## Mathematics Curriculum Content Standards

The process standards of problem solving, reasoning and proof, connections communication, and representation are interwoven and independent with the content standards and are necessary for the comprehensive understanding of mathematics.

Strand:

## M1 Numbers and Operations

Pre-Kindergarten through Grade 12 instructional programs should enable all students to:

- understand numbers, ways of representing numbers, relationships among numbers, and number systems;
- understand meanings of operations and how they relate to one another;
- understand how to compute fluently and make reasonable estimates.

In Grades 9-12, all students should:
M1a: connect physical, verbal and symbolic representations of irrational numbers and properties of special numbers, i.e., , ;
M1b: compare, order, and determine equivalent forms for rational and irrational numbers;
M1c: define the concept of complex numbers in the context of the square root of a negative number;
M1d: using powers and roots including rational exponents, simplify number expressions;
M1e: define the properties of matrices;
M1f: identify and explain which mathematical properties hold for a given set or operations for the real number system, i.e., density, closure, commutative, associative, distributive;
M1g: solve equations and inequalities using the inverse relationship of operations to include powers and roots;
M1h: organize and analyze data using the operations of addition, subtraction, and scalar multiplication for matrices;
M1i: estimate the approximate value of square and cube roots without the use of a calculator;
M1j: use estimation to judge the reasonableness of numerical computations and their results;
M1k: develop fluency in operations with real numbers using mental computation, paper and pencil calculations, and technology;
M1I: Use properties of the number system to judge the validity of results and justify each step of a procedure.

Strand: M2 Algebra
Pre-Kindergarten through Grade 12 instructional programs should enable all students to:

- understand patterns, relations, and functions;
- represent and analyze mathematical situations and structures using algebraic symbols;
- use mathematical models to represent and understand quantitative relationships;
- analyze change in various contexts.

In Grades 9-12, all students should:
Standards: M2a: analyze, generalize, and create a variety of mathematical patterns;

M2b: analyze, interpret, and translate between relationships of patterns, functions, and relationships represented in tables, graphs, and matrices;
M2c: identify, describe, and compare the characteristics and properties of functions and relations including linear and nonlinear;
M2d: represent linear and nonlinear functions with tables, graphs, verbal rules, and symbolic rules and interpret these representations;
M2e: use algebraic representations and functions to generalize geometric properties and relationships;
M2f: write, solve, and interpret the relationship of equivalent forms for equations, inequalities, and systems of equations;
M2g: explain and demonstrate the relationship between various representations of a linear equation;
M2h: add, subtract, and multiply polynomials and divide polynomials by monomials;

M2i: translate between numeric and symbolic form of a sequence or series;
M2j: apply direct and inverse variation to both real-world and mathematical models;
M2k: solve and analyze real-world problems that can be modeled using linear, and nonlinear functions;

M2I: solve and analyze real-world problems that can be modeled using systems of equations and inequalities;
M2m: predict a reasonable conclusion for a problem being modeled, and verify the conclusion through solving the problem;
M2n: approximate and interpret rates of change from graphical and numerical data;
M20: identify and explain how changes in parameters affect graphs of functions;

M2p: explain and graph the relationship between two variables for linear, periodic exponential, quadratic relationships and a limiting value.

Strand:

## M3 Geometry

Pre-Kindergarten through Grade 12 instructional programs should enable all students to:

- analyze characteristics and properties of two- and three- dimensional geometric shapes and develop mathematical arguments about geometric relationships;
- specify locations and describe spatial relationships using coordinate geometry and other representational systems;
- apply transformations and use symmetry to analyze mathematical situations;
- use visualization, spatial reasoning, and geometric modeling to solve problems.

In Grades 9-12, all students should:
Standards: M3a: identify undefined terms and explain the need for undefined terms;

M3b: use a variety of ways to represent geometric ideas and recognize relationships among them including coordinates, networks, transformations, and matrices;
M3c: identify and explain relationships among classes of two- and three-dimensional geometric objects, i.e., sides, angles, etc.;
M3d: make conjectures, test, and prove relationships among two- and three-dimensional geometric objects, i.e., congruent triangles;
M3e: distinguish between postulates and theorems and apply them appropriately;
M3f: identify and explain examples of induction and deductive;
M3g: analyze geometric situations using Cartesian coordinates and other appropriate coordinate systems;
M3h: use rectangular coordinates; calculate midpoints of segments, slopes of lines and segments, and distances between two points to solve problems;
M3h: use sketches, coordinates, function notation, and matrices to represent translations, reflections, rotations, and dilations of objects in the plane;
M3i: draw and construct representations for two- dimensional objects using a variety of tools;
M3j: construct vertex-edge graphs to model and solve problems;
M3k: identify and explain projections and cross sections by visualizing different perspectives of three- dimensional objects and spaces;
M3I: Solve problems by applying properties and theorems of lines, angles, polygons, and circles.

Strand: M4 Measurement
Pre-Kindergarten through Grade 12 instructional programs should enable all students to:

- understand measurable attributes of objects and the units, systems, and processes of measurement;
- apply appropriate techniques, tools, and formulas to determine measurements.

In Grades 9-12, all students should:
M4a: use the appropriate unit or dimensional analysis in measurement situations;
M4b: explain the effect of changes in the measurement of one attribute of an object relating to changes on other attributes;
M4c: recognize and apply alternative methods of measurement;
M4d: apply appropriate formulas for the area, surface area, and volume of geometric figures, including cones, spheres, and cylinders;
M4e: analyze and explain precision, accuracy, and approximate error in measurement situations.

Strand:

## M5 Data Analysis and Probability

Pre-Kindergarten through Grade 12 instructional programs should enable all students to:

- formulate questions that can be addressed with data and collect, organize, and display relevant data to answer them;
- $\quad$ select and use appropriate statistical methods to analyze data;
- develop and evaluate inferences and predictions that are based on data;
- understand and apply basic concepts of probability.

In Grades 9-12, all students should:
Standards: M5a: classify and describe data as single (univariate) or two variable (bivariate) and as quantitative (measurement) or qualitative (categorical) data;
M5b: design surveys and apply random sampling techniques to avoid bias in data collection;
M5c: use multiple graphical displays and statistical measures to display and interpret the relationship between two variables;
M5d: compare different sets of data by using summary statistics and select the appropriate graphical representation;
M5e: explain the ways representations can skew data or bias presentations;
M5f: describe and explain the characteristics and limitations of various sampling methods;
M5g: describe and explain how the validity of predictions from a data set are affected by the relative size of a sample and the population;
M5h: use counting techniques and/or combinations to solve explain probability problems;
M5i: describe, create, and analyze a sample space, then calculate the probability;
M5j: use the concept of conditional probability and independent events to apply and interpret the results of a set;
M5k: calculate and explain the probability of compound events;
M5I: use sampling or simulation to construct empirical probability distributions to compare and explain corresponding theoretical probabilities;
M5m: differentiate and explain the relationship between the probability of an event and the odds of an event.

Strand:
Standard:

Strand:
Standard:

## M6 Problem Solving

M6a: Pre-Kindergarten through Grade 12 instructional programs should enable all students to:

- build new mathematical knowledge through problem solving;
- solve problems that arise in mathematics and in other contexts;
- apply and adapt a variety of appropriate strategies to solve problems;
- monitor and reflect on the process of mathematical problem solving.


## M7 Reasoning and Proof

M7a: Pre-Kindergarten through Grade 12 instructional programs should enable all students to:

- recognize reasoning and proof as fundamental aspects of mathematics;
- make and investigate mathematical conjectures;
- develop and evaluate mathematical arguments and proofs;
- select and use various types of reasoning and methods of proof.

Strand: M8 Communication
Standard: M8a: Pre-Kindergarten through Grade 12 instructional programs should enable all students to:

- organize and consolidate their mathematical thinking through communication;
- communicate their mathematical thinking coherently and clearly to peers, teachers, and others;
- analyze and evaluate the mathematical thinking and strategies of others;
- use the language of mathematics to express mathematical ideas precisely.

Strand:

## M10 Representation

M10a: Pre-Kindergarten through Grade 12 instructional programs should enable all students to:

- create and use representations to organize, record, and communicate mathematical ideas;
- select, apply, and translate among mathematical representations to solve problems;
- use representations to model and interpret physical, social, and mathematical phenomena.

