

# High Performance Computing at the National Center for Computational Sciences at ORNL

Page 2



#### Outline

- Our Mission
- Computer Systems: Present, Past, Future
- <u>Challenges Along the Way</u>
- <u>Resources for Users</u>



## Our Mission



# ORNL is the U.S. Department of Energy's largest science and energy laboratory

- \$1.3B budget
- 4,250 employees
- 3,900 research guests annually
- \$350 million invested in modernization
- World's most powerful computing facility
- Nation's largest concentration of open source materials research
- Nation's most diverse energy portfolio

- The \$1.4B Spallation Neutron Source in operation
- Managing the billion-dollar U.S. ITER project



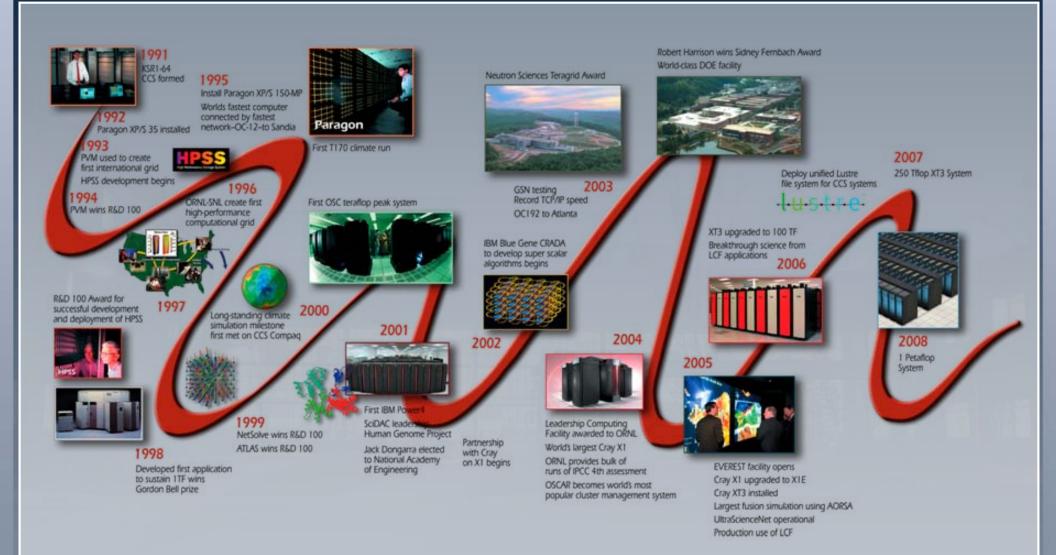
#### Computing Complex @ ORNL

# **\$70M Operating budget to deploy and operate the computational resources required to tackle global challenges**

- Providing world-leading computational resources and specialized services for the most computationally intensive problems
- Providing stable hardware/software path of increasing scale to maximize productive applications development
- Delivering transforming discoveries in materials, biology, climate, energy technologies, etc.

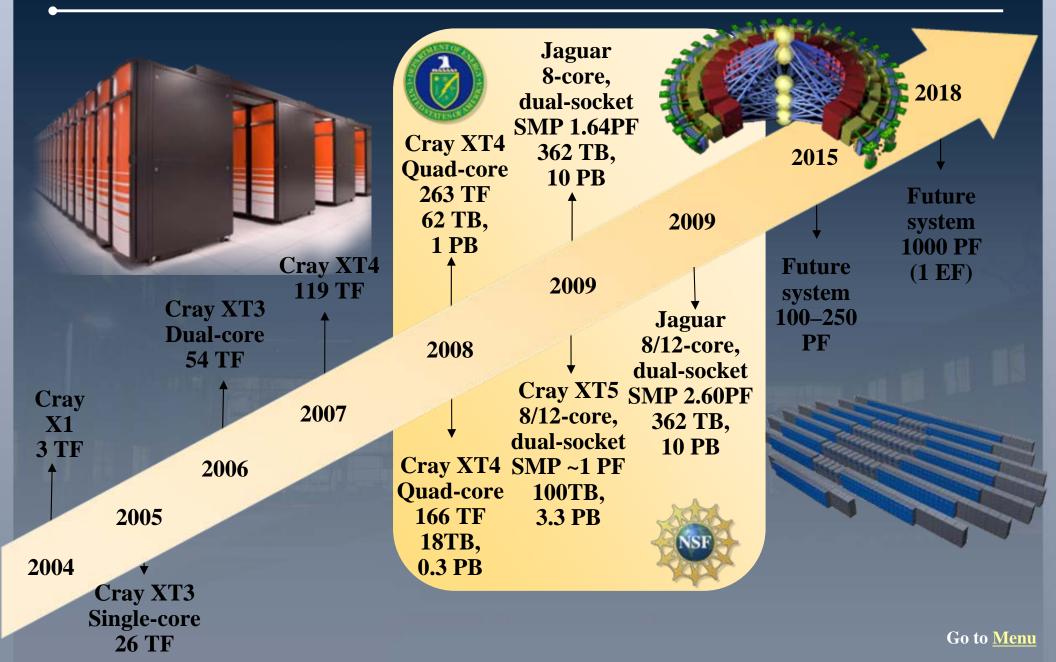


World's most powerful computer for open science Go to




## Computer Systems: Present, Past, Future






#### NCCS systems, 1991–2008

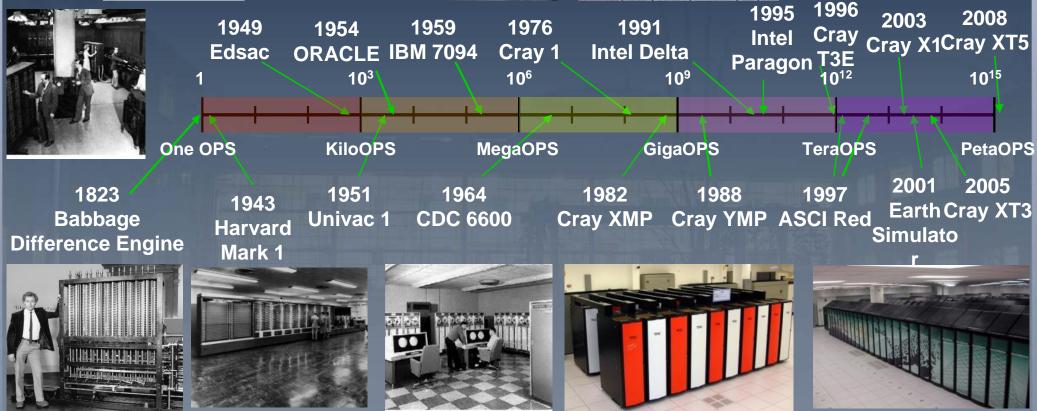




#### Million-fold increase in computing and data capabilities



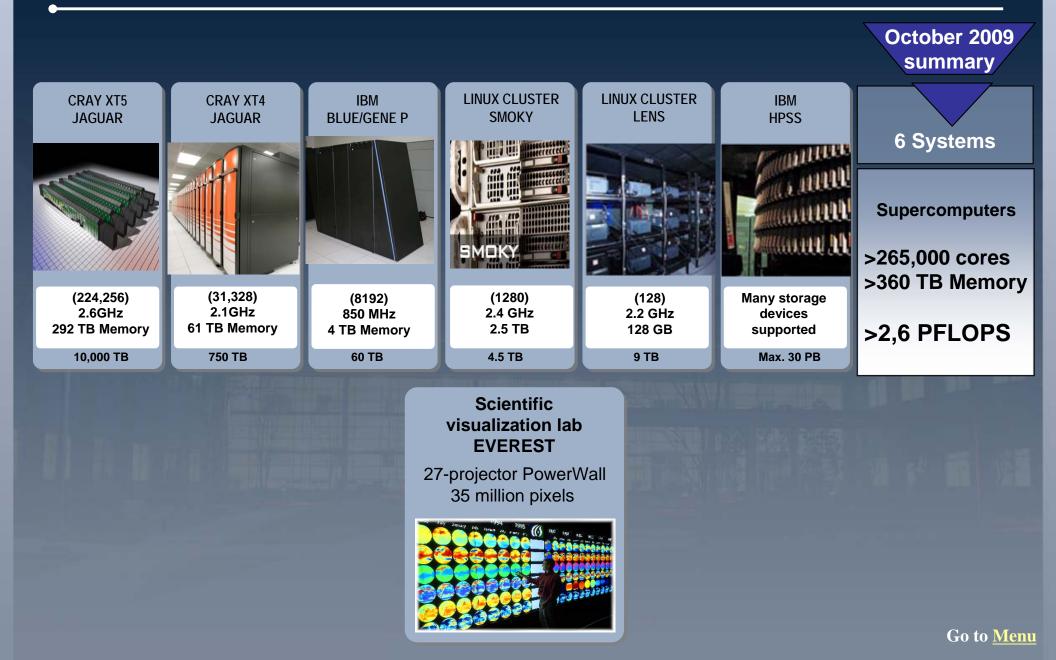



#### A Growth-Factor of a Billion in Performance in a Single Career












Page 10



#### NCCS resources





#### NCCS resources: Jaguar Supercomputer

#### Jaguar: World's Most Powerful Computer Designed for Science from the Ground Up

.

|                        | jaguar XT4    | jaguarpf XT5 |  |
|------------------------|---------------|--------------|--|
| Peak Performance       | 263.16 TFLOPS | 2.33 PFLOPS  |  |
| System Memory          | 61 TB         | 292 TB       |  |
| Disk Space             | 750 TB        | 10,000 TB    |  |
| Disk Bandwidth         | 44 GB/s       | 240 GB/s     |  |
| Interconnect Bandwidth | 157 TB/s      | 374 TB/s     |  |



#### NCCS resources: BG/P



- 27 TFlop System
  - 2048 850Mhz IBM quad core 450d PowerPC
  - 2 GB/node
  - 64 I/O nodes
  - 10 Terabyte GPFS parallel file system
- Available to ORNL + <u>core university partner members</u>



#### NCCS resources: Smoky



- Resource provided to users needing system comparable to major NCCS resources for application porting, development
- 80 node Linux cluster
- Four quad-core 2.0GHz AMD Opteron processors per node
- 32 GB of memory (2GB per core)
- Gigabit Ethernet network with infiniband interconnect



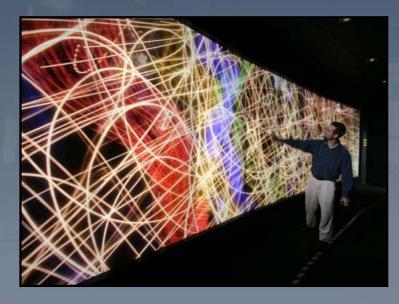
#### NCCS resources: Visualization Facilities

- The visualization capabilities of NCCS include:
  - visualization/data analysis cluster called Lens
  - large PowerWall display called EVEREST
- Scientists can make use of the EVEREST facility by contacting any member of the visualization team and booking a time.



#### NCCS resources: Lens




- Resource for data visualization
- 32 node Linux cluster dedicated to data analysis and high-end visualization
- Each node:
  - Four quad-core 2.3 GHz AMD Opteron processors
  - 64 GB memory
  - 2 NVIDIA 8800 GTX GPUs.



#### NCCS resources: Visualization PowerWall (EVEREST)

# **EVEREST** - Exploratory Visualization Environment for REsearch in Science and Technology

- 27-projector PowerWall
- Viewing at a 30 feet by 8 feet
- 11,520 by 3,072 pixels, or a total of 35 million pixels
- The wall is integrated with the rest of the computing center, creating a highbandwidth data path between large-scale high-performance computing and largescale data visualization.



- EVEREST is controlled by a 14 node cluster with GPUs for remote visualization.
- Each node contains four dual-core AMD Opteron processors.
- These 14 nodes have nVidia QuadroFX 3000G graphics cards connected to the projectors, providing a very-high-throughput visualization capability.



#### NCCS resources: High Performance Storage System (HPSS)

- HPSS is an archival Back-up system which consists of
  - two types of storage technology:
    - disk "on-line" for frequently/recently accessed files
    - tape "off-line" for very large or infrequently accessed files
  - Linux servers
  - High Performance Storage System software
- Tape storage is provided by robotic tape libraries.
- HPSS has three SL8500 tape libraries. Each can hold up to 10,000 cartridges.
- The StorageTek SL8500 libraries house a total of
  - twenty-four T10000A tape drives (500 gigabyte cartridges, uncompressed)
  - thirty-six T10000B tape drives (1 terabyte cartridges, uncompressed).
- Each drive has a bandwidth of 120 MB/s
- As of October, 2009, HPSS has 7.2 PB stored in over 16.1 million files.



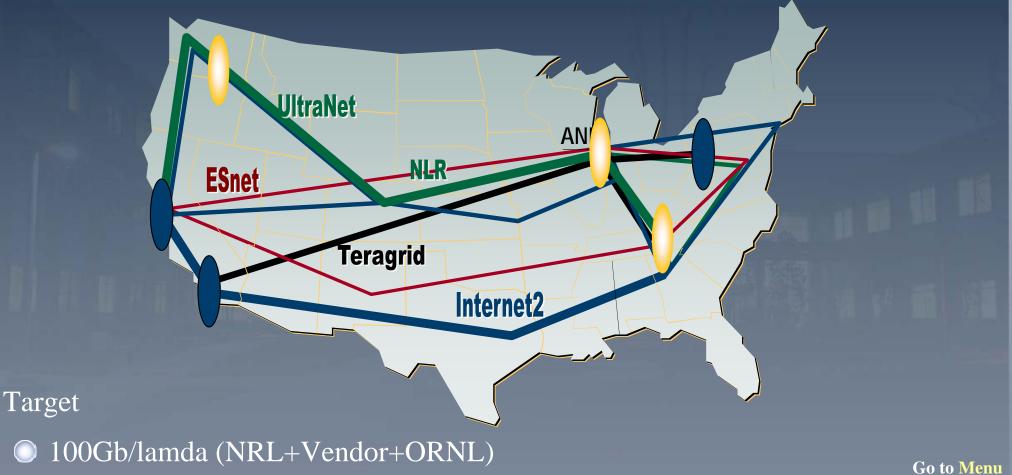


#### NCCS resources: Center-Wide File System (SPIDER)

"Spider" provides a shared, parallel file system for all LCF systems and based on Lustre file system

- Over 10 PB of RAID-6 Capacity
  - 13,440 1Gb SATA Drives (33 tons of discs)
  - 192 OSSs and 1344 OSTs (7 OSTs/OSS)
  - 3 Terabytes of memory
- Demonstrated bandwidth of over 200 GB/s
  - 30,000 files created per second
- Demonstrated stability on a number of LCF Systems
  - Over 26,000 lustre clients at NCCS mounting the file system and performing I/O
- Available from all systems via our high performance scalable I/O network
  - 4 InfiniBand core switches
  - Over 3,000 InfiniBand ports
  - Over 3 miles of cables






## Challenges Along the Way



#### High Bandwidth Connectivity

- High Bandwidth Connectivity to NCCS Enables Efficient ullet**Remote User Access**
- Connected to Major Science Networks •





#### We are Addressing a Broad Range of Science Challenges

| Projects            | 2006       | 2007       | 2008        | 2009        |
|---------------------|------------|------------|-------------|-------------|
| Accelerator physics | 1          | 1          | 1           | 1 1         |
| Astrophysics        | 3          | 4          | 5           | 5           |
| Chemistry           | 1          | 1          | 2           | 4           |
| Climate change      | 3          | 3          | 4           | 5           |
| Combustion          | 1          | 1          | 2           | 2           |
| Computer science    | 1          | 1          | 1           | 1           |
| Fluid Dynamics      |            |            |             | 1           |
| Fusion              | 4          | 5          | 3           | 5           |
| Geosciences         |            | 1          | 1           | 1           |
| High energy physics |            | 1          | 1           |             |
| Life sciences       | 2          | 2          | 2           | 4           |
| Materials science   | 2          | 3          | 3           | 4           |
| Nuclear physics     | 2          | 2          | 1           | 2           |
| Industry            | 2          | 3          | 3           | 3           |
| Total Projects:     | 22         | 28         | 30          | 38          |
| CPU Hours:          | 36,156,000 | 75,495,000 | 145,387,000 | 469,683,000 |



#### Science Application Development & Readiness

Ensuring Application Codes Can Effectively Utilize HPC Systems on "Day One"

- Model coupling
- Hierarchical algorithms
- Solver technology and innovative solution techniques
- Accelerated time integration
- Parallel programming models
- Maintaining application libraries
- Software and algorithm strategies to mitigate high hardware latencies
- Automated diagnostics



## Resources for Users



#### Resources for Users: Getting Started

• About Jaguar

http://www.nccs.gov/computing-resources/jaguar/

• Quad Core AMD Opteron Processor Overview

http://www.nccs.gov/wp-content/uploads/2008/04/amd\_craywkshp\_apr2008.pdf

• PGI Compilers for XT5

http://www.nccs.gov/wp-content/uploads/2008/04/compilers.ppt

• NCCS Training & Education – archives of NCCS workshops and seminar series, HPC/parallel computing references

http://www.nccs.gov/user-support/training-education/

• 2009 Cray XT5 Quad-core Workshop

http://www.nccs.gov/user-support/training-education/workshops/2008-cray-xt5-quadcore-workshop/



#### Resources for Users: Advanced Topics

Debugging Applications Using TotalView

http://www.nccs.gov/user-support/general-support/software/totalview

• Using Cray Performance Tools - CrayPat

<u>http://www.nccs.gov/computing-resources/jaguar/debugging-optimization/cray-pat/</u>

• I/O Tips for Cray XT4

<u>http://www.nccs.gov/computing-resources/jaguar/debugging-optimization/io-</u> <u>tips/</u>

• NCCS Software

http://www.nccs.gov/computing-resources/jaguar/software/

• Cray Documentation

http://docs.cray.com/



Resources for Users: More Information

• NCCS website

http://www.nccs.gov/

• How to obtain Access to NCCS Resources

http://www.nccs.gov/user-support/access/

• Contact us

help@nccs.gov