The Role of Risk Assessments in Proposed CERCLA Decision Documents for Hanford River Corridor

Larry Gadbois – EPA

Presentation to the Hanford Advisory Board April 12, 2012

Risk Assessments in CERCLA

- Assess risk
- Establish the basis for action
- Identify risks that need to be mitigated
- One of the tools used to establish cleanup levels

Risk Assessment:

assess risk establish basis for action identify risks that need to be mitigated

Waste Site or Groundwater contamination information

Risk Assessment

What is the risk?
Is risk within
acceptable limits?

Risk Assessment:

determine protective cleanup levels

Waste Site or Groundwater cleanup level

Risk Assessment

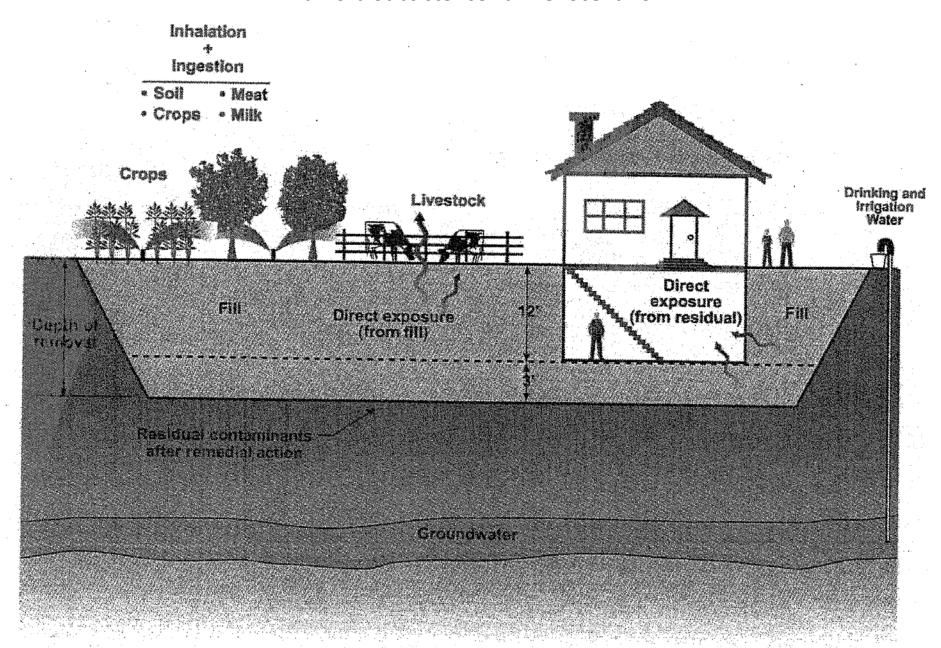
What is an acceptable risk?

100-K & 300 Area

- Risk Assessments in early 1990s
 Interim Actions
- RCBRA River Corridor Baseline Risk Assessment 2011/12
- Remedial Investigations/Proposed Plans 2011/12
 Conclusions and some content rolled up into the 100-K and 300 Area Remedial Investigations & Proposed Plans. RI/FS added additional GW risk assessment.

Cleanup Levels

Environmental Laws and Regulations – ARARs
 Applicable Relevant and Appropriate Requirements


Examples: Clean Water Act, Safe Drinking Water Act, Air Emissions Regulations

- Policy
- Risk Assessment
- Risk Management
- Proposed final actions no backsliding from interim actions

100-K Proposed Cleanup Level Most Restrictive of:

- MTCA method B "unrestricted" chemicals
- Rural Residential radionuclides
- Interim Action
- Groundwater Protection
- Surface Water Protection
- Ecological Plants, Invertebrates, Birds, Mammals

Hanford Subsistence Farmer Scenario

Input Parameters	MTCA Method B Unrestricted (chemicals)	Hanford Subsistence Farmer (radionuclides)	Hanford Industrial (radionuclides)	MTCA Standard Method C Industrial (chemicals)
Exposure Period	6 years – 365 days/yr	6+30 years – 350 days/yr	25 years 250 days/yr	20 years 146 days/yr
Food&water	Not from site	All from site	Not from site	Not from site
Soil ingestion	200 mg/day	200 mg/day first 6 years 100 mg/day next 30 years	100 mg/day	50 mg/day
Carcinogens acceptable risk	1 in 1,000,000 each chem 1 in 100,000 total	1 in 10,000 total	1 in 10,000 total	1 in 1,000,000 each chem 1 in 100,000 total

Noncarcinogens all use the same Hazard Quotient of one for all contaminants combined.

Contaminant	Human H	ealth or Interim Action Terrestrial Ecological Risk		rial Ecological Risk		
	Cleanup Level	Basis	Cleanup Level	Basis		
		100 Area Common Contaminants				
Arsenic	20 ppm	Interim Action(Human) & MTCA-A (Policy)	127-128 ppm	Mammals-Plants-Birds		
Chromium-VI	2.1 ppm	Interim Action (Aquatic Eco)	1,250 ppm	Mammals		
Lead	250 ppm	MTCA-B	156 ppm	Birds		
Mercury	24 ppm	Interim Action(Human) & MTCA-B	0.3 1.6 2.0 ppm	Plants-Mammals-Birds		
PCB-1254/1260	0.5 ppm	Interim Action(Human) & MTCA-B	1.47 ppm	Mammals		
Carbon-14	8.7 pCi/g	Interim Action(Human)	31.6 pCi/g	Mammals		
Cesium-137	4.4 pCi/g	Risk - Human	924 pCi/g	Mammals		
Europium-152	3.3 pCi/g	Interim Action(Human)	1,740 pCi/g	Birds-Mammals		
Strontium-90	2.3 pCi/g	Risk - Human	91 pCi/g	Mammals		
Tritium	459 pCi/g	Interim Action(Human)	420 pCi/g	Mammals		
300 Area Additional Common Contaminants						
Beryllium	10 ppm	Interim Action(Human)	10 ppm	Plants		
Uranium-235 &	2.7 &	Interim Action(Human)	4,360 &	Birds		

Conclusions

- Key parts of the RCBRA are brought into the RI/FS report.
- Additional data and analysis contained in the RI/FS.
- The RI/FS and Proposed Plan present the preferred and other alternatives and must explain the basis. These documents which include risk assessment must be approved by the lead regulator to go to public comment.
- Subsequent Record of Decision is based on all information in the administrative record.