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Climate response to Short-lived forcers

How do we think about climate impacts when
short-lived species are involved?

Forcing Is a useful metric to characterize the
multiple responses to forcing from long-lived
greenhouse gases

Climate response to short-lived species is far
more sensitive to where and when pollutants are
emitted



Cllmate response to Short lived forcers
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Climate response to Short-lived forcers
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Ozone Forcing: A

Not localized to emission region; robust!
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Ozone Forcing:

Not localized to emission region; robust!

Shindell et al, JGR, 2006



Aerosol Forcing

Ramanathan &
Charmichael (Nature
Geoscience, 2008)
give 0.9 W/m? TOA
forcing, based on
satellite & ground-
based obs driven
calculation
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Mean clear-sky forcing -0.68 (range: -0.29 to -0.94) Chung & Seinfeld give
0.60 W/m? for

internally mixed (0.33
for externally)

Mean cloudy-sky forcing -0.02 (range: -0.16 to 0.34)

Mean clear-sky RF over land and ocean: -0.59 and -1.14
Satellite clear-sky RF over land and ocean: -1.10 and -1.80

Schulz et al, ACP, 2006




Aerosol Forcing

Continued
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Forcing
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Emissions

Forcing & Response
length scales

Emissions
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Forcing & Response length scales
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Forcing & Response length scales

Surface layer vs emissions
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Forcing & Response length scales

Surface temperature vs RF
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Forcing & Response length scales
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Response to regional forcing A

Climate forcing from methane changes mostly clear

Climate forcing from ozone precursor changes fairly
clear

Climate forcing from aerosol precursor changes less
clear

Effect of regional forcing on temperature getting clearer;
namely, localized out to ~30 degrees In latitude
(tropics/extratropics), impact can extend far beyond
highly polluted areas in longitude

Also know that GLOBAL climate response enhanced
~40-50% for NH extratropical forcing (feedbacks)



Using Observed Patterns

° : Observed
temperatures

Global SAT

1900 1920 1940 1960 1980 2000

. : CMIP3 mean
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Using Observed Patterns

<
L]
m
!
e

This and other attribution studies have used the pattern of
response to ‘detect’ the influence of sulphate and BC/OC on 20th
Century climate, typically together as patterns are degenerate

range of model
responses to
greenhouse gas, natural,
and ozone forcing (no
aerosols)
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Effect of aerosols on precipitation
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Effect of BC on monsoon preC|p|tat|on
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Effect of BC on monsoon precipitation

Continued

b) precipitation
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Effect of BC on monsoon precipitation

Continued

Menon et al., Science, 2002

Wang et al, GRL, 2009



Dealing with uncertainty

» Although substantial uncertainties remain in
current understanding, we can provide
reasonable estimates of temperature change at
large scales for a given forcing.

* Precipitation is harder (evaluation against
observations), but also the impacts of any
changes are more generally negative.

* \We can estimate the climate impacts of realistic
actions in the fact of uncertainty



Historical Forcing by Emitted Species s«

From IPCC AR4 This work
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Forcing by sector (100-yr)
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Net forcing (mW/m %)

Aviation Rail  Rail indirect FugleStvedt et al.,
PNAS, 2008

Road Shipping




Net forcing by coal plants
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Net forcing by coal plants

Continued
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Net forcing by coal plants

Continued
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Net forcing by coal plants

Continued

Impacts of US/Eur coal consistent with historical trends:
decreases in NH mid-latitude T vs SH 1930-1970, increase 197/5-2005
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Arctic
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Regional response

Continued
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Transport sector B

Regional differences

‘Due to relatively ‘clean’ emissions, projected
changes cause positive forcing in W. Europe (near-
neutral in US)

*With ‘dirty’ emissions, changes in China, India, and
FSU lead to cooling. Tighter standards have little
effect in US/EU, weaken cooling elsewhere except
N Africa/ME



Transport sector continued B
Basellne 2030 VS 2000

Sub-sectors

‘Diesel has weaker
warming mitigation
potential in China &
India than gas, but
greater potential in
other regions (BC vs
SO2/O3z-precusors)

18 207.47



Summary

sIncomplete combustion yields short- and long-lived climate
forcers - response cannot be characterized solely by a global
mean value at a particular time

*Response to inhomogeneous forcing extends very far zonally,
~30 degrees meridionally

*Extratropical zones are sensitive to location of forcing,
responding 3-10x more strongly to local than remote forcing
(global response also enhanced ~40-50%); enhancement for BC
near snow/ice



Summary A

Continued

Knowledge of regional response to inhomogeneous forcing and
to homogeneous forcing (e.g. via ENSO, NAM, monsoon, etc)
both necessary to improve regional projections and validate
regional impacts (precipitation, glaciers, etc.) - detection/attribution
not yet successful for regional temperature/precip/glaciers/etc.

*Knowledge about forcing/response relationships plus
regional/sector impacts on regional forcing can hopefully lead to
better AQ/climate policies, but need for additional detail is great



Surface temperature: BC on snow
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Observed trends In Asian glaciers

Mass balance of Himalayan glaciers
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Observed trends in Asian glaciers cont

Central Asia

| | |
1945 1965 1985

Retreating vs Advancing glaciers
(UNEP/World Glacier Monitoring Service)

Earlier melt & 33-38% Increase in glacier melt runoff past few
decades (Singh & Kumar, J. Hydrol, 1997), extremely similar to
stream-flow changes in Western US (Barnett et al, Nature, 2005)




