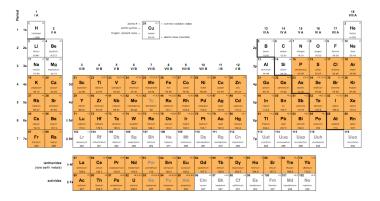
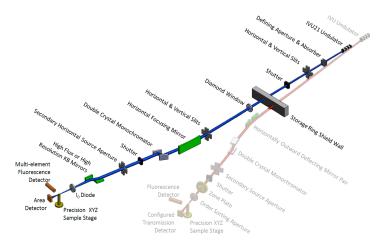
Sub-Micron Resolution X-ray Spectroscopy Beamline (SRX)

Scientific Scope


Scientific communities such as environmental sciences, life sciences, and material sciences have identified the need to develop analytical resources to advance the understanding of complex natural and engineered systems that are heterogeneous on the micron to nanometer scale. These needs for high intensity x-ray nanoprobes resulted in the commitment of the NSLS-II Project to build the Sub-Micron Resolution X-Ray Spectroscopy Beamline (SRX) showing a unique combination of high spectral resolution over a very broad energy range and very high beam intensity in a submicrometer spot. NSLS-II will provide one of the best sources in the world for such an instrument. The research topics to be addressed require characterization of elemental abundances and speciation in samples that are heterogeneous at the sub-micrometer scale.

Beamline Description


The SRX beamline shares a low-β straight section with two canted in-vacuum undulators with the Xray Fluorescence Nanoprobe (XFN). Each beamline is optimized to reach very high spatial resolution for a specific energy range. SRX is optimized to access higher energy and is included in the initial scope of NSLS-II. It will access an energy range from E = 4.65 keV to E = 25 keV. Two sets of Kirkpatrick-Baez (KB) mirror optics will focus the beam creating either a sub-micrometer sized focal spot at high flux or a sub-100 nm spot at moderate flux. A swap between the two setups will be possible in a couple of minutes. XFN is optimized for lower energies, accessing spectroscopic edges from E = 2 keV to E = 15 keV. This beamline will require additional funding to be completed. Zone plates (ZP) will be used as focusing optics, creating a focal spot below 30 nm.

The wide energy range covered by SRX will allow the scientific community to address a wide range of research topics, as absorption edges of a large number of elements can be reached (see Figure 1). This will enable scientists to use elemental mapping as well as spectroscopy for their studies. Finally, both beamlines are required to cover and even larger energy range without compromising the aim of combining X-ray spectroscopy and sub-micron spatial resolution in an optimal way.

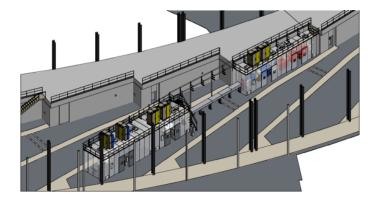


Figure 1 Periodic table showing elements high-lighted that have an absorption edge in the energy range covered by SRX and are therefore accessible for spectromicroscopy.

Figure 2 Schematic representation showing the optic layout of the SRX beamline (greyed out the XFN beamline).

Figure 3 3D CAD model of the SRX beamline showing the first optical enclosure (right) and the two endstation hutches for SRX and XFN (left and middle).

Techniques Available

- X-ray absorption imaging
- X-ray fluorescence imaging
- X-ray tomography
- X-ray fluorescence trace element mapping
- XANES absorption spectroscopy
- XANES fluorescence spectroscopy
- X-ray spectromicroscopy
- X-ray microdiffraction

SRX Team

Juergen Thieme	mailto:jthieme@bnl.gov	
Vincent deAndrade	mailto:vdeandrade@bnl.gov	
Yuan Yao	mailto:yyao@bnl.gov	

SRX Beamline Performance

Source	In-vacuum undulator,	Beamline Advisory Team	
Energy range	$\lambda = 21 \text{ mm, L} = 1.5 \text{ m}$ $4.65 \text{ keV} \le E \le 25 \text{ keV}$	Peter Eng, University of Chicago Jeffrey Fitts, Brookhaven National Laboratory Chris Jacobsen, Northwestern University Keith Jones, Brookhaven National Laboratory Antonio Lanzirotti, University of Chicago (spokesperson)	
Monochromator	Horizontally deflecting DCM, Si (111), Si (311)	Lisa Miller, Brookhaven National Laboratory Matt Newville, University of Chicago Paul Northrup, Brookhaven National Laboratory	
Energy resolution	ΔE ≈ 1.5-2.5 eV @ 12 keV ΔE ≈ 0.9 eV @ 7 keV	Richard Reeder, Stony Brook University Mark Rivers, University of Chicago Stephen Sutton, University of Chicago Stefan Vogt, Argonne National Laboratory	
High-flux setup	0.5 x 0.5 μm² (H x V) at > 10 ¹³ phot/sec	Gayle Woloschak, Northwestern University	
and 10 ¹¹ - 10 ¹² pho @ 7 keV tunab 30 x 30 nm² (H x \	60 x 60 nm ² (H x V) and 10 ¹¹ - 10 ¹² phot/sec at	Current Status: final design	
	@ 7 keV tunable to 30 x 30 nm ² (H x V) at 10 ¹¹ phot/sec @ 18 keV	Installation: starts Oct 2013	
	at to phot/sec@ 18 keV	— Commissioning: begins Mar 2014	

Sample Environment

Beginning with thin sections from geosciences over micro- and nanoparticles in suspensions to microbial or biological specimens, the sample stage will be able to accommodate a great variety of samples from different scientific areas. Environmental cells will be available for complex samples.

User Operation: begins June 2015