
Page 1

A Quick Start Guide to
NCCS System

Go to Menu

Page 2

Outline

• Jaguar System Overview
• Logging into Jaguar
• Login Nodes
• Compute (Batch) Nodes
• File Systems
• Software Environment
• Compiling
• Running Jobs
• Third-Party Software
• Debugging and Profiling
• Resources for Users

Go to Menu

Page 3

Jaguar System Overview: General Outline

Jaguar is a Cray XT system consisting of XT4 and XT5 partitions.

Jaguar XT4 XT5

CPU Type 2.1 GHz Quad-core
AMD Opteron (Budapest)

2.6 GHz Hex-core
AMD Opteron (Istanbul)

Interconnect Cray SeaStar2 Router Cray SeaStar2+ Router

Switching Capacity
(Router’s Peak Bandwidth)

45.6GB/s
6 switch ports per Cray

SeaStar chip, 7.6 GB/s each

57.6GB/s
6 switch ports per Cray

SeaStar2+ chip, 9.6 GB/s each

Memory type DDR2-800 (some nodes use
DDR2-667 memory) DDR2-800

Memory Bandwidth 10.6 to 12.8 GB/sec
per AMD Opteron

21.2 GB/sec to 25.6 GB/sec
per compute node

Floor Space 1400 feet2 4400 feet2

Cooling Technology Air Liquid

Go to Menu

Page 4

Jaguar System Overview: Summary of Resources

Jaguar is a Cray XT system consisting of XT4 and XT5 partitions

Jaguar XT4 XT5 Total

Nodes per blade 4

CPUs per node1 1 2

Cores per node 4 12

Compute nodes2 7,832 18,688

AMD Opteron cores 31,328 224,256 255,584

Memory per CPU 8 GB/CPU

System Memory ~61.2 TB ~292 TB ~353.2 TB

Disk Bandwidth ~44 GB/s ~240 GB/s ~284 GB/s

Disk Space ~750 TB ~10,000 TB ~10,750 TB

Interconnect Bandwidth ~157 TB/s ~374 TB/s ~532 TB/s

Floor Space 1400 feet2 4400 feet2 5800 feet2

Ideal Performance per core3

(4 FLOPs/cycle times 2.1*109 cycles/sec) 8.4 GFLOPS 10.4 GFLOPS

Overall Ideal Performance ~263.16 TFLOPS ~2.33 PFLOPS ~2.60 PFLOPS

1 In the context of Jaguar CPU is also called a socket.
2 Note that in addition to compute nodes Jaguar also has input/output (I/O) and login service nodes.
3 FLOPs = FLoating point OPerations; FLOPS = FLoating point Operations Per Second

Go to Menu

Page 5

Jaguar System Overview: System Software

• Operating system is Cray Linux Environment (CLE) 2.1:

– Compute Nodes – Compute Node Linux (CNL)

– Login/Service nodes – SUSE Linux

• Compilers

– C/C++, Fortran

• MPI implementation

– Cray MPI based on MPICH

• High Performance Storage System (HPSS) software

Go to Menu

Page 6

Logging into Jaguar: Connection Requirements

• The only supported remote client on NCCS systems is a secure shell (SSH) client.
• The only supported authentication method is one-time passwords (OTP).

• UNIX-based operating systems generally have an SSH client built in.
• Windows users may obtain free clients online, such as PuTTY.

Any SSH client:

• must support the SSH-2 protocol (supported by all modern SSH clients).
• must allow keyboard-interactive authentication to access NCCS systems. For UNIX-

based SSH clients, the following line should be in either the default ssh_config file or
your $HOME/.ssh/config file:

PreferredAuthentications keyboard-interactive,password

The line may also contain other authentication methods, so long as keyboard-
interactive is included.

Go to Menu

Page 7

Logging into Jaguar: Connection Procedure

To connect to Jaguar from a UNIX-based system type the following in your
terminal:

ssh userid@jaguar.ccs.ornl.gov Cray XT4

ssh userid@jaguarpf.ccs.ornl.gov Cray XT5

Enter PASSCODE: PIN + 6 digits from RSA® SecurID

NCCS RSA Key Fingerprints:

jaguar 0d:c9:db:37:55:da:41:26:55:4a:80:bb:71:55:dd:01

jaguarpf 80:58:21:03:96:47:1a:15:2c:25:d3:ca:e6:04:e8:a7

Go to Menu

Changes every
30 seconds

4-6
digits

Page 8

Login Nodes

• When you login to Jaguar you will be placed on a “login node”

• Login nodes are used for basic tasks such as file editing, code
compilation, data backup, and job submission

• These nodes provide a full SUSE Linux environment, complete with
compilers, tools, and libraries

• The login nodes should not be used to run production jobs.
Production work should be performed on the systems compute
resources.

• Serial jobs (post-processing, etc) may be run on the compute nodes
as long as they are statically linked (will be discussed later)

Go to Menu

Page 9

Compute (Batch) Nodes

• All MPI/OpenMP user applications execute on batch or compute
nodes

• Batch nodes provide limited Linux environment – Compute Node
Linux (CNL)

• Compute nodes can see only the Lustre scratch directories

• Access to compute resources is managed by the PBS/TORQUE –
batch system manager

• Job scheduling is handled by Moab, which interacts with
PBS/TORQUE and the XT system software.

Go to Menu

Page 10

File Systems: Basics

• The Network File Service (NFS) server contains user's home directories,
project directories, and software directories.

• Compute nodes can only see the Lustre work space
– The NFS-mounted home, project, and software directories are not

accessible to the compute nodes.
• Shared Lustre area (SPIDER) is now available on compute nodes and is the

only scratch area for the XT5.
• Executables must be executed from within the Lustre work space:

– /tmp/work/$USER (XT4 and XT5)
– /lustre/scr144/$USER (XT4 only)

• Batch jobs can be submitted from the home or work space. If submitted
from a user’s home area, a batch script should cd into the Lustre work
space directory (cd $PBS_O_WORKDIR) prior to running the executable
through aprun.

• All input must reside in the Lustre work space
• All output must also be sent to the Lustre work space

Go to Menu

Page 11

File Systems: User’s Directories

• Home directory - NFS Filesystem
/ccs/home/$USER

• Work directory/Scratch space - Lustre Filesystem
/tmp/work/$USER

• Project directory - NFS Filesystem
/ccs/proj/projectid

• HPSS storage

Each user is provided the following space resources:

Go to Menu

Page 12

File Systems: Quota policy

Area Path Quota Swept? Backups? Purge Policy

Home Directory /ccs/home/$USER 5 GB No Yes
1 month
post-user

Project Directory /ccs/proj/$PROJ 50 GB No Yes
1 month

post-project

Work Directory /tmp/work/$USER None 14 days No
1 month
post-user

HPSS Home /home/$USER
2 TB

200 Files
- -

3 months
post-user

HPSS Project /proj/$PROJ
45 TB

4500 Files
- -

3 months
post-project

Go to Menu

Page 13

Software Environment: Modules

• Software is loaded, unloaded or swapped using
modules.

• Use of modules allows software, libraries, paths, etc.
to be cleanly entered into and removed from your
programming environment.

• Conflicts are detected and module loads that would
cause conflicts are not allowed.

Go to Menu

Page 14

Software Environment: module command

Loading Commands Informational Commands

• module [load||unload]
my_module
– Loads/Unloads module

my_module
– e.g., module load
subversion

• module swap module#1
module#2
– Replaces module#1 with

module#2
– e.g., module swap
PrgEnv-pgi PrgEnv-gnu

• module help my_module
– Lists available commands and

usage
• module show my_module

– Displays the actions upon loading
my_module

• module list
– Lists all loaded modules

• module avail [name]
– Lists all modules [beginning with

name]
– e.g., module avail gcc

Go to Menu

Page 15

Software Environment: Default Module List

username@jaguarpf-login1:/> module list
Currently Loaded Modulefiles:
1) modules/3.1.6
2) DefApps
3) torque/2.4.1b1-snap.200905191614
4) moab/5.3.6
5) /opt/cray/xt-asyncpe/default/modulefiles/xtpe-istanbul
6) cray/MySQL/5.0.64-1.0000.2342.16.1
7) xtpe-target-cnl
8) xt-service/2.2.41A
9) xt-os/2.2.41A
10) xt-boot/2.2.41A
11) xt-lustre-ss/2.2.41_1.6.5
12) cray/job/1.5.5-0.1_2.0202.18632.46.1
13) cray/csa/3.0.0-1_2.0202.18623.63.1
14) cray/account/1.0.0-2.0202.18612.42.3
15) cray/projdb/1.0.0-1.0202.18638.45.1
16) Base-opts/2.2.41A
17) pgi/9.0.4
18) xt-libsci/10.4.0
19) xt-mpt/3.5.0
20) xt-pe/2.2.41A
21) xt-asyncpe/3.2
22) PrgEnv-pgi/2.2.41A Go to Menu

Page 16

Compiling: System Compilers

The following compilers should be used to build codes on Jaguar.
Use these compilers.

Language Compiler

C cc

C++ CC

Fortran 77, 90 and 95 ftn

Note that cc, CC and ftn are actually the Cray XT Series wrappers for
invoking the PGI, GNU, Intel, Cray, or Pathscale compilers (discussed later…)

Go to Menu

Page 17

Compiling: Parallel Compiling on Jaguar

• Jaguar has two kinds of nodes:
– Compute Nodes running the CNL OS
– Service and login nodes running Linux

• To build a code for the compute nodes, you should use the Cray wrappers
cc, CC, and ftn. The wrappers will call the appropriate compiler which
will use the appropriate header files and link against the appropriate
libraries. Use of wrappers is crucial for building the parallel codes on Cray.

• We highly recommend that the cc, CC, and ftn wrappers be used when
building for the compute nodes. Both parallel and serial codes.

• To build a code for the Linux service nodes, you should call the compilers
directly.

• We strongly suggest that you don’t call the compilers directly if you are
building code to run on the compute nodes.

• No long serial jobs should be run on service nodes, use compute nodes
instead. Go to Menu

Page 18

Compiling: Default Compilers
• Default compiler is PGI. The list of all packages is obtained by

– module avail PrgEnv

• To use the Cray wrappers with other compilers the programming
environment modules need to be swapped, i.e.
– module swap PrgEnv-pgi PrgEnv-gnu
– module swap PrgEnv-pgi PrgEnv-cray

• To just use the GNU/Cray compilers directly load the GNU/Cray
module you want:
– module load PrgEnv-gnu/2.1.50HD
– module load PrgEnv-cray/1.0.1

• It is possible to use the GNU compiler versions directly without
loading the Cray Programming Environments, but note that the Cray
wrappers will probably not work as expected if you do that.

Go to Menu

Page 19

Compiling: Useful Compiler Flags (PGI)
General:
Flag Comments

-mp=nonuma Compile
multithreaded
code using
OpenMP
directives

Debugging:
Flag Comments

-g For debugging symbols; put first
-Ktrap=fp Trap floating point exceptions
-Mchkptr Checks for unintended

dereferencing of null pointers

Go to Menu

Optimization:
Flag Comments
-Minfo Provides info on compiler performed optimizations
-Mneginfo Instructs the compiler to produce information on why

certain optimizations are not performed.
-fast Equivalent to -Mvect=sse -Mscalarsse

-Mcache_align -Mflushz
-fastsse Same as -fast
-Mcache_align Makes certain that arrays are on cache line boundaries
-Munroll=c:n Unrolls loops n times (e.g., n=4)
-Mipa=fast,inline Enables interprocedural analysis (IPA) and inlining,

benefits for C++ and Fortran
-Mconcur Automatic parallelization

Page 20

Compiling: Useful Compiler Flags (GNU)

Flag Comment
-fopenmp Compile multithreaded

code using OpenMP
directives

Flag Comment
-g For debugging

symbols; put first
-finstrument-
functions

For using CrayPat

-fbounds-
check

Enable generation
of runtime checks
for array subscripts

General: Debugging:

Go to Menu
pathopt2 utility can help identify compiler options that give best optimization

Flag Comments
-O2 –ffast -math –fomit -frame
-pointer -mfpmath=sse

Recommended first compile/run

-mfpmath=sse Use scalar floating point instructions
present in SSE instruction set

-finline –functions Inline simple functions (turned on
automatically by -O3)

-funroll -loops --param max
-unroll -times=n

Unrolls loops n times (e.g., n=4)

Optimization:

Page 21

Compiling: Useful Compiler Flags (Pathscale)

Flag Comments

-mp Compile multithreaded
code using OpenMP
directives (NOTE:
limited support for C++
at this time)

Flag Comments

-g For debugging symbols; put first
-LNO:simd_
verbose=on

Get diagnostics

-trapuv Initialize variables to NaN – useful
for finding uninitialized variables

-zerouv Initialize variables to 0

General: Debugging:

Go to Menu

Flag Comments

-O3 -OPT:Ofast Recommended first compile/run
-OPT:Ofast Maximizes performance; generally safe but may impact floating

point correctness. Equivalent to –
OPT:ro=2:Olimit=0:div_split=ON:alias=typed

-Ofast Equivalent to -O3 -ipa -OPT:Ofast -fno-math-errno
-ipa Enables interprocedural analysis (IPA) and inlining
-apo Enables autoparallelization

Optimization:

Page 22

Compiling: Useful Compiler Flags (Intel)

Flag Comments

-openmp Compile
multithreaded code
using OpenMP
directives

Flag Comments

-g Generate full debugging
information in the object file.

-debug[keyword] Enables or disables generation
of debugging information.

-Wuninitialized Determines whether a warning
is issued if a variable is used
before being initialized.

General: Debugging:

Go to Menu

Flag Comments

-fast Maximizes speed across the entire program.
-O[n] Specifies the code optimization for applications.
-finline Tells the compiler to inline functions declared with __inline and

perform C++ inlining.
-ipo[n] Enables interprocedural optimization between files.

Optimization:

Page 23

Compiling: Useful Compiler Flags (Cray)

Flag Comments

-h omp Compile
multithreaded code
using OpenMP
directives (turned
on, by default)

Flag Comments

-g Generate full debugging information in
the object file. (Equivalent ot -Gn)

-G level Enables the generation of debugging
information used by symbolic debuggers
such as TotalView. These options allow
debugging with breakpoints.

General: Debugging:

Go to Menu

Flag Comments

-fast Maximizes speed across the entire program.
-O level Specifies the code optimization for applications.
-h ipa[n] Allows the compiler to automatically decide which procedures to

consider for inlining.
-h unroll[n] Globally controls loop unrolling and changes the assertiveness of the

unroll pragma.

Optimization:

Page 24

Running Jobs: Introduction

• When you log into Jaguar, you are placed on one of the login nodes.

• Login nodes should be used for basic tasks such as file editing, code
compilation, data backup, and job submission.

• The login nodes should not be used to run production jobs. Production
work should be performed on the system’s compute resources.

• On Jaguar, access to compute resources is managed by the PBS/TORQUE.
Job scheduling and queue management is handled by Moab which interacts
with PBS/TORQUE and the XT system software.

• Users either submit the job scripts for batch jobs, or submit a request for
interactive job.

• The following pages provide information for getting started with the batch
facilities of PBS/TORQUE with Moab as well as basic job execution.

Go to Menu

Page 25

Running Jobs: Batch Scripts

• Batch scripts can be used to run a set of commands on a
systems compute partition.

• The batch script is a shell script containing PBS flags and
commands to be interpreted by a shell.

• Batch scripts are submitted to the batch manager, PBS,
where they are parsed. Based on the parsed data, PBS
places the script in the queue as a job.

• Once the job makes its way through the queue, the script
will be executed on the head node of the allocated
resources.

Go to Menu

Page 26

Running Jobs: Example Batch Script

1: #!/bin/bash
2: #PBS -A XXXYYY
3: #PBS -N test
4: #PBS -j oe
5: #PBS -l walltime=1:00:00,size=192
6:
7: cd $PBS_O_WORKDIR
8: date
9: aprun -n 192 ./a.out

This batch script can be broken down into the following sections:
• Shell interpreter

• Line 1
• Can be used to specify an interpreting shell.

• PBS commands
• The PBS options will be read and used by PBS upon

submission.
• Lines 2–5

• 2: The job will be charged to the XXXYYY project.
• 3: The job will be named “test.”
• 4: The jobs standard output and error will be combined.
• 5: The job will request 192 cores for 1 hour.

• Please see the PBS Options page for more options.
• Shell commands

• Once the requested resources have been allocated, the shell
commands will be executed on the allocated nodes head
node.

• Lines 6–9
• 6: This line is left blank, so it will be ignored.
• 7: This command will change directory into the script's

submission directory. We assume here that the job was
submitted from a directory in /lustre/scratch/.

• 8: This command will run the date command.
• 9: This command will run the executable a.out on 192

cores with a.out. Go to Menu

NOTE: Since users cannot share
nodes, size requests must be
 a multiple of 4 on the XT4 or
 a multiple of 12 on the XT5.

Page 27

Running Jobs: Submitting Batch Jobs - qsub

• To submit the batch script named test.pbs do:

qsub test.pbs

• All job resource management handled by Torque.

• Batch scripts can be submitted for execution using the
qsub command.

• If successfully submitted, a PBS job ID will be returned.
This ID can be used to track the job.

Go to Menu

Page 28

Running Jobs: Interactive Batch Jobs

• Batch scripts are useful for submitting a group of commands, allowing them to run
through the queue, then viewing the results. It is also often useful to run a job
interactively. However, users are not allowed to directly run on compute resources
from the login module. Instead, users must use a batch-interactive PBS job. This is
done by using the -I option to qsub.

• For interactive batch jobs, PBS options are passed through qsub on the command line:

qsub -I -A XXXYYY -q debug -V -l size=24,walltime=1:00:00

This request will…
-I Start an interactive session
-A Charge to the “XXXYYY” project
-q debug Run in the debug queue
-V Import the submitting users environment
-l size=24,walltime=1:00:00 Request 24 compute cores for one hour

Go to Menu

Page 29

• Command: qdel
– Jobs in the queue in any state can be stopped and removed from the queue

using the command qdel.
– For example, to remove a job with a PBS ID of 1234, use the following

command: qdel 1234

• Command: qhold
– Jobs in the queue in a non-running state may be placed on hold using the qhold

command. Jobs placed on hold will not be removed from the queue, but they
will not be eligible for execution.

– For example, to move a currently queued job with a PBS ID of 1234 to a hold
state, use the following command: qhold 1234

• Command: qrls
– Once on hold the job will not be eligible to run until it is released to return to a

queued state. The qrls command can be used to remove a job from the held
state.

– For example, to release job 1234 from a held state, use the following
command: qrls 1234

Running Jobs: Altering Batch Jobs – qdel,qhold,qrls

Go to Menu

Page 30

Running Jobs: Monitoring Job Status - qstat
PBS and Moab provide multiple tools to view queue, system, and job statuses.
Command: qstat
Use qstat -a to check the status of submitted jobs:
nid00004:

Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS Tasks Memory Time S Time
------ -------- ----- ------- ------ --- ----- ------ ----- - -----
29668 user1 batch job2 21909 1 256 -- 08:00 R 02:28
29894 user2 batch run128 -- 1 128 -- 02:30 Q -–
29895 user3 batch STDIN 15921 1 1 -- 01:00 R 00:10
29896 user2 batch jobL 21988 1 2048 -- 01:00 R 00:09
29897 user4 debug STDIN 22367 1 2 -- 00:30 R 00:06
29898 user1 batch job1 25188 1 1 -- 01:10 C 00:00

Job ID PBS assigned job ID.
Username Submitting user’s user ID.
Queue Queue into which the job has been submitted.
Jobname PBS job name. This is given by the PBS -n option in

the PBS batch script. Or, if the -n option is not used,
PBS will use the name of the batch script.

SessID Associated session ID.
NDS PBS node count. Not accurate; will be one.
Tasks Number of cores requested by the job’s -size option.
Req’d Memory Job’s requested memory.
Req’d Time Job’s given wall time.
S Job’s current status. See the status listings below.
Elap Time Job’s time spent in a running status. If a job is not currently

or has not been in a run state, the field will be blank.

Status Meaning
Value

E Exiting after having run
H Held
Q Queued; eligible to run
R Running
S Suspended
T Being moved to new location
W Waiting for its execution time
C Recently completed (within the

last 5 minutes)

Go to Menu

Page 31

Running Jobs: showq, checkjob

Command : showq
The Moab utility showq gives a more detailed description of the queue and displays it
in the following states:
Active These jobs are currently running.
Eligible These jobs are currently queued awaiting resources. A user is allowed five jobs in

the eligible state.
Blocked These jobs are currently queued but are not eligible to run. Common reasons for

jobs in this state are jobs on hold, the owning user currently having five jobs in the
eligible state, and running jobs in the longsmall queue.

Command : checkjob
The Moab utility checkjob can be used to view details of a job in the queue.
For example, if job 736 is a job currently in the queue in a blocked state, the following can be
used to view why the job is in a blocked state:
checkjob 736 The return may contain a line similar to the following:
BlockMsg: job 736 violates idle HARD MAXJOB limit of 2 for

user (Req: 1 In Use: 2)
This line indicates the job is in the blocked state because the owning user has reached the
limit of two jobs currently in the eligible state.

Go to Menu

Page 32

Running Jobs: showstart, showbf, xtprocadmin

Command : showstart
The Moab utility showstart gives an estimate of when the job will start.
showstart 100315
job 100315 requires 16384 procs for 00:40:00
Estimated Rsv based start in 15:26:41 on Fri Sep 26
23:41:12
Estimated Rsv based completion in 16:06:41 on Sat Sep 27
00:21:12
Since the start time may change dramatically as new jobs with higher priority are
submitted, so you need to periodically rerun the command.

Command : showbf
This command can be used by any user to find out how many processors are available
for immediate use on the system. It is anticipated that users will use this information to
submit jobs that meet these criteria and thus obtain quick job turnaround times. As such,
it is primarily useful for small jobs. This command incorporates down time,
reservations, and node state information in determining the available backfill window.

Go to Menu

Page 33

Running Jobs: Job Execution - aprun

• By default, commands will be executed on the job’s
associated service node.

• The aprun command is used to execute a job on one or
more compute nodes.

• The XT’s layout should be kept in mind when running a
job using aprun. The XT5 partition currently contains
two hex-core processors (a total of 12 cores) per compute
node. While the XT4 partition currently contains one
quad-core processor (a total of 4 cores) per compute node.

• The PBS size option requests compute cores. Go to Menu

Page 34

Running Jobs: Basic aprun options

Option Description
-D Debug (shows the layout aprun will use)

-n Number of MPI tasks.
Note: If you do not specify the number of tasks to aprun, the system will default to 1.

-N

Number of tasks per Node. (XT5: 1 – 12) and (XT4: 1 – 4)
NOTE: Recall that the XT5 has two Opterons per compute node. On the XT5, to place one task per
quad-core Opteron, use -S 1 (not -N 1 as on the XT4). On the XT4, because there is only one Opteron
per node, the -S 1 and -N1 will result in the same layout.

-m
Memory required per task. Default:
4-core, 8-GB Cray XT4 nodes (8 GB / 4 CPUs = 2 GB)
XT4: A maximum of 2GB per core; 2.1GB will allocate two cores for the task

-d

Number of threads per MPI task.
Note: As of CLE 2.1, this option is very important. If you specify OMP_NUM_THREADS but do not
give a -d option, aprun will allocate your threads to a single core. You must use
OMP_NUM_THREADS to specify the number of threads per MPI task, and you must use -d to tell
aprun how to place those threads.

-S Number of PEs to allocate per NUMA node.
-ss Strict memory containment per NUMA node.

Go to Menu

Page 35

Running Jobs: XT5 example
aprun –n 24 ./a.out will run a.out across 24 cores. This requires two compute
nodes. The MPI task layout would be as follows:

Compute Node 0

Opteron 0 Opteron 1

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 0 Core 1 Core 2 Core 3 Core 4 Core 5

0 1 2 3 4 5 6 7 8 9 10 11

The following will place tasks in a round robin fashion.
> setenv MPICH_RANK_REORDER_METHOD 0
> aprun -n 24 a.out

Go to Menu

Compute Node 1

Opteron 0 Opteron 1

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 0 Core 1 Core 2 Core 3 Core 4 Core 5

12 13 14 15 16 17 18 19 20 21 22 23

Rank 0, Node 0, Opteron 0, Core 0
Rank 1, Node 1, Opteron 0, Core 0
Rank 2, Node 0, Opteron 0, Core 1
Rank 3, Node 1, Opteron 0, Core 1
Rank 4, Node 0, Opteron 0, Core 2
Rank 5, Node 1, Opteron 0, Core 2
Rank 6, Node 0, Opteron 0, Core 3
Rank 7, Node 1, Opteron 0, Core 3
Rank 8, Node 0, Opteron 0, Core 4
Rank 9, Node 1, Opteron 0, Core 4
Rank 10, Node 0, Opteron 0, Core 5
Rank 11, Node 1, Opteron 0, Core 5

Rank 12, Node 0, Opteron 1, Core 0
Rank 13, Node 1, Opteron 1, Core 0
Rank 14, Node 0, Opteron 1, Core 1
Rank 15, Node 1, Opteron 1, Core 1
Rank 16, Node 0, Opteron 1, Core 2
Rank 17, Node 1, Opteron 1, Core 2
Rank 18, Node 0, Opteron 1, Core 3
Rank 19, Node 1, Opteron 1, Core 3
Rank 20, Node 0, Opteron 1, Core 4
Rank 21, Node 1, Opteron 1, Core 4
Rank 22, Node 0, Opteron 1, Core 5
Rank 23, Node 1, Opteron 1, Core 5

Page 36

Running Jobs: XT4 example

aprun -n8 a.out will run the MPI executable a.out on a total of eight cores, four cores on
two compute nodes. The MPI tasks will be allocated in the following sequential fashion:

Compute Node 0

Opteron 0

Core 0 Core 1 Core 2 Core 3

0 1 2 3

The following will place tasks in a
round robin fashion.
> setenv MPICH_RANK_REORDER_METHOD 0
> aprun -n 8 a.out
Rank 0, Node 0, Opteron 0, Core 0
Rank 1, Node 1, Opteron 0, Core 0
Rank 2, Node 0, Opteron 0, Core 1
Rank 3, Node 1, Opteron 0, Core 1
Rank 4, Node 0, Opteron 0, Core 2
Rank 5, Node 1, Opteron 0, Core 2
Rank 6, Node 0, Opteron 0, Core 3
Rank 7, Node 1, Opteron 0, Core 3

Compute Node 1

Opteron 0

Core 0 Core 1 Core 2 Core 3

0 1 2 3

Go to Menu

Page 37

Running Jobs: Threads

• The system supports threaded programming within a compute node.

• On the XT5, threads may span both Opterons within a single
compute node, but cannot span compute nodes.

• Users have a great deal of flexibility in thread placement. Several
examples are shown below.

• Note: Under CNL 2.1, threaded codes must use the

aprun -d depth option

The -d option specifies the number of threads per task. Without the
option all threads will be started on the same core. Under previous
CNL versions the option was not required. The number of cores
used is calculated by multiplying the value of -d by the value of -n.

• Focus of this discussion will be OpenMP threads
Go to Menu

Page 38

Running Jobs: Threads – XT5 Example
• Example: Launch 4 MPI tasks, each with 6 threads. Place 1 MPI task per Opteron (this requests 2

compute nodes and requires a size request of 24):

export OMP_NUM_THREADS=6
> aprun -n4 –d6 -S1 a.out
Rank 0, Thread 0, Node 0, Opteron 0, Core 0 <-- MASTER
Rank 0, Thread 1, Node 0, Opteron 0, Core 1 <-- slave
Rank 0, Thread 2, Node 0, Opteron 0, Core 2 <-- slave
Rank 0, Thread 3, Node 0, Opteron 0, Core 3 <-- slave
Rank 0, Thread 4, Node 0, Opteron 0, Core 4 <-- slave
Rank 0, Thread 5, Node 0, Opteron 0, Core 5 <-- slave
Rank 1, Thread 0, Node 0, Opteron 1, Core 0 <-- MASTER
Rank 1, Thread 1, Node 0, Opteron 1, Core 1 <-- slave
Rank 1, Thread 2, Node 0, Opteron 1, Core 2 <-- slave
Rank 1, Thread 3, Node 0, Opteron 1, Core 3 <-- slave
Rank 1, Thread 4, Node 0, Opteron 1, Core 4 <-- slave
Rank 1, Thread 5, Node 0, Opteron 1, Core 5 <-- slave
Rank 2, Thread 0, Node 1, Opteron 0, Core 0 <-- MASTER
Rank 2, Thread 1, Node 1, Opteron 0, Core 1 <-- slave
Rank 2, Thread 2, Node 1, Opteron 0, Core 2 <-- slave
Rank 2, Thread 3, Node 1, Opteron 0, Core 3 <-- slave
Rank 2, Thread 4, Node 1, Opteron 0, Core 4 <-- slave
Rank 2, Thread 5, Node 1, Opteron 0, Core 5 <-- slave
Rank 3, Thread 0, Node 1, Opteron 1, Core 0 <-- MASTER
Rank 3, Thread 1, Node 1, Opteron 1, Core 1 <-- slave
Rank 3, Thread 2, Node 1, Opteron 1, Core 2 <-- slave
Rank 3, Thread 3, Node 1, Opteron 1, Core 3 <-- slave
Rank 3, Thread 4, Node 1, Opteron 1, Core 4 <-- slave
Rank 3, Thread 5, Node 1, Opteron 1, Core 5 <-- slave Go to Menu

Page 39

Running Jobs: Threads – XT4 Example

• Example: Launch 2 MPI tasks, each with 4 threads (this requests 2 compute nodes
and requires a size request of 8):

export OMP_NUM_THREADS=4
> aprun -n2 -d4 a.out
Rank 0, Thread 0, Node 0, Opteron 0, Core 0 <-- MASTER
Rank 0, Thread 1, Node 0, Opteron 0, Core 1 <-- slave
Rank 0, Thread 2, Node 0, Opteron 0, Core 2 <-- slave
Rank 0, Thread 3, Node 0, Opteron 0, Core 3 <-- slave
Rank 1, Thread 0, Node 1, Opteron 0, Core 0 <-- MASTER
Rank 1, Thread 1, Node 1, Opteron 0, Core 1 <-- slave
Rank 1, Thread 2, Node 1, Opteron 0, Core 2 <-- slave
Rank 1, Thread 3, Node 1, Opteron 0, Core 3 <-- slave

Go to Menu

Page 40

Third-Party Software

NCCS has installed many third-party software packages,
libraries, etc., and created module files for them

Third-party applications (e.g., MATLAB, GAMESS)

Latest versions or old versions not supported by vendor (e.g.,
fftw/3.1.2)

Suboptimal versions to do proof-of-concept work (e.g., blas/ref)

Debug versions (e.g., petsc/2.3.3-debug)

NCCS modules available via module load command,
installed in /sw/xt/ directory

Go to Menu

Page 41

Debugging and Profiling

The following tools are availably on Jaguar for debugging
and profiling:

Debugging Profiling and Analysis
DDT, TotalView Cray PAT, Apprentice2,

PAPI, TAU etc.

Always check the compatibility of the compiler options you want to use.

Go to Menu

Page 42

Resources for Users: Getting Started

• About Jaguar

http://www.nccs.gov/computing-resources/jaguar/

• Quad Core AMD Opteron Processor Overview

http://www.nccs.gov/wp-content/uploads/2008/04/amd_craywkshp_apr2008.pdf

• PGI Compilers for XT5

http://www.nccs.gov/wp-content/uploads/2008/04/compilers.ppt

• NCCS Training & Education – archives of NCCS workshops and seminar series,
HPC/parallel computing references

http://www.nccs.gov/user-support/training-education/

• 2009 Cray XT5 Quad-core Workshop

http://www.nccs.gov/user-support/training-education/workshops/2008-cray-xt5-quad-
core-workshop/

Go to Menu

Page 43

Resources for Users: Advanced Topics

• Debugging Applications Using TotalView

http://www.nccs.gov/user-support/general-support/software/totalview

• Debugging Applications Using DDT

http://www.nccs.gov/computing-resources/jaguar/software/?software=ddt

• Using Cray Performance Tools - CrayPat

http://www.nccs.gov/computing-resources/jaguar/debugging-
optimization/cray-pat/

• I/O Tips for Cray XT4

http://www.nccs.gov/computing-resources/jaguar/debugging-optimization/io-
tips/

• NCCS Software

http://www.nccs.gov/computing-resources/jaguar/software/ Go to Menu

http://www.nccs.gov/user-support/general-support/software/totalview
http://www.nccs.gov/computing-resources/jaguar/software/?software=ddt
http://www.nccs.gov/computing-resources/jaguar/debugging-optimization/cray-pat/
http://www.nccs.gov/computing-resources/jaguar/debugging-optimization/cray-pat/
http://www.nccs.gov/computing-resources/jaguar/debugging-optimization/io-tips/
http://www.nccs.gov/computing-resources/jaguar/debugging-optimization/io-tips/
http://www.nccs.gov/computing-resources/jaguar/software/

Page 44

Resources for Users: More Information

• NCCS website

http://www.nccs.gov/

• Cray Documentation

http://docs.cray.com/

• Contact us

help@nccs.gov

Go to Menu

	A Quick Start Guide to�NCCS System
	Outline
	Jaguar System Overview: General Outline
	Jaguar System Overview: Summary of Resources
	Jaguar System Overview: System Software
	Logging into Jaguar: Connection Requirements
	Logging into Jaguar: Connection Procedure
	Login Nodes
	Compute (Batch) Nodes
	File Systems: Basics
	File Systems: User’s Directories
	File Systems: Quota policy
	Software Environment: Modules
	Software Environment: module command
	Software Environment: Default Module List
	Compiling: System Compilers
	Compiling: Parallel Compiling on Jaguar
	Compiling: Default Compilers
	Compiling: Useful Compiler Flags (PGI)
	Compiling: Useful Compiler Flags (GNU)
	Compiling: Useful Compiler Flags (Pathscale)
	Compiling: Useful Compiler Flags (Intel)
	Compiling: Useful Compiler Flags (Cray)
	Running Jobs: Introduction
	Running Jobs: Batch Scripts
	Running Jobs: Example Batch Script
	Running Jobs: Submitting Batch Jobs - qsub
	Running Jobs: Interactive Batch Jobs
	Running Jobs: Altering Batch Jobs – qdel,qhold,qrls
	Running Jobs: Monitoring Job Status - qstat
	Running Jobs: showq, checkjob
	Running Jobs: showstart, showbf, xtprocadmin
	Running Jobs: Job Execution - aprun
	Running Jobs: Basic aprun options
	Running Jobs: XT5 example
	Running Jobs: XT4 example
	Running Jobs: Threads
	Running Jobs: Threads – XT5 Example
	Running Jobs: Threads – XT4 Example
	Third-Party Software
	Debugging and Profiling
	Resources for Users: Getting Started
	Resources for Users: Advanced Topics
	Resources for Users: More Information

