lfs setstripe <dir|file> 1m -1 1Single file per MPI task/core < 1GB

Recommended settingI/O patternFile size

Go to Menu
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Lustre Best Practices for Users

• Use lfs setstripe in a safe manner
• Set striping appropriately for your use
• Choose stripe width for your application
• Avoid “excessively” large numbers of files in directories
• Avoid using ls -l repeatedly
• More information on website

– http://www.nccs.gov/user-support/general-support/file-systems/spider
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Lustre Best Practices for Users (continued…)

• Use lfs setstripe in a safe manner
– Always use the explicit options, not the relative ones
– Avoid specifying a starting OST index
– Use –s for stripe width (default is 1MB)

• Can specify in bytes, kilobytes (k), megabytes (m), or gigabytes (g)
– Use –c for stripe count (default is 4)
– Not specifying an option keeps the current value

• Bad:
– lfs setstripe $NAME 1m -1 16

• Good:
– lfs setstripe $NAME -s 1m -c 16
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Lustre Best Practices for Users (continued…)

• Use lfs getstripe to check the striping on a file
• Example: extracting source code

# mkdir source
# lfs setstripe source c 1
# cd source
# tar -x –f $TARFILE

• Example: fixing incorrect striping
# lfs setstripe newfile -c 16
# cp oldfile newfile
# rm oldfile
# mv newfile oldfile Go to Menu
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Lustre Best Practices for Users (continued…)

• Set striping appropriately for your use
– Default stripe count is 4, but may not match your 

usage
– Small files (< 250 MB) should use a single stripe
– Large files accessed in parallel (single shared-file) 

should have a stripe count that is a factor of the 
number of writers (e.g. 20 vs. 21 for 400 writers)

• Cannot use more than 160 stripes currently
– Maximum number of OSTs currently available
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Lustre Best Practices for Users (continued…)

• For single shared-file, choose per-writer data 
size as stripe width if possible
– If each rank will write 256 MB, then use 256 MB 

as the stripe width
– Minimizes lock contention
– NCCS SciComp Liaison can help determine best 

stripe size
– May not always be possible to pick a winner
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Lustre Best Practices for Users (continued…)

• Avoid directories with “excessive” numbers of 
files in them
– “Excessive” is a fuzzy number
– Greater 1M - definitely excessive
– 100k - probably excessive
– 50k - borderline
– 10k - OK
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Lustre Best Practices for Users (continued…)

• Avoid doing ls –l repeatedly
– Especially in an excessively large directory!
– If you are just looking to see if a file exists, use 

plain ls
– Better yet – look for that file explicitly
– Avoid options that sort by time stamp or add color 

to the listing
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Lustre Best Practices for Developers

• Open files read-only when possible
• Read small, shared files once
• Use a directory hierarchy to limit files in a single 

directory
• Use access(), not stat() to check for existence
• Avoid flock()
• Consider using libLUT or middleware I/O libraries
• Stripe-align I/O if possible
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Lustre Best Practices for Developers (continued…)

• Open files read-only when possible
– Fortran defaults to READWRITE if no ACTION 

is given
– Fortran adds O_CREAT if opening file for writing

• O_CREAT requests an exclusive lock for the 
file (not contents)
– Lock ping-pong championships when large job 

opens the file from all ranks at once
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Lustre Best Practices for Developers (continued…)

• If all ranks need data from a single file, it is better to have 
one reader and then broadcast the contents than have 
everyone read the file.

Fortran example, without error handling and assuming 
known file size:

CALL MPI_COMM_RANK(MPI_COMM_WORLD, my_rank, ierr)
IF (my_rank .eq. 0) THEN

OPEN(UNIT=1,FILE=PathName,ACTION='READ')
READ(1,*) buffer

ENDIF
CALL MPI_BCAST(buffer,SIZE,MPI_CHAR,0,MPI_COMM_WORLD,ierr)
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• Use a directory hierarchy to limit files in a 
single directory
– Opening a file currently keeps a lock on the parent 

directory for one message round-trip
– Split directory up to avoid contention
– For two level hierarchy, square root of the total 

number of files provides best balance

Lustre Best Practices for Developers (continued…)
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• Use access(), not stat() to check for existence
– Size is not kept on metadata server, so using stat() 

requires communication with each object storage 
server that has a portion of the file

– access() only needs one request

Lustre Best Practices for Developers (continued…)
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• Avoid flock()
– O(N**2) algorithm for number of lockers on file
– Ok, if N is small
– Does not scale to systems the size of Jaguar or 

JaguarPF

Lustre Best Practices for Developers (continued…)
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• Consider using libLUT or middleware I/O 
libraries such as ADIOS
– Extracting full performance from the file system 

requires knowledge of the environment
– Maintaining performance during concurrent access 

from other users requires constant adaptation
– Do you really want to write all of this?

• And maintain it for multiple systems?

Lustre Best Practices for Developers (continued…)
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• Stripe-align I/O if possible
– Lustre is a POSIX-compliant file system
– Overlapping writes are 'last-to-write wins‘
– This requires locking of the contents
– Unaligned writes require obtaining locks from 

multiple servers

Lustre Best Practices for Developers (continued…)
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Spokesperson – Serial I/O: importance of data locality

• 32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size

Lustre
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Spokesperson – Serial I/O: importance of data continuity (cont.)

• Single OST, 256 MB File Size

Lustre
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Serial I/O: Data Locality and Continuity

• Data Locality
– Performance is decreased when a single process 

accesses multiple disks.
– Is limited by the single process which performs I/O.

• Data Continuity
– Larger read/write operations improve performance.
– Larger stripe sizes improve performance (places 

data contiguously on disk).
– Either may become a limiting factor.
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Single Shared File

• Important Considerations
– Data locality
– Data continuity

• Parallel file Structure Lustre

Go to Menu



Page 90

Single Shared File: Shared File Layouts

32 or 64 MB
Proc. 1

32 or 64 MB
Proc. 2

32 or 64 MB
Proc. 3

32 or 64 MB
Proc. 4

…

32 or 64 MB
Proc. 32

Shared File Layout #1

Go to Menu

1 or 2 MB
Proc. 1

1 or 2 MB
Proc. 2

1 or 2 MB
Repetition #1 Proc. 3

1 or 2 MB
Proc. 4

…
1 or 2 MB
Proc. 32

Repetition #2 ‐ #31 …

1 or 2 MB
Proc. 1

1 or 2 MB
Proc. 2

1 or 2 MB
Repetition #32 Proc. 3

1 or 2 MB
Proc. 4

…
1 or 2 MB
Proc. 32

Shared File Layout #2
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Single Shared File: Results

Lustre
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Single Shared File: Data Locality and Continuity

• Data Locality
– Performance is increased when portions of 

a shared file are localized on a single drive.

• Data Continuity
– Larger read/write operations improve 

performance.
– Larger stripe sizes improve performance 

(places data contiguously on disk).
– Either may become a limiting factor.
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Scalability:  File Per Process

• 128 MB per file and a 32 MB Transfer size
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Scalability:  Single Shared File

• 32 MB per process, 32 MB Transfer size and Stripe size
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Scalability: Summary

• Serial I/O
– Is not scalable.  Limited by single process which 

performs I/O.
• File per Process

– Limited at large process/file counts by:
• Metadata Operations
• Contention on a single drive

• Single Shared File
– Limited at large process counts by contention on a 

single drive.  
– File striping limitation of 160 OSTs in Lustre
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Buffered I/O

• Advantages
– Aggregates smaller read/write operations 

into larger operations.
– Examples:  OS Kernel Buffer,  MPI-IO 

Collective Buffering

• Disadvantages
– Requires additional memory for the 

buffer.  
– Can tend to serialize I/O.

• Caution
– Frequent buffer flushes can adversely 

affect performance.

Buffer
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Standard Output and Error

• Standard Ouput and Error streams are 
effectively serial I/O.

• Generally, the MPI launcher will aggregate 
these requests.  (Example:  mpirun, mpiexec, 
aprun, ibrun, etc..)

• Disable debugging messages when running in 
production mode.
– “Hello, I’m task 32000!”
– “Task 64000, made it through loop.”
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Binary Files and Endianness

• Writing a big-endian binary file with compiler flag 
byteswapio

File “XXXXXX"
Calls Megabytes Avg Size

Open 1 
Write 5918150 23071.28062 4088
Close 1 
Total 5918152 23071.28062 4088

• Writing a little-endian binary
File “XXXXXX"

Calls Megabytes Avg Size
Open 1 
Write 350 23071.28062 69120000
Close 1 
Total 352 23071.28062 69120000

• Can use more portable file formats such as HDF5, 
NetCDF, or MPI-IO.
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Case Study:  Parallel I/O

• A particular code both reads and writes a 377 GB file.  
Runs on 6000 cores.
– Total I/O volume (reads and writes) is 850 GB.
– Utilizes parallel HDF5

• Default Stripe settings:  count 4, size 1M, index -1.
– 1800 s run time (~ 30 minutes)

• Stripe settings:  count -1, size 1M, index -1.
– 625 s run time (~ 10 minutes)

• Results
– 66% decrease in run time.
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Case Study:  Buffered I/O

• A post processing application writes a 1GB file.
• This occurs from one writer, but occurs in many small write operations.

– Takes 1080 s (~ 18 minutes) to complete.
• IOBUF was utilized to intercept these writes with 64 MB buffers.

– Takes 4.5 s to complete.  A 99.6% reduction in time.

File "ssef_cn_2008052600f000"
Calls Seconds Megabytes Megabytes/sec Avg Size

Open 1 0.001119
Read 217 0.247026 0.105957 0.428931 512
Write 2083634 1.453222 1017.398927 700.098632 512
Close 1 0.220755
Total 2083853 1.922122 1017.504884 529.365466 512
Sys Read 6 0.655251 384.000000 586.035160 67108864
Sys Write 17 3.848807 1081.145508 280.904052 66686072
Buffers used 4 (256 MB)
Prefetches 6
Preflushes 15

Lustre
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Fault Tolerance

• Allow application to generate checkpoint files.
– Should be minimal in size.
– Should not be written too often.

• Keeping checkpoint files minimal
– Only incorporate unique information.  Allow application to 

calculate or derive appropriate information.

• Keeping the checkpoint generation low.
– The goal isn’t to keep all information at all times.  

(checkpointing after every iteration.)
– Pick a write frequency which allows for a reasonable loss of 

computation time.
101 Go to Menu
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Outline: Resources for Users
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– I/O-Related References

– Getting Started

– Advanced Topics

– More Information
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Resources for Users: I/O-Related References

• PVFS and PVFS2 (open source)
– www.parl.clemson.edu/pvfs/
– www.pvfs.org/pvfs2/

• Lustre File System
– www.lustre.org

• GPFS
– www.almaden.ibm.com/storagesystems/file_systems/GPFS/

• Lustre File System – White Paper October 2008
– http://www.sun.com/software/products/lustre/docs/lustrefilesystem_wp.pdf

• GPFS:  Concepts, Planning, and Installation Guide
– http://www.publib.boulder.ibm.com/epubs/pdf/a7604132.pbf

• Introduction to HDF5
– http://www.hdfgroup.org/HDF5/doc/H5.intro.html

• The NetCDF Tutorial
– http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial.pdf

• John May, Parallel I/O for High Performance Computing, Morgan Kaufmann, 2000.
– Good coverage of basic concepts, some MPI-IO, HDF5, and serial netCDF Go to Menu
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Resources for Users: Getting Started

• About Jaguar

http://www.nccs.gov/computing-resources/jaguar/

• Quad Core AMD Opteron Processor Overview

http://www.nccs.gov/wp-content/uploads/2008/04/amd_craywkshp_apr2008.pdf

• PGI Compilers for XT5

http://www.nccs.gov/wp-content/uploads/2008/04/compilers.ppt

• NCCS Training & Education – archives of NCCS workshops and seminar series, 
HPC/parallel computing references

http://www.nccs.gov/user-support/training-education/

• 2009 Cray XT5 Quad-core Workshop

http://www.nccs.gov/user-support/training-education/workshops/2008-cray-xt5-quad-
core-workshop/
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Resources for Users: Advanced Topics

• Debugging Applications Using TotalView

http://www.nccs.gov/user-support/general-support/software/totalview

• Using Cray Performance Tools - CrayPat

http://www.nccs.gov/computing-resources/jaguar/debugging-
optimization/cray-pat/

• I/O Tips for Cray XT4

http://www.nccs.gov/computing-resources/jaguar/debugging-optimization/io-
tips/

• NCCS Software

http://www.nccs.gov/computing-resources/jaguar/software/
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Resources for Users: More Information

• NCCS website

http://www.nccs.gov/

• Cray Documentation

http://docs.cray.com/

• Contact us

help@nccs.gov
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