

CASL: The Consortium for Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub for Modeling & Simulation of Nuclear Reactors

Doug Kothe Director, CASL

Director of Science, Oak Ridge Leadership Computing Facility Oak Ridge National Laboratory

Ronaldo Szilard

Deputy Director, CASL

Director, LWR Sustainability Program Director, Nuclear Science and Engineering Division Idaho National Laboratory

Paul Turinsky

Chief Scientist, CASL

Professor of Nuclear Engineering North Carolina State University

Outline

- CASL overview
- CASL virtual reactor development & application
- CASL science program
- Q&A

CASL delivers industry solutions with a focused plan having measurable milestones requiring M&S innovation in key science challenges

What is a DOE Energy Innovation Hub? (as documented)

- Target problems in areas presenting the most critical barriers to achieving national climate and energy goals that have heretofore proven the most resistant to solution via the normal R&D enterprise
- Represent a new structure, modeled after research entities likes the Manhattan Project (nuclear weapons), Lincoln Lab at MIT (radar), and AT&T Bell Labs (transistor)
- Consistent with Brookings Institution's recommendations for "Energy Discovery-Innovation Institutes" (early 2009)
 - "...new research paradigms are necessary, we believe, that better leverage the unique capacity of America's research" - Dr. Jim Duderstadt, President Emeritus, University of Michigan
- Focuses on a single topic, with work spanning the gamut, from basic research through engineering development to partnering with industry in commercialization
- Large, highly integrated and collaborative creative teams working to solve priority technology challenges
- Embrace both the goals of understanding and use, without erecting barriers between basic and applied research

The CASL Team: A unique lab-university-industry partnership with a remarkable set of assets

Core partners Oak Ridge National Laboratory **Flectric Power Research Institute** Idaho National Laboratory Los Alamos National Laboratory Massachusetts Institute of Technology North Carolina State University Sandia National Laboratories Tennessee Valley Authority University of Michigan Westinghouse Electric Company

Building on longstanding, productive relationships and collaborations to forge a close, cohesive, and interdependent team that is fully committed to a well-defined plan of action Individual contributors ASCOMP GmbH CD-adapco, Inc. City University of New York Florida State University Imperial College London Rensselaer Polytechnic Institute Southern States Energy Board Texas A&M University University of Florida University of Florida University of Tennessee University of Wisconsin Worcester Polytechnic Institute

CASL vision: Create a virtual reactor (VR) for *predictive* simulation of LWRs

Leverage	Develop	Deliver
 Current state-of-the-art neutronics, thermal-fluid, structural, and fuel performance applications Existing systems and safety analysis simulation tools 	 New requirements-driven physical models Efficient, tightly-coupled multiscale/multi-physics algorithms and software with quantifiable accuracy Improved systems and safety analysis tools UQ framework 	 An unprecedented predictive simulation tool for simulation of physical reactors Architected for platform portability ranging from desktops to DOE's leadership-class and advanced architecture systems (large user base) Validation basis against 60% of existing U.S. reactor fleet (PWRs), using data from TVA reactors
Clusting Fuel Rod	// Electric power	 Base M&S LWR capability
Primary System	Provest Proves	

CASL mission: Develop and apply the VR to address 3 critical performance goals for nuclear power

Reduce capital and operating costs per unit energy by:

- Power uprates
- Lifetime extension

Reduce nuclear waste volume generated by enabling higher fuel burnups

Enhance nuclear safety by enabling high-fidelity predictive capability for component and system performance from beginning of life through failure

Each reactor performance improvement goal brings benefits **and** concerns

Power uprates	Lifetime extension	Higher burnup
 5–7 GWe delivered at ~20% of new reactor cost Advances in M&S needed to enable further uprates (up to 20 GWe) Key concerns: Damage to structures, systems, and components (SSC) Fuel and steam generator integrity Violation of safety limits 	 Reduces cost of electricity Essentially expands existing nuclear power fleet Requires ability to predict SSC degradation Key concerns: Effects of increased radiation and aging on integrity of reactor vessel and internals Ex-vessel performance (effects of aging on containment and piping) 	 Supports reduction in amount of used nuclear fuel Supports uprates by avoiding need for additional fuel Key concerns: Cladding integrity Fretting Corrosion/CRUD Hydriding Creep Fuel-cladding mechanical interactions

CASL targets key limiting phenomena that are barriers to improved reactor performance

	Power uprate	High burnup	Life extension
Operational "Challenge Problems"			
CRUD-Induced Power Shift (CIPS)	×	×	
CRUD-Induced Localized Corrosion (CILC)	×	×	
Grid-to-Rod Fretting Failure (GTRF)		×	
Pellet Clad Interaction (PCI)	×	×	
Fuel Assembly Distortion (FAD)	×	×	
Safety "Challenge Problems"			
Departure from Nucleate Boiling (DNB)	×		
Cladding Integrity during Loss of Coolant Accidents (LOCA)	×	×	
Cladding Integrity during Reactivity Insertion Accidents (RIA)	×	×	
Reactor Vessel Integrity	×		×
Reactor Internals Integrity	×		×

CASL scope: Develop and apply the VR to assess fuel design, operation, and safety criteria

Near-term priorities (years 1–5)	Longer-term priorities (years 6–10)			
 Deliver improved predictive simulation of PWR core, internals, and vessel Couple VR to evolving out-of-vessel simulation capability Maintain applicability to other NPP types Execute work in 5 technical focus areas to: Equip the VR with necessary physical models and multiphysics integrators Build the VR with a comprehensive, usable, and extensible software system Validate and assess the VR models with self-consistent quantified uncertainties 	 Expand activities to include structures, systems, and components beyond the reactor vessel Established a focused effort on BWRs and SMRs Continue focus on delivering a useful VR to: Reactor designers NPP operators Nuclear regulators New generation of nuclear energy professionals 			
Focus on challenge problem solutions				

A comprehensive set of milestones is defined to drive solution of the challenge problems

CASL milestones provide an aggressive yet attainable path to success

CRUD formation: A significant barrier to increasing power output in existing reactors

Approach to each challenge problem

Milestone category	CRUD
Limiting phenomena	CRUD-induced Power Shift (CIPS), CRUD-induced Localized Corrosion (CILC)
Level 1 milestone m	nap
Year 1	Apply 3D transport with T-H feedback and CFD with neutronics to isolate CRUD-vulnerable assembly and pin in PWR full-core configuration; generate boundary conditions relevant to CRUD initiation and growth
Year 2	Model CRUD source terms, localized pin subcooled boiling, initiation of CRUD deposition, and CRUD thickness
Year 3	Model boron uptake from reactor coolant into CRUD on fuel rods
Year 4	Predict CIPS by calculating CRUD formation, boron uptake, and resulting axial power shape
Year 5	Simulation insight into CRUD formation and CIPS mitigation: Where and how will CRUD form and how can we anticipate and mitigate it?

The CASL milestone plan focuses the VR development

CASL organization: Key personnel

12

CASL's technical focus areas will execute the plan

The CASL Virtual Reactor is at the heart of the plan and is the science and technology integrator

Suite of advanced yet usable M&S tools and methods, integrated within a common software infrastructure for predictive simulation of LWRs

The CASL VR has a mature starting point

- Building on existing capability to deliver versatile tools
 - Initial focus on PWRs
 - Extensible to other reactor types
- Implemented as a component-based architecture integrating current and legacy workflows and capabilities
 - Includes tools used to design and license the U.S. PWR fleet
- An evolving state-of-the-art software design and ecosystem
 - Designed to exploit advanced computing platforms
 - Full coupling of all relevant physical processes
 - Integrated high-fidelity CFD, transport, and mechanics incorporated into the workflows of designers
 - Advanced methods for understanding sensitivities and propagating uncertainties

CASL possesses the key elements required for success

Physical reactors	 3 Westinghouse PWRs at Sequoyah and Watts Bar, operated by TVA 			
NRC engagement	 Existing MOU between NRC Office of Regulatory Research and EPRI CSO: Develop strategy for NRC engagement; AMA focus area Project 5: Execute strategy 			
Education, Training, and Outreach (ETO) Program	 Comprehensive engagement with students, faculty, and practicing scientists, engineers, and regulators Leverage EPRI's structured technology transfer approach 			
Validation Validation Validation Validation Validation Validation Validation Validation	 One entire focus area dedicated to validation and UQ Extensive reactor design information and test and operational data Data validation needs and sources identified: Integral and separate-effects tests, PIE of used fuels, plant and in-core diagnostics, in- and out-of-pile testing of prototypic fuels 			
Virtual Office, Community, and Computing (VOCC)	 Integration and application of latest and emerging technologies to build an extended "virtual one roof" 			

CASL will apply a remarkable set of assets

- A U.S. team focused on U.S. leadership in nuclear energy
 - Carefully picked to leverage and pair partner strengths
 - A distinguished record of LWR regulatory and design accomplishments
- Industry partners are embedded to assure relevance and focus
 - Representing the entire U.S. nuclear industry landscape: Vendors, owner-operators, R&D for nuclear utilities
- Implements a new paradigm: University-industry-lab leadership balance
- Unparalleled collective institutional knowledge
 and nuclear science and engineering talent
 - The lead DOE laboratories in science, nuclear energy, and national security
 - Preeminent university nuclear engineering programs
 (Core + contributing partners: 7 of top 10 nuclear engineering programs)
 - Intimately connecting key science challenges to the nuclear energy enterprise: Unmatched expertise in materials science, chemistry, nuclear engineering, and multi-scale/multi-physics computational science
- Leaders in HPC (top 3 systems) and computational science (production codes)

Executing a clear, milestone-driven technical strategy for real-world NPP solutions

CASL Interfaces

Ronaldo Szilard Deputy Director, CASL Director, LWR Sustainability Program

Director, Nuclear Science and Engineering Division Idaho National Laboratory

Critical elements for integration of M&S into nuclear energy decisions

Acceptance by user community	 Address real problems in a manner that is more cost-effective than current technology
	 Meet needs of utility owner-operators, reactor vendors, fuel suppliers, engineering providers, and national laboratories
Acceptance	 Address issues that could impact public safety
by regulatory authority	 Deliver accurate and verifiable results
Acceptance of outcomes by public	 Provide outcomes that ensure high levels of plant safety and performance

The CASL team has unique capabilities for identifying, understanding, and solving nuclear reactor safety and performance issues

CASL challenge problems

Based on real-world industry experience and goals

- Industry goals will challenge fuel and plant performance:
 - Power uprates
 - Higher burnup
 - Life extension
- We evaluated detailed safety, operating, and design criteria to determine key phenomena that limit reactor performance
- Challenge problems tackle these key phenomena

Core CASL objective: Develop advanced M&S methods and investigate new fuel designs to address challenge problems

CASL evaluated safety, operating, and design aspects to develop the set of challenge problems

Safety	Operating	Design
 DNB safety limit Reactivity coefficients Shutdown margin Enrichment Internal gas pressure PCMI RIA fragmentation Non-LOCA runaway oxidation LOCA: PCT, oxidation, H release, long-term cooling Seismic loads Holddown force Criticality 	 DNB operating limit LHGR limit PCI Coolant activity Gap activity Source term Control rod drop time RIA fuel failure limit 	 Crud deposition Stress/strain/fatigue Oxidation Hydride concentration Transport loads Fretting wear Clad diameter increase Cladding elongation Radial peaking factor 3D peaking factor Cladding stability

Source: Fuel Safety Criteria in NEA Member Countries, NEA/CSNI/R(2003)10

CASL will take advantage of its strategic position in the nuclear enterprise to drive innovation

DOE-NE

- Integrate with existing programs: LWR-S, NEAMS, FCR&D, etc.
- Exploit computational and other developments

NNSA ASC Program

 Make use of methods, data, and HPC infrastructure developed for NNSA laboratories and applications

Industry

- Capitalize on engagement of industry partners to accelerate delivery of real-world solutions
- Conduct a broad industrial outreach program

DOE-SC

- Leverage EFRCs led by CASL partners to attack challenge problems
- Exploit models, tools, and other resources (e.g., SciDAC program)
- Build on current R&D activities to extend knowledge base

Regulatory authority

 Build on existing relationships to ensure acceptance of CASL VR

International programs

• Coordinate and make use of relevant data from international sources for validation

CASL has developed a structured approach to validation, licensing, and technology transfer

Advanced Modeling Applications Jess Gehin AMA Lead, CASL Oak Ridge National Laboratory

Zeses Karoutas AMA Petuty Lead, CASL Westinghouse

Nuclear

Energy

U.S. DEPARTMENT OF

DOE Energy Innovation Hub – Modeling and Simulation for Nuclear Reactors

Advanced Modeling Application (AMA) Focus Area Driving development of VR to support real-world users and applications

Objectives:

- Ensure that CASL VR meets user needs and requirements by setting requirements and assessing VR
- Support development of VR that meets user needs by directly engaging users in:
 - Setting VR modeling requirements and assessment
 - Performing VR validation
 - Performing VR qualification with physical TVA reactor data
 - Developing challenge problems and applications
 - Supporting NRC engagement

AMA will drive the VR development to meet the application needs to support industry applications for power uprates and life extension

AMA has strong connection to VRI and industry use of VR

- Enabling strong AMA/VRI collaboration, as needed for successful VR development:
 - Leadership co-location at CASL
 - Interaction with VRI via weekly meetings, code evaluation meetings, and day-to-day interactions at CASL
- Supporting demonstration in engineering environment
 - Key elements of AMA located on application/use site "test stands"
 - Coordination with CASL via on-line meetings, video conference, and project-specific messaging rooms
 - Physical reactor applications at TVA's Watts Bar and Sequoyah nuclear plants

VR requirements and priorities VR assessment of capabilities VR qualification with physical reactor data and validation

Industry test stands

	Westinghouse	EPRI
• F	Pittsburgh: Reload engineering	Charlotte: Industry interface
• (F	Columbia: Fuel performance	 Palo Alto: Fuel management research

Validation data support plan (AMA Project 4)

Virtual Reactor Integration

John Turner VRI Lead, CASL Oak Ridge National Laboratory

Randy Summers VRI Deputy Lead, CASL Sandia National Laboratories

> Rich Martineau VRI Deputy Lead, CASL Idaho National Laboratoy

The Virtual Reactor Integration Focus Area is the conduit between science and design/engineering

VRI will deliver

- A suite of robust, verified, and usable tools
- Within a common multi-physics environment
- To simulate phenomena within nuclear reactor vessels
- With quantified uncertainties

Three VRI projects combine to deliver the CASL VR capability

Computational Coupled Multiphysics Environment	Virtual Reactor Simulation Suite	Coupled Mechanics
 Development of Lightweight Integrating Multiphysics Environment (LIME) Workflow and usability Meshing and mesh management Leverage activities such as NEAMS ECT 	 Integrate existing and evolving capabilities: Fuel performance Chemistry Neutronics Thermal-hydraulics (T-H) Structural mechanics Closely coordinate with VUQ Couple to reactor system simulation 	 Fuel performance Leverage efforts such as BISON (INL) and AMP (NEAMS) Assembly dynamics and reactor internals T-H and structural response of assembly components and reactor internals Chemistry and materials models
Triinos: NOX (recrimer solver) DAKOTA(UC) Model evaluator A Physics A Inputfile A Inputfile B Inputfile C		

The CASL Virtual Reactor: A code system for scalable simulation of nuclear reactor core behavior

 Flexible coupling of physics components Toolkit of components Not a single executable Both legacy and new capability 	 Attention to usability Rigorous software processes Fundamental focus on V&V and UQ 	 Development guided by relevant challenge problems Broad applicability 	 Scalable from high-end workstation to existing and future HPC platforms Diversity of models, approximations, algorithms
 Both proprietary and distributable F (th n Cl (cruc co co 	uel Performance nermo-mechanics, naterials models) hemistry d formation, prrosion)	Thermal Hydraulics (thermal fluids) Structu Mechan iphysics egrator React	implementations ral ics tor System
	Multi-resolution Geometry (Imp	Multi-mesh Sh Motion/ Management Quality rovement	

The CASL VR builds on a foundation of mature, validated, and widely used software

FALCON: Current 1D/2E	 Lattice physics + nodal Current workhorse (Westernet workhorse) Deterministic transport: Denovo (ORNL), DeCA Monte Carlo transport: NSCALE/KENO (ORNL) 	diffusion: stinghouse) PARTISn (LANL), RT (UMichigan) MCNP5 (LANL),	 VIPRE-W: (flow workhow) ARIA (SNL) Initial 3D flog 	Current subchannel orse (Westinghouse)), NPHASE (RPI): ow capability	
 workhorse (EPRI) BISON: Advanced 2D/3I capability (INL) AMP FY10: Initial 3D capability (NEAMS) 	Fuel Performance (thermo-mechanics,	Neutronics (diffusion, transport)	Thermal Hydraulics (thermal fluids)	Structural Mechanics	• SIERRA (SNL)
 BOA: Current CRUD and corrosion workhorse (EPRI) 	materials models) Chemistry (crud formation, corrosion)	Multipl Integ	nysics rator	Reactor System	• RELAP5 (INL)
	Multi-resolu Geometr	ry Mesh N Qua Improv	Motion/ Man ality rement	agement	

- CASL developers have delivered code for production (not just research)
 - ORNL and LANL codes account for almost 80% of RSICC distributions since 2005

Science Program

Paul Turinsky

Chief Scientist, CASL

Professor of Nuclear Engineering, North Carolina State University

Outline

- Drivers for science-based modeling
- Overviews of science focus areas
 - Materials Performance and Optimization (MPO)
 - Modeling and Numerical Methods (MNM)
 - Validation and Uncertainty Quantification (VUQ)

Drivers for defining science program

Industry-defined challenge problems established capabilities required of VR (L1 milestones) Sensitivity/UQ contributors to limiting system/ structure/component performance helped guide areas of emphasis Ability to validate the M&S capability being developed was considered

Top-down driven, nimble research plan

Drivers Lead to Defining Focus Areas

VUQ is all encompassing Focus areas integration is absolutely necessary

Current M&S capability Limited by demonstration basis used for validation

CASL science objective Enabling stretched performance of current products

and more timely introduction of new enhanced products

Materials Performance and Optimization (MPO)

Chris Stanek MPO Lead, CASL Los Alamos National Laboratory

Sidney Yip MPO Deputy Lead, CASL Massachusetts Institute of Technology

MPO objective: Deliver multiphysics-multiscale materials models to enable CASL mission in addressing power uprates, higher burnup, and life extension

- Implement a mesoscale model (Comprehensive Materials Performance Model CMPM) to couple microstructure evolution modeling and simulation (MEMS) to Virtual Reactor Integration (VRI)
- Leverage cooperation with EFRCs to develop physics, mechanics and chemistry models of microstructural evolution M&S (MEMS) for input to CMPM

Innovation for optimization of fuel and vessel materials

MPO science innovation is micro-meso coupling in both complexity of physical phenomena and modeling and simulation capability

41

Models and Numerical Methods (MNM)

Bill Martin MNM Lead, CASL University of Michigan

Ed Dendy MNM Deputy Lead, CASL Los Alamos National Laboratory

Desired MNM nuclear power industry capabilities: MNM objective

Radiation transport	• Fully resolved capability to determine heat deposition rates and isotopic evolution for generalized geometries using deterministic and stochastic methods
Thermal- hydraulics	• Fully resolved CFD based multiphase flow and conjugate heat transfer capability for complex flow geometries and heat transfer surfaces with reduced dependences on closure relationships
Numerical methods	 Methodologies in support of models' implementation and multiphysics integration on parallel architectures

Improved predictive capability to foster improved product performance

Validation and Uncertainty Quantification (VUQ) Focus Area

Jim Stewart VUQ Lead, CASL Sandia National Laboratories

Dan Cacuci VUQ Deputy Lead, CASL North Carolina State University

The validation hierarchy integrates all CASL Focus Areas, executed in a bottom-up and top-down way

VUQ objective: Develop and deploy state-of-the-art VUQ capabilities for the nuclear power industry

CASL legacy: A preeminent computational science institute for nuclear energy

- CASL VR: Advanced M&S environment for predictive simulation of LWRs
 - Operating on current and future leadership-class computers
 - Deployed by industry (software "test stands" at EPRI and Westinghouse)
- Advanced M&S capabilities:
 - Advances in HPC algorithms and methods
 - Validated tools for advancing reactor design
- Fundamental science advances documented in peer-reviewed publications
- Innovations that contribute to U.S. economic competitiveness
- Highly skilled work force with education and training needed:
 - To sustain and enhance today's nuclear power plants
 - To deliver next-generation systems

Supplemental Material

The CASL challenge problems drive VR requirements and define L1 milestones

- Each challenge problem carries a unique set of functional science and engineering requirements
- CASL activities have been prioritized to meet these requirements
 - Priority placed on 6 problems
 - Selected aspects of 4 problems to be addressed

Challenge problem

- Tackles key limiting reactor phenomena
- Is beyond the ability of existing M&S tools to deliver acceptable and reliable results

Life extension driven by economic decision on ability to continue to operate the plant

Key technical elements for basis of license renewal and life extension:

- Identify and quantify potential "life limiting" issues
- Structures, systems, and components aging and life-cycle management
- Opportunities for modernization and power uprates
- Enabling technology (e.g., analysis methods/simulation capability)

Current fuel performance issues provide insights for further power uprates and increased fuel burnups

CASL VR M&S capability will permit proactive evaluation to enable critical performance enhancements

CASL Board of Directors

CASL Council Chairs

Leadership roles represent the full range of CASL's capabilities

CASL administration

Director	ORNL
Deputy Director	INL
Chair, Board of Directors	MIT
Chief Scientist	NCSU
Chair, Education Council	NCSU
Chief Strategy Officer for Licensing/Implementation	Westinghouse
Chair, Industry Council	EPRI
Physical Reactor Operations	TVA

CASL focus areas

Materials Performance and Optimization	Lead: LANL Deputy lead: MIT
Models and Numerical	Lead: Michigan
Methods	Deputy lead: LANL
Virtual Reactor Integration	Lead: ORNL Deputy lead: INL Deputy lead: SNL
Validation and Uncertainty	Lead: SNL
Quantification	Deputy lead: NCSU
Advanced Modeling	Lead: ORNL
Applications	Deputy lead: Westinghouse

CASL's "one roof" approach

CASL will occupy the top two Computer and floors of a building currently Computational under construction. TE Sciences Strong, motivated, Single primary Nuclear physical address unified management team Milestone-driven plan and Eng Extended and enhanced by Predominantly resident Executed by a "virtual one roof" approach at Oak Ridge multidisciplinary teams Director's office: >90% 10 core institutions New facility at ORNL. Director's office + FA leads: Individual contributors designed to provide highly >80% with specialized knowledge collaborative work space and skills Practiced and proven in R&D Virtual Office, Community, program management Establishes annual and Computing (VOCC) commitments and reports FAs: Lead + Deputy Lead Project quarterly progress - Broad coverage of science - Integration of best current and engineering and emerging technologies Drives collocation - Near-100% CASL residency for collaboration to build an requirements for each FA leadership team extended "virtual one roof" Ca • \geq 50% CASL collocation of scientists and engineers expected until VOCC begins operations Students and postdoctoral associates will spend more time at CASL