Planning, Coordination, and Infrastructure Requirements for CMIP

Karl E. Taylor

Program for Climate Model Diagnosis and Intercomparison (PCMDI) Lawrence Livermore National Laboratory

Presented to the USGCRP Interagency Group on Integrative Modeling (IGIM)

College Park, MD 3 October 2012

CMIP5 timeline retrospective:

- 2006: Planning began in earnest.
- Fall 2008: Experiment design approved by WGCM
- December 2009: Nearly all experiment details in place
- March 2011: Output requirements and list of requested output finalized
- April 2011: First model output available
- August 2011: RCP forcing datasets finalized
- March 2012: A petabyte of data stored in 2,000,000 files
- July 2012: More than 200 journal articles based on CMIP5 output in some stage of publication
- Now: 59 models available from 24 modeling centers; 1.7 PB in 4x10⁶ files
- CMIP5 research just beginning

USGCRP – IGIM 3 October 2012

nonths

Preview

- In the "trenches" view of how CMIP actually gets done
- CMIP3 vs. CMIP5
- Ongoing priorities
- What about the future of CMIP?

CMIP: A grass-roots collaborative effort

K. E. Taylor PCMDI

CMIP5 participating groups 59 models available from 24 groups

22 Sept. 2012:

Primary Group	Country	Model
CSIRO-BOM	Australia	ACCESS 1.0, 1.3
BCC	China	BCC-CSM1.1, 1.1(m)
GCESS	China	BNU-ESM
CCCMA	Canada	CanESM2, CanCM4, CanAM4
DOE-NSF-NCAR	USA	CCSM4, CESM1 (BGC), (CAM5), (CAM5.1,FV2), (FASTCHEM), (WACCM)
RSMAS	USA	CCSM4(RSMAS)
CMCC	Italy	CMCC- CESM, CM, & CMS
CNRM/CERFACS	France	CNRM-CM5
CSIRO/QCCCE	Australia	CSIRO-Mk3.6.0
EC-EARTH	Europe	EC-EARTH
LASG-IAP & LASG-CESS	China	FGOALS- g2, s2, & gl
FIO	China	FIO-ESM
NASA/GMAO	USA	GEOS-5
NOAA GFDL	USA	GFDL- HIRAM-C360, HIRAM-C180, CM2.1, CM3, ESM2G, ESM2M
NASA/GISS	USA	GISS- E2-H, E2-H-CC, E2-R, E2-R-CC, E2CS-H, E2CS-R
MOHC	UK	Had CM3, CM3Q, GEM2-ES, GEM2-A, GEM2-CC
NMR/KMA	Korea / UK	HadGEM2-AO
INM	Russia	INM-CM4
IPSL	France	IPSL- CM5A-LR, CM5A-MR, CM5B-LR
MIROC	Japan	MIROC 5, 4m, 4h, ESM, ESM-CHEM
MPI-M	Germany	MPI-ESM- HR, LR, P, ESM-P
MRI	Japan	MRI- AGCM3.2H, AGCM3.2S, CGCM3, ESM1
NCC	Norway	NorESM1-M, NorESM-ME
NCEP	USA	CFSv2-2011
NICAM	Japan	NICAM-09
INPE	Brazil	BESM OA2.3

CMIP: A grass-roots collaborative effort

K. E. Taylor PCMDI

CMIP: Under the umbrella of an internationallycoordinated research program

IPCC assessments are separate from the international climate research programs

Executing CMIP: A collaboration between climate scientists and IT experts.

- Establish suite of experiments
- Define list of requested output variables (and frequencies and domains)
- Impose output requirements
- Do experiments and write output consistent with specifications
- Implement services to make output accessible to users
- Provide user support

CMIP5 planning: CMIP5 experiment design

- Obtain community input:
 - Workshops (e.g., Aspen Global Change Inst.)
 - Sister MIPs (e.g., C4MIP, PMIP, CFMIP)
 - WCRP
- Reach consensus through the WGCM
- Work out details of experiments
 - e.g., specify length of runs, boundary conditions, ... (see http://cmippcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf)
 - Prioritize experiments
 - Coordinate with integrated assessment community to develop new scenarios
 - PCMDI and WGCM CMIP Panel shared responsibility
- Gain WGCM approval

USGCRP – IGIM 3 October 2012

CMIP5 is organized around three types of simulations

A rich set of "long-term" experiments, drawn from several predecessor MIPs, focuses on model evaluation, projections, and understanding

<u>Red</u> subset matches the entire CMIP3 experimental suite

<u>Green</u> subset is for coupled carbon-cycle climate models only

Planning CMIP5: Define list of requested output

- Build on variable lists from earlier MIPs, and gather community input to expand requested output list
- Prioritize variables and create tables of variables and their attributes (standard names, dimensions, units, etc.) <u>http://cmip-pcmdi.llnl.gov/cmip5/docs/standard_output.pdf</u>

CMIP5 output fields requested (goes well beyond what was available from CMIP3)

- Domains (number of monthly variables*):
 - Atmosphere (60)
 - Aerosols (77)
 - Ocean (69)
 - Ocean biogechemistry (74)
 - Land surface & carbon cycle (58)
 - ➡ Sea ice (38)
 - Land ice (14)
 - CFMIP output (~100)
- Temporal sampling (number of variables*)
 - Climatology (22)
 - Annual (57)
 - Monthly (390)
 - Daily (53)
 - ➡ 6-hourly (6)

USGCRP – IGIM 3 October 2012 *Not all variables will be saved for all experiments and time-periods

http://cmip-pcmdi.llnl.gov/cmip5/output_req.html

K. E. Taylor PCMDI

Planning CMIP5: Define model output specifications

- Agree to write netCDF files conforming to CF conventions
 - The CF-conventions allows for creation of self-describing files with information typically needed to perform analysis See <u>http://cf-pcmdi.llnl.gov/</u>
- Define metadata requirements to ensure all essential information needed for analysis is included (consistent with, but more prescriptive than CF) <u>http://cmip-pcmdi.llnl.gov/cmip5/docs/CMIP5_output_metadata_requirements.pdf</u>
- Construct filename templates and directory structures to be adopted by all models
- Define and impose "controlled vocabularies" for experiment names, model names, sampling frequencies, realms, etc. <u>cmip5 data reference syntax.pdf</u>

Modeling groups accepted huge task.

- Install COSP (CFMIP Observational Simulator Package)
- Run experiments consistent with CMIP5 requirements
- Prepare output for CMIP5 archive
 - Rewrite model output ("CMORize" data) <u>http://www2-pcmdi.llnl.gov/cmor</u>
- Install ESGF data node software (or transfer data to a data center)
- "Publish" model output on ESGF and maintain system.
- Record detailed documentation of models and simulations through the METAFOR questionnaire.

USGCRP – IGIM 3 October 2012

Serving CMIP5 output to users:

- Develop and deploy ESGF "node" software to modeling groups and data centers:
 - "Publish" data
 - Establish protocols allowing external users to download data (http, gridftp, opendap??)
 - Enable replication
- Develop and establish ESGF "portals" where users can
 - Search distributed archive
 - Download CMIP output (either point-and-click, or with wget scripts)

Evolution of operational ESG: CMIP3

Data shipped to PCMDI on hard disks

- Delayed availability
- Hindered corrections

- Search through web gateway
- Download from single location (ftp, http)

USGCRP – IGIM 3 October 2012

Evolution of operational ESG: CMIP5 (until recently)

- ESG software architecture similar to CMIP3, but
 - Data distributed worldwide at "data nodes"
 - Catalogs of data were hosted at gateways
 - Gateways shared catalog information
 - Users accessed data through gateways
- ESG limitations
 - Search engine hopelessly slow
 - Gateways often inaccurate in reporting data holdings
 - Overly monolithic structure of gateway software impaired timely
 - Modification to correct performance issues and bugs
 - Implementation of enhancements needed for CMIP5 (e.g., model documentation)

• ESG Federation formed (spring of 2010) to develop GCRP_alternative October 2012

Evolution of operational ESG: CMIP5 peer-to-peer ESGF

• P2P timeline

- Spring 2010: conception
- Spring 2011: unanimous decision to transition to p2p system for CMIP5 (when ready)
- Fall 2011: Prototype system ready for testing
- August 2012: user comment -- "The new portal is wonderful! In one afternoon work achieved more than several weeks work with the old system."
- September 2012: Old gateways deprecated; P2P now operational
- Peer-to-peer (p2p) architecture is designed to be
 - Scalable to data needs of future
 - Simplified and modularized to enable nimble modification
 - Open-source to attract contributions and resources across the community
 - Easy to interface to (by API's)
 - Multiple, fast search options (including simple http inquiry outside user interface)

USGCRP – IGIM 3 October 2012 See pcmdi9.llnl.gov

K. E. Taylor PCMDI

Provide user support and information for basic understanding of CMIP:

- Partner with the IPCC's Data Distribution Center (DDC) BADC and DKRZ
- Maintain a "help desk"
- Dataset errata
- Collect and make accessible model and experiment documentation (METAFOR, CURATOR, and ES-docs)
- Develop and update a comprehensive CMIP5 website
 - Guide to data providers
 - Guide to users
 - Resources (e.g., forcing data sets, lists of modeling group official names, etc.)
- Provide searchable record of CMIP5-based journal articles (http://cmip.llnl.gov/cmip5/publications/allpublications)

Record of CMIP5 publications

CMIP Coupled Model Intercomparison Project World Climate Research Programme

Submit Edit

Administration

View

All Publications

Author	Article Title	Journal
?eparovi? L. , A. Alexandru, R. Laprise, A. Martynov, L. Sushama,	Present climate and climate change over North America as simulated by the fifth-generation Canadian Regional Climate Model (CRCM5); (Citation) (More Information)	Climate Dynamics
Ahlström A. , G. Schurgers, B. Smith	Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections; (Citation) (More Information)	Environmental Research Letters
Ahmed C. B. , S. Sensoy	Assessment of climate change effects on agriculture in the Mediterranean countries; (Citation) (More Information)	
Alan I., M. Demircan, S. Sensoy	Trends in Turkey climate extreme indices from 1971 to 2004; (Citation) (More Information)	
Anav A. , P. Friedlingstein, M. Kidston, L. Bopp, P. Ciais,	EVALUATING THE LAND AND OCEAN COMPONENTS OF THE GLOBAL CARBON CYCLE IN THE CMIP5 EARTH SYSTEM MODELS; (Citation) (More Information)	Journal of Climate
Andrews T. , J. M. Gregory, M. J. Webb, K. E. Taylor	Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models; (Citation) (More Information)	Geophysical Research Letters
Anstey J. A. , P. Davini, L. J. Gray, T. J. Woollings, N. Butchart,	Multi-model analysis of Northern Hemipshere winter blocking and tropospheric jet variability; (Citation) (More Information)	Journal of Geophysical Research
Arblaster J. M. , L. V. Alexander	The impact of the El Nino Southern Oscillation on maximum temperature extremes; (Citation) (More Information)	Geophysical Research Letters
Armour K. C. , C. M. Bitz, G. H. Roe	Time-varying climate sensitivity from regional feedbacks; (Citation) (More Information)	Journal of Climate
Arora V., G. Boer, P. Friedlingstein, M. Eby, C. Jones, 	Carbon-concentration and carbon-climate feedbacks in CMIP5 Earth system models; (Citation) (More Information)	Journal of Climate
Balan Sarojini B. , P. Stott, E. Black, D. Polson	Fingerprints of Changes in Annual and Seasonal Precipitation from CMIP5 Models over Land and Ocean; (Citation) (More Information)	Geophysical Research Letters

Total Publications Count: 248
Publication Views

» All Publications» By Journal

» By Model» By Experiment» By Variable» By Keyword

» By Publication Type» By Publication Status» By Publication Year

>> By Sampling Frequency

CMIP Coupled Model Intercomparison Project World Climate Research Programme

View Administration

All Publications

Edit

Author	Article Title				Journal
?eparovi? L. , A. Alexandru, R. Laprise, A. Martynov, L. Sushama,	Present climate generation Cana	Climate Dynamics			
Ahlström A. , G. Schurgers, B. Smith	Robustness and change projecti	l uncertainty in ter ons; (Citation) (M	rrestrial ecosystem carbon r ore Information)	esponse to CMIP5 climate	Environmental Research Letters
Ahmed C. B. , S. Sensoy	Assessment of ((Citation) (More	climate change eff Information)	ects on agriculture in the Me	editerranean countries;	
Alan I. , M. Demircan, S. Sensoy	Trends in Turke Information)	Trends in Turkey climate extreme indices from 1971 to 2004; (Citation) (More Information)			
Anav A. , P. Friedlingstein, M. Kidston, L. Bopp, P. Ciais,	EVALUATING THE LAND AND OCEAN COMPONENTS OF THE GLOBAL CARBON CYCLE IN THE CMIPS EARTH SYSTEM MODELS; (Citation) (More Information)			Journal of Climate	
Andrews T., J. M. Gregory, M. J. Webb, K. F. Taylor	Forcing, feedbacks and climate sensitivity in CMIPS coupled atmosphere-ocean climate models; (Citation)			Geophysical Research Letters	
	Andrews T., J. M. Gregory M. J. Webb K. E. Taylor null : "Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models", <i>Geophysical Research Letters</i> 39, doi:10.1029/2012GL051607, http://www.agu.org/pubs/crossref/2012/2012GL051607.shtml				
	(More Information)				
	Experiments abrupt4xCO2 piControl sstClim sstClim4xCO2	Models CanESM2 CNRM-CM5 CSIRO-Mk3.6.0 GFDL-CM3 GFDL-ESM2G GFDL-ESM2M HadGEM2-ES INM-CM4 IPSL-CM5A-LR MIROC-ESM MIROC5 MPI-ESM-LR	Variables land area fraction surface temperature toa incoming shortwave flux toa outgoing longwave flux toa outgoing longwave flux assuming clear sky toa outgoing shortwave flux toa outgoing shortwave flux assuming clear sky	Keywords WG1 (physical climate system) Abrupt change Globe Energy budget Radiatiave forcing Clouds Radiation Feedbacks Climate sensitivity	

MPI-ESM-LR MPI-ESM-P MRI-CGCM3 NorESM1-M Total Publications Count: 248 Publication Views

- >> All Publications
- >> By Journal
- >> By Publication Type
- >> By Publication Status
- >> By Publication Year
- >> By Model
- >> By Experiment
- >> By Variable
- >> By Keyword
- >> By Sampling Frequency

Click on "citation" and "more information" to expand to:

Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models; (Citation)

Andrews T., J. M. Gregory M. J. Webb K. E. Taylor null : "Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models", *Geophysical Research Letters* 39, doi:10.1029/2012GL051607, http://www.agu.org/pubs/crossref/2012/2012GL051607.shtml

(More Information)

Experiments	Models	Variables	Keywords
abrupt4xCO2	CanESM2	land area fraction	WG1 (physical climate
piControl	CNRM-CM5	surface temperature	system)
sstClim	CSIRO-Mk3.6.0	toa incoming shortwave	Abrupt change
sstClim4xCO2	GFDL-CM3	flux	Globe
	GFDL-ESM2G	toa outgoing longwave	Energy budget
	GFDL-ESM2M	flux	Radiatiave forcing
	HadGEM2-ES	toa outgoing longwave	Clouds
	INM-CM4	flux assuming clear sky	Radiation
	IPSL-CM5A-LR	toa outgoing shortwave	Feedbacks
	MIROC-ESM	flux	Climate sensitivity
	MIROC5	toa outgoing shortwave	
	MPI-ESM-LR	flux assuming clear sky	
	MPI-ESM-P		
	MRI-CGCM3		
	NorESM1-M		

USGCRP – IGIM 3 October 2012

Different subsets of information can be displayed.

CMIP Coupled Model Intercomparison Project

World Climate Research Programme

Submit	Edit
Jubilit	Eun

Administration

View

All Publications

Author	Article Title	Journal	>>	All Publications
?eparovi? L. , A. Alexandru, R. Laprise, A. Martynov, L. Sushama,	Present climate and climate change over North America as simulated by the fifth-generation Canadian Regional Climate Model (CRCM5); (Citation) (More Information)	Climate Dynamics	>>	By Journal By Publication Type By Publication Status
Ahlström A. , G. Schurgers, B. Smith	Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections; (Citation) (More Information)	Environmental Research Letters	>>	By Publication Year
Ahmed C. B. , S. Sensoy	Assessment of climate change effects on agriculture in the Mediterranean countries; (Citation) (More Information)		>>	By Model By Experiment
Alan I., M. Demircan, S. Sensoy	Trends in Turkey climate extreme indices from 1971 to 2004; (Citation) (More Information)		>>	By Variable
Anav A., P. Friedlingstein, M. Kidston, L. Bopp, P. Ciais,	EVALUATING THE LAND AND OCEAN COMPONENTS OF THE GLOBAL CARBON CYCLE IN THE CMIP5 EARTH SYSTEM MODELS; (Citation) (More Information)	Journal of Climate	» By Keyword» By Sampling Freque	By Keyword By Sampling Frequency
Andrews T. , J. M. Gregory, M. J. Webb, K. E. Taylor	Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models; (Citation) (More Information)	Geophysical Research Letters		
Anstey J. A. , P. Davini, L. J. Gray, T. J. Woollings, N. Butchart,	Multi-model analysis of Northern Hemipshere winter blocking and tropospheric jet variability; (Citation) (More Information)	Journal of Geophysical Research		
Arblaster J. M. , L. V. Alexander	The impact of the El Nino Southern Oscillation on maximum temperature extremes; (Citation) (More Information)	Geophysical Research Letters		
Armour K. C. , C. M. Bitz, G. H. Roe	Time-varying climate sensitivity from regional feedbacks; (Citation) (More Information)	Journal of Climate		
Arora V., G. Boer, P. Friedlingstein, M. Eby, C. Jones, 	Carbon-concentration and carbon-climate feedbacks in CMIP5 Earth system models; (Citation) (More Information)	Journal of Climate		
Balan Sarojini B. , P. Stott, E. Black, D. Polson	Fingerprints of Changes in Annual and Seasonal Precipitation from CMIP5 Models over Land and Ocean; (Citation) (More Information)	Geophysical Research Letters		

Total Publications Count: 248

Publication Views

CMIP Coupled Model Intercomparison Project

World Climate Research Programme

Submit Edit View

Administration

Publications analyzing model: ACCESS1.0

Author	Article Title	Journal
Bathols J. , C. Heady, I. G. Watterson	Are climate models more skillful in their home continent?; (Citation) (More Information)	Bulletin of the American Meteorological Society
Bracegirdle T. J., D. B. Stephenson	On the robustness of emergent constraints used in multi-model climate change projections of Arctic warming; (Citation) (More Information)	Journal of Climate
Brown J. R. , A. F. Moise, R. A. Colman	The South Pacific Convergence Zone in CMIP5 simulations of historical and future climate; (Citation) (More Information)	Climate Dynamics
Brutel-Vuilmet C. , M. Menegoz, G. Krinner	An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models; (Citation) (More Information)	The Cryosphere
Ceppi P., Y. Hwang, D. M. Frierson, D. L. Hartmann	Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing; (Citation) (More Information)	Geophysical Research Letters
Collier M. A. , L. D. Rotstayn, J. Kim, K. Kim	An assessment of central and eastern Pacific El Nino's in the CSIRO-Mk3.6, ACCESS1.0 and ACCESS1.3 CMIP5 coupled climate models and their impact on Australian Rainfall; (Citation) (More Information)	Journal of Climate
Dirmeyer P. A. , Y. Jin, B. Singh, X. Yan	Trends in land-atmosphere interactions from CMIP5 simulations; (Citation) (More Information)	Journal of Hydrometeorology
Dirmeyer P. A. , Y. Jin, B. Singh, X. Yan	Evolving land-atmosphere interactions over North America from CMIP5 simulations; (Citation) (More Information)	Journal of Climate
Du Y. , X. Shang-Ping, Y. Ya-Li, X. Zheng, L. Liu,	Indian Ocean variability in the CMIP5 multi-model ensemble: The basin mode; (Citation) (More Information)	Journal of Climate
DU Z., R. HUANG, G. Huang	How Well can CMIP5 CGCMs Simulate the EAP/PJ Teleconnection Pattern and its Corresponding Summer Climate in the East Asian Monsoon Region; (Citation) (More Information)	Other
DU Z., R. HUANG, G. Huang	How well can CMIP5 CGCMs simulate the Asian summer monsoon rainfall and its interannual variability and their future projections; (Citation) (More Information)	Advances in Atmospheric Sciences
Fettweis X., B. Franco, M.	Estimating Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR: (Citation)	The Cryosphere Discuss

Total Publications Cour	nt: 248
Model	Count
ACCESS1.0	45
ACCESS1.3	28
BCC-CSM1.1	94
BCC-CSM1.1-m	17
BESM-OA2.3	6
BNU-ESM	23
CanAM4	23
CanCM4	34
CanESM2	126
CCSM4	104
CCSM4-RSMAS	13
CESM-BGC	20
CESM1-CAM5	24
CESM1-CAM5.1.FV2	15
CESM1-FASTCHEM	17
CESM1-WACCM	18
CFSv2-2011	12
CMCC-CESM	15
CMCC-CM	25
CMCC-CMS	17
CNRM-CM5	120

Ongoing priorities to enhance CMIP5 data services?

Well along:

- Improved access to model and experiment documentation through p2p ESG interface
- Replication of subset of data (redundancy, improved performance, server-side calculations)
- Additional methods to download (gridFTP, ftp of a subset)
- Service to notify users of availability of new datasets of interest

Ongoing priorities to enhance CMIP5 data services?

In development:

- Sub-setting and server-side computation
- Service to tell users whether their files have been withdrawn/replaced
- Method of recording provenance of data used in CMIP5 publications (e.g., doi assignment and other options)
- Scalable method of reporting/notifying users of errors in data, but at present: <u>http://cmip-pcmdi.llnl.gov/cmip5/errata/cmip5errata.html</u>
- Improved automated QC

USGCRP – IGIM 3 October 2012

Differences between CMIP3 and CMIP5

- A wider variety of models ESMs, EMICs, atmosphere-only
- A more ambitious suite of experiments designed to
 - Address a wider variety of questions (e.g., decadal predictability)
 - Meet the needs of a broader community of users
 - Encompass originally independent MIPs into a single MIP that through coordination provides synergistic opportunities for greater scientific understanding
- A more comprehensive set of model output
 - Enabling more complete diagnostic process studies (e.g., clouds)
 - Providing information requested by a wider variety of users (e.g., impact studies)
 - For use in dynamical and empirical downscaling
 - Data volume increase from ~35 TB to ~3000 TB

USGCRP – IGIM 3 October 2012

Differences between CMIP3 and CMIP5

- More complete documentation of models/experiments
 - But just now becoming available
- New strategies for making output accessible to users
- Increased standardization of model output

Remarks on CMIP's future

- Value of multi-model ensemble has been established
- CMIP has subjected models to wider scrutiny
- Resources devoted to CMIP tax modeling groups heavily

Suggestion:

- Establish a set of benchmark (core CMIP) experiments that would
 - Be done anyway by most groups as part of the development cycle.
 - Evolve only slowly
 - Be revisited whenever a new model was developed
- Around these build additional, specialized intercomparisons that would make use of the same standards and infrastructure.

Start with essential CMIP benchmark experiments (omitting decadal prediction for now)

USGCRP – IGIM 3 October 2012

Include historical run for baseline detection & attribution experiments

USGCRP – IGIM 3 October 2012

K. E. Taylor PCMDI Special interest MIP's would fit in but might not be revisited with every model version.

3 October 2012

K. E. Taylor PCMDI RCP runs (or their successors) would only be performed when needed for IPCC assessments

3 October 2012

Concluding remarks

- CMIP requires planning, coordination, and a complex and multifaceted infrastructure.
- Some of the work is unfunded and gets done by community volunteers (e.g. CF conventions).
- Much of the work is underfunded, which makes deadlines difficult to meet.
- Perceived agency pressure to be seen as a "leader" rather than a "contributor" threatens to undermine the remarkably cooperative team-work established at the grass-roots level.

CMIP website:

http://cmip-pcmdi.llnl.gov

(or search on "CMIP5")

PCMDI - Program For Clin	mate Model Diagnosis and Intercomparison PCMDI Home CAPT AMIP SMIP PMIP APE Contact					
Denmark Nonway Japa	an United Kingdom Kall CMIP5 Coupled Model Intercomparison Project					
The Netherlands Chi	Germania Ganada WCRP World Climate Research Programme Search					
Australia USA	Home News CMIP3 CMIP5 Accomplishments Links Contact RSS S					
СМІР5	CMIP Home \ CMIP5 Home \ Guide to CMIP5 \					
Home 🗉						
CMIP5 Overview CMIP Home	CMIP5 - Guide to CMIP5					
News						
Guide to CMIP5	CMIDE Ecceptical Information					
Data Access 🔳	23 November 2011					
For Data Providers						
CMIP5 Status	CMIP5 Experiment Design Overview:					
CMIP5 Errata	The primary reference for experiment design is:					
Obs4MIPS Publications Obs4MIPs Wiki Contact	Taylor, K.E., R.J. Stouffer, G.A. Meehl: An Overview of CMIP5 and the experiment design." Bull. Amer. Meteor. Soc., 93, 485-498, doi:10.1175/BAMS-D-11-00094.1, 2012.					
	An overview of various aspects of CMIP5 is provided by:					
	WCRP Coupled Model Intercomparison Project - Phase 5: Special Issue of the CLIVAR Exchanges Newsletter, No. 56, Vol. 15, No. 2					
	A fuller description ("lots of details") of the experiments can be found in:					
	A Summary of the CMIP5 Experiment Design					
	The objectives and strategy for the CMIP5 decadal predictions simulations is summarized in:					
	Meehl, Gerald A., and Coauthors: Decadal Prediction. Bull. Amer. Meteor. Soc., 90, 1467–1485, doi:10.1175/2009BAMS2778.1, 2009.					
	For further background and information, consult the following web page:					
	Experiment Design					

"Long-term" experiments: output available, as of (March 3 and) Sept. 22, 2012

Exporiment(s)	# of models	Experiment(s)	# of models
* Control & historical	(29) 48	Fast adjustment diagnostic	?
* AMIP	(18) 28	Aerosol forcing	(6) 9
* RCP4.5 & 8.5	(24) 40	*ESM cntrl, hist. & RCP8.5	(8) 13
RCP2.6	(21) 29	Carbon cycle feedback	(7) 10
RCP6	(15) 22	ISOIAtion	
	· /	Mid-Holocene	(11) 13
RCP's to year 2300	?	LGM	(4) 7
* 1% CO2 increase	(21) 32	Millenium	(6) 7
* Fixed SST CO2 forcing diagnosis	(10) 12	CFMIP runs	(6) 10
* Abrupt 4XCO2 diagnostic	(20) 30	D & A runs	(16) 17

USGCRP – IGIM 3 October 2012 * Core simulations

"Decadal" experiments: Output available, as of (March 3 and) Sept. 22, 2012

* Core simulations simulations

Experiment(s)	Number of models
*Hindcasts and predictions	(14) 18
AMIP	(7) ?
Volcano-free hindcasts	(1) 2
2010 "Pinatubo-like" eruption	(1) 3
Initialization alternatives	?
Pre-industrial control	(12) ?
1% CO2 increase	(7) ?

USGCRP – IGIM 3 October 2012

What were some of the challenges? Experiment design

- Design a coordinated set of experiments serving several purposes:
 - Enable systematic model evaluation
 - Make projections useful to a broad community of users studying climate, impacts, policy, etc.
 - Provide a basis for "downscaling" to subregional scales
 - Include idealized experiments focusing on understanding of differences in model projections.
- Include initialized decadal climate predictions, PMIP, CFMIP, C4MIP simulations
- Provide a rational basis for considering both ESMs and models without interactive carbon cycles

Through active contributions from many, we came up with a rational set of experiments. (perhaps overly ambitious though)

[summarized by Taylor, Stouffer, & Meehl, BAMS, 2012]

What were some of the challenges? Model output volume

- Compared with CMIP3, much more model output requested (~100 x)
 - Reported from a larger number of experiments
 - Generated at higher resolution
 - Reported on more complex grids (not just lon-lat grids)
 - Includes many more variables, e.g., aerosols, biogeochemistry, output from satellite simulators
 - Includes fields needed to drive regional models

We provided tables defining all the variables and we provided an enhanced version of CMOR to accommodate the new data requirements.

We agreed upon "controlled" vocabularies for unambiguously defining the output fields (expt., variable, and model names, sampling frequency, ensemble numbering, etc.)

What were some of the challenges? Delivering data to users

- For CMIP3, data was shipped to PCMDI via disk, then made available to users
 - Several weeks delay between generation of files and availability to users
 - Correcting errors in data was difficult
 - PCMDI became a single point of failure (a catastrophic crash of our RAID system meant data was inaccessible for several weeks)
- For CMIP5, a new (and more complicated approach) was followed
 - Distributed data archive (currently 1.7 Pbyte, 4,000,000 files)
 - Coordination with the IPCC's Data Distribution Centre (BADC & DKRZ)

What's gone well?

- Experiment design was largely in place by January 2009
- The CMIP5 website provides extensive information about all aspects of the project, including the requirements and all the details (<u>http://cmip-pcmdi.llnl.gov/cmip5</u>)
- The data centers have generally worked together well
 - with limited resources
 - to design and develop a distributed data archive
 - which has minimized the delay in getting data to users

What's not gone so well?

- Forcing datasets for the RCP's were delayed
- Modeling groups struggled to meet the ambitious and detailed requirements of CMIP5
- Inevitably a few details of the expt. design and model output request had to be clarified after CMIP5 was well underway
- The search engine was until recently unacceptably slow
- The complexity of the distributed data archive caused extreme frustration for those downloading the data and delayed analysis, but this has been now remedied

What further plans are there?

- Data error reports/notification (rudimentary pages now in place) <u>http://cmip-pcmdi.llnl.gov/cmip5/errata/cmip5errata.html</u>
- Service to notify users when new datasets of interest become available.
- Citable record of CMIP5 provenance (doi assignment and other options)
- Sub-setting of files before download (and other serverside calculations) - will be implemented after moving to P2P