UCRL-SM-224277

Getting Data Into Vislt

September 2006

Version 1.5.4

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor the University of California nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract W-7405-ENG-48.

Table of Contents

I ntroduction
Manual ChapterS.o 2
Manual CONVENLIONSt e e 2
= = 1= 2
PicKiNng astrategyot 3
Definition Of termMS . ..o 4
Creating compatiblefiles
Creating a conversion utility or extendingasimulation........................ 7
Survey of databasereader plug-ins. 9
BOV fileformat 9
X-Y Curvefileformat. 11
Writing SIHOfileso 12
UsingtheSilolibrary 12
Inspecting SIHOfiles. 14
Silofilesand parallel codes i 14
Creatinganew Silofile. o 15
Dedingwithtime 16
OptiON [ISIS . o 17
Writing arectilinearmesh. i 18
Writingacurvilinear mesh i 21
Writingapoint mesh. 25
Writinganunstructured mesh. 28
Writingascalarvariable. 33
Single precision vs. Double precision. 45
WIHEING EXPIrESSIONS . . o\ vttt et e ettt 45
Creatingamaster fileforparale i 46
Writing VTK files. ..o 52
Getting started with visit_writer. 53
Regular mesheswithdata. i i 54
Rectilinear mesheswithdata i ... 56
Curvilinear mesheswithdata. ...t 58
Point mesheswithdata. i 61
Unstructured mesheswithdata. i i 62
Creating amaster filefor parallel (visitfile).............. 64

Creating compatiblefiles|l Advanced topics

Writing vector data.t e 67
Adding metadata for performanceboosts i 70

Writing data exXtentsot 70

Writing spatial extents 73
GhOSt ZONESo 74
Writing ghost zonestoyour files 76
M At ialS . . 81
Creating a database reader plug-in
Structure of Vislt ... 87
PIUG-INS . . 89
Starting your plug-in 90
Picking adatabase reader plug-ininterface 90
Using XMLEdIto e 90
Generating aplug-incodeskeleton. i 94
Buildingyour plug-in 95
Calling your plug-infor thefirsttime. 97
Implementing your plug-in e 98
Required plug-inmethods. 98
Debugging your plug-in 100
Openingyour file 102
Returningfilemetadata. 103
Returningamesh 109
Returningascalar variable. o 122
Returningavector variable. 123
UsingaVTKreader class. e 125
AOVANCE TOPICS . . . ottt e e 126
Returningcyclesandtimes. e 126
Auxiliary data.o 130
Returning ghost ZONES.ot 136
Parallelizingyourreader. 137
| nstrumenting a ssimulation code
AT ChITECIUN o e e 139
Using libSim . ..o 142
Getting libsSim 142
Buildinginlibsimsupport 142
INitialization e 143
Restructuringthemainloop 147
Using libsiminaFortransimulationu.... 153
Using libsminaparallel Fortransimulation. 155
Running an instrumented simulation i i 161
Connecting to an instrumented simulation from Vislt 161
Writing data aCCesSCoUEottt e e e 162
TheVislt Datalnterface. e 162
How dataaccessfunctionsarecaled 163
Compiler and platformissues. 164
Making dataaccessfunctionsavailable 164
Dataaccessfunctionfor metadata i 166

\Y

Data access funCtion fOr MESNES. oo oo et e e e e e e e e e 177

Dataaccessfunctionforscalars 194
Data access funCtion fOr CUIVES oo o e e e e e e e i 199
Data access function for thedomainlist. 203

vii

viii

Chapter 1 Introduction

1.0

Overview

Vislt isafree, open source, platform independent, distributed, parallel, visualization tool
for visualizing data defined on two- and three-dimensional structured and unstructured
meshes. Vislt's plug-in architecture allowsit to perform awide variety of plotting and data
processing operations, and also allows Vislt to import data from many different data
formats.

Thismanual explainsin detail how to get your datainto Vislt, concentrating on three main
strategies: writing compatible files, writing a new plug-in for Vislt, or instrumenting a
simulation code. In addition to providing the how-to’'s of getting your datainto Vislt, this
manual also presents reasons for why you might choose one strategy over another.

This manual is geared towards someone who wants to visualize and analyze data using
Vislt. Vislt reads alarge number of file formats so users of some existing simulation
software will be able to use Vislt right away. This manual isfor the user who has datafiles
that Vislt does not read, or who wants to directly access data from a homegrown
simulation code. Whichever the case, this manual assumes familiarity with computer
programming since all of the covered approaches for getting data into Vislt require some
programming. The examplesin this manual are written primarily using the C and C++
programming languages, though relevant examples for the Fortran and Python languages
are aso included.

Overview Getting Data into Vislt Manual 1

Introduction

2.0 Manual chapters
This manual is broken down into the following chapters:
Chapter title Chapter description
Introduction This chapter.
Creating compatible files | Describeshow to store datainto file
formats that Vislt already reads.
Creating compatible files | Describes how to store metadata to
Il Advanced topics boost Vislt's performance and also
covers more exotic types of data that
can be stored into file formats that
Vislt aready reads.
Creating a database Describes how to create a new data-
reader plug-in base reader plug-in for Vislt so it can
read your own data file format.
Instrumenting simulation | Describes how to instrument your
codes simulation code so Vislt can directly
access its data without the need to
writefiles.
3.0 Manual conventions
This manual uses the following conventions:
Element All GUI elements, like windows, menus, and buttons will
usebold helvetica.
Chapters | All referencesto other chapterswill useBold Times.
Documents | All document or file names will be italicized.
4.0 Strategies
Often, thefirst strategy to consider when trying to get your datainto Vislt is creating data
files using a data format that Vislt can aready read. Thisis usually the simplest method
for getting data into Vislt as it can be accomplished by adding a new 1/0 module to your
simulation code or it can be achieved by creating an external data conversion utility.
Changing your simulation code to write out data that Vislt can read is sometimes not an
option. For example, you might not have the simulation’s source code or perhaps thereis
2 Manual chapters

Introduction

5.0

too much risk involved in changing the source code. In addition, you might have gigabytes
of archived data that you’ve written using your simulation’s native data format and now
you want to visualize that datain Vislt. If any of these cases apply to your situation then
you might want to consider writing a database reader plug-in for Vislt so Vislt can natively
understand your simulation code’s data format.

If you want to maintain your current data format but you don’t want to write a database
reader plug-in for Vislt, you have another option: instrument the simulation code. Vislt
provides a modestly sized library that contains C-Language functions that you can use to
instrument your simulation code. When a simulation code is instrumented, Vislt can
connect to it and access any of the arrays that you expose. This approach lets Vislt
visualize the data from your simulation code directly without the need to write files.

Picking a strategy

The strategy you use to get your datainto Vislt depends on your situation. The following
table indicates reasons when you might pick one strategy over another.

Strategy Reasons when to use

Create compatible *You have access to your simulation code’s source
files code and one of Vislt's supported file formats can
express your data.

*You can write aconversion utility and don’t mind
using it to copy the existing data into a new data
format.

Write a database *You have written alot of datafiles using your
reader plug-in own dataformat or aformat that Vislt does not
read.

*Changing the simulation’s source code is not an
option.

*Vislt's supported file formats can’t fully capture
your data’s structure or content.

*Your dataformat is already supported in another
visualization application.

Instrument simula- *You want to use Vislt to inspect your data asit is
tion code calculated.

*You don’t want to change your simulation code
so it writes adifferent data format.

*Your simulation code is written in the C, C++, or
Fortran programming languages.

Picking a strategy

Introduction

6.0

The following table indicates reasons why you would not pick one of the given strategies.

Strategy Reason to not use
Create compatible *You don’'t want to change or are unable to change
files your simulation’s source code

*You don’t want to replicate data in another data
format, taking up more storage.

*Your dataformat is already supported in another
visualization application

Write a database *Developing a Vislt database reader plug-in can be
reader plug-in difficult, though this manual aimsto lessen the
difficulties.

*You need to run Vislt on several platforms and
you don’t want to build the plug-in on all of those
platforms.

*You don’t want to maintain a Vislt plug-in. Note
that you could donate the plug-in to the Vislt

development team.
Instrument simula- *You don’'t want to change or are unable to change
tion code your simulation’s source code.

*Your simulation code is not writtenin C, C++, or
Fortran.

After examining the above tables, you probably have a pretty good idea of which strategy
will work best for getting your datainto Vislt. The following chapters will provide details
on how best to get your datainto Vislt using each of the recommended strategies.

Definition of terms

This section defines some of the terms that will be used to describe data structures that
Vislt can visualize. These terms are defined here because many branches of science that
might use Vislt to visualize and analyze data have their own terms. It is hoped that adding

Picking a strategy

Introduction

the definition of terms here will reduce ambiguity when different types of data are covered
in later chapters.

Term

Definition

Curvilinear
mesh

A curvilinear mesh is amesh composed entirely of quad-
rilateral or hexahedral cells. Furthermore, the mesh is
constructed such that all zones exist in alogically contig-
uous brick having NX zonesin the X dimension, NY
zonesintheY dimension, and in the case of 3-D: NZ
zonesin the Z dimension. Each node in the mesh requires
an explicitly provided coordinate value.

Domain

A domain isaunit of work that corresponds to a piece of
the mesh that is handled by a given processor when run-
ning in parallel. Meshes are often split into multiple
pieces, or domains, that can be assigned to different pro-
cessors in order to handle larger simulations.

Ghost zone

A ghost zone is a zone on the boundaries of domains and
it isused to ensure that each domain knows the data value
on the other side of the domain boundary so operations
requiring continuity do not give rise to discontinuities at
domain boundaries.

Material

A physical material such asair or steel that is assigned to
various zones in amesh to indicate the types of materias
that make up the simulated model. Zones that contain
more than one material are said to be “mixed” since their
compositions are determined by a set of volume fractions
of various materialsin the zone.

Mesh

A mesh is a structure composed of zones.

Node

A mathematical point. Nodes are used to describe the
coordinates for zones that make up a mesh.

Node-cen-
tered

Node-centered is aterm that applies to data stored on a
mesh; it means that there is one data value for each node
in the mesh and that values in the zone are created by
interpolating data from the nodes.

Point mesh

A mesh consisting of aset of locations, or points, in
space. These nodes are not connected.

Picking a strategy

Introduction

Term Definition

Rectilinear | A rectilinear mesh is amesh composed entirely of quadri-
mesh lateral or hexahedral cellsthat are all the same shape.
Furthermore, the mesh is constructed such that all zones
exist in acontiguous brick having NX zonesin the X
dimension, NY zonesinthe Y dimension, and in the case
of 3-D: NZ zonesin the Z dimension. The coordinates for
the nodes are supplied aslistsof NX, NY, or NZ elements
from which the full complement of nodes can be created.

Time step Simulations proceed by calculating their state at the cur-
rent time and then making adjustments that are needed to
advance the state of the simulation to the next time. This
isdonein an iterative cycle. One iteration of the simula-
tionis called atime step.

Unstruc- An unstructured mesh consists of a set of nodes and a set
tured mesh | of zones. The set of zones may consist of many different
zone types such as triangles, quadrilaterals, tetrahedra,
hexahedra, prisms, pyramids, or other polyhedra. Adja-
cent zones share the same nodes and the nodes are repre-
sented as a shape type identifier and alist of the nodes
that comprise the zone.

Zone-cen- Zone-centered is aterm that appliesto data stored on a
tered mesh; it means that there is one data value for each zone
in the mesh.

Zone/Cell Zone and Cell are used interchangeably in this document.
A zoneis a shape that unites one or more nodes into a
connected structure where the nodes are the vertices of
the connected structure. Point meshes can have nodes as
zones. 1-D meshes contain zones that are lines that con-
nect nodes. 2-D meshes contain 2-D shapes such as trian-
gles and quadrilaterals that connect nodes together. 3-D
meshes contain volumetric polyhedra such as: tetrahe-
drons, hexahedrons, prisms, pyramids, etc.

6 Picking a strategy

Chapter 2 Creating compatiblefiles

1.0

2.0

Overview

This chapter elaborates on how to create filesthat Vislt can read. The two main methods of
creating files that Vislt can read are: creating a conversion utility and altering asimulation
code to write out its datain anew file format. This chapter discusses the merits of each
approach so you can decide which is best for your situation. Once you settle on an
approach, you can elect to write out Silo filesfrom C or Fortran, or you can write out VTK
files from any programming language. If you decide to write out VTK files, this chapter
presents examples for doing so in C and Python.

Creating a conversion utility or extending a simulation

Creating files using adataformat that Vislt can read is often the easiest strategy for getting
your datainto Vislt. You can change your simulation code to natively write its datato a
format that Vislt can read, such as Silo or VTK. Alternatively, you can create a conversion
utility to post-process your data files into aformat that Vislt can read. Both of these
approaches have their pros and cons and, fortunately, the programming done to achieve
either is essentially the same.

Approach Pros Cons

Modify sDataisin aformat that can | *Depending on the simula-

simulation be immediately visualized tion code’s implementa-

code tion language, there may
not be a binding to a suit-
able1/O library.

Overview Getting Data into Vislt Manual 7

Creating compatiblefiles

Approach Pros Cons

Create con- | *Simulation code does not *Replicates data on disk
version util- | have to be changed “Extrastep is required to
ity visualize simulation data

Utility must be maintained

«Utility must read datafrom
file before it can be written
to new data format.

The chief differences between the two approaches arise in where the new code is located.
When changing a simulation code, you will most likely add a new I/O module that can
dump out your simulation’s data for the purpose of visualization. When creating a
conversion utility, you are creating a stand-alone program that you have to run on the data
after the simulation has compl eted.

A very simple simulation code's main loop might look like the example below. The
purpose of the simple pseudocode listing is to point out where you might want to add
additional routines that can write your datato files compatible with Vislt. You might want
to provide aswitch that tells your program to write datafiles that Vislt can read in addition
to your regular dataformat. Alternatively, you might opt to just write files that are
compatible with Vislt.

/* SI'MPLE SI MJLATI ON SKELETON */
void wite vis_dunp()
{
if(wite data for_visit)
/* Add your code to wite Vislt data files here. */
el se
wite vis dunp_using regular_format();
}
int main(int argc, char **argc)
{
read_i nput _deck();
do
{
simul ate_one_timestep();
wite vis_ dump();
} while(!sinulation_done());
return O;

}

If you choose to write a conversion utility, a pseudocode skeleton might look something
likethis:

/* SI MPLE CONVERSI ON UTI LI TY SKELETON */
void wite to visit_format(const char *, MeshAndData *)

{

/* Add your code to wite a Vislt data file here. */

8 Overview

Creating compatible files

}

voi d convert _file(const char *fil enane)

{
struct MeshAndDat a dat a;
char newfil enanme[1024] ;
read _data fromregular_format(fil enane, &data);
create_visit_filename(fil enane, newfil enane);
wite to visit_format(newfil enane, &data);
free_dat a(&data) ;

}

int main(int argc, char *argv[])

{

for(int i = 1; i < argc; ++i)
convert _file(argv[i]);
return O;

3.0 Survey of databasereader plug-ins

Vislt provides database reader plug-ins for over 5 dozen different file formats. This
chapter will talk briefly about some specialized file formats before covering the Silo and
VTK fileformats. Silo and VTK will be covered much more extensively because they are
two of the most general formats and they are capable of describing awide variety of
different data constructs.

Silo isa C-language library with a well-defined application programming interface (API)
for writing out the types of objects in which most simulations are interested (e.g. meshes,
variables). Silo files can be written to two different underlying file structures: HDF5 and
PDB; both are self-describing, platform independent, binary file formats. If you write a
file on one platform using the Silo library, it can be read by the Silo library on any other
platform. Silo bindings also exist for the Fortran and Python programming languages.
Fore more information, see the Slo User’s Guide.

The VTK file format iswritten by various C++ classesin VTK (Visualization Tool Kit)
and is most often stored in ASCII text files. The VTK file format does, more recently,
support an XML-based file format, which includes support for binary data and
compression. However, this manual will provide example code to write datainto VTK’s
legacy ASCII format. The example code will use Vislt'svi sit _writ er library to
demonstrate creating VTK files without using the VTK library itself so the applications
will be very lightweight.

31 BOV file for mat

Asmentioned earlier, Vislt can read over 5 dozen file formats and this manual will mainly
concentrate on two of them. There are other file formats that might be useful to you
depending on how you have written your data files. For example, if you have written your
data as abinary file consisting of 1 variable on aNX*NY*NZ rectilinear mesh thenitis

Survey of database reader plugins 9

Creating compatiblefiles

possible that you can use Vislt'sBOV (“Brick of Values’) database reader plug-in and not
have to do any data conversion.

Vislt's BOV database reader plug-in is used to read data out of abinary file containing just
the datavalues. If your data file was written using code resembling the following code
fragments then you might be able to use Vislt’'s BOV database reader plug-in.

Listing 2-1: bov.c: C-Language example for creating data that the BOV plug-in can read.

/* Exanple C code */

float data] NZ] [NY] [NX];

FILE *fp = fopen(“bov.val ues”, “wbh");
fwite((void *)data, sizeof(float), NX*NY*Nz, fp);
fclose(fp);

Listing 2-2: fbov.f: Fortran language example for creating data that the BOV plug-in can read.

c Exanpl e Fortran code
real val ues(NX, NY, N2)
open (unit=output, file= fbov.values’, status='replace’
forme unformatted’)
write(output) val ues
cl ose (output)

Files written in this manner typically have an auxiliary data header text file stored along
side of the real datafileto contain information such as the dimensions of the data and its
type and endian representation. If this sounds like what you write from your simulation
code then you should try using the BOV reader. Before trying to open the data using
Visit's BOV database reader plug-in, you will have to write a BOV-compatible header file
to accompany your datafiles so Vislt knows how to read the binary datafile.

Example BOV header file:

TIME: 1.23456

DATA_FI LE: fil e0000. dat

The data size corresponds to NX,NY,NZ in the above exanpl e code.
DATA_SI ZE: 10 10 10

Al | owabl e val ues for DATA FORMAT are: BYTE, |NT, FLOAT, DOUBLE
DATA_FORVAT: FLOAT

VARI ABLE: what | _call _the_data

Endi an representation of the conmputer that created the data.

Intel is LITTLE, many other processors are Bl G

DATA_ENDI AN: LI TTLE

Centering refers to how the data is distributed in a cell. If you
give “zonal” then it’s 1 data value per zone. O herw se the data
will be centered at the nodes.

CENTERI NG zonal
BRICK. ORIG@ N l ets you specify a new coordi nate systemorigin for
the nesh that will be created to suit your data.

10

Survey of database reader plugins

Creating compatible files

BRICK ORIG@N. 0. 0. 0.
BRICK SIZE |l ets you specify the size of the brick.
BRI CK_SI ZE: 10. 10. 10.

Additional BOV options:

BYTE OFFSET: is optional and lets you specify sone nunber of

bytes to skip at the front of the file. This can be useful for
ski pping the 4-byte header that Fortran tends to wite to files.
If your file does not have a header then DO NOT USE BYTE OFFSET.
BYTE_COFFSET: 4

DIVIDE BRICK: is optional and can be set to “true” or “false”.

When DIVIDE BRICK is true, the BOV reader uses the val ues stored
in DATA BRI CKLETS to divide the data into chunks that can be

processed in parallel.

Dl VI DE_BRI CK: true

DATA BRI CKLETS: is optional and requires you to specify 3 integers
that indicate the size of the bricklets to create when you have

al so specified the D VIDE BRI CK option. The val ues chosen for

DATA BRI CKLETS nust be factors of the nunbers used for DATA SIZE.
DATA BRI CKLETS: 5 5 5

DATA COMPONENTS: is optional and tells the BOV reader how nany
conponents your data has. 1=scal ar, 2=conpl ex nunber, 3=vector,
4 and beyond indicate an array variable. You can use “COVPLEX’
instead of “2" for conplex nunbers.

DATA COVPONENTS: 1

Take the above example BOV header file template and save it to a new text file with a
“.bov” file extension. Next, edit the file and change some of the values to make it relevant
to the datafile that you want to open. Once you’ve completed editing the “.bov” file, open
itinViglt. If you see that the Plots menu is enabled and the Mesh and Pseudocolor
plot menus are enabled then you are halfway to success. If you can create a Pseudocol or
plot, click the Draw button, and have Vislt process your data until thereisapicturein the
visualization window then this approach works for you and you can repeat it for your other
datafiles. If the pictureis not quite what you expected then you can fine-tune the valuesin
the “.bov” file until you get the picture that you want to see. The most common cause of
errorsisfailing to set the DATA_SIZE and DATA_FORMAT keywords to the right values
for your datafile.

3.2 X-Y Curvefileformat

Vislt is used to examine and analyze awide variety of datain 2D and 3D on many
different types of meshes. In addition to those capabilities, Vislt can also visualize and
process 1D curves, sometimes known as X-Y plots. Vislt's Lineout mode can extract data
from a higher dimensional dataset and draw the resulting data as an X-Y plot, or a Curve
plot asit isknown in Vislt terms. Vislt can also import X-Y dataand useit to create Curve

Survey of database reader plugins 11

Creating compatiblefiles

4.0

plots. The Curve file format, which is barely more than alist of X-Y pairs, isoutlined
bel ow:

#cur vliname
x0 yO
x1 yl
X2 y2

#curve2nane
Xn yn
xnl ynl

Asshown in the example Curvefile, the Curve file format can contain datafor more than 1
set of X-Y pairs. The name of each pair isindicated in a‘# comment line. The X-Y pairs
follow until the end of the file or until anew curveis declared using another ‘# comment
line. If you write data to the Curve file format then the file extension should be “ .curve” to
ensure that Vislt recognizesit as a Curvefile.

Writing Silofiles

If you are writing a conversion utility or if you have a simulation code written in C, C++,
or Fortran then writing out Silo filesis agood choice for getting your datainto Vislt. This
section will illustrate how to use the Silo library to write out various types of scientific
data. Sincethe Silo library provides bindings for multiple languages, including C, Fortran,
and Python, the source code examples that demonstrate a particular topic will be given in
more than 1 programming language, when appropriate. One goal of this section isto
provide examples that are complete enough so that they can be readily adapted into
working source code. In fact, most of the examplesin this chapter are available as working
programs in the accompanying “ Getting your datainto Vislt” code distribution. This
section will not necessarily explain all of the various arguments to function callsin the
Silo library. You can refer to the Slo User’s Guide for more information.

41 UsingtheSilolibrary

Vislt is always built with support for reading Silo databases so Silo can be agood file
format in which to store your data. This subsection includes information about using Silo
such asincluding the appropriate header files and linking with the Silo library.

411 Including Silo

When using any library in a program, you must tell the compiler about the symbols
provided by the library. Here is what you need to include in your source code in order to
use Silo:

C-Language:

12

Writing Slo files

Creating compatible files

#i ncl ude <sil o. h>

Fortran language:

i nclude “silo.inc”

412 Linkingwith Silo

Before you can build a program that uses Silo, you must locate the Silo include files and
the Silo library. Silo is not distributed as part of the Vislt source code or binary
installations so you must obtain it separately unless you are developing on the Windows
platform. A link to the most up-to-date version of the Silo library’s source code can be
found on the Vislt Web site at http://www.lInl.gov/visit/source.html.

Once you download the Silo source code, building and installing it isusually only a matter
of running its configure script and running make. You can find information about
configuring Silo with support for HDF5 in Visit's BUILD_NOTESfile, also available on
the Vislt Web site.

After you've configured, built, and installed the Silo library, your program will have to be
built against the Silo library. Building against the Silo library is usually accomplished by a
simple adaptation of your Makefile and the inclusion of silo.h in your C-language source
code. If Silo has beeninstalled in /usr/local/silo then you would add the following to your
Makefile:

LDFLAGS=$(LDFLAGS) -L/usr/gapps/silo/lib -Isilo -Im
CPPFLAGS=$(CPPFLAGS) -1/usr/gapps/silolinclude

If you discover that only libsilo.aexistsin your Silo library directory then you may not be
able to generate Silo files using the HDF5 file format. If you find that your Silo library
directory contains afile called libsiloh5.a then you can use that version of the Silo library
to create HDF5-style Silo files. You might still want to manually check your libsilo.a for
HDF5 support using thiscommand in your UNIX shell: “nm i bsilo.a | grep
hdf 5”. If you see any output containing the word “hdf5” then you can use libsilo.a to
create HDF5 files. If your Silo library does support HDF5 files then you must also locate
your HDF5 installation directory so you can link HDF5 into your program to satisfy
HDFS5 callsfor the Silo library. Your Makefile would ook something like this:

HDFS5DIR= Fill in the right path to your HDF5 installation

HDF5LI BS=$(HDF5DI R)/ i b/li bhdf5.a -1z

LDFLAGS=$(LDFLAGS) -L/usr/gapps/silo/lib -lsilo $(HDF5LIBS) -Im
CPPFLAGS=$(CPPFLAGS) -1/ usr/gapps/silo/include

If your Makefile does not use CPPFLAGS then you might try adding the - | directive to
CFLAGS, F77FLAGS, or whichever make variables are relevant for your Makefile.

Writing Silofiles 13

Creating compatiblefiles

4.1.3 Using Siloon Windows

When you build an application using the Silo library on Windows, you can use the
precompiled Silo DLL and import library that comes with the Vislt source code
distribution for Windows. The Vislt1.5.4 source code distribution for Windows s called
visitdev1.5.4.exe. Other versions of Vislt would, of course, include a different version
number in the filename. When you install the Vislt source code distribution for Windows,
you get al of Vislt's project files, include files, and source code. In addition, certain
precompiled libraries such as Silo are included.

If you want to build an application against the Silo library provided with Vislt, add the
path to silo.h to your project file. If you build using a source code distribution for Vislt
1.5.4 that was installed in the default location, the path would be:
C:\VisltDev1.5.4\includé\silo.

After setting the Silo include directory to your project file, make sure that the Silo’simport
library isinyour linker path. You can add C:\VisltDev1.5.4\lib\Rel ease our
C:\VisltDev1.5.4\lib\Debug to your project to ensure that your linker can find Silo’simport
library. Next, add silohdf5.lib to the list of libraries that are linked with your program.
That should be enough to get your program to build.

Before running your program, be sure to copy silohdf5.dll, hdf5dll.dll, sziplib.dll, and
Zib.dll from C:\VisltDev1.5.4\bin\Release or C:\\isltDev1.5.4\bin\Debug (depending on
whether your program is compiled with debugging information) into the directory where
your program will execute. Note that you must configure your program to use a
Multithreaded DLL version of the Microsoft runtime library or using the precompiled Silo
library may result in fatal errors.

4.2 Inspecting Silofiles

Silo includes acommand line utility called browser that can access the contents of Silo
files. To run browser, type “ browser” into atermina window followed by the name of a
Silo file that you want to inspect. Once the browser application opensthe Silo file, type
“1s’ to see the contents of the Silo file. From there, typing the name of any of the objects
shown in the object listing will print information about that object to the console.

4.3 Silofilesand parallel codes

Before we delve into examples about how to use the Silo library, let’s first examine how
parallel simulation codes process their data in a distributed-memory environment. Many
parallel simulation codes will divide the entire simulated mesh into submeshes, called
domains, which are assigned to processors that calculate the fields of interest on their
domain. Often, the most efficient 1/O strategy for the simulation code is to make each
processor write its domain to a separate file. The examples that follow assume paralléel
simulations will write 1 file per processor. It is possible for multiple processors to append

14

Writing Slo files

Creating compatible files

their datato asingle Silo file but it requires synchronization and that technique is beyond
the scope of the examples that will be presented.

44 Creatinganew Silofile

Thefirst step to saving datato aSilofileisto create the file and obtain a handle that will be
used to reference thefile. The handle will be passed to other Silo function callsin order to
add new objects to the file. Silo creates new files using the DBCr eat e function, which
takes the name of the new file, access modes, a descriptive comment, and the underlying
file type as arguments.

In addition to being alibrary, Silo is a self-describing data model, which can be
implemented on top of many different underlying file formats. Silo includes drivers that
alow it to read data from several different file formats, the most important of which are:
PDB (A legacy LLNL file format) format, and HDF5 format. Silo files stored in HDF5
format often provide performance advantages so the following code to open a Silo file will
create HDF5-based Silofiles. You tell Silo to create HDF5-based Silo files by passing the
DB_HDF5 argument to the DBCr eat e function. If your Silo library does not have built-in
HDF5 support then you can pass DB_PDB instead to create PDB-based Silo files.

Listing 2-3: basic.c: C-Language example for creating a new Silo file.

#i ncl ude <sil o. h>
#i ncl ude <stdio. h>
i nt
mai n(int argc, char *argv[])
{
DBfile *dbfile = NULL
/* Open the Silo file */
dbfile = DBCreate(“basic.silo”, DB CLOBBER, DB LOCAL,
“Conment about the data”, DB_HDF5);
i f(dbfile == NULL)
{
fprintf(stderr, “Could not create Silo file!\n");
return -1;
}
/* Add other Silo calls here. */
/* Close the Silo file. */
DBC ose(dbfile);
return O;

Listing 2-4: fbasic.f: Fortran language example for creating a new Silo file..

progam nai n
inmplicit none
i nclude “silo.inc”
i nteger dbfile, ierr
¢ The 11 and 22 argunents represent the | engths of strings

Writing Slo files 15

Creating compatiblefiles

ierr = dbcreate(“fbasic.silo”, 11, DB CLOBBER, DB _LOCAL,
. “Coment about the data”, 22, DB HDF5, dbfile)
if(dbfile.eq.-1) then
wite (6,*) ‘Could not create Silo file!l\n’
goto 10000
endi f
c Add other Silo calls here.
c Close the Silo file.
ierr = dbcl ose(dbfile)
10000 stop
end

In addition to using the DBCr eat e function, the previous examples also use the

DBCl ose function. The DBCl ose function ensuresthat all datais written to the file and
then closes the Silo file. You must call the DBCl ose function when you want to close a
Silo file or your file may not be compl ete.

45 Dealingwith time

Silo files are aflexible container for storing many types of data. Silo’s ability to store data
hierarchically in directories can allow you to store multiple time states of your simulation
datawithin asingle data file. However, since Silo is primarily an I/O library for storing
filesthat contain asingle time step’sworth of data, Vislt only recognizes one time state per
Silo file. Consequently, when writing out data, programs that use Silo will writeanew Silo
file for each time step. By convention, the new file will contain an index indicating either
the simulation cycle or a simple integer counter.

Listing 2-5: time.c: C-Language example for dealing with time.

/* SI MPLE SI MULATI ON SKELETON */
void wite vis_dunp(int cycle)

{
DBfile *dbfile = NULL
/* Create a unique filenane for the new Silo file*/
char fil enane[100];
sprintf(filenane, “outputd®4d.silo”, cycle);
/* Open the Silo file */
dbfile = DBCreate(fil ename, DB_CLOBBER, DB_LOCAL,
“simulation tinme step”, DB HDF5);
/* Add other Silo calls to wite data here. */
/* Close the Silo file. */
DBCl ose(dbfile);
}
int main(int, char **)
{

int cycle = 0;
read_i nput _deck();
do

16

Writing Slo files

Creating compatible files

simul ate_one_tinmestep();
write vis_dunp(cycle);
cycle = cycle + 1;
} while(!simulation_done());
return O;

The above code listing will write out Silo files with names such as: output0000.silo,
output0001.silo, output0002.silo, ... Each file contains the data from a particular
simulation time state. It may seem like the data are less related because they are stored in
different files but the fact that the files are related in time is subtly encoded in the name of
each of thefiles. When Vislt recognizes a pattern in the names of the files such as
“output????.sl0”, in this case, Vislt automatically groups the files into a time-varying
database. If you choose names for your Silo files that cannot be grouped by recognizing a
numeric pattern in the trailing part of the file name then you must use a .visit file to tell
Vislt that your files are related in time. For more information about .visit files, consult the
Vislt User’s Manual.

4.6 Option lists

Many of Silo’s more complex functions accept an auxiliary argument called an option list.
Anoption list isalist of option/value pairs and it is used to specify additional metadata
about the data being stored. Each Silo function that accepts an option list has its options
enumerated in the Slo User’s Manual. This manual will cover only a subset of available
options. Option lists need not be passed to the Silo functions that do support them. In fact,
most of the source code examplesin this manual will pass NULL instead of passing a
pointer to an option list. Omitting the option list from the Silo function call in thisway is
not harmful; it only means that certain pieces of additional metadata will not be stored
with the data.

Option lists are created using the DBMakeOpt | i st function. Once an option list object
is created, you can add optionsto it using the DBAddOpt i on function. Option lists are
freed using the DBFr eeQpt | i st function.

46.1 Cycleandtime

WEe've established that a notion of time can be encoded into filenames using ranges of
numbers in each filename. Vislt can use the numbers in the names of related files to guess
cycle number, ametric for how many times asimulation hasiterated. It is possible to use
Silo’s option list feature to directly encode the cycle number and the simulation time into
the stored data.

Listing 2-6: optlist.c: C-Language example for saving cycle and time using an option list..

Writing Slo files 17

Creating compatiblefiles

/* Create an option list to save cycle and tine values. */

int cycle = 100;

doubl e dtime = 1.23456789;

DBoptlist *optlist = DBVakeOptlist(2);

DBAddOpt i on(optlist, DBOPT_DTIME, &tine);

DBAddOpt i on(optlist, DBOPT_CYCLE, &cycle);

/* Wite a nmesh using the option list. */

DBPut Quadnmesh(dbfil e, "quadnmesh", coordnanes, coords, dinms, ndins,
DB_FLOAT, DB _COLLI NEAR, optlist);

/* Free the option list. */

DBFreeOpt | i st (optlist);

Listing 2-7: foptlist.f: Fortran language example for saving cycle and time using an option list..

c Create an option list to save cycle and tinme val ues.
i nteger cycle /100/
doubl e precision dtine /1.23456789/
integer err, ierr, optlistid

err = dbnkoptlist(2, optlistid)
err = dbaddi opt (optlistid, DBOPT_CYCLE, cycle)
err = dbadddopt (optlistid, DBOPT_DTIME, dtine)

c Wite a nesh using the option |ist.
err = dbputgm (dbfile, "quadnesh", 8, "xc", 2,
"yc", 2, "zc", 2, X, y, DB F77NULL, dins, ndins,
DB_FLOAT, DB COLLI NEAR, optlistid, ierr)

c Free the option list.
err = dbfreeoptlist(optlistid)

4.7 Writing arectilinear mesh

A rectilinear mesh isa 2D or 3D mesh where all coordinates are aligned with the axes.
Each axis of the rectilinear mesh can have different, non-uniform spacing, allowing for
details to be concentrated in certain regions of the mesh. Rectlinear meshes are specified
by lists of coordinate values for each axis. Since the mesh is aligned to the axes, it isonly
necessary to specify one set of X and Y valuesto generate all of the coordinates for the
entire mesh. Figure 2-8 contains an example of a 2D rectilinear mesh. The Silo function
call to write arectlinear mesh is called DBPut Quadnesh.

18 Writing Slo files

Creating compatible files

<0,/5 45 255> 59 5>
EE. L 1 AL 10 EE~ e =
<0, O T T [=TE= o r=yge i) = 55>
1ok A9 9 Lo Y~ Lo o ¥ ~
<O, = ’u, =) Ly [=0 25>
Xy 40N Lok s |
<O| > Tl = oy ro ’65; 2>
fnt <A 1l0 = al E
<0| L= Ty & oy o oy O>

1 ! f

|
X- coordi nat es

Figure 2-8: Rectilinear mesh and its X,Y node coordinates.

Listing 2-9: rect2d.c: C-Language example for writing a 2D rectilinear mesh.

/* Wite a rectilinear nmesh. */

float Xx[] {0., 1., 2.5, 5.};

float y[] {0., 2., 2.25, 2.55, 5.};

int dinms[] = {4, 5};

int ndins = 2;

float *coords[] = {x, Vy};

DBPut Quadnesh(dbfil e, “quadnmesh”, NULL, coords, dins, ndins,
DB_FLOAT, DB _COLLI NEAR, NULL);

Listing 2-10: frect2d.f: Fortran language example for writing a 2D rectilinear mesh.

c Wite a rectilinear nesh
integer err, ierr, dinms(2), ndins, NX NY
paraneter (NX = 4)
paranmeter (NY = 5)
real x(NX), y(NY)
dat a di ns/ NX, NY/
data x/0., 1., 2.5, 5./

Writing Silofiles 19

Creating compatiblefiles

data y/0., 2., 2.25, 2.55, 5./

ndinms = 2

err = dbputgm (dbfile, "quadnesh", 8, "xc", 2,
"yc", 2, "zc", 2, x, y, DB _F77NULL, dins, ndins,
DB_FLOAT, DB COLLI NEAR, DB_F77NULL, ierr)

The previous code examples demonstrate how to write out a 2D rectilinear mesh using
Silo’'sDBPut Quadnesh function (called dbput gmin Fortran). There are three pieces of
important information passed to the DBPut Quadnesh function. The first important
piece information is the name of the mesh being created. The name that you choose will
be the name that you use when writing a variable to a Silo file and a so the name that you
will seein Vislt's plot menus when you want to create a Mesh plot in Vislt. After the
name, you provide the coordinate arrays that contain the X and Y point values that
ultimately form the set of X,Y coordinate pairs that describe the mesh. The C-interface to
Silo requires that you pass pointers to the coordinate arrays in a single pointer array. The
Fortran interface to Silo requires you to pass the names of the coordinate arrays, followed
by the actual coordinate arrays, with avalue of DB_F77NULL for any arrays that you do
not use. Thefinal critical pieces of information that must be passed to the

DBPut Quadnesh function are the dimensions of the mesh, which correspond to the
number of nodes, or coordinate values, along the mesh in a given dimension. The
dimensions are passed in an array, along with the number of dimensions, which must be 2
or 3. Figure 2-11 shows an example of a 3D rectilinear mesh for the upcoming code
examples.

T X -coordinates

Figure 2-11: Rectilinear mesh and its X,Y,Z coordinates

20

Writing Slo files

Creating compatible files

Listing 2-12: rect3d.c: C-Language example for writing a 3D rectilinear mesh.

/* Wite a rectilinear nmesh. */

float x[] = {0., 1., 2.5, 5.};
float y[] = {0., 2., 2.25, 2.55, 5.};
float z[] = {0., 1., 3.};

int dins[] = {4, 5, 3};

int ndins = 3;

float *coords[] = {Xx, vy, z};

DBPut Quadnmesh(dbfile, "quadnesh", NULL, coords, dins, ndins,
DB _FLOAT, DB _COLLI NEAR, NULL);

Listing 2-13: frect3d.f: Fortran language example for writing a 3D rectilinear mesh.

integer err, ierr, dins(3), ndins, NX, NY, Nz
paranmeter (NX = 4)

paranmeter (NY = 5)

paranmeter (NZ =
real x(NX), y(Ny), z
data x/0., 1., 2.5,
data y/0., 2., 2
data z/0., 1., 3
ndins = 3

data di ms/ NX, NY, Nz/

err = dbputgm (dbfile, "quadnesh", 8, "xc", 2,
"yc", 2, "zc", 2, X, Yy, z, dinms, ndins,

DB _FLOAT, DB COLLI NEAR, DB_F77NULL, ierr)

4.8 Writingacurvilinear mesh

A curvilinear mesh is similar to arectlinear mesh. The main difference between the two
mesh types is how coordinates are specified. Recall that in arectilinear mesh, the
coordinates are specified individually for each axis and only a small subset of the nodesin
the mesh are provided. The coordinate arrays are used to assemble a point for each nodein
the mesh. In acurvilinear mesh, you must provide an X,Y,Z value for every node in the
mesh. Providing the coordinates for every point explicitly allows you to specify more
complex geometries than are possible using rectilinear meshes. Note how the mesh
coordinates on the mesh in Figure 2-14 alow it to assume shapes that are not aligned to
the coordinate axes.

Writing Silofiles 21

Creating compatiblefiles

<0.7~3> <35 3>
< >
<0, =5 —f- <3541.5>
>
<0,'8 s H0><2d (>

Figure 2-14: Curvilinear mesh and its X,Y node coordinates

The fine line between arectilinear mesh and a curvilinear mesh comes down to how the
coordinates are specified. Silo dicates that the coordinates be specified with an array of X-
coordinates, an array of Y-coordinates, and an optional array of Z-coordinates. The
difference, of course, isthat in acurvilinear mesh, there are explicit values for each node's
X,Y,Z points. Silo uses the same DBPut Quadnesh function to write out curvilinear
meshes. The coordinate arrays are passed the same as for the rectilinear mesh, though the
X,Y,Z arrays now point to larger arrays. You can pass the DB NONCOLLI NEAR flag to
the DBPut Quadnesh function in order to indicate that the coordinate arrays contain
values for every node in the mesh.

Listing 2-15: curv2d.c: C-Language example for writing a 2D curvilinear mesh.

/* Wite a curvilinear nmesh. */

#define NX 4

#define NY 3

float x[NY]J[NX] = {{o., 1., 3., 3.5}, {0., 1., 2.5, 3.5},
{0.7, 1.3, 2.3, 3.5}};

float y[NY][NX] = {{0., 0., 0., 0.}, {1.5, 1.5, 1.25, 1.5},
{3., 2.75, 2.75, 3.}};

int dinms[] = {NX, NY};

int ndins = 2;

float *coords[] = {(float*)x, (float*)y};

DBPut Quadnesh(dbfile, "quadmesh", NULL, coords, dinms, ndins,

22

Writing Slo files

Creating compatible files

DB_FLOAT, DB_NONCOLLI NEAR, NULL);

Listing 2-16: fcurv2d.f: Fortran language example for writing a 2D curvilinear mesh.

¢ Wite a curvilinear nesh.
integer err, ierr, dinms(2), ndins, NX NY
paraneter (NX = 4)
paranmeter (NY = 3)
real x(NX, NY), y(NX NY)
data x/0., 1., 3., 3.5,
0., 1., 2.5, 3.5,
. 0.7, 1.3, 2.3, 3.5/
data y/0., 0., 0., O.,
1.5, 1.5, 1.25, 1.5,
. 3., 2.75, 2.75, 3./
ndinms = 2
data di ms/ NX, NY/
err = dbputgm (dbfile, "quadnmesh", 8, "xc", 2,
"yc", 2, "zc", 2, X, y, DB F77NULL, dins, ndins,
DB _FLOAT, DB NONCOLLI NEAR, DB F77NULL, ierr)

Figure 2-17 shows a simple 3D curvilinear mesh that is 1 cell thick in the Z-dimension.
The number of cellsinadimensionis 1 less than the number of nodesin the same
dimension. for structured meshes. Asyou increase the number of nodesin the Z-
dimension, you must also add more X and Y coordinate values because the X,Y,Z values
for node coordinates must be fully specified for a curvilinear mesh.

<0,

<0,

Figure 2-17: 3D Curvilinear mesh and its X,Y,Z coordinates

Writing Silofiles 23

Creating compatiblefiles

Listing 2-18: curv3d.c: C-Language example for writing a 3D curvilinear mesh.

/* Wite a curvilinear nesh. */
#define NX 4
#define Ny 3
#define NZ 2

float x[NZ] [NY][NX] = {
{{o.,1.,2.,3.},{0., 1.
},{0., 1.

2,3}, {
{{0.,1.,2.,3.},{0.,1.,2.,3.}, {

—

—~

H
o o
NN
NN
|l o

1

int dims[] = {NX, NY, NZ};

int ndins = 3;

float *coords[] = {(float*)x, (float*)y, (float*)z};

DBPut Quadnmesh(dbfile, "quadnesh", NULL, coords, dins, ndins,
DB _FLOAT, DB _NONCOLLI NEAR, NULL);

Listing 2-19: fcurv3d.f: Fortran language example for writing a 3D curvilinear mesh.

c Wite a curvilinear nesh
integer err, ierr, dinms(3), ndinms, NX, NY, Nz
paranmeter (NX =
paranmeter (NY = 3)
paranmeter (NZ =
real x(NX, NY, N2),
data x/0.,1.,2.,3.
. 0.,1.,2.,38., 0.,
data y/0.5,0.,0.
. 0.5,0.,0.,0
data z/0.,0
1.,1.,1.,1
ndins = 3
data di ms/ NX, NY, Nz/
err = dbputgm (dbfile, "quadnesh", 8, "xc", 2,
"yc", 2, "zc", 2, X, Yy, z, dinms, ndins,
DB _FLOAT, DB _NONCOLLI NEAR, DB _F77NULL, ierr)

. 5,
, 0

[
[
[
[

24 Writing Slo files

Creating compatible files

4.9 Writing a point mesh

A point mesh isaset of 2D or 3D points where the nodes also constitute the cellsin the
mesh. Silo provides the DBPut Poi nt nesh function so you can write out particle
systems represented as point meshes.

Figure 2-20: 2D point mesh

Listing 2-21: point2d.c: C-Language example for writing a 2D point mesh. !

/* Create some points to save. */
#define NPTS 100

int i, ndins = 2;

float X[NPTS], y[NPTS];

float *coords[] = {(float*)x, (float*)y};
for(i = 0; i < NPTS;, ++i)

{
float t = ((float)i) / ((float)(NPTS-1));
float angle = 3.14159 * 10. * t;
x[i] =t * cos(angle);
y[i] =t * sin(angle);
}

/* Wite a point mesh. */
DBPut Poi nt nesh(dbfil e, "pointnmesh", ndins, coords, NPTS,
DB_FLOAT, NULL);

Listing 2-22: fpoint2d.f: Fortran language example for writing a 2D point mesh.

c Create sone points to save.
integer err, ierr, i, ndinms, NPTS
paranmeter (NPTS = 100)

Writing Silofiles 25

Creating compatiblefiles

real x(NPTS), y(NPTS), t, angle
do 10000 i = 0, NPTS-1
t =float(i) / float(NPTS-1)
angle = 3.14159 * 10. * t

x(i+l) =t * cos(angle);

y(i+l) =t * sin(angle);
10000 conti nue
ndinms = 2

c Wite a point nesh.
err = dbputpm (dbfile, "pointnmesh", 9, ndinms, X, v,
DB_F77NULL, NPTS, DB_FLOAT, DB_F77NULL, ierr)

Figure 2-23: 3D point mesh

Writing a 3D point mesh isvery similar to writing a 2D point mesh with the exception that
for a3D point mesh, you must specify a Z-coordinate. Figure 2-23 shows what happens
when we extend our 2D point mesh example into 3D.

Listing 2-24: point3d.c: C-Language example for writing a 3D point mesh. !

/* Create some points to save. */
#def i ne NPTS 100

int i, ndins = 3;

float X[NPTS], y[NPTS], z[NPTS];

float *coords[] = {(float*)x, (float*)y, (float*)z};
for(i = 0; i < NPTS; ++i)

26 Writing Slo files

Creating compatible files

}
/*

float t = ((float)i) / ((float)(NPTS-1));
float angle = 3.14159 * 10. * t;

x[1] t * cos(angle);

y[i] t * sin(angle);

z[i] t;

Wite a point mesh. */

DBPut Poi nt nesh(dbfil e, "pointnmesh”, ndins, coords, NPTS,

DB_FLOAT, NULL);

Listing 2-25: fpoint3d.f: Fortran language example for writing a 3D point mesh.

c Create sone points to save

integer err, ierr, i, ndins, NPTS
paranmeter (NPTS = 100)
real x(NPTS), y(NPTS), z(NPTS), t, angle
do 10000 i = 0, NPTS-1

t = float(i) / float(NPTS-1)

angle = 3.14159 * 10. * t

x(i+1l) =1t * cos(angle);
y(i+1l) =t * sin(angle);
z(i+1) =t

10000 conti nue

ndims = 3

c Wite a point mesh

err = dbputpm (dbfile, "pointmesh", 9, ndinms, x, y, z,
NPTS, DB FLOAT, DB F77NULL, ierr)

Writing Slo files

27

Creating compatiblefiles

410 Writing an unstructured mesh

Unstructured meshes are collections of different types of zones and are useful because
they can represent more complex mesh geometries than structured meshes can. This
section explains the Silo functions that are used to write out an unstructured mesh.

6 %

~

Figure 2-26: 2D unstructured mesh composed of triangles and
guadrilaterals. The node numbers are labelled red and
the zone numbers are labelled blue.

Silo supports the creation of 2D unstructured meshes composed of arbitrary polyhedral
cells. However, of the myriad of possible polyhedral cells, Visit's Silo reader plug-in will
currently only accept cells that are triangles or quadrilaterals. Unstructured meshes are
specified in terms of a set of nodes and then a zone list consisting of lists of nodes, called
connectivity information, that make up the zones in the mesh. When creating connectivity
information, be sure that the nodes in your zones are specified so that when you iterate
over the nodes in the zone that a counter-clockwise pattern is observed. Silo provides the
DBPut Zonel i st function to store out the connectivity information. The coordinates for
the unstructured mesh itself is written out using the DBPut Ucdmesh function.

Listing 2-27: ucd2d.c: C-Language example for writing a 2D unstructured mesh.

/* Node coordinates */
float x[] = {0., 2., 5., 3., 5., 0., 2., 4.
float y[] = {0., 0., 0., 3., 3.
float *coords[] = {x, Vy};
/* Connectivity */
int nodelist[] = {
2,4,7, /* tri zone 1 */
4,8,7, /* tri zone 2 */

28

Writing Slo files

Creating compatible files

1,2,7,6, /* quad zone 3 */
2,3,5,4, /* quad zone 4 */
4,5,9,8 /* quad zone 5 */

1

int | nodelist = sizeof(nodelist) / sizeof(int);

/* shape type 1 has 3 nodes (tri), shape type 2 is quad */

i nt shapesize[] = {3, 4};

/* W have 2 tris and 3 quads */

i nt shapecounts[] = {2, 3};

i nt nshapetypes = 2;

i nt nnodes = 9;

i nt nzones = 5;

int ndins = 2;

/* Wite out connectivity information. */

DBPut Zonel i st (dbfile, "zonelist", nzones, ndins, nodelist, |nodelist,
1, shapesize, shapecounts, nshapetypes);

/* Wite an unstructured mesh. */

DBPut Ucdnmesh(dbfile, "mesh", ndins, NULL, coords, nnodes, nzones,
"zonelist", NULL, DB_FLOAT, NULL);

Listing 2-28: fucd2d.f: Fortran language example for writing a 2D unstructured mesh.

integer err, ierr, ndinms, nshapetypes, nnodes, nzones
¢ Node coordi nates
real x(9) /0., 2., 5., 3., 5., 0., 2., 4.
real y(9) /0., 0., 0., 3., 3., 5 5
¢ Connectivity
i nt eger LNODELI ST
par anet er (LNODELI ST = 18)
i nt eger nodel i st (LNCDELIST) /2,4,7,
4,8,7,
1,2,7,6,
2,3,5,4,
4,5,9, 8/
Shape type 1 has 3 nodes (tri), shape type 2 is quad
i nteger shapesize(2) /3, 4/
¢ W have 2 tris and 3 quads
i nt eger shapecounts(2) /2, 3/
nshapetypes = 2
nnodes = 9
nzones 5
ndinms = 2
c Wite out connectivity information.
err = dbputzl (dbfile, "zonelist", 8, nzones, ndins, nodelist,
LNODELI ST, 1, shapesize, shapecounts, nshapetypes, ierr)
¢ Wite an unstructured nmesh
err = dbputun({dbfile, "mesh", 4, ndins, x, y, DB F77NULL
"X, 1, "Y', 1, DB F77NULL, 0, DB FLOAT, nnodes, nzones,
"zonelist", 8, DB F77NULL, O, DB F77NULL, ierr)

, 5.1
5./

(¢]

Writing Silofiles 29

Creating compatiblefiles

3D unstructured meshes are

created much the same way as 2D

unstructured meshes are created.

The main differenceis that 0
whereasin 2D, you use triangles 1
and quadrilateral zone types, in

3D, you use hexahedrons,

pyramids, prisms, and 1 2 3 2
tetrahedrons to compose your
mesh. The procedure for creating
the node coordinatesis the same
with the exception that 3D meshes 4 7
also require a Z-coordinate. The 4 5 .
procedurefor creating the zonelist 5 6
(connectivity information) is the !
same except that you specify cells 0. |3
using alarger number of nodes 1
because they are 3D. The order in L
which the nodes are specifiedis 3 2 1 2
also moreimportant for 3D shapes Prism Hexahedron
because if the nodes are not given

inthe right order, the zones can Figure 2-29: Node ordering for Silo’s 3D unstructured zone
become tangled. The proper zone opes

ordering for each of the four supported 3D zone shapes is shown in Figure 2-29.

Tetrahedron Pyramid

Figure 2-30 shows an example of asimple 3D unstructured mesh consisting of 2
hexahedrons, 1 pyramid, 1 prism, and 1 tetrahedron.

Figure 2-30: Node numbers on the left and the mesh, colored by zone type, on the right.
Hexhadrons (red), Pyramid (blue), Prism (yellow), Tetrahedron (green).

30 Writing Slo files

Creating compatible files

Listing 2-31: ucd3d.c: C-Language example for writing a 3D unstructured mesh.

/* Node coordi nates */

float x[] ={0.,2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,1.,2.,4.,4.};
float y[] = {0.,0.,0.,0.,2.,2.,2.,2.,4.,4.,4.,4.,6.,0.,0.,0.};
float z[] ={2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,0.,1.,4.,2.,0.};
float *coords[] = {x, vy, z};
/* Connectivity */
int nodelist[] = {
1,2,3,4,5,6,7,8, /* hex, zone 1 */
5,6,7,8,9,10,11,12, /* hex, zone 2 */
9,10, 11, 12, 13, /* pyram d, zone 3 */
2,3,16, 15,6, 7, /* prism zone 4 */
2,15,14,6 /* tet, zone 5 */

1

int I nodelist = sizeof(nodelist) / sizeof(int);

/* shape type 1 has 8 nodes (hex) */

/* shape type 2 has 5 nodes (pyramd) */

/* shape type 3 has 6 nodes (prism */

/* shape type 4 has 4 nodes (tet) */

i nt shapesize[] = {8,5, 6, 4};

/* W& have 2 hex, 1 pyramid, 1 prism 1 tet */

i nt shapecounts[] = {2,1,1, 1};

i nt nshapetypes = 4;

int nnodes = 16;

int nzones = 5;

int ndins = 3;

/* Wite out connectivity information. */

DBPut Zonel i st (dbfile, "zonelist", nzones, ndins, nodelist, |nodelist,
1, shapesize, shapecounts, nshapetypes);

/* Wite an unstructured nesh. */

DBPut Ucdnmesh(dbfile, "nmesh", ndins, NULL, coords, nnodes, nzones,
"zonelist", NULL, DB _FLOAT, NULL);

Listing 2-32: fucd3d.f: Fortran language example for writing a 3D unstructured mesh.

integer err, ierr, ndinms, nzones

i nt eger NSHAPETYPES, NNODES

par amet er (NSHAPETYPES = 4)

paranmeter (NN = 16)
¢ Node coordi nates

real x(NN) /0.,2.,2.,0

real y(NN) /0.,0.,0.,0

real z(NN) /2.,2.,0.,0
¢ Connectivity

i nt eger LNODELI ST

par amet er (LNODELI ST = 31)

i nt eger nodel i st (LNCDELIST) /1,2,3,4,5,6,7,8,

5,6,7,8,9,10, 11, 12,

9,10, 11, 12, 13,

Writing Silofiles 31

Creating compatiblefiles

2,3,16, 15,6, 7,
2,15, 14, 6/
Shape type 1 has 8
Shape type 2 has 5
Shape type 3 has 6
Shape type 4 has 4

i nt eger shapesi
c W have 2 hex, 1 py
i nt eger shapeco
nzones = 5
ndins = 3

O 000

nodes (hex)

nodes (pyram d)

nodes (prism

nodes (tet)

ze(NSHAPETYPES) /8, 5, 6, 4/
ramd, 1 prism 1 tet

unt s(NSHAPETYPES) /2, 1, 1, 1/

c Wite out connectivity infornmation
err = dbputzl (dbfile, "zonelist", 8, nzones, ndins,
LNODELI ST, 1, shapesi ze, shapecounts, NSHAPETYPES,
c Wite an unstructured nesh
err = dbputunm(dbfile, "nmesh", 4, ndins, x, y, z,

"Xt,1, 'Yy, 1,
"zonelist", 8,

"Zz", 1, DB_FLOAT, NN, nzones,
DB_F77NULL, 0, DB _F77NULL, ierr)

nodel i st,
ierr)

4.10.1 Adding axislabelsand ax

It ispossibleto add additional
annotations to your meshes
that you store to Silo files
using Silo’s option list
mechanism. This subsection
covers how to changethe axis
titles and units that will be
used when Vislt plots your
mesh. By default, Vislt uses
“X-Axis’, “Y-Axis’, and “ Z-
AXxis’ when labelling the
coordinate axes. You can
override the default labels
using an option list. Option
lists are created with the
DBMakeOpt | i st function
and freed with the
DBFreeOpt | i st function.
All of the Silo functions for
writing meshes that we've
demonstrated so far can

isunits

Temperature
(Celsius)

1.0 2.0 3.0
Pressure (kP)

Figure 2-33: Custom mesh labels and units along the X and Y axes

accept option lists that contain custom axis labels and units. Refer to the Slo User’s
Manual for more information on addition options that can be passed via option lists.

32

Writing Slo files

Creating compatible files

Adding customized labels and unitsfor amesh by using option lists ensuresthat Vislt uses
your customized labels and unitsinstead of the default values. Figure 2-33 shows how the
labels and units in the previous examples show up in Vislt's visualization window.

Listing 2-34: rect2d.c: C-Language example for associating new axis labels and units with a mesh. !

/* Create an option list to contain |labels and units. */

DBoptlist *optlist = DBVakeOptlist(4);

DBAddOpt i on(optlist, DBOPT_XLABEL, (void *)"Pressure");

DBAddOpt i on(optlist, DBOPT_XUNITS, (void *)"kP");

DBAddOpt i on(optlist, DBOPT_YLABEL, (void *)"Tenperature");

DBAddOpti on(optlist, DBOPT_YUNITS, (void *)"Degrees Cel sius");

/* Wite a quadnesh with an option list. */

DBPut Quadrmesh(dbfile, "quadnmesh", NULL, coords, dins, ndins,
DB_FLOAT, DB COLLI NEAR, optlist);

/* Free the option list. */

DBFreept | i st (optlist);

Listing 2-35: frect2d.f: Fortran language example for associating new axis labels and units with a
mesh

c Create an option list to contain |labels and units.
integer err, ierr, optlistid

err = dbnkoptlist(4, optlistid)

err = dbaddcopt (optlistid, DBOPT_XLABEL, "Pressure", 8)

err = dbaddcopt (optlistid, DBOPT_XUNI TS, "kP"', 2)

err = dbaddcopt (optlistid, DBOPT_YLABEL, "Tenperature", 11)
err = dbaddcopt (optlistid, DBOPT_YUNI TS, "Celsius", 7)

c Wite a quadnesh with an option |ist.
err = dbputgm (dbfile, "quadnesh", 8, "xc", 2,
"yc", 2, "zc", 2, X, y, DB F77NULL, dins, ndins,
DB FLOAT, DB COLLI NEAR, optlistid, ierr)

c Free the option |ist
err = dbfreeoptlist(optlistid)

411 Writingascalar variable

Silo provides several different functions for writing variables; one for each basic type of
mesh: quadmesh (rectilinear and curvilinear), unstructured mesh, and point mesh. Each of
these functions can be used to write either zone-centered or node-centered data. This
section concentrates on how to write scalar variables; vector and tensor variable
components can be written as scalar variables and reassembled into vectors and tensors
using expressions, covered on page 45. This section’s code examples use the rectilinear,
curvilinear, point, and unstructured meshes that have appeared in previous code examples.

Writing Silofiles 33

Creating compatiblefiles

4111 Zonecentering vs. Node centering

Vislt supports two types of variable centering: zone-centering and node-centering. A
variable's centering indicates how its values are attached to the mesh on which the variable
is defined. When a variable is zone-centered, each zone is assigned a single value. If you
wereto plot a zone-centered value in Vislt, each zone would be drawn using a uniform
color and picking anywhere in the zone would yield the same value. Arrays containing
values that are to be zone-centered on a mesh must contain the same number of elements
asthere are zones in the mesh. Node-centered arrays, on the other hand, contain avalue
for every node in the mesh. When you plot a node-centered valuein Vidlt, Vislt
interpolates the values from the nodes across the zone's surface, usually producing a
smooth gradient of values across the zone.

Figure 2-36: Zone-centering (left) and Node-centering (right)

4112 APl Commonality

Each of the provided functions for writing scalar variables does have certain argumentsin
common. For example, al of the functions must be provided the name of the variable to
write out. The name that you pick is the name that will appear in Vislt's plot menus (see
Figure 2-37). Be careful when you pick your variable names because you should avoid
characters that include: punctuation marks, and spaces. Variable names should only
contain letters and numbers and they should begin with aletter. These guidelines arein
place to assure that your datafiles will have the utmost compatibility with Visit's
expression language, which is defined in the Vislt User’s Manual.

All variables must be defined on amesh. If you examine the code examplesin this section,
each Silo function that writes out a variable will be passed the name of the mesh on which
the variable isto be defined.

Each of the Silo function callswill accept a pointer to the array that containsthe variable’s
data. The data can be stored in several internal formats. char, short,int,| ong,

f | oat , and doubl e. Since Silo’s variable writing functions use a pointer to pass the
data, you can pass a pointer that pointsto datain any of the mentioned types. In addition,

34 Writing Slo files

Creating compatible files

you must pass aflag that indicates to Silo the type of data stored in the array whose
address you've passed.

Most of the remaining argumentsto Silo’s variable writing functions are specific to the
types of meshes on which the variable is defined so the rest of this section will provide
examples for writing out variables that are defined on various mesh types.

I

Plots PlotAtts OpAtts

] r@ tlection to all plots

© Contour »

™

el

' gov -
Histogram »

X Label B

@ Mesh o Default

] rovvcocoo v IR

:% scatter o[e

o var3

' vard

4~ surface »

ar cache | Close engine
"9

= Ll
Volume ' lnnnet I nlemlee_lll

A | E

Figure 2-37: Variables in Vislt's plot menus

4.11.3 Rectilinear and curvilinear meshes

Recall from sections “Writing arectilinear mesh” on page 18 and “Writing a curvilinear
mesh” on page 21 that the procedure for creating rectilinear and curvilinear meshes was
similar and the chief difference between the two mesh types was in how their coordinates
were specified. While arectilinear mesh’s coordinates could be specified quite compactly
as separate X,Y,Z arrays made up of unigque values along a coordinate axis, the curvilinear
mesh required X,Y,Z coordinate arrays that contained the X,Y,Z values for every nodein
the mesh. Regardless of how the coordinates were specified, both mesh types contain
(NX-1)*(NY-1)*(NZ-1) zones and NX*NY*NZ nodes. This means that the code to write
avariable on arectilinear mesh will be identical to the code to write a zone-centered
variable on acurvilinear mesh! Silo provides the DBPut Quadvar 1 function to write
scalar variables for both rectilinear and curvilinear meshes,

Writing Silofiles 35

Creating compatiblefiles

P

Crayyl

i

-

if

Figure 2-38: Zone-centered variables. Clock-wise from upper left,
float, double-precision, integer, char

Listing 2-39: quadvar2d.c: C-Language example for writing zone-centered variables.

/* The data rmust be (NX-1) * (NY-1) since it is zonal. */

float varl[] = {
0., 1., 2.,
3., 4., 5.,
6., 7., 8.,
9., 10., 11.

1

doubl e var2[] = {
0.00, 1.11, 2. 22,
3.33, 4.44, 5.55,
6.66, 7.77, 8.88,
9.99, 10.1, 11.11

1

int var3[] = {
o, 1, 2,
3, 4, 5
6, 7, 8,
9, 10, 11

i

char var4[] = {
o, 1, 2,
3, 4, 5

36 Writing Slo files

Creating compatible files

6, 7, 8,
9, 10, 11

b

/* Note dinms are 1 less than nesh’s dins in each dinension. */

int dinms[]={3, 4};

int ndins = 2;

DBPut Quadvar 1(dbfile, "varl", "quadmesh", var1l, dims,
ndi ns, NULL, O, DB_FLOAT, DB _ZONECENT, NULL);

/* Wite a double-precision variable. */

DBPut Quadvar 1(dbfile, "var2", "quadnmesh", (float*)var2, dinmns,
ndi ns, NULL, O, DB _DOUBLE, DB _ZONECENT, NULL);

/* Wite an integer variable */

DBPut Quadvar 1(dbfile, "var3", "quadnmesh", (float*)var3, dinmns,
ndi ms, NULL, O, DB_INT, DB_ZONECENT, NULL);

/* Wite a char variable */

DBPut Quadvar 1(dbfile, "var4", "quadnmesh", (float*)var4, dinmns,
ndi ms, NULL, 0, DB _CHAR, DB _ZONECENT, NULL);

Listing 2-40: fquadvar2d.f: Fortran language example for writing zone-centered variables.

integer err, ierr, dins(2), ndins, NX NY, ZX ZY

paraneter (NX = 4)

paranmeter (NY = 5)

paraneter (ZX = NX-1)
paraneter (ZY = NY-1)

real var 1(ZX, ZY)
doubl e precision var2(ZzX 2Y)
i nt eger var 3(ZX, ZY)
char acter var 4(zZX, ZY)
data var1/0., 1., 2.,

3., 4., 5.,

6., 7., 8.,

9., 10., 11./

data var2/0.,1.11, 2. 22,
3.33, 4.44, 5.55,
6.66, 7.77, 8.88,
. 9.99, 10.1, 11.11/
data var3/0,1, 2,
3, 4, 5,
6, 7, 8,
.9, 10, 11/
data var4/0,1, 2,
3, 4, 5,
6, 7, 8,
.9, 10, 11/
data di ns/ ZX, ZY/
ndinms = 2
err = dbputqvl(dbfile, "varl", 4, "quadnmesh", 8, varl, dins,
ndi ms, DB F77NULL, O, DB FLOAT, DB ZONECENT, DB F77NULL, ierr)
¢ Wite a doubl e-precision variable
err = dbputqvl(dbfile, "var2", 4, "quadnmesh", 8, var2, dinmns,
ndi ms, DB _F77NULL, O, DB DOUBLE, DB ZONECENT,
DB F77NULL, ierr)

Writing Silofiles 37

Creating compatiblefiles

c Wite an integer variable
err = dbputqvl(dbfile, "var3", 4, "quadnmesh", 8, var3, dins,
ndi ms, DB_F77NULL, 0, DB_I NT, DB_ZONECENT, DB _F77NULL, ierr)
c Wite a char variable
err = dbputqvl(dbfile, "var4", 4, "quadmesh", 8, var4, dinmns,
ndi ms, DB_F77NULL, 0, DB_CHAR, DB_ZONECENT, DB_F77NULL, ierr)

Both of the previous code examples produce a data file with 4 different scalar arrays as
shown in Figure 2-38. Note that in both of the previous code examples, the same
DBPut Quadvar 1 function (or dbput qv1 in Fortran) function was used to write out
data arrays of differing types.

The DBPut Quadvar 1 function can also be used to write out node centered variables.
There are two differences that you must observe when writing a node-centered variable as
opposed to writing a zone-centered variable. First, the data array that you pass to the
DBPut Quadvar 1 function must be larger by 1 in each of its dimensions and you must
pass DB_NODECENT instead of DB_ZONECENT.

Listing 2-41: quadvar2d.c: C-Language example for writing node-centered variables.

/* The data nust be NX * NY since it is nodal. */
#define NX 4
#define NY 5

float nodal[] = {
0., 1., 2., 3
4., 5., 6., 7.
8., 9., 10., 11.

12., 13., 14., 15.
16., 17., 18., 19.
}s
/* Nodal variabl es have sane #val ues as #nodes in nesh */
int dinms[]={NX, NY};
int ndins = 2;
DBPut Quadvar 1(dbfil e, "nodal", "quadnesh", nodal, dins,
ndi ms, NULL, O, DB _FLOAT, DB NODECENT, NULL);

Listing 2-42: fquadvar2d.f: Fortran language example for writing node-centered variables.

c The data nmust be NX * NY since it is nodal
integer err, ierr, dins(2), ndins, NX, NY
paranmeter (NX = 4)
paranmeter (NY = 5)
real nodal (NX, NY)
data di ns/ NX, NY/
data nodal /0., 1., 2., 3.

4., 5., 6., 7.,
8., 9., 10., 11.,
12., 13., 14., 15.,
16., 17., 18., 19./

38

Writing Slo files

Creating compatible files

ndins = 2
¢ Nodal vari abl es have sane #val ues as #nodes in nmesh
err = dbputqgvl(dbfile, "nodal", 5, "quadmesh", 8, nodal,
di ns, ndins, DB F77NULL, 0, DB _FLOAT, DB_NODECENT,
DB _F77NULL, ierr)

Writing variablesto 3D curvilinear and rectilinear meshes follows the same basic rules as
writing variables for 2D meshes. For zone-centered variables, you must have (NX-
1)*(NY-1)*(NZ-1) data values and for node-centered variables, you must have
NX*NY*NZ data values. Figure 2-43 shows what the data values look like for the Silo
files produced by the examplesto come.

Figure 2-43: Zone-centered variable in 3D and a node-centered variable in 3D (shown
with a partially transparent plot)

Listing 2-44: quadvar3d.c: C-Language example for writing variables on a 3D mesh.

#define NX 4

#define Ny 3

#define NZ 2

/* Wite a zone-centered variable. */

void wite zonecent quadvar (DBfile *dbfile)

{
int i, dinms[3], ndins = 3;
int ncells = (NX-1)*(NY-1)*(NzZ-1);
float *data = (float *)nmalloc(sizeof (float)*ncells);
for(i = 0; i < ncells; ++i)
data[i] = (float)i;
dinms[0] = NX-1; dins[1] = NY-1; dins[2] = NZ-1;
DBPut Quadvar 1(dbfile, "zonal", "quadnesh", data, dins,
ndi ms, NULL, O, DB_FLOAT, DB _ZONECENT, NULL);
free(data);
}

/* Wite a node-centered variable. */

Writing Slo files 39

Creating compatiblefiles

void wite_nodecent _quadvar (DBfile *dbfile)

{
int i, dinms[3], ndins = 3;
i nt nnodes = NX*NY*NZ,
float *data = (float *)mall oc(sizeof (float)*nnodes);
for(i = 0; i < nnodes; ++i)
data[i] = (float)i;
dins[0] = NX; dinms[1] = NY; dins[2] = Nz
DBPut Quadvar 1(dbfil e, "nodal", "quadnesh", data, dins,
ndi ns, NULL, O, DB_FLOAT, DB _NODECENT, NULL);
free(data);
}

Listing 2-45: fquadvar3d.f: Fortran language example for writing variables on a 3D mesh.

c Wite a zone-centered vari abl e.
subroutine wite_zonecent_quadvar (dbfil e)
inmplicit none
i nteger dbfile
i nclude "silo.inc"
integer err, ierr, dins(3), ndins, i,j,k,index, ZX 2Y,272Z

paraneter (ZX = 3)
paraneter (ZY = 2)
paraneter (ZZ = 1)

i nt eger zonal (ZX, 2ZY, ZZ)
data di ns/ ZX, 2Y, ZzzZ/
index = 0
do 10020 k=1, 277
do 10010 j =1, ZY
do 10000 i =1, ZzX
zonal (i,j,Kk) = index
index = index + 1
10000 conti nue
10010 conti nue
10020 conti nue

ndinms = 3

err = dbputqvl(dbfile, "zonal", 5, "quadnesh", 8, zonal, dins,
ndi ms, DB F77NULL, O, DB _INT, DB ZONECENT, DB F77NULL, ierr)
end

c Wite a node-centered vari abl e.
subroutine wite_nodecent _quadvar (dbfil e)
inmplicit none
i nteger dbfile
i nclude "silo.inc"
integer err, ierr, dinms(3), ndins, i,j,k,index, Nz, NY, Nz
paraneter (NX = 4)
paranmeter (NY = 3)
paraneter (NZ = 2)
real nodal (NX, NY, N2)
data di ns/ NX, NY, Nz/
index = 0
do 20020 k=1, Nz
do 20010 j =1, NY

40 Writing Slo files

Creating compatible files

do 20000 i =1, NX
nodal (i,j, k) = float(index)
index = index + 1
20000 conti nue
20010 conti nue
20020 conti nue
ndinmns = 3

err = dbputqgvl(dbfile, "nodal", 5, "quadnmesh", 8, nodal
ndi ms, DB_F77NULL, 0, DB_FLOAT, DB_NODECENT, DB_F77NULL

end

411.4 Point meshes

di nms,
ierr)

Point meshes, which were meshes composed of a set of points can, like other mesh types,

have values associated with each point. Silo provides the DBPut Poi nt Var 1 function

that you can use to write out a scalar variable stored on a point mesh. Nodes and the zones
are really the same thing in a point mesh so you can consider zone-centered scalars to be

the same thing as node-centered scalars.

Figure 2-46: Scalar variable defined on a point mesh

Listing 2-47: pointvar3d.c: C-Language example for writing variables on a 3D point mesh.

/* Create sone val ues to save. */
int i;
float var[NPTS];

Writing Slo files

41

Creating compatiblefiles

for(i = 0; i < NPTS;, ++i)
var[i] = (float)i;
/* Wite the point variable.

DBPut Poi ntvar 1(dbfile, "pointvar", "pointnmesh", var, NPTS,

DB_FLOAT, NULL);
I

Listing 2-48: fpointvar3d.f: Fortran language example for writing variables on a 3D point mesh.

c Create sone values to save.
NPTS

integer err, ierr, i,
paranmeter (NPTS = 100)
real var (NPTS)
do 10010 i = 1, NPTS
var(i) = float(i-1)
10010 conti nue
c Wite the point variable
err = dbput pvl(dbfile,

“pointvar", 8, "pointmesh", 9,

var, NPTS, DB FLOAT, DB_F77NULL, ierr)

4115 Unstructured meshes

.

i
g

:

oo

]
g

Figure 2-49: A 2D unstructured mesh with a zonal variable (left) and a nodal variable (right).

Writing a variable on an unstructured mesh is done following a procedure similar to that
for writing a variable on a point mesh. Aswith other mesh types, a scalar variable defined
on an unstructured grid can be zone-centered or node-centered. If the variable is zone-
centered then the data array required to store the variable on the unstructured mesh must
be a1-D array with the same number of elements as the mesh has zones. If the variable to
be stored is node-centered then the array containing the variable must be a 1-D array with
the same number of elements as the mesh has nodes. Thinking of the dataarray asa 1-D
array simplifies indexing since the number used to identify a particular node is the same

42

Writing Slo files

Creating compatible files

index that would be used to access data in the variable array (assuming 0-originin C and
1-origin in Fortran). Since the data array is aways 1-D for an unstructured mesh, the code
to store variables on 2D and 3D unstructured meshesisidentical. Figure 2-49 shows a 2D
unstructured mesh with both zonal and nodal variables. Silo provides the

DBPut Ucdvar 1 function for writing scalar variables on unstructured meshes.

Listing 2-50: ucdvar2d.c: C-Language example for writing variables on an unstructured mesh.

float nodal []

float zonal []

int nnodes = 9;

i nt nzones = 5;

/* Wite a zone-centered variable. */

DBPut Ucdvar 1(dbfile, "zonal", "nesh", zonal, nzones, NULL, O,
DB _FLOAT, DB _ZONECENT, NULL);

/* Wite a node-centered variable. */

DBPut Ucdvar 1(dbfile, "nodal", "nesh", nodal, nnodes, NULL, O,
DB _FLOAT, DB_NODECENT, NULL);

I
~

Listing 2-51: fucdvar2d.f: Fortran language example for writing variables on an unstructured mesh.

integer err, ierr, NNODES, NZONES
par anet er (NNODES = 9)
par anet er (NZONES = 5)
real nodal (NNODES) /1.,2.,3.,4.,5.,
real zonal (NZONES) /1.,2.,3.,4.,5./
c Wite a zone-centered vari abl e.
err = dbputuvi(dbfile, "zonal", 5, "mesh", 4, zonal, NZONES,
DB _F77NULL, 0, DB_FLOAT, DB _ZONECENT, DB _F77NULL, ierr)
c Wite a node-centered vari abl e.
err = dbputuvl(dbfile, "nodal", 5, "mesh", 4, nodal, NNODES,
DB _F77NULL, 0, DB_FLOAT, DB _NCDECENT, DB F77NULL, ierr)

6.,7.,8.,9./

Writing Silofiles 43

Creating compatiblefiles

4.11.6 Addingvariable units

All of the examples for writing scalar variables presented so

Pseud |

far have focused on the basics of writing a variable array to a VSCJEI}rL:ch?r?ch o

. Units: g/cc
Silofile. Silo’s option list mechanism allows a variable object w5000
to be annotated with various extra information. In the case of
scalar variables, the option list passed to DBPut Quadvar 1 - 400
and DBPut Ucdvar 1 can contain the units that describe the — 3.000
variable being stored. Refer to the Slo User’s Manual for a
complete list of the options accepted by the 2000
DBPut Quadvar 1 and DBPut Ucdvar 1 functions. When a l 1,000
scalar variable has associated units, the units appear in the Mo 8,000
variable legend in Vislt's visualization window (see Figure 2- Figure 2.52: Plot legend
52)- with units

If you want to add unitsto the variable that you write, you

must create an option list to pass to the function writing your variable. You may recall that

option lists are created with the DBMakeOpt | i st function and freed with the
DBFreeOpt | i st function. In order to add units to the option list, you must add the
DBOPT_UNI TS option.

Listing 2-53: ucdvar2d.c: C-Language example for writing a variables with units.

/* Create an option list and add “g/cc” units to it. */

DBoptlist *optlist = DBMakeOptlist(1);

DBAddOpti on(optlist, DBOPT_UNITS, (void*)"g/cc");

/* Wite a variable that has units. */

DBPut Ucdvar 1(dbfile, "zonal™, "mesh", zonal, nzones, NULL, O,
DB_FLOAT, DB_ZONECENT, optlist);

/* Free the option list. */

DBFreeOptlist(optlist);

Listing 2-54: fucdvar2d.f: Fortran language example for writing a variables with units.

c Create an option list and add “g/cc” units to it.
integer err, optlistid
err = dbnkoptlist(1l, optlistid)
err = dbaddcopt (optlistid, DBOPT_UNITS, "g/cc", 4)
c Wite a variable that has units.
err = dbputuvl(dbfile, "zonal", 5, "mesh", 4, zonal, NZONES,
DB_F77NULL, 0, DB_FLOAT, DB ZONECENT, optlistid, ierr)
c Free the option list.
err = dbfreeoptlist(optlistid)

Writing Slo files

Creating compatible files

412 Singleprecision vs. Double precision

After having written some variables to a Silo file, you've no doubt learned that you can
pass a pointer to data of many different representations and precisions (char, int, float,
double, etc.). When you pass data to a Silo function, you also must pass aflag that tells
Silo how to interpret the data stored in your data array. For example, if you have single
precision floating point data then you would tell Silo to traverse the data as such using the
DB_FLQAT typeflag in the function call to DBPut Quadvar 1. Many of the functionsin
the Silo library require atype flag to indicate the type of data being passed to Silo. In fact,
even the functions to write mesh coordinates can accept different data types. This means
that you can use double-precision to specify your mesh coordinates, which can be
immensely useful when dealing with very large or very small objects.

Listing 2-55: C-Language example for writing a mesh with double-precision coordinates.

/* The X,y arrays contain doubl e-precision coordinates. */

doubl e X[NY][NX], y[NY][NX];

int dinms[] = {NX NY};

int ndins = 2;

/* Note that x,y pointers are cast to float to conformto API. */

float *coords[] = {(float*)x, (float*)y};

/[* Tell Silo that the coordinate arrays are actually doubles. */

DBPut Quadrmesh(dbfile, "quadnmesh", NULL, coords, dins, ndins,
DB_DOUBLE, DB NONCOLLI NEAR, NULL);

413 Writing expressions

You can plot derived quantitiesin Vislt by creating expressions that involve variables from
your database. Sometimes, it is useful to include expression definitionsin your Silo file so
they are available to Vislt without you first having to create them. Silo provides the
DBPut def var s function so you can write your expressions to a Silo file. Expression
names should be valid Vislt expression names, as defined in the Vislt User’s Manual.
Likewise, the expression definitions should contain only expressions that are supported by
the Vislt expression language.

While Vislt's expression language can be useful for calculating amultitude of expressions,
it can be particularly useful for grouping vector or tensor components into vector and
tensor variables. If you store vector or tensor components as scalar variablesin your Silo
file then you can easily create expressions that assemble the components into real vector
or tensor variables without significantly increasing your file's storage requirements.
Writing out vector and tensor variables as expressions involving scalar variables also
prevents you from having to use more complicated Silo functionsin order to write out the
vector or tensor data.

Listing 2-56: defvars.c: C-Language example for writing out expression definitions.

Writing Slo files 45

Creating compatiblefiles

/* Wite sonme expressions to the Silo file. */

const char *nanes[] = {"velocity", "speed"};

const char *defs[] = {"{xc,yc,zc}", "magnitude(velocity)"};
int types[] = {DB_VARTYPE VECTOR, DB_VARTYPE_SCALAR};

DBPut Def vars(dbfile, "defvars", 2, names, types, defs, NULL);

Listing 2-57: fdefvars.f: Fortran language example for writing out expression definitions.

integer err, ierr, types(2), Inanes(2), |defs(2)
i nt eger nunmexpressions, oldlen
c Initialize sone 20 character |ength strings
character*20 nanmes(2) /’'velocity ",
' speed "
character*20 defs(2) /’'{xc,yc,zc} ",
"magni tude(vel ocity) '/
c Store the length of each string
data | names/ 8, 5/
data | defs/10, 19/
dat a types/ DB_VARTYPE_VECTOR, DB_VARTYPE_SCALAR/
c Set the maximumstring length to 20 since that’'s how | ong
C our strings are
ol dl en = dbget 2dstrl en()
err = dbset 2dstrl en(20)
c Wite out the expressions
nunexpressions = 2
err = dbputdefvars(dbfile, "defvars", 7, nunexpressions,
nanes, | nanes, types, defs, |defs, DB F77NULL, ierr)
c Restore the previous value for maxi mnumstring |ength
err = dbset2dstrlen(oldl en)

In the previous Fortran example for writing expressions, there are more functions involved
than just the dbput def var s function. It iscritical to set the maximum 2D string length
for stringsin the Silo library, using the dbset 2dst r | en function, so the Fortran
interface to Silo will be able to correctly traverse the string data passed to it from Fortran.
In the previous example, we used 20 characters for both the expression names and
definitions. We call dbset 2dst r | en to set the maximum allowable 2d string length to
20 characters before we pass our arrays of 20 character stringsto the dbput def var s
function. In addition, we must also pass valid lengths for the expression name and
definition strings. The lengths should be at least 1 character long but no longer than the
maximum allowable string length, which we set to 20 characters in the example program.
Passing valid string lengths isimportant so the expressions that you save to your file do
not contain any extra characters, such astrailing spaces.

4.14 Creatingamaster filefor parallel

When aparallel program saves out its data files, often the most efficient method of 1/O is
for each processor to write its own piece of the ssmulation, or domain, to its own Silofile.

46

Writing Slo files

Creating compatible files

If each processor writesits own Silo file then no communication or synchronization must
take place to manage access to a shared file. However, once the simulation has compl eted,
there are many files and all of them are required to reconstitute the simulated object.
Plotting each domain file in Vislt would be very tedious so Silo provides functions to
create what is known as a“master file”, which isatop-level file that effectively unifies all
of the domain files into awhole. When you open amaster filein Vislt and plot variables
out of it, all domains are plotted.

Master files contain what are known as multimeshes, multivars, and multimaterials. These
objects are lists of filenames that contain the appropriate domain variable. They aso
contain some meta-information about each of the domains that helps Vislt perform better
in parallel. Strategies for using metadata to improve Vislit's 1/0O performance will be
covered shortly.

4.14.1 Creating a multimesh

A multimesh is an object that unites smaller domain-sized meshes into awhole mesh. The
multimesh object contains alist of the filenames that contain a piece of the named mesh.
When you tell Vislt to plot a multimesh, Vislt reads the named mesh in all of the required
domain files and processes the mesh in each file, to produce the entire mesh.

Figure 2-58: Multimesh colored by its domain number

The following example, shown in Figure 2-58, uses the mesh from the 2D rectilinear mesh
example program and repesats it as 4 domains. Note that the mesh forming the domainsis
translated in X and Y so that the edges are shared. In the given example, the meshes that
make up the entire mesh are stored in separate Silo files: multimesh.1, multimesh.2,

Writing Slo files 47

Creating compatiblefiles

multimesh.3, and multimesh.4. The mesh and any data that may be defined on it is stored
in those files. Remember that storing pieces of a single mesh is commonplace when
parallel processes write their own file. Plotting each of the smaller filesindividually in
Vislt is not neccessary when amaster file has been generated since plotting the multimesh
object from the master file will cause Vislt to plot each of its constituent meshes. The code
that will follow shows how to use Silo’s DBPut Mul t i mesh function to write out a
multimesh object that reassembles meshes from many domain files into a whole mesh.

Thelist of meshes or itemsin amulti-object generally take the form: path:item where path
isthefile system path to the item and itemis the name of the object being referenced. Note
that the path may be specified as arelative or absolute path using names valid for thefile
system containing the master file. However, we strongly recommend using only relative
paths so the master file does not reference directories that exist only on onefile system.
Using relative paths makes the master files much more portable since they allow the data
files to be moved. The path may also refer to subdirectories within the file being
referenced since Silo files may contain directories that help to organize related data. The
following examples assume that the domain files will exist in the same directory asthe
master file since the path includes only the names of the domain files.

Listing 2-59: multimesh.c: C-Language example for writing a multimesh.

void wite_masterfile(void)
{
DBfile *dbfile = NULL;
char **nmeshnanmes = NULL;
int dom nnmesh = 4, *meshtypes = NULL;
/* Create the list of mesh names. */
meshnanmes = (char **)mal |l oc(nmesh * sizeof (char *));
for(dom = 0; dom < nnesh; ++don)

{
char tnp[100];
sprintf(tnp, "nultinmesh. %: quadmesh”, dom;
meshnames[dom = strdup(tnp);

}

/* Create the list of mesh types. */

nmeshtypes = (int *)malloc(nmesh * sizeof(int));

for(dom = 0; dom < nnesh; ++don)
nmesht ypes[domi = DB _QUAD RECT;

/* Open the Silo file */

dbfile = DBCreate("multinmesh.root", DB CLOBBER, DB _LOCAL,
“Master file", DB HDF5);

/* Wite the nultinmesh. */

DBPut Mul ti nesh(dbfile, "quadnesh", nnesh, nmeshnanes,
nmesht ypes, NULL);

/* Close the Silo file. */

DBCl ose(dbfile);

/* Free the menory*/

for(dom = 0; dom < nnesh; ++don)
free(nmeshnanes[dony);

free(meshnanes);

48 Writing Slo files

Creating compatible files

free(meshtypes);

Listing 2-60: fmultimesh.f: Fortran language example for writing a multimesh.

c Create a newsilo file

(el]

subroutine wite_naster()

inmplicit none

i nclude "silo.inc"

integer err, ierr, dbfile, nnesh, oldlen

character*20 nmeshnanmes(4) /'’ nultinesh. 1: quadnesh’
"mul ti mesh. 2: quadnesh’
"mul timesh. 3: quadnesh’
"mul ti mesh. 4: quadnesh’ /

i nteger | nmeshnanes(4) /20,20, 20, 20/

i nteger neshtypes(4) /DB _QUAD RECT, DB_QUAD_RECT,
DB_QUAD RECT, DB _QUAD RECT/

err = dbcreate("multinmesh.root", 14, DB _CLOBBER, DB_LOCAL,
“mul timesh root", 14, DB HDF5, dbfile)
if(dbfile.eq.-1) then
wite (6,*) "Could not create Silo filel\n’
return
endi f

Set the maxinum string length to 20 since that’'s how | ong our
strings are

ol dl en = dbget 2dstrl en()
err = dbset2dstrlen(20)

c Wite the nultinesh object.

nmesh = 4
err = dbput mesh(dbfile, "quadnesh", 8, nnesh, neshnanes,
| meshnanes, neshtypes, DB F77NULL, ierr)

c Restore the previous value for maxi mumstring |ength

err = dbset2dstrlen(ol dl en)

c Close the Silo file

err = dbcl ose(dbfile)
end

Sometimes it can be advantageous to have each processor write its files to a unique
subdirectory (e.g. proc-0, proc-1, proc-2, ...). You can aso choose for each processor to
writeitsfilesto a common directory so all filesfor a given time step are contained in a
single place (e.g. cycle0000, cycle0001, cycle0002, ...). Generally, you will want to tailor
your strategy to the strengths of your file system to spread the demands of writing files
across as many 1/0 nodes as possible in order to increase throughput. The organization
strategies mentioned so far are only suggestions and you will have to determine the
optimum method for storing domain files on your computer system. Moving your domain
files to subdirectories can make it easier to navigate your file system and can provide
benefits later such as Vislt not having to check permissions, etc on so many files. Code to

Writing Slo files

49

Creating compatiblefiles

create the list of mesh names where each processor writes its data to a different
subdirectory that contains al files for a given time step might look like the following:

int cycle = 100;
for(dom= 0; dom < nnesh; ++dom

{
char tnp[100];
sprintf(tnp, "proc-%d/ nultinesh. %94d: quadnesh”, dom cycle);
nmeshnanmes[dom = strdup(tnp);

}

4.14.2 Creating a multivar

Figure 2-61: Multivar displayed on its multimesh

A multivar object is the variable equivalent of a multimesh object. Like the multimesh
object, amultivar object contains alist of filenames that make up the variable represented
by the multivar object. Silo provides the DBPut Mul t i var function for writing out
multivar objects.

Listing 2-62: multivar.c: C-Language example for writing a multivar.

void wite_rnultivar(DBfile *dbfile)

{

50 Writing Slo files

Creating compatible files

char **varnanes = NULL

int dom nvar = 4, *vartypes = NULL

/* Create the list of var nanmes. */

varnanmes = (char **)mal |l oc(nvar * sizeof(char *));
for(dom= 0; dom < nvar; ++don)

{
char tnp[100];
sprintf(tnp, "nultivar.%:var", dom
var nanes[don] = strdup(tnp);

}

/* Create the list of var types. */
vartypes = (int *)malloc(nvar * sizeof(int));
for(dom= 0; dom < nvar; ++don)
vartypes[don] = DB_QUADVAR
/* Wite the nultivar. */
DBPut Mul tivar(dbfile, "var", nvar, varnanes, vartypes,
/* Free the menory*/
for(dom= 0; dom < nvar; ++don)
free(varnames[dom);
free(varnanes);
free(vartypes);

NULL) ;

Listi

c Set

(¢

ng 2-63: fmultivar.f: Fortran language example for writing a multivar.

subroutine wite_nultivar(dbfile)
inmplicit none
i nclude "silo.inc"
integer err, ierr, dbfile, nvar, oldlen
character*20 varnanmes(4) /’nultivar.1l:var ,
"mul tivar. 2: var ,
"mul tivar. 3:var ,
. "mul tivar. 4:var "
i nteger |varnanmes(4) /14,14, 14, 14/
i nteger vartypes(4) /DB_QUADVAR, DB QUADVAR
DB_QUADVAR, DB_QUADVAR/

ol dl en = dbget 2dstrl en()
err = dbset2dstrl en(20)

c Wite the nmultivar

nvar = 4
err = dbputnmvar(dbfile, "var", 3, nvar, varnanes,
vartypes, DB_F77NULL, ierr)

¢ Restore the previous value for maxi numstring |ength

err = dbset2dstrlen(oldl en)
end

the maxi mum string length to 20 since that’s how | ong
our strings are

| var nanes,

Writing Slo files

51

Creating compatiblefiles

5.0

4143 EMPTY contributions

During the course of a calculation, sometimes only a subset of processors will contribute
data. This means that they will not write data files. When some processors do not write
datafiles, creating your multi-objects can become more complicated. Note that because of
how Vislt represents its domain subsets, etc, you will want to keep the number of
filenames in a multi-object equal to the number of processors that you are using (the
maximum number of domains that you will generate). If the length of the list varies over
time then Vislt’s subsetting controls may not behave as expected. To keep thingssimple, if
you have N processors that write N files, you will alwayswant N entries in your multi-
objects. If a processor does not contribute any data, insert the“ EMPTY” keyword into the
multi-object in place of the path and variable. The* EMPTY” keyword alows the size of
the multi-object to remain fixed over time even as the number of processors that contribute
data changes. Keeping the size of the multi-object fixed over time ensures that Vislt's
subsetting controls will continue to function as expected. Note that if you use the
“EMPTY” keyword in amultivar object then the same entry in the multimesh object for
the variable must also contain the “ EMPTY” keyword.

! Listing 2-64: C-Language example using the EMPTY keyword. !

/* Processors 3,4 did not contribute so use EMPTY. */

char *meshnanes[] = {“proc-1/fil e000/ nesh”, “proc-2/file000/nesh”,
“EMPTY”, “EMPTY"};

int meshtypes[] = {DB_QUAD RECT, DB QUAD RECT,
DB_QUAD RECT, DB QUAD RECT};

int nnmesh = 4;

/* Wite the nmultinmesh. */

DBPut Mul ti mesh(dbfile, "mesh", nnesh, neshnanes, neshtypes, NULL);

Writing VTK files

VTK (Visualization Toolkit) files provide asimple, flexible way to import data into Vislt.
VTK files can be written in human-readable ASCII form or in binary form. VTK files may
also be created in the legacy VTK file format or in their newer XML -based format. The
human-readable ASCII form for legacy VTK filesis described in the VTK File Formats
document found on the Web at http://public.kitware.comyVTK/pdf/file-formats.pdf. You
can create code in any language to write datato the VTK file format if you follow the
format guidelinesin the VTK File Formats document.

In order to simplify the creation of legacy VTK files, which can be susceptible to
formatting mistakes, Vislt providesthevi sit _wri ter library. Thevisit_witer
library isimplemented in C and can be called from the C, C++, and Python programming
languages. Thevi sit _wri t er library provides a handful of easy-to-use functionsfor
producing VTK files. This section will show how to usethevi sit _wri ter library to
create VTK filesthat can be used to import datainto Vislt.

52

Writing VTK files

Creating compatible files

51 Getting started with visit_writer

Thevi sit_writer library isincluded in source code formin Vislt's source code
distribution. The C-version of the library consists of 2 files called visit_writer.c and
visit_writer.h that are stored in the tools/writer directory of Vislt's source code tree.

5.1.1 Usingvisit_writer in C programs

Whenyou usethevi sit _wri ter library, you canincludethevisit_writer.c file directly
in the list of source files for your project. Source files that use functions from the
visit_writer library mustincludethe visit_writer.h header file. The

vi sit_writer library hasno external dependencies so no additional libraries are
required to link programsthat usethevi si t _wri t er library, provided thevisit_writer.c
source code file was included in the project.

5.1.2 Usingvisit_writer in Python programs

The Python version of thevi sit _writ er library isimplemented as a Python extension
module, which is adynamically loaded executable file containing thevi sit_writer
functions. The compiledvi si t _wri t er extension moduleis not currently distributed
in Vislt's binary distributions so you will have to build it before you can use it in your
Python programs. Fortunately, building the visit_writer module is easy if you allow
Python to build it for you. To begin, open aterminal window and cd into Vislt's source
code tree and then into the tools/writer directory. Next, type the following Python code
into afile called setup.py:

fromdistutils.core inport setup, Extension
nodul el = Extension(’visit_witer’,

include dirs=1["."],

sources = ['visit_witer.c', "py_visit _witer.c'])
setup (nane = 'visit_witer’,

version = '1.0",

description
ext _nodul es

"This nmodule lets us wite VIK files.’,
[modul el])

Once you have created the setup.py file, run the following command in your terminal
window to build the visit_writer Python extension module.

pyt hon setup. py build

Once Python buildsthevi sit _wri t er extension module, you caninstall it by running
the following command:

pyt hon setup.py install

After thevi sit _writ er module has been built and installed, it should be available
when you run Python. To test whether the module was successfully installed, run python
and type: import visit_writer at the Python prompt. If Python does not complain then the
module was successfully built and loaded. Whenever you want to use the visit. modulein

Writing VTK files 53

Creating compatiblefiles

your Python scripts, you must first issuethei nport visit_witer directive. If you
want to find out more information about a particular vi si t _wri t er function once
you've imported the visit_writer module, you can type: pri nt
visit_witer.__doc__ tomakePython print out the documentation string for the
visit_writer module

5.2 Regular mesheswith data

A regular mesh, or Cartesian mesh, is an implicit mesh in which all zones have the same
size and are axis-aligned (see Figure 2-65). Furthermore, in this context, all zones are
sguares or cubes with a side length of 1. The extents are determined by the number of
zonesin each dimension. A regular mesh is atype of rectilinear mesh where the zones are
not permitted to differ insize. Thevi sit _wri t er library providesthe
write_regul ar _nmesh function for writing out regular meshes and datato VTK files.

DB: vwregmesh.vik

Figure 2-65: Regular mesh with data created using
visit_writer

Listing 2-66: vwregmesh.c: C-Language example for writing a regular mesh with data.

#include <visit_witer.h>
#i ncl ude <mat h. h>

int main(int argc, char *argv[])
{

#define NX 10

#defi ne NY 20

54 Writing VTK files

Creating compatible files

#define NZ 30
int i,j,k, index = 0;
int dims[] = {NX, NY, NzZ};
int nvars = 2;
int vardins[] = {1, 1};
int centering[] = {0, 1};
const char *varnanes[] = {"zonal", "nodal"};
float zonal [NZ- 1] [NY- 1] [NX- 1], nodal [NZ] [NY] [NX] ;
float *vars[] = {(float *)zonal, (float *)nodal};
/* Create zonal variable */
for(k = 0; k < Nz-1; ++k)
for(j =05 j < NY-1; ++j)
for(i = 0; i < NX-1; ++i, ++index)

zonal [K][j][i] = (float)index;
/* Create nodal variable. */
for(k = 0; k < NzZ; ++Kk)

for(j =05 j < NY; +4])
for(i = 0; i < NX ++i)

nodal [K][j1[1] = sqgrt(i*i + j*j + k*k);

/* Use visit_witer to wite a regular nmesh with

write_regul ar_mesh("vw egnesh.vtk", 0, dinms, nvars,

centering, varnanes, vars);
return O;

data. */

var di ns,

Listing 2-67: vwregmesh.py: Python language example for writing a regular mesh with data.

inmport visit_witer, math
NX 10
NY = 20
Nz = 30
Create a zonal variable
zonal = []
index =0
for k in range(Nz-1):
for j in range(NY-1):

for i in range(NX-1):
zonal = zonal + [index]
index = index + 1
Create a nodal variable
nodal = []

for k in range(N2):
for j in range(NY):

for i in range(NX):
nodal = nodal + [math.sqrt(i*i + j*j + k*k)]
Use visit_witer to wite a regular nmesh with data
dinms = (NX; NY, N2)
vars = (("zonal", 1, 0, zonal), ("nodal", 1, 1, nodal))

visit_witer. WiteRegul ar Mesh("vw egnesh2. vtk", 0, dins, vars)

Writing VTK files

55

Creating compatiblefiles

5.3

Rectilinear mesheswith data

Recall from “Writing arectilinear mesh” on page 18 that arectilinear meshisa2D or 3D
mesh where all coordinates are aligned with the axes and coordinates along each axis can
have different, non-uniform spacing. Thevi sit _writ er library providesthe
wite_rectilinear_mesh function for writing rectilinear meshes. The following
code examples will use the same 2D and 3D rectilinear meshes that were used for the Silo
examples.

DB: vwrect2d vtk
Cycle: 2
Preudocolor

Vor: zondl
=11.00

Figure 2-68: 2D rectilinear mesh with zonal variable

Listing 2-69: vwrect2d.c: C-Language example for writing a rectilinear mesh with data.

#include <visit_witer.h>

i nt

{

mai n(int argc, char *argv[])

#define NX 4
#define NY 5

/* Rectilinear nesh coordi nates. */

float x[] = {0., 1., 2.5, 5.}:
float y[] = {0., 2., 2.25, 2.55, 5.};
float z[] = {0.};

int dinms[] = {NX, Ny, 1};

int ndins = 2;

/* Zonal and Nodal variable data. */
float zonal [NY-1][NX-1], nodal [NY] [NX];

56

Writing VTK files

Creating compatible files

/* Info about the variables to pass to visit_witer
int nvars = 2;

int vardins[] = {1, 1};

int centering[] = {0, 1};

const char *varnanes[] = {"zonal", "nodal"};

float *vars[] = {(float*)zonal, (float*)nodal};

/* Create a zonal variable. */
int i,j,index = 0;
for(j =0; j < NY-1; ++4))
for(i = 0; i < NX-1; ++i, ++index)
zonal [j][i] = (float)index;

/* Create a nodal variable. */

i ndex = O;
for(j =0; jJ < NY; ++4))
for(i = 0; i < NX; ++i, ++index)

nodal [j][i] = (float)i ndex;

*/

/* Pass the data to visit_witer to wite a VIK file.*/

write rectilinear_mesh("vwect2d.vtk”, 0, dins, X, VY,

vardi ms, centering, varnanes, vars),;

return O;

Z, nvars,

Listing 2-70: vwrect2d.py: Python language example for writing a rectilinear mesh with data.

inmport visit_witer

., 1., 2.5, 5.)
., 2., 2.25, 2.55, 5.)

N‘<><§§
[@ @R RF

(
(
0.
Create a zonal variable
zonal = []
index =0
for j in range(NY-1):

for i in range(NX-1):
zonal = zonal + [index]
i ndex index + 1

Create a nodal variable
nodal = []
index =0
for j in range(NY):
for i in range(NX):
nodal = nodal + [index]
i ndex = index + 1

Writing VTK files

57

Creating compatiblefiles

vars = (("zonal", 1, 0, zonal), ("nodal", 1, 1, nodal))
visit_witer. WiteRectilinearMesh("vwect2d.vtk", 0, x, y, z, vars)

54 Curvilinear mesheswith data

A curvilinear mesh is similar to arectlinear mesh; the main difference between the two
mesh types is how coordinates are specified. Recall that in arectilinear mesh, the
coordinates are specified individually for each axis and only a small subset of the nodesin
the mesh are provided. In a curvilinear mesh, you must provide an X,Y,Z value for every
nodeinthemesh. Thevi sit _writer library providesthe
write_curvilinear_mesh function to write out curvilinear meshes and any
variables defined on them. Figure 2-71 shows an example of a 3D curvilinear mesh with a
zonal variable.

DB wweurvdd vk
Cycle: 3
Preudocolor

=

—3750

Figure 2-71: 3D curvilinear mesh with zonal variable

Listing 2-72: vwecurv3d.c: C-Language example for writing a curvilinear mesh with data.

#include <visit_witer. h>

#define NX 4
#define NY 3
#define NZ 2

int main(int argc, char *argv[])

{

58

Writing VTK files

Creating compatible files

/* Curvilinear mesh points stored x0,y0, z0, x1,y1, z1,...*/

float pts[] = {0, 0.5, O, 1, O, O, 2, O, O,
3, 0.5, 0, O, 1, 0, 1, 1, O,
2, 1, 0, 3, 1, 0, 0, 1.5, O,
1, 2, 0, 2, 2, 0, 3, 1.5, O,
o, 0.5, 1, 1, 0, 1, 2, O, 1,
3, 0.5, 1, o, 1, 1, 1, 1, 1,
2,1, 1, 3, 1, 1, 0, 1.5, 1,
1, 2,1, 2, 2, 1, 3, 1.5 1

i

int dims[] = {NX, NY, NzZ};

/* Zonal and nodal variable data. */

float zonal [NZ- 1] [NY- 1] [NX- 1], nodal [NZ] [NY] [NX] ;
/* Info about the variables to pass to visit_witer. */
int nvars = 2;

int vardins[] = {1, 1};

int centering[] = {0, 1};

const char *varnanes[] = {"zonal", "nodal"};
float *vars[] = {(float *)zonal, (float *)nodal};
int i,j,k, index = 0;

/* Create zonal variable */
for(k = 0; k < Nz-1; ++k)
for(j =0; j < NY-1; ++])
for(i = 0; i < NX-1; ++i, ++index)
zonal [K][j][i] = (float)index;

/* Create nodal variable. */
i ndex = O;
for(k = 0; k < NzZ;, ++k)
for(j =0; jJ < NY; ++4))
for(i = 0; i < NX; ++i, ++index)
nodal [K][j][i] = index;

/* Pass the data to visit_witer to wite a binary VIK file. */
wite_curvilinear_nesh("vwcurv3d.vtk", 1, dinms, pts, nvars,
vardi ms, centering, varnanes, vars),;

return O;

Listing 2-73: vwecurv3d.py: Python language example for writing a curvilinear mesh with data.

inmport visit_witer

NX = 4

NY = 3

Nz = 2

Curvilinear mesh points stored x0,y0, z0, x1,y1, z1, ...
ts = 0.5, 0, 1, 0, 0, 2, 0, O,

Vi
(0
3, 0.5, 0,0 1, 0, 1, 1, 0,

Writing VTK files 59

Creating compatiblefiles

, 0, 3
0, 2

.5, 1
.5, 1

PNWOoOEkDN
NP OONLBEF

1
1

N =

Create a zona

zonal =[]
index =0

PO
e
BN

GOk o oo

PRPPRPPOO

~— -

vari abl e

for k in range(Nz-1):
for j in range(NY-1):
for i in range(NX-1):

zonal
i ndex

Create a noda

nodal = []
index =0

zonal + [index]
index + 1

vari abl e

for k in range(N2):
for j in range(NY):
for i in range(NX):

noda
i ndex

Pass data to visit_witer to wite a binary VIK file.

nodal + [index]
index + 1

dinms = (NX, NY, NZ2)

vars = (("zonal ",
visit_witer.WiteCurvilinearMesh("vwcurv3d. vtk",

1, 0, zonal),

("nodal ",

0, dims, pts, vars)

60

Writing VTK files

Creating compatible files

55 Point mesheswith data

A point mesh isaset of 2D or 3D points where the nodes also constitute the cellsin the
mesh. Thevi sit_writer library providesthewr i t e_poi nt _nesh function to
write out point meshes and datato VTK files.

DB: vwpoint3d.vtk
Cycle: 3
Puau alor

Figure 2-74: Point mesh with scalar data and vector data

Listing 2-75: vwpoint3d.c: C-Language example for writing a point mesh with data.

#include <visit_witer.h>
#define NPTS 100

int main(int argc, char *argv[])
{
/* Create sone points and data to save. */
int i;
float pts[NPTS][3], data[NPTS];
int nvars = 2;
int vardims[] = {1, 3};
const char *varnanes[] = {"data", "ptsvec"};
float *vars[] = {(float *)pts, data};

for(i = 0; i < NPTS; ++i)

{
/* Make a point. */
float t = ((float)i) / ((float)(NPTS-1));
float angle = 3.14159 * 10. * t;

Writing VTK files 61

Creating compatiblefiles

pts[i][0] =t * cos(angle);
pts[i][1] =t * sin(angle);
pts[i][2] =t;

/* Make a scal ar */
data[i] =t * cos(angle);
}
/* Pass the nmesh and data to visit_witer. */
write_point_mesh("vwpoint3d.vtk", 1, NPTS, (float*)pts, nvars,
vardi ms, varnanes, vars);

return O;

Listing 2-76: vwpoint3d.py: Python language example for writing a point mesh with data.

inmport visit_witer, math

NPTS = 100

pts =[]

data = []

for i in range(NPTS):

Make a poi nt

t = float(i) / float(NPTS-1)

angle = 3.14159 * 10. * t

pts = pts + [t * math.cos(angle), t * math.sin(angle), t]
Make a scal ar

data = data + [t * math.cos(angle)]

Pass the nmesh and data to visit_witer.
vars = (("data", 1, 1, pts), ("ptsvec", 3, 1, pts))
visit_witer.WitePointMesh("vwpoint3d.vtk", 1, pts, vars)

5.6 Unstructured mesheswith data

Unstructured meshes are collections of different types of zones and are useful because
they can represent more complex mesh geometries than the structured meshes can.
Unstructured meshes are specified using the cell types and node orderings listed in
“Writing an unstructured mesh” on page 28. This section explains how to use the
visit_writer library'swrite_unstructured_mnesh function to write out
unstructured meshes and data.

62 Writing VTK files

Creating compatible files

DB: vwucd2d vtk
Cycle: 2

Pasudocaler
Vor: zordl
5000

Figure 2-77: 2D unstructured mesh with zonal variable

Listing 2-78: vwrucd2d.c: C-Language example for writing an unstructured mesh with data.

#include <visit _witer.h>

int main(int argc, char *argv[])
{

/* Node coordi nates */

i nt nnodes = 9;

int nzones = 5;

float pts[] = {0., 0., 0., 2. 0.

3., 3., 0., 5., 3., 0., 0., 5., 0.

2., 5, 0., 4., 5., 0., 5 0
/* Zone types */
int zonetypes[] = {M SIT_TRIANGLE, VI SIT_TRI ANGLE,

VISIT QUAD, VISIT_QUAD, VISIT_QUAD};

/* Connectivity */

int connectivity[] = {

, 3,6, /[* tri zone 1. */
, 7,6, /[* tri zone 2. */
,1,6,5 /* quad zone 3. */
,2,4,3, [|* quad zone 4. */
4,8,7 |/* quad zone 5. */

Writing VTK files 63

Creating compatiblefiles

/* Data arrays *
float nodal[]
float zonal []

/
{1,2,3,4,5
{1,2,3, 4,5};

/* Info about the variables we're passing to visit_witer. */
int nvars = 2;

int vardins[] = {1, 1};

int centering[] = {0, 1};

const char *varnanes[] = {"zonal", "nodal"};

float *vars[] = {zonal, nodal};

/* Pass the nmesh and data to visit_witer. */
write_unstructured_nesh("vwicd2d. vtk", 1, nnodes, pts, nzones,
zonetypes, connectivity, nvars, vardins, centering,
var names, vars);

return O;

Listing 2-79: vwucd2d.py: Python language example for writing an unstructured mesh with data.
inmport visit_witer

Node coordi nates

pts = (0., 0., 0., 2., 0., 0., 5.
3., 3., 0., 5., 3., 0., 0. .
2., 5., 0., 4., 5., 0., 5., 5.

Connectivity

connectivity = (
(visit_witer.triangle, 1,3,6),
(visit_witer.triangle, 3,7,6),
(visit_witer.quad, 0,1,6,5),
(visit_witer.quad, 1,2,4,3),
(visit_witer.quad, 3,4,8,7)

)

Data arrays
nodal (1,2,3,4,5,6,7,8,9)
zonal (1,2,3,4,5)

Pass the data to visit_witer

vars = (("zonal", 1, 0, zonal), ("nodal", 1, 1, nodal))

visit_witer. WiteUnstructuredMesh("vwicd2d. vtk", 1, pts,
connectivity, vars)

5.7 Creating a master filefor parallel (.visit file)

Thevi sit_writer library createslegacy VTK filesand thelegacy VTK fileformat has
no mechanism for storing more than a single mesh. Furthermore, legacy VTK files have

64 Writing VTK files

Creating compatible files

no concept of amaster file or of multi-objects like Silo uses to unite domains into awhole.
Fortunately, Vislt provides a construct called a.visit file that addresses this shortcoming.

A .visit fileisatext file, ending with the “.visit” extension, that contains the names of

domain files that make up the whole. A .visit file can be created to group files for any file
format that Vislt can read. Your parallel program can still write individual VTK files and

you can create a .visit file before visualizing the files so Vislt knows to open all of the

relevant files as opposed to you creating plots of each individual file. The following code
example listswhat a .visit file looks like if you have 4 VTK domain files that contain the

same variables and all of them are to be plotted at once.

I NBLOCKS 4

proc- 0.
proc-1.
proc- 2.
proc- 3.

The .visit file can be used for indicating which VTK files are part of atime-varying
database in addition to indicating how to reassemble domain filesinto awhole. In the
previous example, there were 4 domain files and only 1 time step. If you want to have

vt k
vt k
vt k
vt k

more than 1 time step, just add more filesto the list. The! NBLOCKS directive tells Vislt
that every block of 4 files are related in asingle time step. If you had two time steps then

your .visit file might look like this:

I NBLOCKS 4

proc- 0. 0000.
proc-1. 0000.
proc- 2. 0000.
proc- 3. 0000.
proc-0. 0001.
proc-1. 0001.
proc-2. 0001.
proc- 3. 0001.

vt k
vt k
vt k
vt k
vt k
vt k
vt k
vt k

Writing VTK files

65

Creating compatiblefiles

66 Writing VTK files

Chapter 3 Creating compatiblefiles||
Advanced topics

1.0 Overview

This chapter elaborates on some of the advanced topicsinvolved in creating files that Vislt
can read. Most applications should be able to write out all of their data using information
contained in the previous chapter. This chapter introduces advanced topics such as
incorporating metadata to accelerate Vislt's performance as well as some less common
data representations. Many of the examplesin this chapter use the Silo library, which was
introduced in the previous chapter. For more information on getting started with the Silo
library, see “Writing Silo files” on page 12.

2.0 Writing vector data

The components of vector data are often stored to files asindividua scalar variables and
Vislt uses an expression to compose the scalars back into a vector field. If you use the Silo
library, you can aways choose instead to store your vector data as a multi-component
variable. The previous chapter provided several examples that use the Silo library to write
scalar variables on rectilinear, curvilinear, point, and unstructured meshes. The functions
that were used to write the scalars were ssimplified forms of the functions that are used to
write vector data. The scalar functions that were used to write datafor a specific mesh type
aswell as the vector function equivalents are listed in the following table:

Mesh type Scalar function Vector function
Rectilinear mesh DBPut Quadvar 1 DBPut Quadvar
Curvilinear mesh DBPut Quadvar 1 DBPut Quadvar
Point mesh DBPut Poi nt var 1 DBPut Poi nt var

Overview Getting Data into Vislt Manual 67

Creating compatiblefiles |l - Advanced topics

Mesh type Scalar function Vector function
Unstructured mesh DBPut Ucdvar 1 DBPut Ucdvar

The differences between a scalar function and a vector function are small. In fact, the
argument lists for a scalar function and a vector function are nearly identical in the Silo
library’s C-Language interface. The chief difference isthat the vector functions take two
additional arguments and the meaning of one existing argument is modified. Thefirst new
argument is an integer indicating the number of components contained by the variable to
be written. The next difference is that you must pass an array of pointers to character
strings that represent the names of each individual component. Finally, the argument that
was used to passthe datato the DBPut Quadvar 1 function, now in the DBPut Quadvar
function, accepts an array pointersto the various arrays that contain the variable
components. For more complete information on each of the arguments to the functions
that Silo uses to write multi-component data, refer to the Slo User’s Manual.

Listing 3-1: vectorvar.c: C-Language example for writing vector data using Silo.

int i, dinms[3], ndins = 3;

int nnodes = NX*NY*NZ;

float *conp[3];

char *varnanmes[] = {"nodal conp0", "nodal _conpl", "nodal conp2"};
conp[0] = (float *)mall oc(sizeof (float)*nnodes);

conp[1] (float *)mall oc(sizeof (fl oat)*nnodes);

conp[2] (float *)mall oc(sizeof (fl oat)*nnodes);

for(i = 0; i < nnodes; ++i)

{

(float)i; /*vector conponent 0*/
(float)i; /*vector conponent 1*/
(float)i; /*vector conponent 2*/

conp[O] [i]
conp[1] [i]
conp[2] [i]

}
dinms[0] = NX; dins[1] = NY; dins[2] = Nz
DBPut Quadvar (dbfile, "nodal", "quadmesh",
3, varnanes, conp, dins,
ndi ms, NULL, O, DB_FLOAT, DB_NODECENT, NULL);
free(comp[0]);
free(comp[1]);
free(comp[2]);

Silo’s Fortran interface does not provide functions to write out multi-component data such
as vectors. If you use the Fortran interface to Silo, you will have to write out the vector
components as separate scalar variables and then write an expression to your Silo file that
composes the components into a single vector variable.

Listing 3-2: fvectorvar.f: Fortran-Language example for writing vector data using Silo.

subroutine wite_nodecent quadvar (dbfile)

68

Writing vector data

Creating compatiblefiles I - Advanced topics

inmplicit none

i nteger dbfile

i nclude "silo.inc"

integer err, ierr, dins(3), ndins,i,j,k,index, NX, NY, NZ
paranmeter (NX = 4)

paranmeter (NY = 3)

paranmeter (NZ 2)

r eal compO(NX, NY, NZ), conmpl(NX, NY, NZ), conp2(NX, NY, N2)
dat a di nms/ NX, NY, Nz/

index =0

do 20020 k=1, Nz

do 20010 j=1, Ny

do 20000 i=1, NX

compO(i,j,k) = float(index)
compl(i,j,k) = float(index)
comp2(i,j,k) = float(index)
i ndex = index + 1

20000 conti nue
20010 conti nue
20020 conti nue
ndins = 3
err = dbputqgvl(dbfile, "n_conpO", 11, "quadnesh", 8, conmpO,
di ms, ndims, DB_F77NULL, 0, DB_FLOAT, DB_NODECENT, DB_F77NULL
. ierr)
err = dbputqgvl(dbfile, "n_conpl", 11, "quadnesh", 8, conpl,
di ms, ndims, DB_F77NULL, 0, DB_FLOAT, DB_NODECENT, DB_F77NULL
. ierr)
err = dbputqgvl(dbfile, "n_conp2", 11, "quadnesh", 8, conmp2,
di ms, ndims, DB_F77NULL, 0, DB_FLOAT, DB_NODECENT, DB_F77NULL
ierr)
end

subroutine wite_defvars(dbfile)
inmplicit none
i nteger dbfile
i nclude "silo.inc"
i nt eger err, ierr, types(2), Inanmes(2), ldefs(2), oldlen
c Initialize sonme 20 character length strings
character*40 nanes(2) /’ zonal vec ,
. " nodal vec "
character*40 defs(2) /’'{z_conp0,z_conpl, z_conp2} ",
. "{n_conp0, n_conpl, n_conp2} "
c Store the length of each string
data | names/ 8, 8/
data | defs/37, 37/
data types/ DB_VARTYPE VECTOR, DB _VARTYPE_VECTOR/
c Set the maximumstring length to 40 since that’s how | ong our
c strings are
ol dl en = dbget 2dstrl en()
err = dbset 2dstrl en(40)
c Wite out the expressions
err = dbputdefvars(dbfile, "defvars", 7, 2, nanes, |nanes,
types, defs, ldefs, DB _F77NULL, ierr)
c Restore the previous value for maxi mumstring | ength

Writing vector data 69

Creating compatiblefiles |l - Advanced topics

3.0

err = dbset 2dstrl en(ol dl en)
end

Adding metadata for performance boosts

Vislt incorporates several performance boosting strategies that make use of metadata, if it
isavailable. Most of the metadata applies to increasing parallel performance by reducing
the amount of 1/0O and subsequent processing that is required. The I/O reductions are
realized by not reading in and processing domains that will contribute nothing to the final
image on the screen. In order to prevent domains from being read in, your multi-objects
must have associated metadata for each of the domains that they contain. When a Silo
multi-object contains metadata about all of its constituent domains, Vislt can make work-
saving decisions since it knows the properties of each domain without having to read in
the datafor each domain.

This section explains how to add metadata to your Silo multi-objects using option lists.

M etadata attached to multi-objects allow Vislt to determine important data characteristics
such as data extents or the spatial extents of the mesh without having to first read and
process al domains. Such knowledge allows Vislt to restrict the number of domains that
are processed, thus reducing the amount of work and the time required to display images
on your screen.

3.1 Writing data extents

Providing data extents can help Vislt only read in and process those domains that will
contribute to the final image. Many types of plots and operators use data extents for each
domain, when they are provided, to perform a simple upfront test to determineif adomain
contains the values which will be used. If adomain is not needed then Vislt will not read
that domain because it is known beforehand that the domain does not contain the desired
value.

An example of aplot that uses data extentsin order to save work is Vislt’s Contour plot.
The Contour plot creates contours (lines or surfaces where the data has the same value)
through a dataset. Consider the example shown in Figure 3-3, where the entire mesh and
scalar field are divided into four smaller domains where the data extents of each domain
are stored to the file so Vislt can perform optimizations. Before the Contour plot executes,
it tells Vislt the data values for which it will make contours. Suppose that that you wanted
to seethe areaswhere the value in the scalar field are equal to 11.5. The Contour plot takes
that 11.5 contour value and compares it to the data extents for all of the domains to see
which domains will be needed. If a domain will not be needed then Vislt will make no
further effort to read the domain or processit, thus saving work and making the plot
appear on the screen faster than it could if the data extents were not available in thefile

70

Adding metadata for performance boosts

Creating compatiblefiles Il - Advanced topics

metadata. In the above example, the value of 11.5 isonly present in domain 3, which
means that the Contour plot will only return aresult if it processes data from domain 3.

Domain 2

Min=5.0

Max=11.2

Domain 3

Min=7.1

Max=14.1

Domain 1

Min=0.0

Max=7.1

Domain 4

Min=5.0

Max=11.2

Figure 3-3: Example Mesh and Pseudocolor plots with the data extents for each domain of the Pseudocolor

plot's scalar variable.

Only processdomain 3

Contour plot in domain 3

Figure 3-4: Only process domain 3 (left) to yield the Contour plot of value 11.5 (right).

The other domains are not processed in this case because they do not contain the required
value of 11.5. After the comparisons have been made, Vislt knows which domains will

Writing data extents

71

Creating compatiblefiles |l - Advanced topics

have to be processed and it can divide the set of domains (just domain 3 in this case) that
will contribute to the visualization among processors so they can execute the plot and
return datato Vislt's viewer where it can be displayed.

To add the data extents for each processor to the metadata using Silo, you must add the
data extentsto the option list that you passto the DBPut Mul t i var function call. Having
the data extents for each domain readily available in the Multivar object ensuresthat Vislt
will have enough information to determine which domains will be necessary for
operations such as Contour without having to read all of the data to determine which
domains contribute to the visualization. The data extents must be stored in adouble
precision array that has enough entries to accommodate the min and max values for each
domain in the multivar object. The layout of the min and max values within that array are
asfollows. m n_doml, nax_donl, m n_don, max_donk, ...,

m n_domN, max_donN

Listing 3-5: dataextents.c: C-Language example for writing data extents using Silo.

const int tw = 2;

doubl e ext ent s[NDOVAI NS] [2] ;

DBoptlist *optlist = NULL;

/* Cal cul ate the per-domain data extents for this variable. */

[* Wite the nultivar. */

optlist = DBVakeOptlist(2);

DBAddOpt i on(optlist, DBOPT_EXTENTS SIZE, (void *) &t wo);

DBAddOpt i on(optlist, DBOPT_EXTENTS, (void *)extents);

DBPut Mul tivar(dbfile, "var", nvar, varnames, vartypes, optlist);

DBFreeOpt | i st (optlist);
I I
I I

Listing 3-6: fdataextents.f: Fortran language example for writing data extents using Silo.

doubl e precision extents(2, NDOVAI NS)
integer err, optlist
c Calculate the per-domain data extents for this variable.
c Wite the multivar
err dbnkoptlist(2, optlist)
err dbaddi opt (optlist, DBOPT_EXTENTS_SI ZE, 2)
err dbadddopt (opt | i st, DBOPT_EXTENTS, extents)
err dbput mvar (dbfile, "var", 3, nvar, varnanmes, |varnanes,
. vartypes, optlist, ierr)
err = dbfreeoptlist(optlist)

72

Writing data extents

Creating compatiblefiles Il - Advanced topics

3.2 Writing spatial extents

If you provide spatial extents for each domain in your database then Vislt can use that
information during spatial data reduction operations, such as slicing, to reduce the number
of domains that must be read from disk and processed.

Figure 3-7: Only the red domains need to be processed to compute the slice plane if spatial extents
are provided.

Spatial extents for adomain contain the minimum and maximum values of the coordinates
within that domain, also called the domain’s bounding box. The spatial extents must be
stored in adouble precision array that has enough entries to accommodate the min and
max coordinate values for each domain in the multimesh object. The layout of the min and
max values within that array for 3D domains are asfollows: xm n_dont,

ym n_doml, zm n_doml, xmax_doml, ymax_donl, zmax_dont,
xm n_domN, ym n_domN, zm n_domN, xmax_domN, ymax_domN\,
zmax_domN. In the event that you have 2D domains then you can omit the z-components
of the min and max values and tell Silo that there are 4 values per min/max tuple instead of
the 6 values required to specify min and max values for 3D domains.

Listing 3-8: spatialextents.c: C-Language example for writing 3D spatial extents using Silo.

const int six = 6;

doubl e spatial _extent s[NDOVAI NS] [6] ;

DBopt i st *optlist = NULL;

/* Cal cul ate the per-domain spatial extents for this nesh. */

for(int i = 0; i < NDOVAINS; ++i)

{
spatial _extents[i][0]
spatial _extents[i][1]
spatial _extents[i][2]

xmn; /* xmn for i'th domain */
ymn; /* ymin for i’th domain */
zmn; /* zmn for i'th domain */

Writing spatial extents 73

Creating compatiblefiles |l - Advanced topics

Xxm n;
ynmax;
ZBx;

spatial _extents[i][3]
spatial _extents[i][4]
spatial _extents[i][5]

}

[* Wite the nultinmesh. */
optli st DBVakeOpt | i st (2);
DBAddOpt i on(optli st,
DBAddOpt i on(optli st,
DBPut Mul ti mesh(dbfil e,
DBFreeOpt | i st (optlist);

"mesh",

/* xmax for
/* ymax for
/* zmax for

DBOPT_EXTENTS_SI ZE,
DBOPT_EXTENTS,
nnesh,

i"th domain */
i"th domain */
i"th domain */

(void *)&six);
(void *)spatial _extents);
meshnames, neshtypes, optlist);

Listing 3-9: fspatialextents.f: Fortran language example for writing 3D spatial extents using Silo.

doubl e precision spatial _extents(6, NDOVAI NS)

integer optlist, err, dom

c Calculate the per-donain spatial extents for this mesh.
do 10000 don¥1, NDOVAI NS
spatial _extents(1,dom) = xmn
spatial _extents(2,dom) = ymn
spatial _extents(3,dom) = zmn
spatial _extents(4,dom) = xmn
spatial _extents(5,dom) = ynmax
spatial _extents(6,dom) = znmax
10000 conti nue
c Wite the nultinmesh
err = dbnkoptlist(2, optlist)
err = dbaddi opt (optlist, DBOPT_EXTENTS SIZE, 6)
err = dbadddopt (optlist, DBOPT_EXTENTS, spatial extents)
err = dbput mesh(dbfile, "quadnesh", 8, nnesh, nmeshnanes,
| meshnanes, neshtypes, optlist, ierr)

err = dbfreeoptlist(optlist)

4.0 Ghost zones

Ghost zones are zones external to a domain, which correspond to zones in an adjacent
domain. Ghost zones allow Vislt to ensure continuity between domains containing zone-
centered data, making surfaces such as Contour plots continuous across domain
boundaries instead of creating surfaces with ugly gaps at the domain boundaries. Ghost
zones also allow Vislt to remove internal surfaces from the visualized data for plots such
as Pseudocolor, which only wants to keep the surfaces that are external to the model.
Removing internal surfaces resultsin fewer primitives that must be rendered on the
graphics card and that increases interactivity with plots. See Figure 3-10 for examples of
the problems that ghost zones allow Vislt to fix.

74

Ghost zones

Creating compatiblefiles Il - Advanced topics

Without ghost zones With ghost zones

Without ghost zones With ghost zones

"'ﬁ

Figure 3-10: Vislt can use ghost zones to ensure continuity and to remove internal surfaces

Ghost zones can be stored into the database so Vislt can read them when the datais
visualized. Ghost zones can also be created on-the-fly for structured (rectilinear and
curvilinear) meshes if multimesh adjacency information is provided. This section will
show how to write ghost zonesto thefile. If you are interested in providing multimesh
adjacency information so you can write smaller files and so Vislt can automatically create
ghost zones then refer to the documentation for the DBPut Mul t i neshadj functionin
the Slo User’s Guide.

Ghost zones 75

Creating compatiblefiles Il - Advanced topics

4.1 Writing ghost zonesto your files

You can write ghost zones to your files using the Silo library or you can instead write a
multimesh adjacency object, covered in the Slo User’s Guide, that Vislt can use to
automatically create ghost zones. This section will cover how to use the Silo library to
store ghost zones explicitly in your files.

Thefirst step in creating ghost zones isto add alayer of zones around the mesh in each
domain of your database where adomain boundary exists. Each zonein the layer of added
ghost zones must match the location and have the same data value as the zone in the
domain that it is meant to mirror in order for Vislt to be able to successfully use ghost
zones to remove domain decomposition artifacts. This means that you must change your
code for writing out meshes and variables so your meshes have an addition layer of zones
for each domain boundary that isinternal to the model. Your variables must also contain
valid data values in the ghost zones since providing a domain with knowledge of the data
values of its neighboring domainsis the entire point of adding ghost zones. Note that you
should not add ghost zones on the surface of a domain where the surface is external to the
model. When ghost zones are erroneously added to external surfaces of the model, Vislt
removes the external faces and this can cause plotsto beinvisible.

Ghost zon Domain boundary

Domain 1 Domain 2

Figure 3-11: The zones that are both red and green are real zones in one domain and ghost zones
in another.

Figure 3-11 shows two domains: domainl (red) and domain2 (green). The boundary
between (blue) the two domains s the interface that would exist between the domains if
there were no ghost zones. When you add a layer of ghost zones, each domain intrudes a

76 Ghost zones

Creating compatiblefiles I - Advanced topics

little into the other domain’s bounding box so the zones in one domain’s layer of ghost
zones match the zones in the other domain’s external layer of zones. Of course, domains
on both sides of the domain boundary have ghost zones to assure that the Vislt will know
the proper zone-centered data val ues whether it approaches the domain boundary from the
left or from theright. Thefirst row of cellson either side of the domain boundary are ghost
zones. For example, if you look at the upper left zone containing the “G” for ghost zone,
the “G” isdraw in the green part of the zone, while the red part of the zone contains no
“G”. This means that the zone in question is a zone in domainl, the red domain, but that
domain2 has a zone that exactly matches the location and values of the zone in the red
domain. The corresponding zone in domain2 is a ghost zone.

/*
int dom= 0,
for(zdom = 0;

rectilinear mesh without ghost zones.

Create each of the domain neshes. */
xdom ydom zdom
zdom < NzZDOVS; ++zdom)

for(ydom = 0; ydom < NYDOMVS; ++ydom
for(xdom = 0; xdom < NXDOMS; ++xdom ++dom
{

float xc[NX], yc[NY], zc[NZ];

float *coords[] = {xc, yc, zc};

int index = 0;

float xstart, xend, ystart, yend, zstart,

int xzones, yzones, zzones, nzones;

i nt xnodes, ynodes, znodes;

/[* Create a new directory. */

char dirnane[100];

sprintf(dirnane, "Domai n%93d", don;

DBMWKDI r (dbfil e, dirname);

DBSet Di r (dbfil e, dirnane);

/* Determ ne default start,

xstart = (float)xdom* XSl ZE;
xend = (float) (xdom+l) * XSI ZE;
xzones = NX-1;

ystart = (float)ydom * YSIZE;
yend = (float)(ydom+l) * YSIZE;
yzones = NY-1;

zstart = (float)zdom* ZSI ZE;
zend = (float)(zdom+l) * ZSI ZE;
zzones = NZ- 1,

xnodes = xzones + 1;

ynodes = yzones + 1;

znodes = zzones + 1;

/* Create the nmesh coordinates. */
for(i = 0; i < xnodes; ++i)

{

Listing 3-12: spatialextents.c: C-Language example for writing a 3D, domain-decomposed

zend;

end coordi nates */

Ghost zones

77

Creating compatiblefiles |l - Advanced topics

float t = (float)i / (float)(xnodes-1);
xc[i] = (1.-t)*xstart + t*xend

}

for(i = 0; i < ynodes; ++i)

{
float t = (float)i / (float)(ynodes-1);
yc[i] = (1.-t)*ystart + t*yend

}

for(i = 0; i < znodes; ++i)

{
float t = (float)i / (float)(znodes-1);
zc[i] = (1.-t)*zstart + t*zend;

}

/* Wite a rectilinear nesh. */

di ms[0] = xnodes;

di ms[1] = ynodes;

di ms[2] = znodes;

DBPut Quadnmesh(dbfil e, "quadnmesh", NULL, coords,
DB_FLOAT, DB COLLI NEAR, NULL);

/* Go back to the top directory. */
DBSetDir (dbfile, "..");

di s, ndi ns,

Once you have changed your mesh-writing code to add alayer of ghost zones, where
appropriate, you must indicate that the extralayer of zones are ghost zones. If you use
Silo’'s DBPut Quadnesh function to write your mesh, you can indicate which zones are
ghost zones by adding DBOPT_LO OFFSET and DBOPT_HI _ OFFSET to pass arrays
containing high and low zone index offsetsin the option list. If you are adding ghost zones
to an unstructured mesh, you would instead adjust thel o_of f set and hi _of f set
arguments that you pass to the DBPut Zonel i st 2 function. The next code listing shows
the additions made in order to support ghost zones in a domain-decomposed rectilinear

mesh. The additions are underlined.

Listing 3-13: ghostzonesinfile.c: C-Language example for writing a 3D, domain-decomposed

rectilinear mesh with ghost zones.

[* Determne the size of a zone. */
float ¢cx, cy, cz:

cX = XSIZE / (float)(NX-1):
cy = YSIZE / (float)(NY-1):
cz = ZSIZE /| (float)(Nz-1):

/* Create each of the donmin neshes. */
int dom= 0, xdom ydom zdom

for(zdom = 0; zdom < NZDOMS; ++zdon)
for(ydom = 0; ydom < NYDOMS; ++ydon)
for(xdom = 0; xdom < NXDOMS; ++xdom ++dom

float xc[NX], yc[NY], zc[NZ];
float *coords[] = {xc, yc, zc};

78

Ghost zones

Creating compatiblefiles I - Advanced topics

int index = 0;

float xstart, xend, ystart, yend, zstart, zend;
int Xxzones, yzones, zzones, Nzones;

i nt xnodes, ynodes, znodes;

int hi_offset[3], lo offset[3]:

DBoptlist *optlist = NULL;

/* Create a new directory. */

char dirnanme[100] ;

sprintf(dirnanme, "Domai n¥©3d", dom
DBMWKDi r (dbfile, dirnane);
DBSet Di r (dbfil e, dirnane);

/* Determ ne default start, end coordi nates */

xstart = (float)xdom* XSI ZE;
xend = (float)(xdom+l) * XSIZE;
xzones = NX-1

ystart = (float)ydom* YSIZE;
yend = (float)(ydom+l) * YSIZE;
yzones = NY-1;

zstart = (float)zdom* ZSl ZE;
zend = (float)(zdom+l) * ZSIZE;
zzones = NZ-1;

[* Set the starting hi/lo offsets. */
|l o _offset[0] 0;

lo_offset[1]
lo_offset[2]
hi _of fset[0]
hi _offset[1]
hi _of fset[2]

Qeeee

[* Adjust the start and end coordi nates based on whet her
* or not we have ghost zones.

*

if(xdom > 0)

L

xstart -= cx;
lo offset[0] = 1;
++Xxzones:

1
i f(xdom < NXDOVE- 1)
{

xend += cx;
hi offset[0]
++xzones:

1l
=

1
if(ydom > 0)
{

ystart -= cy:
lo offset[1]
++yzones:

1l
=

if(ydom < NYDOVE- 1)

Ghost zones 79

Creating compatiblefiles |l - Advanced topics

L
yend += cy;
hi offset[1]

tt+yzones:

1l
=

1
if(zdom > 0)
{

Zstart -= cz:
lo _offset[2]
++zzones:

1l
=

1
if(zdom < NZDOVE- 1)
{

zend += cz:
hi offset[2]
++zzones:

1l
=

r

xnodes
ynodes
znodes

xzones + 1;
yzones + 1;
zzones + 1;

/* Create the nesh coordi nates. */

for(i = 0; i < xnodes; ++i)

{
float t = (float)i / (float)(xnodes-1);
xc[i] = (1.-t)*xstart + t*xend

}

for(i = 0; i < ynodes; ++i)

{
float t = (float)i / (float)(ynodes-1);
yc[i] = (1.-t)*ystart + t*yend

}

for(i = 0; i < znodes; ++i)

{
float t = (float)i / (float)(znodes-1);
zc[i] = (1.-t)*zstart + t*zend

}

/* Wite a rectilinear nesh. */

di ms[0] = xnodes;

di ms[1] = ynodes;

di ms[2] = znodes;

optlist = DBVakeOptlist(2);

DBAddOpt i on(optlist, DBOPT H OFFSET., (void *)hi offset):

DBAddOpt i on(optlist, DBOPT LO OFFSET., (void *)lo offset):

DBPut Quadnesh(dbfile, "quadnmesh", NULL, coords, dins, ndins,

DB FLOAT., DB CO.LINEAR, optlist):
DBFreeQptlist(optlist):

/* Go back to the top directory. */
DBSetDir (dbfile, "..");

80

Ghost zones

Creating compatiblefiles I - Advanced topics

There are two changes to the code in the previous listing that allow it to write ghost zones.
First of all, the code calculatesthe size of azoneinthecx, cy, cz variablesand then
uses those sizes along with the location of the domain within the model to determine
which domain surfaces will receive a layer of ghost zones. The layer of ghost zonesis
added by altering the start and end locations of the coordinate arrays as well as
incrementing the number of zones and nodes in the dimensions that will have added ghost
zones. The knowledge of which surfaces get alayer of ghost zones is recorded in the

| o_offset andhi _of f set arrays. By settingl o_of f set [0] to 1, Silo knowsthat
thefirst layer of zonesin the X dimension will al be ghost zones. Similarly, by setting

hi gh_of f set [0] to1, Silo knowsthat the last layer of zonesin the X dimension are
ghost zones. Thel o_of f set andhi _of f set arrays are associated with the mesh by
adding them to the option list that is passed to the DBPut Quadnesh function. The
example program fghostzonesinfile.f demonstrates how to add ghost zones to afile using
Silo’s Fortran interface.

50 Materials

Many simulations use materials to define the composition of regions so the response of the
materials can be taken into account during the calculation. Materials are represented as a
list of integers with associated material names such as: “steel”. Each zone in the mesh gets
one or more material numbers to indicate its composition. When a zone has asingle
material number, it issaid to be a“clean zone”. When there is more than one material
number in azone, it is said to be a“ mixed zone”. When zones are mixed, they have alist
of material numbersand alist of volume fractions (floating point numbers that sum to one)
that indicate how much of each material is contained in azone. Vislt provides the
FilledBoundary and Boundary plots for plotting materials and Vislt provides the Subset
window so you can selectively turn off certain materials.

Air

Membrane

Water

Figure 3-14: A mesh with both clean and mixed material zones

Materials 81

Creating compatiblefiles |l - Advanced topics

Materia numbers

Zone numbers

Figure 3-15: Mixed material example

zone 1

zone 10

matlist The matlist array contains the material
number for clean zones or an index into
3 -9 -11 -14 the mix arrays for mixed zones.
l Assuming array indices begin at 1, amix
array index is stored asthe negative value
3 -5 '7| 1 of the desired mix array index. The mix
arrays are 4 paralel arraysthat contain
the material numbers, volume fractions,
3 -1 -3 1 zone numbers, and number of materials
for each mixed zone.
‘ mix_zone mix_mat mix_vf mix_next
1: 1 1. 2 1: 0.75 1. 2
2: 1 2: 3 2: 0.25 2: 0
—P3. 2> 3 2 3: 0.1875 3 4
4. 2 4. 1 4. 0.8125 4. 0
——P|5:. 5 5 2 5: 0.625 5 6
6. 5 6. 3 6: 0.375 6: 0
‘——P| 7. 6 7.2 7. 0.4375 7. 8
8. 6 8 1 8: 0.5625 8 0
—>9: 9 9 2 9: 03 9: 10
10: 9 10: 3 10: 0.7 10: O
————— P 11: 10 11: 1 11: 0.2 11: 12
12: 10 12: 2 12: 0.4 12: 13
13: 10 13: 3 13: 04 13: O
Pl 14: 12 14:. 2 14: 0.45 14: 15
15: 11 15: 1 15: 0.55 15: O

82

Materials

Creating compatiblefiles I - Advanced topics

The plot of the materia object shown in Figure 3-14 and Figure 3-15 contains three
materials. “Water” (1), “Membrane” (2), and “Air” (3). Materialsuseamat | i st array to
indicate which zone are clean and which are mixed. The matlist array is a zone-centered
array of integers that contain the material numbers for the materialsin the zone. If azone
has only one material thenthenat | i st array entry for that zone will contain the
material number of the material that fills the zone. If a zone contains more than one
material thenthemat | i st array entry for that zone will contain an index into the mixed
material arrays. Indicesinto the mixed material arrays are equal to the negative value of
the desired mixed materia array entry. When creating your mixed material arrays, assume
that array indices for the mixed material arrays begin at 1. WWhen you begin assigning
material information into the mixed material arrays, use one array index per material in the
mixed material zone. The index that you use for the beginning index for the next mixed
material zoneisthe current index minusthe number of materialsin the current zone. Study
themat | i st array in Figure 3-15. Thefirst mixed material zoneiszone 1 and sinceitis
mixed, instead of containing a material number, the matlist array for zone 1 contains the
starting index into the mixed material arrays, or -1. If you negate the -1, you arrive at index
1, which isthe starting index for zone 1 in the mixed material arrays. Since zone 1 will
contain two materials, we use indices 1 and 2 in the mixed material arrays to store
information for zone 1. The next available array for other zones wanting to add mixed
materials to the mixed material arraysis element 3. Thus, when zone 2, which isalso a
mixed zone, needs to have itsinformation added to the mixed material arrays, you store -3
into the matlist array to indicate that zone 2's values begin at zone 3 in the mixed material
arrays.

The mixed material arraysare aset of 4 parallel arrays. m x_zone, m x_mat , m x_vf,
and m x_next . All of the arrays have the number of elements but that number varies
depending on how many mixed zones there are in the material object. Them X_zone
array contains the index of the zone that owns the material information for the current
array element. That is, if you examine element 14 inthem x_zone array, you will know
that element 14 in all of the mixed material arrays contain information about zone 11.

Them x_mat array contains the material numbers of the materials that occupy a zone.
Material numbers correspond to the names of materials (e.g. 1 = Water) and should begin
at 1 and increment from there. The range of material numbers used may contain gaps
without causing any problemsin Vislt. However, if you create databases that have many
domains that vary over time, you’ Il want to make sure that each domain has the same list
of materials at every time step. It is not necessary to use a material number in the

mat | i st array or in the mixed material arraysin order to include it in amaterial object.
Look at element 11 in the mix_mat array in Figure 3-15. Element 11 contains material 1,
element 12 contains materia 2, and element 13 contains material 3. Since those three
material numbers are supposed to all be present in zone 10, they are all added to the

m Xx_mat array. Thesamearray elementsinthem x_vf array record the amount of each
material in zone 10. Thevaluesinthem x_vf array for zone 10 are: 0.2, 0.4, 0.4 and
those numbers mean that 20% of zone 10 isfilled with material 1, 40% isfilled with
material 2, and 40% isfilled with material 3. Note that all of the numbersfor azonein the
m x_vf array must sumto 1., or 100%.

Materials 83

Creating compatiblefiles |l - Advanced topics

Them x_next array contains indicesto the next element in the mixed material arrays
that contains values for the mixed material zone under consideration. Them x_next
array allowsyou to construct alinked-list of material numbersfor a zone within the mixed
material arrays. This means that the information for one zone's mixed materials could be
scattered through the mixed material arrays but in practice the mixed material information
for one zone is usualy contiguous within the mixed material arrays. Them x_next
array contains the next index to use within the mixed material arrays or it contains azero
to indicate that no more information for the zone is available.

To write materialsto a Silo file, you use the DBPut Mat er i al function. The

DBPut Mat er i al functioniscoveredinthe Slo User’s Guide but it isworth noting here
that it can be called to write either mixed materials or clean materials. The examples so far
have illustrated the more complex case of writing out mixed materials. You can pass the
mat | i st array and the mixed material arraysto the DBPut Mat eri al functionor, in
the case of writing clean materials, you can passonly themat | i st array and NULL for
all of the mixed material arrays. Note that when you write clean materials, your mat | i st
array will contain only the numbers of valid materials. That is, thermat | i st array does
not contain any negative mixed material array indices when you write out clean material
objects.

Listing 3-16: mixedmaterials.c: C-Language example for writing mixed materials using Silo.

/* Material arrays */
int nmats = 2, ndins[2];
int matnos[] = {1, 2, 3};
char *matnanmes[] = {"Water", "Menbrane", "Air"};
int matlist[] = {
3, -1, -3, 1,
3, -5, -7, 1,
3, -9, -11, -14
b
float m x_vf[] {
0. 75, 0. 25, 0. 1875, 0. 8125,
0. 625, 0. 375, 0. 4375, 0. 56250,
0.3,0.7, 0.2,0.4,0.4, 0. 45, 0.55

b

int mx_zone[]
1,1, 2,2,
5,5, 6,86,
9,9, 10,10,10, 11,11

1
—~

o
HNN§
- - =+
N R

int mx_next[] = {
2,0, 4,0,
6,0, 8,0,
10,0, 12,13,0, 15,0

Materials

Creating compatiblefiles I - Advanced topics

}s

int mxlen = 15;

/* Wite out the material */

ndi ns[0] = NX-1;

mdi ns[1] = NY-1;

optlist = DBVakeOptlist(1);

DBAddOpt i on(optlist, DBOPT_MATNAMES, matnames);

DBPut vat eri al (dbfile, "mat", "quadnesh", nmats, matnos, matlist,
ndi ns, ndinms, mx_next, mx_mat, mx_zone, mx_vf, mxlen,
DB_FLOAT, optlist);

DBFreeOpt | i st (optlist);

Listing 3-17: fmixedmaterials.f: Fortran language example for writing mixed materials using Silo.

subroutine wite_m xedmaterial (dbfile)

inmplicit none

i nteger dbfile

i nclude "silo.inc"

i nteger NX, NY

paranmeter (NX = 5)

paraneter (NY = 4)

integer err, ierr, optlist, ndins, nmats, mxlen
integer ndins(2) /NX-1, NY-1/

i nteger matnos(3) /1, 2,3/

integer matlist(12) /3, -1, -3, 1,
31 -51 -71 11
3, -9, -11, -14/

real mx_vf(15) /0.75,0.25, 0. 1875, 0. 8125,
0. 625, 0. 375, 0. 4375, 0. 56250,
0.3,0.7, 0.2,0.4,0.4, 0. 45, 0. 55/

integer m x_zone(15) /1,1, 2,2,
55, 6,6,
9,9, 10,10,10, 11,11/

integer mx _mat(15) /2,3, 2,1,
2,3, 2,1,
2,3, 1,2,3, 2,1/

i nteger m x_next(15) /2,0, 4,0,
6,0, 8,0,
10,0, 12,13,0, 15,0/

ndi s 2
nmat s 3
m xlen = 15
c Wite out the materi al
err = dbputmat (dbfile, "mat", 3, "quadnesh", 8, nmats, matnos,
matlist, nmdinms, ndinms, mx_next, mx_mat, mXx_zone, m x_vf,
m x| en, DB _FLOAT, DB F77NULL, ierr)

Materials 85

Creating compatiblefiles |l - Advanced topics

end

86 Materials

Chapter 4 Creating a database reader

plug-in

1.0

2.0

Overview

This chapter shows how to extend Vislt by writing a new database reader plug-in so you
can use Vislt to access data files that you have already generated. Writing a database
reader plug-in has several advantages over other approaches to importing datainto Vislt
such as writing a conversion program. First of al, if Vislt can natively read your file
format then thereisno need to convert files and consume extradisk space. Converting files
may not even be possible if the data files are prohibitively large. Secondly, plug-ins offer
the advantage of not having to ater acomplex simulation code to write out data that Vislt
can read. New plug-ins are free to read the simulation code’s native file format. While
many approaches to importing datainto Vislt require new, specialized, code, when you
write a database plug-in, the code that you write is external to your smulation and it is not
a convertor that you have to maintain. Thereis no doubt that there is some maintenance
involved in writing a database reader plug-in for Vislt but there is always the option of
contributing your plug-in back into the Vislt source code tree where the code maintenance
burden is shared among the developer community.

This chapter first reviews the Vislt architecture and describes where plug-insfit into that
scheme. After plug-ins are discussed, the steps that you must follow in order to create a
plug-in are outlined. After covering the basics, you can dive into the section that covers
how to implement your plug-in. Finally, once you have a working plug-in, you can add
advanced features.

Structure of Vislt

Visltisaparallel, distributed application that consists of four component processes that
work in tandem to produce your visualizations. The two components that you may already

Overview Getting Data into Vislt Manual 87

Creating a database reader plugin

be familiar with are the client and the viewer. Vislt has GUI, Python interface, and Java
clients that control the visualization operations performed by the viewer, which isthe
central state repository and graphics rendering component. The other components, which
are not immediately visible, are the database server and the compute engine. The database
server (sometimes called the meta-data server) is responsible for browsing the file system
and letting you know which files can be opened. Once you decide on afile to open, the
database server attempts to open that file, loading an appropriate database reader plug-in
to do so. Once the database server has opened afile, it sends file metadata such as the list
of available variables to the client and the viewer. The compute engine comes into play
when you want to create a plot to process your datainto aform that can be rendered on the
screen. The compute engine, like the database server, loads a plug-in to read adatafile and
does the actual work of reading the problem-sized data from the file and trandating it into
Visualization Toolkit (VTK) objects that Vislt can process. Once the data has been read, it
is fed through the visualization pipeline and returned to the viewer component where it
can be displayed.

Viewer
F‘ v T] EECEE TS BT

L ocal computer

H B BN BN BN BN BN BN AN BN BN BN BN (BN BN BN B = . Il I I I NN
Remote computer metadata metadata processed data
Database server
c Parallel Compute Engine
Data

Figure 4-1: Vislt's architecture

88

Structure of Vislt

Creating a database reader plugin

21 plug-ins

Vislt supportsthree types of plug-ins: plot plug-ins, operator plug-ins, and database reader
plug-ins. This chapter explores database reader plug-ins as a method of importing data
from new file formatsinto Vislt. A database reader plug-in is made of three shared
libraries, which are dynamically loaded by the appropriate Vislt components when data
from afile must be read. The Vislt componentsinvolved in reading data from afile are the
database server and the compute engine. Each database reader plug-in has a database
server component, a compute engine component, and an independent component, for a
total of three shared libraries(I i bM | i bE, | i bl).

The independent plug-in component, or | i bl plug-in component, is a very lightweight
shared library containing little more than the name and version of a plug-in as well asthe
file extensions that should be associated with it. When the database server and compute
engineinitialize at runtime, one of their first actions isto scan Vislt's plug-in directories
for availablel i bl plug-insand then load al of thel i bl plug-insto assemble an internal
list of known plug-ins along with the table of file extensions for each file.

When Vislt needs to open afile, the filenameisfirst passed to the database server, which
triesto extract afile extension from the end of the filename so an appropriate plug-in can
be selected from the list of available plug-ins. Once one or more matches are made, the
database factory object in the database server loads the | i bMplug-in component for the
first plug-in in the list of matching plug-ins. Thel i bMplug-in component is the piece of
the plug-in used by the database server and it is used to read the metadata from the file in
guestion. If the plug-in cannot open the file then it should throw an exception to make the
database factory attempt to open the file using the next matching plug-in. If there are no
plug-ins that match the file's file extension then a default database plug-in is used. If that
plug-in cannot open thefile then Vislt issues an error message. Oncethel i bMplug-in has
read the metadata from the file, that information is sent to the Vislt clients where it can be
used to populate variable menus, etc.

When you add aplot in Vislt and click the Draw button, the first step that the compute
engine takes to process your request is to open the file that contains the data. The
procedure for opening the file that contains the data in the compute engine is the same as
that for the database server. In fact, the same database factory code is used internally.
However, the database factory in the compute engine loadsthel i bE plug-in component.
Thel i bEand | i bMplug-in components are essentially the same except that, when
possible, database server plug-in components do lesswork. Boththel i bEand | i bM
plug-in components contain code to read a file's metadata and both contain code to read
variables and create meshes. The difference between the two plug-in typesisthat the code
to read the variables and create meshesisonly called from thel i bE plug-in component.

Structure of Vislt 89

Creating a database reader plugin

3.0

Starting your plug-in

Now that you know the basics of how Vislt uses database reader plug-insin order to read
different types of files, it istime to begin your plug-in. This section explains the different
interfaces available for coding your plug-in and also covers the stepsinvolved to create
your plug-in code skeleton and run it for the first time.

3.1 Pickingadatabasereader plug-in interface

Database reader plug-ins have 4 possible interfaces, which affect how files are mapped to
plug-in file format objects. The 4 possible interfaces are shown in the table below:

SD MD

ST STSD - Singletime state | STMD - Singletime state per
per file and it contains file but each file contains
just 1 domain. multiple domains.

MT | MTSD - Multipletime MTMD - Multipletime

states per file and each states per file and each file
file containsjust 1 contains multiple domains.
domain

In order to pick which plug-in interface is most appropriate for your particular file format,
you must consider how your file format treats time and domains. If your file format
contains multiple time states in each file then you have an MT file format; otherwise you
have an ST file format. If your file format comes from a parallel simulation then you will
often have some type of domain decomposition, which breaks up the entire simulation into
smaller pieces called domains that are divided among processors. If your simulation has
domains and the domains are written to a single file then you have an MD file format;
otherwise, if your simulation processors wrote out their own files then you have an SD file
format. When you consider both how your file format deals with time and how it deals
with domains, you should be able to select which plug-in interface you will need when
you write your database reader plug-in.

3.2 Using XMLEdit

Once you pick which database interface you will use to write your database plug-in, the
next step isto use Vislt’'s XMLEdit tool to get started with some interface definitions.
XMLEditisagraphical application that lets you create an XML file that describes some of
the basic attributes for your database reader plug-in. The XML file contains information
such asthe name of the plug-in, itsversion, which interfaceis used, the plug-in’slist of file
extensions, and any additional libraries or source code files that need to be included in the
plug-inin order to build it.

90

Sarting your plugin

Creating a database reader plugin

To get started with building your plug-in, the first step isto create a source code directory
to contain all of the files that will be created to generate your plug-in. It is best that the
directory name be the name of your file format or the name of your simulation. Once you
have created a directory for your plug-in files, you can run Vislt's XMLEdit program. To
start XMLEdit on UNIX systems where Vislt isinstalled, open a command window and
typexm edi t . On Windows systems, XMLEdit should be available in the Start menu
under Vislt's plug-in development options.

XMLEdit: untitled.xml| (=] (] x¢]
IMakefiIe |Attn'bute | Enums | Fields | Functions |C0n5tant5 | Includes |C0de |
&+ Plugin Attribute only
Name I
Label |
Version I
Plugin type I j
r |
r
r
¥ Plugin is enabled by default
Variable types ™ - r r
r r r r
r r r
Database type I J
Extensions I

Figure 4-2: XMLEdit plug-in tab

Once XMLEdit is active you can see that it has a number of tabs that are devoted to
various aspects of plug-in development. Most of the tabs are used for developing plot and
operator plug-ins only so this section will focus on the actions that you need to take to
create your database reader plug-in. First of all, you must type the name of your plug-in
into the Name text field. The name should match the name of the source code directory
that you created - be sure that you pick a name that can be used inside of C++ class names
since the name is used to help generate the plug-in code skeleton that will form the basis
of your database reader plug-in. Next, typein alabel into the Label text field. The label
for adatabase plug-in can contain alonger identifier that will be displayed when Vislt uses
your plug-in to read files. The label may contain spaces and punctuation. Next, enter the
version of your plug-in into the Version text field. The version for initial development
should be: 1.0. Now, choose Database from the Plugin type combo box to tell XMLEdit
that you want to build a database reader plug-in. Once you choose Database for your plug-

Sarting your plugin 91

Creating a database reader plugin

in type, some additional options will become enabled. You can ignore these options for
now since they contain reasonable default values.

XMLEdit: untitled.xml [=][oi[=]
File

Plugin IMakefiIe |Attn'bute |Enum5 |Field5 |Functi0n5 |C0n5tant5 |Inc|udes |C0de |

&+ Plugin Attribute only

Name [NETCDF

Label [NETCDF files

Version |1 .0

Plugin type I Database j
r |

™ File format can also write data
™ File format provides options for reading or writing data.

¥ Plugin is enabled by default

Variable types I~ - - r

r r r r

r r r
Database type I j
Extensions I

Figure 4-3: XMLEdit plug-in tab with plug-in name and type selected

The next step in creating your database plug-in using XMLEdit is to set the database type
to STSD, STMD, MTSD, MTMD by selecting one of those options from the Database
type combo box. Note that it is possible to instead choose to create afully custom

XMLEdit: untitled.xml [=][oi[=]
File

Plugin IMakefiIe |Attn'bute |Enum5 |Field5 |Functi0n5 |C0n5tant5 |Inc|udes |C0de |

&+ Plugin Attribute only

Name [NETCDF

Label [NETCDF files

Version |1 .0

Plugin type I Database j
r |

™ File format can also write data
™ File format provides options for reading or writing data.

¥ Plugin is enabled by default

Variable types I~ - - r
r r r r
r r r
Database type I STSD - Generic single time single domain j

Extensions Inc cf|

Figure 4-4: XMLEdit plug-in tab with database type and extensions selected

92

Sarting your plugin

Creating a database reader plugin

database type but do not choose that option since most formats do not need that level of
customizeability. Once you have selected a database type for your plug-in, typein the list
of file formats that you want to associate with your plug-in. You can enter as many space-
delimited file extensions as you want.

Theinformation that you entered is the minimum amount of information required to create
your database reader plug-in. Save your XMLEdit session to an XML file by selecting
Save from the File menu. Be sure to use the same name as you used for the directory
name that will contain your plug-in files and also be sure to save your XML file to that
directory. At this point, you can skip ahead to generating your plug-in code skeleton or
you can continue adding options to your XML file.

321 Makefileoptions

XMLEdit contains controls on its Makefile tab that allow you to add optionsto your XML
file that will influence how your plug-in code is built when you go to compileit. For
example, the Makefile tab includes options that allow you to specify compiler options
such as CXXFLAGS, LDFLAGS, and LIBS. Adding options to these fields can be
particularly useful if your plug-in uses an external library such asNETCDF or HDF5. You
can add theinclude file and library file locations to ensure that the compiler will know
where to look for your external library when your plug-in is built. You can also add extra
filestothel i bEand | i bMplug-ins by adding alist of filesto the Engine files and
MDServer files text fields, respectively. If you change any of these options, shownin
Figure 4-5, be sure to save your XML file before quitting XML Edit.

XMLEdit: untitled.xml [=][oi[=]
File

Plugin |Makefi|€ IAttn'bute |Enum5 |Field5 |Functi0n5 |C0n5tant5 |Inc|udes |C0de |

CXXFLAGS I-I,-’u5r,-’local,-’nercdf,-’B.G.O,-’incIude
LDFLAGS I-L,.’usr,-’loc al/netcdf/3.6.0/lib
Les [Hnetcdf

I™ GUI Files |

[~ Scripting Files I

[~ Viewer Files I
¥ MDServer Files IAddirionaIFiIel.C AdditionalFile2.C
¥ Engine Files IAddirionaIFiIel.C AdditionalFile2.C|
[~ widget Files I

[Plugin has code specific to the MDServer

Figure 4-5: XMLEdit Makefile tab with compiler options and additional files specified.

Sarting your plugin 93

Creating a database reader plugin

3.3 Generating a plug-in code skeleton

Once you save your work from XMLEdit, you will find an XML file containing the
options that you provided in the directory where you store your plug-in files. Vislt
provides more XML tools to generate the necessary code skeleton for your plug-in. The
important tools when building a database plug-in are: xm 2makef i | e, xm 2i nf o,
xm 2pl ugi n. Thexm 2pl ugi n programis actually a script that automates calling the
required xm 2* programs. In order to generate your plug-in code skeleton, open a
command window, go to the directory containing your XML file, and run xm 2pl ugi n.
On UNIX systems, the command that you will runis:

xm 2pl ugi n -cl obber FILE. xm

Be sure to replace FILE.xml with the name of your own XML file. Once you run the
xm 2pl ugi n program, if you look in your directory, you will see several new files.

[shell - Konsole <3>

dagobah 1005% 1s

Makefile NETCDFPluginInfo.C
NETCDF . xml NETCDFPluginInfo.h
NETCDFCommonPluginInfo.C avtNETCDFFileFormat.C
NETCDFEnginePluginInfo.C avtNETCDFFileFormat.h
NETCDFMDServerPluginInfo.C

dagobah 1006% [

e

Figure 4-6: Files generated by xmlI2plugin

-

b
b
; DNEW
i
I

For database reader plug-ins, there are essentially three classes of filesthat xm 2pl ugi n
creates. First of al, xm 2pl ugi n creates the plug-in code skeleton, which includes the
plug-in entry points that are used to load the plug-in dynamically at runtime. These files
have® Info” in their name and they are generated by the xm 2i nf o program. If you
change the name, version, or file extensions that your plug-in uses then you should re-run
xm 2i nf o instead of running xm 2pl ugi n. The next set of filesarethe AVT file
format source and header files. The AVT file format source code files are C++ source code
files that you will complete using new code to read your file format. Finally,

xm 2makef i | e, created aMakefile for your plug-in so al you have to do in order to
build your plug-inistype: make at the command prompt.

94

Sarting your plugin

Creating a database reader plugin

3.4 Building your plug-in

So far, we have created an XML file using the XMLEdit program and then used the XML
file with Vislt's XML tools to generate plug-in source code. The static portions of the
generated source code is complete but there are still some pieces that you need to write
yourself in order to make Vislt read your datafiles. The automatically generated files that
are called avtXXXXFileFormat.C and avtXXXXFileFormat.h, where XXX X is the name of
your plug-in, are incomplete. These two AVT files contain a derived class of one of the
STSD, STMD, MTSD, MTMD file format classes that Vislt provides for reading different
filetypes. Your jobistofill in the missing code in the methods for the AV T classes so they
can read data from your file format and trandate that datainto VTK objects. By default,
the AVT files contain some messages in the source code like “ YOU MUST IMPLEMENT
THIS’ , which are meant to prevent the source code from compiling and to call attention to
areas of the plug-in that you need to implement (See Figure 4-7).

& aviNETCDFFileFormat.C - fhome/whitlocb/visitdistyNETCDF/
File Edit Search Preferences Shell Macro Windows Help

fhomedwhitiochs/visitdistNETCDFfavtNETCDFFileFormat.C 9295 bytes
// R R] A
A5 Hethod: aviNETCDFFIleFormat: :GetHesh

S Purpose:

I Gets the mesh associzted with this Ffile. The mesi is returned as 2
I derived type of vikDataSet (ie vikRectilinesrGrid, vikStructuredGrid,
£ vitkinstructurederid, etc).

A Arguments:
I mesfinane The name of the mesh of interest. This can be ignored If
I there Is only one mesh.

S Programmer: whitloch -- generated by xmliavt
S Creation: Fri Jun 23 16:46:12 PST 2006 J

e]

vtkDataSet *
avtNETCDFFileFormat: : GetMesh {const char *meshname)

TOU MUST IMPLEMENT THIS

=l 1

Figure 4-7: Example of a “YOU MUST IMPLEMENT THIS"” message

Thefirst step in building a plug-in is to make sure that the automatically generated source
code compiles. Open the AVT files and look for instances of the * YOU MUST
IMPLEMENT THIS’ message and, when you find them, write down a note of where they
appear. Comment out each of the messages in the C++ source code and add “r et ur n

0; " statements (See Figure 4-8). By commenting out the offending messages, the
automatically generated source code will compile when you attempt to compile the plug-
in. Youwill also have alist of some of the plug-in methods that you will have to write later
when you really begin developing your plug-in.

Sarting your plugin 95

Creating a database reader plugin

& aviNETCDFFileFormat.C - fhome/whitlocb/visitdistyNETCDF/
File Edit Search Preferences Shell Macro Windows Help

fhomedwhitiochs/visitdistNETCDFfavtNETCDFFileFormat.C line 199, col 13, 3311 bytes
/ EEEEEEEEEEEEEEEEEEE EE E E R R] A
Ff Method: aviNETCDFFileFormat: :GetMesh

S Purpose:

I Gets the mesh associzted with this Ffile. The mesi is returned as 2
I derived type of vikDataSet (ie vikRectilinesrGrid, vikStructuredGrid,
£ vitkinstructurederid, etc).

A Arguments:
I mesfinane The name of the mesh of interest. This can be ignored If
I there Is only one mesh.

S Programmer: whitloch -- generated by xmliavt
S Creation: Fri Jun 23 16:46:12 PST 2006

e]

vtkDataSet *
avtNETCDFFileFormat: : GetMesh {const char *meshname)

SAYOU WUST THPLEMENT THIS
return [;
¥]
=l 1
Figure 4-8: Example of corrections made to a “YOU MUST
IMPLEMENT THIS” message needed to make the source
code compile

Once you have changed the AVT files so there are no stray messages about implementing
aplug-in feature, go back to your command terminal and type the make command for
your system (commonly make or gnake). The make command takes the automatically
generated M akefile that was generated by xm 2makef i | e and starts building your plug-
in against the installed version of Vislt. If you encounter compilation errors, such as
syntax errors, then you most likely need to make further changes to your AVT files before
trying to build your plug-in. A good C++ language reference can help you understand the
types of errors that may be printed to your command window in the event that you have
not successfully changed the AVT files. If your source code seemsto compile but fails due
to missing libraries such as NETCDF or HDF5 then you can edit your Makefile so it
points to the right library installation locations.

Once your plug-inis built, it will be stored in a platform-specific subdirectory of the

. Vi si t directory inyour homedirectory (~/ . vi sit).Ifyoutype:find ~/.visit
-nane “*.s0” intoyour command window, you will be ableto locatethel i bE,

i bl,andl i bMfilesthat make up your compiled plug-in (see Figure 4-9). If you
develop for MacOS X, you should substitute“ *. dyl i b” for“*. so” inthe previous
command because shared libraries on MacOS X havea“ . dyl i b” file extension instead
of a“. so” fileextension. Note that when a parallel compute engineis availablein the
installed version of Vislt, youwill gettwo | i bE plug-ins; onewitha_ser suffix and one
witha_par suffix. Thel i bE filesthat have a _ser suffix are loaded by the serial
compute engineand the _par | i bEfileisloaded by the parallel compute engine and
may contain parallel function calls, such as callsto the MPI library.

96

Sarting your plugin

Creating a database reader plugin

[shell - Konsole <3>

dagobah 1060% find ~/.visit -name "¥.so0"
/home/whitlocb/.visit/linux-intel/plugins/databases/1ibINETCDFDatabase.so
/home/whitlocb/.visit/linux-intel/plugins/databases/1ibMNETCDFDatabase.so
/home/whitlocb/.visit/linux-intel/plugins/databases/1ibENETCDFDatabase_ser.so
/home/whitlocb/.visit/linux-intel/plugins/databases/1ibENETCDFDatabase_par.so
dagobah 1061% [

e

b
b
; DNEW
i
I

-

Figure 4-9: Files are created in the .visit directory when a plug-in is built.

When Vislt's database server and compute engine execute, they look inyour ~/ . vi si t
directory for available plug-ins and load any that are available. This meansthat even if you
build plug-ins against the installed version of Vislt, it will still be able to find your private
plug-ins.

It is recommended that while you develop your plug-ins, you only install them in your

~/ . vi si t directory so other Vislt users will not be affected. However, if you develop
your plug-in on MacOS X, you will have to make sure that your plug-ins are installed
publicly so that they can be loaded at runtime. You can aso chooseto install your plug-ins
publicly once you have completed development. To install plug-ins publicly, first remove
thefilesthat wereinstalled to your ~/ . vi si t directory by typing themake cl ean
command in your command window. Next, re-run the xm 2makef i | e program like
this. xm 2nmakefil e -public -clobber FILE xm .Addingthe-public
argument on the command line causes make to install your plug-in files publicly so all
Vislt users can access them.

3.5 Callingyour plug-in for thefirst time

Once you have completed building your plug-in for the first time, all that youneedtodois
run Vislt and try to open one of your files. When you open one of your files, the database
server should match the file extension of the file that you tried to open with thelist of file
extensions that your plug-in accepts, causing your plug-in to be loaded and used for
opening the file. You can verify that Vislt used your plug-in by opening the File
Information window (see Figure 4-10) in the Vislt GUI and looking for the name of your
plug-in in the listed information.

Sarting your plugin 97

Creating a database reader plugin

4.0

Note that at this stage, the database server should be properly loading your database reader
plug-in but since no code to actually read your files has yet been added to the AV T source
code files, no plottable meshes or variables will be available.

File information [=][oi[=]

File = localhost:/home/whitlocb/data/NET CDF/arctic.cdf

Database: /home/whitlocb/data/NETCDF/arctic.cdf
Simulation: No

File format: NETCDF_1.0

MetaData Is NOT repopulated on state changes
useCatchAllMesh: 0

Format cannot do Its own domain decomposition
The temporal extents are not set.

All Times are ***NOT*** Accurate

Times: Are Identical to cycles

All Cycles are ***NOT*** Accurate

Cycles: 0

Post Dismiss

Figure 4-10: File Information window confirming use of your plug-in.

I mplementing your plug-in

Now that you have built aworking plug-in framework, you are ready to begin adding code
to your plug-in that will make it capable of opening your file format, reading data, and
translating that datainto VTK objects. This section exploresthe details of writing the AVT
code for your database reader plug-in, providing necessary background and then diving
into specific topics such as how to return data for a particular mesh type. Before starting,
remember that building a plug-in is an incremental process and you should proceed in
small steps, saving your work, building, and testing your plug-in each step of the way.

41 Required plug-in methods

Most of the code in a Vislt database plug-in is automatically generated and, for the most
part, the only code that you need to modify isthe AVT code. The AVT code contains a
class definition and implementation for a derived type of the STSD, STMD, MTSD, or
MTMD file format classes and your job as a plug-in developer isto write the required
methods for your derived file format class so that Vislt can read your file. There are many
methods in the file format class interface that you can override to make your plug-in
perform specialized operations. The only methods that you absolutely must implement are

98

Implementing your plugin

Creating a database reader plugin

the Popul at eDat abaseMet aDat a, Get Mesh, Get Var, and Get Vect or Var
methods. The purpose of each of these plug-in methodsis listed in the following table.

Method

Purpose

Popul at eDat a-
baseMet aDat a

Vislt callsthe Popul at eDat abaseMet aDat a
method when file metadata is needed. File metadata
isreturned in a pass-by-reference avt Dat a-
baseMet aDat a object. File metadata consists of
the list of names of meshes, scalar variables, vector
variables, tensor variables, label variables, array
variables, expressions, cycles, and times contained in
thefile. These lists of variables and meshes let Vislt
know the names of the objects that can be plotted
from your file. The metadata is used primarily to
populate the plot menusin the GUI and viewer com-
ponents. The Popul at eDat abaseMet aDat a
method is called by both thel i bMand | i bE plug-
ins.

Get Mesh

Vislt callsthe Get Mesh method inal i bE plug-in
when it needsto plot amesh. This method isthefirst
method to return “ problem-sized” data, meaning that
the mesh data can be as large as the datain your file.
The Get Mesh method must return a mesh object in
the form of one of the VTK dataset objects

(vt kRectilinearGid, vtkStruc-
turedGid, vtkUnstructuredGid,

vt kPol yDat a)

Get Var

Vislt callsthe Get Var methodinal i bE plug-in
when it needs to read a scalar variable. Like the

Get Mesh method, this method returns * problem-
sized” data. Get Var reads data values from the file
format, possibly performing calculations to alter the
data, and stores the datainto a derived type vt k-
Dat aAr r ay object such asvt kFl oat Array or
vt kDoubl eAr r ay. If your file format does not
need to return scalar data then you can leave the
“return 0;” implementation that you added in
order to get your plug-in to build.

Implementing your plugin

99

Creating a database reader plugin

Method Purpose

Cet Vect or Var Vislt callsthe Get Vect or Var methodinal i bE
plug-in when it needs to read a vector or tensor vari-
able. Get Vect or Var performs the same function
asGet Var but returnsvt kFl oat Array or vt k-
Doubl eAr r ay objectsthat have more than one
value per tuple. A tupleisthe equivalent of avalue
associated with a zone or node but it can store more
than one value. If your file format does not need to
return scalar data then you can leavethe “r et ur n
0;” implementation that you added in order to get
your plug-in to build.

4.2 Debugging your plug-in

Before beginning to write code for your plug-in, you should know afew techniques for
debugging your plug-in since debugging Vislt can be tricky because of its distributed
architecture.

421 Debugginglogs

The first method debugging in Vislt is by using Vislt's debug logs. When you run vi si t
on the command line, you can optionally add the - debug 5 argumentsto make Vislt
write out debugging logs. The number of debugging logs can be 1, 2, 3, 4, or 5, with
debugging log 5 being the most detailed. When Vislt's components are told to run with
debugging logs turned on, each component writes a set of debugging logs. For example,
the database server component will write mdserver.1.log,
mdserver.2.10g,...,mdserver.5.log debugging logsif you pass - debug 5 onthe Visit
command line. Since you are writing a database reader plug-in, you will want to look at
the mdserver*.log and engine*.log files since those components load your | i bMand

I i bE plug-ins.

The debugging logs will contain information written to them by the debugging statements
in Vislt's source code. If you want to add debugging statements to your AV T code then
you can usethedebugl, debug2, debug3, debug4, or debug5 streams as shown in
the next code listing.

Listing 4-11: debugstream.C: C++-Language example for using debug streams.

/1 NOTE - This code inconplete and is for exanple purposes only.

/1 Include this header for debug streans.
#i ncl ude <DebugStream h>

vt kDat aSet *

100

Implementing your plugin

Creating a database reader plugin

avt XXXXFi | eFor mat : : Get Mesh(const char *neshnane)

{
/1 Wite nmessages to different |evels of the debug | ogs.
debugl << "H from avt XXXXFi | eFor mat : : Get Mesh” << endl ;
debug4 << "Many dat abase plug-ins prefer debug4" << endl;
debug5 << "Lots of detail from avt XXXXFi | eFornat:: Get Mesh”

<< endl;

return O;

}

4.2.2 Dumping VTK objectsto disk

In addition to the - debug argument, Vislt also supportsa- dunp argument. The- dunp
argument tells Vislt's compute engine to write VTK files containing the datafor every
stage of the pipeline execution so you can view the changes to the data made by each AVT
filter. While this option is more useful when writing plots and operators, you can useit to
examine the data at the beginning of the pipeline since, at that stage, the data will contain
the VTK object that was created by your database reader plug-in.

When you run Vislt with the - dunp argument, many VTK fileswill be created since the
datais saved at every stage in the execution of Vislt's data processing pipeline. Each VTK
file contains a number indicating the order of thefilter in the pipeline that saved the data.
Look for the filename of the form: before*0.vtk. The list of files created by using the -
dunp argument is shown in Figure 4-12.

[shell - Konsole <3>

dagobah 1084% visit -o /usr/gapps/visit/data/globe.silo -dump

Running: guil.5.2 -o /usr/gapps/visit/data/globe.silo -dump

Running: viewerl.5.2 -host dagobah.llnl.gov -dump -geometry 1512x1151+408+0 -bor
ders 20,8,4,4 -shift 4,20 -preshift 0,0 -defer -port 5600

Running: mdserverl.5.2 -host dagobah.llnl.gov -dump -port 5601

Running: engine_serl.5.2 -host dagobah.llnl.gov -timeout 480 -dump -port 5600
dagobah 1085% 1ls *.vtk

after_avtCondenseDatasetFilterl.vtk bef-orrgvilonuensevaca
after_avtFacelistFilter0.vtk before_avtFacelistFilter0.vtk
after_avtVertexNormalsFilter2.vtk beroic avitertontoonulsTitcer? .. vtk

dagobah 1086% []

Z DNEW @Shell

-
I T

Figure 4-12: Output of running with the -dump command line argument

Implementing your plugin 101

Creating a database reader plugin

4.3 Openingyour file

When Vislt recelves alist of filesto open, it tries to determine which plug-in should be
loaded to access the data in those files. The match is performed by comparing the file
extension of the files against the known file extensions for all database reader plug-ins.
Each plug-in in the list of matchesisloaded and Vislt creates instances of the plug-in's
AVT fileformat classes that are then used to access the datain the files. When an AVT
object is created, its constructor can open the data file and make sure that thefile is of the
apporiate type. If thefile is not the right type, or if it contains errors, or if it cannot be
accessed for some other reason, the constructor must throw an

| nval i dDBTypeExcept i on exception. Whenthel nval i dDBTypeExcepti on
exception is thrown from the constructor of an AVT file format derived type, Vislt's
database factory catches the exception and then tries to open the file with the next
matching plug-in. This procedure continues until the file is opened by a suitable plug-in or
the file cannot be opened at all.

Listing 4-13: invaliddbtype.C: C++-Language example for a file format constructor that must throw
an exception.

/1 NOTE - This code inconplete and is for exanple purposes only.
#i ncl ude <l nval i dDBTypeExcepti on. h>

avt XXXXFi | eFor mat : : avt XXXXFi | eFor mat (const char *fil enane)
avt STSDFi | eFor mat (fi | enane)
{

bool fileCpened = fal se;

/1 Open the file specified by the fil enane argunment here using
/1 your file format APl and set fil eOpened accordingly.
YOU MUST | MPLEMENT THI S

/1 1f your file format APl could not open the file then throw
/1 an exception.
if ('fil eCpened)
{
EXCEPTI ON1(I nval i dDBTypeExcepti on,
"The file could not be opened");

If you use afile extension that is already used by other Vislt database reader plug-ins, your
file format’s constructor should open thefile to ensure that the file is of the right type. If
your database reader plug-in uses a unique file extension then you have the option of
deferring any file opens until later when metadatais required. Thisisthe preferred
approach because Vislt may create many instances of your file format class and doing less
work in the constructor makes opening files faster.

102

Implementing your plugin

Creating a database reader plugin

Once you decide whether your file format can defer opening afile or whether it must open
the file in the constructor, you can begin adding code to your AVT class. Since opening
files can be a costly operation, you might want to open afile and keep it open if you have a
random access file format. If you open afile in one method and want to keep the file open
so it is available to multiple plug-in methods, you will need to add a new class member to
your AVT classto contain the handle to your openfile. If your file format consists of
sequential text then you might consider reading the file once and keeping the datain
memory in aformat that you can conveniently trandlate into VTK objects. Both
approaches require the addition of a new class member - either ahandle to thefile or a
pointer to data that was read from thefile.

4.4 Returning file metadata

Once your you have decided how your plug-in will manage access to thefile that it must
read, the next step in writing your database reader plug-in isto implement the

Popul at eDat abaseMet aDat a method. The Popul at eDat abaseMet aDat a
method is called by Vislt's database infrastructure when information about afile's meshes
and variables must be obtained. The Popul at eDat abaseMet aDat a method is
usually called only the first time that afile format’s metadata is being read, though some
time-varying formats can have time-varying metadata, which requires that

Popul at eDat abaseMet aDat a is called each time Vislt requests datafor a new time
state. However, most file formats call Popul at eDat abaseMet aDat a once.

The Popul at eDat abaseMet aDat a method arguments can vary, depending on
whether your file format is STSD, STMD, MTSD, or MTMD but in all casesthe first
argument isan avt Dat abaseMet aDat a object. Theavt Dat abaseMet aDat a
object isaclassthat is pervasively used in Vislt; it contains information about the files that
you plot such as the number of domains, times, meshes, and variables that the files can
provide. When you implement your plug-in’'s Popul at eDat abaseMet aDat a
method, you must populate the avt Dat abaseMet aDat a object with the list of meshes
and variables, etc. that you want Vislt to be able to plot. You can hard-code a fixed list of
meshes and variablesif your file format always contains the same entities or you can open
your file and provide a dynamic list of meshes and variables. This section covers how to
add meshes and various variable typesto the avt Dat abaseMet aDat a object so your
file format’'s datawill be exposed in Vislt. For acomplete listing of the

avt Dat abaseMet aDat a object’s methods, see the avtDatabaseMetaData.h header
file. It isworth noting that the following code examples create metadata objects and
manually add them to the metadata object instead of using convenience functions. Thisis
done because the convenience functions used in automatically generated plug-in code do
not provide support for less often used metadata settings such as units and labels.

441 Returning mesh metadata

In order for you to be able to plot any data from your file format, your database reader
plug-in must add at least one meshto theavt Dat abaseMet aDat a object that is passed
into the Popul at eDat abaseMet aDat a method. Adding information about a mesh to

Implementing your plugin 103

Creating a database reader plugin

theavt Dat abaseMet aDat a object isdone by creating an avt MeshMet aDat a
object, populating its important members, and adding it to the

avt Dat abaseMet aDat a. At aminimum, each mesh must have a name, spatial
dimension, topological dimension, and a mesh type. The mesh’s name isthe identifier that
will be displayed in Vislt’s plot menus and it is also the name that will be passed later on
into the plug-in’s Get Mesh method.

The spatial dimension attribute corresponds to how many dimensions are needed to
specify the coordinates for the points that make up your mesh. If your mesh existsin a2D
plane then choose 2, otherwise choose 3. Note that when you create the points for your
mesh later in the Get Mesh method, you will always create points that contain X,Y,Z
points.

The topological dimension attribute describes the number of logical dimensions used by
your mesh, regardless of the dimension of the space that it sitsin. For example, you may
have a planar surface of triangles sitting in 3D space. Such a mesh would be topologically
2D even though it sitsin 3D space. The rule of thumb that Vislt followsisthat if your
mesh’s cells are points then you have a mesh that is topologically OD, lines are 1D,
surfaces are 2D, and volumes are 3D. This point isillustrated in Figure 4-14.

Points, 0D Lines, 1D Polygons, 2D Polyhedra, 3D
° °
° °
) °

Figure 4-14: Topological dimensions. One zone is highlighted blue.

Once you have set the other basic attributes for your mesh object, consider which type of
mesh you have. Vislt supports several different mesh types and the value that you provide
in the metadata allows Vislt to tailor how it appliesfilters that process your data. If you
have amesh composed entirely of particles then choose AVT PO NT_MESH. If you have
a structured mesh where the coordinates are specified by small vectors of values for each
axis and the rest of the coordinates are implied then you probably have arectilinear mesh
and you should choose AVT _RECTI LI NEAR_MESH. If you have a structured mesh and
every node has its own specific location in space then you probably have a curvilinear
mesh and you should choose AVT _CURVI LI NEAR_MESH. If you have a mesh for which
you specify alarge list of nodes and then create cells using indices into that list of nodes
then you probably have an unstructured mesh and you should choose
AVT_UNSTRUCTURED_ MESH for the mesh type. If you have a mesh that adaptively
refinesthen choose AVT_AMR _MESH. Finadly, if your mesh is specified using shapes such
as cones and spheres that are unioned or differenced using boolean operations then you

104

Implementing your plugin

Creating a database reader plugin

have a constructive solid geometry mesh and you should choose AVT _CSG_MESH for
your mesh’s mesh type.

AVT_POINT_MESH AVT_RECTILINEAR_MESH AVT_CURVILINEAR_MESH

AVT_UNSTRUCTURED_MESH AVT_AMR_MESH

Figure 4-15: AVT mesh types (AVT_CSG_MESH not pictured).

If your mesh consists of multiple domains then you will need to set the number of domains
into the nunBl ocks member of theavt MeshMet aDat a object. Remember that the
number of domainstells Vislt how many pieces make up your mesh and it is especialy
important to specify this number if your plug-in is derived from an MD file format
interface. You may also choose to tell Vislt what the domains are called for your file
format. Some file formats use the word: “domains” while others use “brick” or “block”. If
you choose to set the name that Vislt uses for domains then that term will be used in parts
of Vislt's GUI such asthe Subset window. Set the bl ockPi eceNanme member of the
avt MeshMet aDat a object to a suitable term that describes a domain in the context of
your simulation code. Alternatively, you can provide proper names by providing a vector
of strings containing the names by setting the bl ockNanes member.

Now that the most important attributes of the avt MeshMet aDat a object have been
specified, you can add extra information such as the names or units of the coordinate
dimensions. Once all attributes are set to your satisfaction, you must add the

avt MeshMet aDat a object to theavt Dat abaseMet aDat a object.

Listing 4-16: meshmetadata.C: C++-Language example for returning mesh metadata.

/1 NOTE - This code inconplete and is for exanple purposes only.

Implementing your plugin 105

Creating a database reader plugin

voi d
avt XXXXFi | eFor mat : : Popul at eDat abaseMet aDat a(avt Dat abaseMet aDat a * nd)
{
/1 Add a point nesh to the netadata. Note that this exanple wl|
/1 always expose a nesh called “particles” to Vislt. A real
/1 plug-in my want to read a list of nmeshes fromthe data
/1 file.
avt MeshMet aDat a *nmmd = new avt MeshMet aDat a;
mrd- >nane = "particles"”;
mrd- >spati al Di mensi on = 3;
mrd- >t opol ogi cal Di mrensi on = 0;
mrd- >neshType = AVT_PO NT_MESH;
nd- >nunBl ocks = 1;
nd- >Add(nmd) ;

/1 Add other objects to the netadata object.

4.4.2 Returning scalar metadata

Once you have exposed a mesh to Vislt by adding mesh metadata to the

avt Dat abaseMet aDat a object, you can add scalar field metadata to the metadata. A
scalar field isaset of floating point values defined for all cells or nodes of amesh. You can
expose as many scalar variables as you want on any number of meshes. The list of scalar
fields that a plug-in exposes is often determined by the data file being processed. Like
mesh metadata, scalar metadata requires a name so the scalar can be added to Vislt's
menus. The name that you choose is the same name that later is passed to the Get Var
plug-in method. Once you select a name for your scalar variable, you must indicate the
name of the mesh on which the variable is defined by setting the meshNarme member of
theavt Scal ar Met aDat a object. Once you have set the nanme and meshNamne
members, you can set the centering member. The centering member of the

avt Scal ar Met aDat a object can be set to AVT_NODECENT or AVT_ZONECENT,
indicating that the data is defined on the nodes or at the zone centers, respectively. If you
want to indicate units that are associated with the scalar variable, set thehasUni t s
member tot r ue and set the uni t s string to the appropriate unit names.

Listing 4-17: scalarmetadata.C: C++-Language example for returning scalar metadata.

/1 NOTE - This code inconplete and is for exanple purposes only.

voi d
avt XXXXFi | eFor mat : : Popul at eDat abaseMet aDat a(avt Dat abaseMet aDat a * nd)
{

/1 Add a nmesh called "nmesh" to the netadata object.

/1 Add a scalar to the netadata. Note that this plug-in wll
/1 always expose a scalar called "tenperature” to Vislt. A real
/1 plug-in my want to read a list of scalars fromthe data

106

Implementing your plugin

Creating a database reader plugin

/1l file.

avt Scal ar Met aData *snd = new avt Scal ar Met aDat a;
snd- >name = "tenperature”;

smd- >neshNane = "nesh";

snd->centeri ng = AVT_ZONECENT;

smd- >hasUnits = true;

smd->units = "Cel sius";

nd- >Add(snd) ;

/1 Add other objects to the netadata object.

4.4.3 Returning vector metadata

The procedure for returning vector metadatais similar to that for returning scalar
metadata. In fact, if you change the object type that you create from

avt Scal ar Met aDat a to avt Vect or Met aDat a then you are ailmost done. After
you set the basic vector metadata attributes, you must set the var Di mmember to 2 if you
have a 2-component vector or 3 if you have a 3-component vector.

Listing 4-18: vectormetadata.C: C++-Language example for returning vector metadata.

/1 NOTE - This code inconplete and is for exanple purposes only.

voi d
avt XXXXFi | eFor mat : : Popul at eDat abaseMet aDat a(avt Dat abaseMet aDat a * nd)
{

/1 Add a nesh called "nesh" to the netadata object.

/1 Add a vector to the netadata. Note that this plug-in wll
/1 always expose a vector called "velocity" to Vislt. A real
/1 plug-in nay want to read a |ist of vectors fromthe data
/1 file.

avt Vect or Met aDat a *vmd = new avt Vect or Met aDat a;

vnd- >nanme = "vel ocity";

vnd- >neshName = "nesh";

vnd->centeri ng = AVT_ZONECENT;

vnd- >hasUnits = true;

vnd->units = "m s";
vid->varDim = 3;
nd- >Add(vrd) ;

/1 Add ot her objects to the netadata object.

Implementing your plugin 107

Creating a database reader plugin

444 Returning material metadata

Like the other types of mesh variables that we have seen so far, amaterial is defined on a
specific mesh. However, unlike the other variables types, materials can be used to name
regions of the mesh and can also be used by Vislt to break the mesh down into smaller
pieces that can be turned on and off using the Subset window. Material metadatais
storedinanavt Mat er i al Met aDat a object and it consists of: the name of the material
object, the mesh on which it is defined, the number of materials, and the names of the
materials. If you had amaterial called “mat1” defined on “mesh” and “matl” was
composed of: “Steel”, “Wood”, “Glue”, and “Air” then the metadata object needed to
expose “matl” to Vislt would look like the following code listing:

Listing 4-19: materialmetadata.C: C++-Language example for returning material metadata.

/1 NOTE - This code inconplete and is for exanpl e purposes only.

voi d
avt XXXXFi | eFor mat : : Popul at eDat abaseMet aDat a(avt Dat abaseMet aDat a * nd)
{

/1 Add a nesh called "nmesh" to the nmetadata object.

/1 Add a material to the netadata. Note that this plug-in wll
/1 always expose a nmaterial called "matl" to Vislt. A real
/1 plug-in nmay want to use fromthe data file to construct
/1 a material.

avt Materi al MetaData *nmat nd = new avt Mat eri al Met aDat a;

mat nd- >nanme = "nmat 1";

mat nd- >neshNanme = "nesh";

mat nd- >nunmvat erial s = 4;

mat nd- >mat er i al Nanmes. push_back("Steel ");

mat nd- >mat er i al Nanmes. push_back("Wod");

mat nd- >mat er i al Nanmes. push_back("d ue");

mat nd- >mat er i al Nanes. push_back("Air");

nd- >Add(mat nd) ;

/1 Add ot her objects to the netadata object.

445 Returning expressions

Vislt provides support for defining expressions to calculate new data based on the datain
your file. Vislt provides the Expression window in the GUI for managing expression
definitions. It can be convenient for usersin certain fields, where custom expressions are
used frequently, to store the expression definitions directly in the file format or to encode
the custom expressions directly in the file metadata so they are always available when a
given fileisvisualized. Vislt'savt Dat abaseMet aDat a object can contain custom
expressions. Thus you can add custom expressionsto the avt Dat abaseMet aDat a
object inside of your database reader plug-in. Custom expressions are added to the

108

Implementing your plugin

Creating a database reader plugin

avt Dat abaseMet aDat a object by creating Expr essi on (defined in Expression.h)
objects and adding them by callingtheavt Dat abaseMet aDat a: : AddExpr essi on
method. The Expr essi on object lets you provide the name and definition of an
expression aswell asthe expression’s expected return type (scalar, vector, tensor, etc.) and
whether the expression should be hidden from the user. Hidden expressions can be useful
if you build a complex expression that makes use of smaller sub-expressions that do not
need to be exposed in the Vislt user interface.

Listing 4-20: expressionmetadata.C: C++-Language example for returning expression metadata.

/1 NOTE - This code inconplete and is for exanpl e purposes only.
#i ncl ude <Expression. h>

voi d
avt XXXXFi | eFor mat : : Popul at eDat abaseMet aDat a(avt Dat abaseMet aDat a * nd)
{

/1 Add a nesh called "nmesh" to the netadata object.
/1 Add scalars to the netadata object.

/1 Add expression definitions to the netadata object.
Expression *e0 = new Expression;

e0- >Set Nane("speed") ;

e0->SetDefinition("{u,v,w");

e0- >Set Type(Expr essi on: : Vect or MeshVar) ;

e0- >Set Hi dden(f al se);

nd- >AddExpr essi on(e0) ;

Expression *el = new Expression;

el- >Set Nane("density");

el->Set Definition("mass/vol ume");

el- >Set Type(Expressi on: : Scal ar MeshVar) ;
el- >Set Hi dden(f al se);

nd- >AddExpr essi on(el);

/1 Add other objects to the netadata object.

45 Returningamesh

Once your database reader plug-in can successfully return metadata about one or more
meshes, you can proceed to implementing your plug-in’s Get Mesh method. When you
make aplot in Vislt, the plot is set up using the file metadata returned by your plug-in.
When you click the Draw button in the Vislt GUI, it causes a series of requests that make
the compute engine load your | i bE plug-in and call its Get Mesh method with the name
of the mesh being used by the plot as well as the time state and domain numbers (MT or
MD formats only).

Implementing your plugin 109

Creating a database reader plugin

A database reader plug-in’sjob isto read relevant data from afile format and translate the
datainto aVTK object that Vislt can process. The Get Mesh method’sjob isto read the
mesh information from the file and create aVTK object that describes the mesh in the data
file. Vislt can process many different mesh types (See Figure 4-15 on page 105) and you
can return different types of VTK objects that best describe your mesh type. This section
gives example code to show how you would take data read from your file format and turn
itinto VTK objects that describe your mesh. The details of reading data from your file
format are omitted from the example code listings because those details change for each
file format. The central message in this section is how to use datafrom afile format to
construct different mesh types.

451 Determining which mesh toreturn

The Get Mesh method is always passed a string containing the name of the mesh that
should be returned from the plug-in. If your file format only ever has one mesh then you
can ignore the meshnane argument. However, if your file format can contain more than
one mesh then you should check the name of the requested mesh before returningaVTK
object so you create and return the correct mesh.

Listing 4-21: getmeshl1.C: C++ Language example for which mesh to return in GetMesh.

/1 NOTE - This code inconplete and is for exanple purposes only.
#i ncl ude <l nvalidVvari abl eExcepti on. h>

vt kDat aSet *
avt XXXXFi | eFor mat : : Get Mesh(const char *neshnane)

{
/1 Determ ne which nesh to return.
if (strcnmp(neshnane, "mesh") == 0)
{
/'l Create a VITK object for "nesh"
return nesh;
}
else if (strcnp(nmeshnane, "mesh2") == 0)
{
/1l Create a VTK object for "mesh2"
return nesh2;
}
el se
{
/1 No nesh nane that we recognize.
EXCEPTI ON1(I nval i dVari abl eExcepti on, meshnane);
}
return O;
}

110

Implementing your plugin

Creating a database reader plugin

If your database reader plug-in is derived from one of the M T or MD file format interfaces
then the Get Mesh method will have, in addition to the meshnanme argument, either a

t i mest at e argument, donai n argument, or both. These extra arguments are both
integers that Vislt passes to your plug-in so your plug-in can select the right mesh for the
specified time state or domain. If your Get Mesh method accepts a timestate argument
then you can useit to return the mesh for the specified time state, which isin the range [O,
NTS- 1], where NTS is the number of time states that your plug-in returned from its

CGet NTi mest eps method. The range for the domain argument, if it is present, is
[O,NDOMS - 1] where NDOMS is the number of domains that your file format added to
the nunBl ocks member intheavt MeshMet aDat a object corresponding to the mesh
named by the meshnane argument.

452 Rectilinear meshes

A rectilinear meshisa 2D or 3D mesh
where all coordinates are aligned with
the axes. Each axis of the rectilinear
mesh can have different, non-uniform
spacing, allowing for details to be
concentrated in certain regions of the
mesh. Rectlinear meshes are specified « H o 4 55
by lists of coordinate values for each < S & >
axis. Since the mesh is aligned to the il) |
axes, it isonly necessary to specify one
set of X, Y, and Z valuesto generate al
of the coordinates for the entire mesh.

<08 0 240 50>

Once you read the X,Y, and Z 4 1 f 4
coordinates from your datafile, you X- coor di nat es
can use them to assemble a Figure 4-22: Rectilinear mesh and its X,Y node

" ea tlinear
vtkRecti | i near Gri d object. The coordinates

procedure for creating a

vt kRecti | i near Gi d object and returning it from Get Mesh is shown in the next
code listing. The underlined portions of the code listing indicate incomplete code that you
must replace with code to read values from your file format. The first such piece requires
you to read the number of dimensions for your mesh from the file format and store the
valueinto the ndi ns variable. Once you have done that, read the number of nodesin
each of the X,Y,Z dimensions and store those valuesin the di s array. Finaly, fill in the
code for reading the X coordinate valuesinto the xar r ay array and do the sasmefor the Y
and Z coordinate arrays. Once you have replaced the underlined code portions with code
that reads values from your file format, your plug-in should be able to return avalid

vt kRecti |l inear Gi d object onceyou rebuild it.

Listing 4-23: getmesh_rect.C: C++ Language example for creating vtkRectilinearGrid in GetMesh.

/1 NOTE - This code inconplete and requires underlined portions

Implementing your plugin 111

Creating a database reader plugin

/!l to be replaced with code to read values fromyour file format.

#i ncl ude <vtkFl oat Array. h>
#i ncl ude <vtkRectilinearGid. h>

vt kDat aSet *
avt XXXFi | eFor mat : : Get Mesh(const char *neshnane)
{

int ndins = 2;

int dinms[3] = {1,1,1};

vt kFl oat Array *coords[3] = {0,0,0};

/1 Read the ndins and nunber of X Y,Z nodes fromfile.
ndi ne = NUMBER OF MESH DI MENSI ONS:

dins[0] = NUMBER OF NODES I N X- DI MENSI ON.
dins[1] = NUMBER OF NODES I N Y- DI MENSI ON.
dins[2] = NUMBER OF NODES IN Z-DIMENSION, OR 1 I F 2D

/1l Read the X coordinates fromthe file.

coords[0] = vtkFloatArray:: New();

coor ds[0] - >Set Nunmber O Tupl es(di ns[0]) ;

float *xarray = (float *)coords[O0]->Get Voi dPoi nter(0);
READ di ns[0] FLOAT VALUES | NTO xarray

/1l Read the Y coordinates fromthe file.

coords[1] = vtkFloatArray:: New();

coor ds[1] - >Set Nunmber O Tupl es(di nms[1]) ;

float *yarray = (float *)coords[1]->GetVoi dPoi nter(0);
READ di nms[1] FLOAT VALUES I NTO yarray

/! Read the Z coordinates fromthe file.

coords[2] = vtkFloatArray:: New();

if(ndinms > 2)

{
coor ds[2] - >Set Nunmber O Tupl es(di ns[2]) ;
float *zarray = (float *)coords[2]->CGetVoi dPoi nter(0);
READ di ns[2] FLOAT VALUES | NTO zarray

}
el se
{
coor ds[2] - >Set Nunmber O Tupl es(1);
coor ds[2] - >Set Conponent (0, 0, 0.);
}
/1

/'l Create the vtkRectilinearGid object and set its di nmensions
/1 and coordi nates.

/1

vtkRectilinearGid *rgrid = vtkRectilinearGid:: New();
rgrid->Set Di nensi ons(di ns) ;

rgri d->Set XCoor di nat es(coords[0]);

coords[0] ->Del ete();

rgrid->Set YCoor di nat es(coords[1]);

coords[1] ->Del ete();

112 Implementing your plugin

Creating a database reader plugin

rgrid->Set ZCoor di nat es(coords[2]);
coords[2] ->Del ete();

return rgrid;

45.3 Curvilinear meshes

Curvilinear meshes are structured meshes as

are rectilinear meshes. Whereasin a

rectilinear mesh, asmall set of independent 0> <38 3>
X,Y,Z coordinate arrays are used to generate <3y SR 75
the coordinate values for each node in the

mesh, in acurvilinear mesh, the node

coordinates are explicitly given for each

node in the mesh. This means that the sizes i :
of the X,Y,Z coordinate arraysin a ' ' L
curvilinear mesh are all NX*NY*NZ where
NX isthe number of nodesin the X-
dimension, NY isthe number of nodesinthe
Y-dimension, and NZ isthe number of nodes
in the Z-dimension. Providing the
coordinates for every node permits you to
create more complex geometries than are
possible using rectilinear meshes (See
Figure 4-24).

gn
n
A

w
v

<0,

= =1
=]
Lo
=]
L

g4, (>

Figure 4-24: Curvilinear mesh and its X,Y node
coordinates

Curvilinear meshes are created using thevt kSt ruct ur edG i d class. The next code
listing shows how to createavt kSt r uct ur edG i d object once you have read the
required information from your file format. The underlined portions of the code listing
indicate incomplete code that you will need to replace with code that can read datafrom
your file format. First, read the number of dimensions for your mesh from the file format
and storethevaueinto thendi ns variable. Once you have done that, read the number of
nodes in each of the X,Y,Z dimensions and store those valuesin the di ns array. Finaly,
fill in the code for reading the X coordinate valuesinto the xar r ay array and do the same
for the Y and Z coordinate arrays. Once you have replaced the underlined code portions
with code that reads values from your file format, your plug-in should be able to return a
validvt kSt ruct uredG i d object once you rebuild it

Listing 4-25: getmesh_curv.C: C++ Language example for creating vtkStructuredGrid in GetMesh.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file fornat.

#i ncl ude <vt kPoi nts. h>
#i ncl ude <vtkStructuredGid. h>

Implementing your plugin 113

Creating a database reader plugin

vt kDat aSet *
avt XXXFi | eFor mat : : Get Mesh(const char *neshnane)

{

int ndins = 2;
int dinms[3] = {1,1,1};

/1 Read the ndins and nunber of X Y,Z nodes fromfile.
ndi ne = NUMBER OF MESH DI MENSI ONS:

dins[0] = NUMBER OF NODES I N X- DI MENSI ON.
dins[1] = NUMBER OF NODES I N Y- DI MENSI ON;
dins[2] = NUMBER OF NODES IN Z-DIMENSION, OR 1 I F 2D

i nt nnodes = di ns[0] *di ns[1] *di ns[2] ;

/! Read the X coordinates fromthe file.
float *xarray = new float[nnodes];
READ nnodes FLOAT VALUES | NTO xarray

/! Read the Y coordinates fromthe file.
float *yarray = new float[nnodes];
READ nnodes FLOAT VALUES | NTO varray

/! Read the Z coordinates fromthe file.
float *zarray = O;
if(ndinms > 2)
{
zarray = new fl oat[nnodes]:
READ di ns[2] FLOAT VALUES | NTO zarray

}

/1

/1l Create the vtkStructuredGid and vtkPoi nts objects.
/1

vtkStructuredGid *sgrid

vt kPoi nt s *poi nts
sgri d->Set Poi nt s(poi nts);
sgri d->Set Di nensi ons(di ns) ;

poi nts->Del ete();

poi nt s- >Set Nunber O Poi nt s(nnodes) ;

vtkStructuredGid:: New();
vt kPoi nt's: : New() ;

/1

/1 Copy the coordinate values into the vtkPoints object.
/1

float *pts = (float *) points->Cet Voi dPoi nter(0);

float *xc = xarray;

float *yc = yarray;

float *zc = zarray;

i f(ndinms == 3)

{
for(int k = 0; k < dins[2]; ++k)
for(int j =0; j < dins[1l]; ++))
for(int i =0; i <dins[0]; ++i)
{

*pts++ = *Xc++;

114

Implementing your plugin

Creating a database reader plugin

*pts++ = *yc++,;
*pts++ = *zc++,
}
}
else if(ndins == 2)
{
for(int j =0; j <dinms[1]; ++j)
for(int i =0; i <dins[0]; ++i)
{
*pts++ = *XC++,
*pts++ = *yc++,;
*pts++ = 0.
}
}

/1l Delete tenporary arrays.
delete [] xarray;
delete [] yarray;
delete [] zarray;

return sgrid;

454 Point meshes

Point meshes are collections of particle positions
that can be displayed in Vislt as points or small
glyphed icons. Point meshes can be returned from
the Get Mesh method as

vt kUnst ruct ur edG i d objects that contain
the locations of the points and connectivity b B s
composed entirely of vertex cells. i T L

| Z-Axis
L4

The next code listing shows how to create a
vt kUnst ruct ur edG i d object once you have ¥

read the required information from your file v

format. The underlined portions of the code listing

indicate incomplete code that you will need to Figure 4-26: 3D point mesh

replace with code that can read data from your file

format. First, read the number of dimensions for

your mesh from the file format and store the value into the ndi ns variable. Next, read
the number of points that make up the point mesh into thennodes variable. Finaly, fill in
the code for reading the X coordinate values into the xar r ay array and do the same for
theY and Z coordinate arrays. Once you have replaced the underlined code portions with

Implementing your plugin 115

Creating a database reader plugin

code that reads values from your file format, your plug-in should be able to return avalid
vt kUnst ruct ur edG i d object once you rebuild it.

Listing 4-27: getmesh_point.C: C++ Language example for returning a point mesh from GetMesh.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file format.

#i ncl ude <vt kPoi nts. h>
#i ncl ude <vt kUnstructuredGid. h>

vt kDat aSet *
avt XXXFi | eFor mat : : Get Mesh(const char *neshnane)

{

int ndins = 2;
i nt nnodes;

/1 Read the ndins and nunber of nodes fromfile.
ndi ns_ = NUVMBER OF MESH DI MENSI ONS;
nnodes = NUMBER OF NODES | N THE MESH:

/! Read the X coordinates fromthe file.
float *xarray = new float[nnodes];
READ nnodes FLOAT VALUES | NTO xarray

/! Read the Y coordinates fromthe file.
float *yarray = new fl oat[nnodes];
READ nnodes FLOAT VALUES | NTO yarray

/!l Read the Z coordinates fromthe file.
float *zarray = O;
if(ndinms > 2)
{
zarray = new fl oat[nnodes];
READ di ns[2] FLOAT VALUES | NTO zarray

}

/1

/1l Create the vtkPoints object and copy points into it.
/1

vt kPoints *points = vtkPoints:: New();

poi nt s- >Set Nunber Of Poi nt s(nnodes) ;

float *pts = (float *) points->GetVoi dPointer(0);

float *xc = xarray;

float *yc = yarray;

float *zc = zarray;

if(ndinms == 3)

{
for(int i = 0; i < nnodes; ++i)
{
*pts++ = *Xc++;
*pts++ = *yc++;

116

Implementing your plugin

Creating a database reader plugin

*pts++ = *zc++,

}
}
else if(ndins == 2)
{
for(int i = 0; i < nnodes; ++i)
{
*pts++ = *Xc++;
*pts++ = *yc++,;
*pts++ = 0.
}
}
I
/1l Create a vtkUnstructuredGid to contain the point cells.
I

vtkUnstructuredGid *ugrid = vtkUnstructuredGid:: New();
ugri d- >Set Poi nt s(poi nts);
poi nts->Del ete();
ugri d- >Al | ocat e(nnodes) ;
vt kl dType onevert ex;
for(int i = 0; i < nnodes; ++i)
{
onevertex = i;
ugrid->I nsert Next Cel | (VTK_VERTEX, 1, &onevertex);

}

/1 Delete tenmporary arrays.
delete [] xarray;
delete [] yarray;
delete [] zarray;

return ugrid;

Implementing your plugin 117

Creating a database reader plugin

455 Unstructured meshes

Unstructured meshes are collections of cells of various
geometries that are specified using indices into an I
array of points. When you write your Get Mesh
method, if your mesh is best described as an
unstructured mesh then you can return a

vt kUnst ruct uredG i d object.

Like some of the other mesh objects, the
vt kUnst ruct uredG i d object also usesa
vt kPoi nt s object to contain its node array. In

addition to the vtkPoints array, the ¢ 3
vtkUnstructuredGrid object maintains alist of cells - _

. . . igure 4-28: 2D unstructured mesh
whose connectivity is determined by setting the cell composed of triangles

; : d quadrilaterals. Th

type to one of VTK'’s predefined unstructured cell and quadriaterals. The
types (VTK_VERTEX, VTK_LI NE, labelled red and the cell
VTK_TRI ANGLE, VTK_QUAD, VTK_TETRA, Nirmoers are labelled

VTK_PYRAM D, VTK_WEDGE, and

VTK _HEXAHEDRON), shown in Figure 4-29. When you add a cell using one of the
predefined unstructured cell types, you must also provide alist of node indices that are
used as the nodes for the cell. The number of nodes that each cell containsis determined
by its cell type.

AN K

VTK_VERTEX VTK_TRIANGLE VTK_TETRA VTK_PYRAMID

> 5 2
2
1
0 1 3 0
VTK_LINE VTK_QUAD VTK_WEDGE VTK_HEXAHEDRON

Figure 4-29: Node ordering for some VTK unstructured cell types

118 Implementing your plugin

Creating a database reader plugin

The next code listing shows how to createavt kUnst ruct ur edGri d object. The
connectivity for an unstructured grid can be stored in afile format using a myriad of
different approaches. The example code assumes that the connectivity will be stored in an
integer array that contains the information for each cell, beginning with the cell type for
thefirst cell, followed by alist of node indices that are used in the cell. After that, the cell
type for the second cell appears, followed by its node indices, and so on. For example, if
you wanted to store connectivity for cells 1 and 2 in the example shown in Figure 4-28
then the connectivity array would contain: [VTK_TRI ANGLE, 2, 4, 7,

VTK_TRI ANGLE, 4, 8, 7, ...].Notethatthenodeindicesintheexamplebeginat
one so the example code will subtract one from all of the node indices to ensure that they
begin at zero, the starting index for the vt kPoi nt s array.

Listing 4-30: getmesh_ugrid.C: C++ Language example for returning an unstructured mesh from
GetMesh.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file format.

#i ncl ude <vt kPoi nts. h>
#i ncl ude <vt kUnstructuredGid. h>
#i ncl ude <l nvalidVari abl eExcepti on. h>

vt kDat aSet *
avt XXXFi | eFor mat : : Get Mesh(const char *neshnane)
{

int ndins = 2;

i nt nnodes, ncells, origin = 1;

/1 Read the ndinms, nnodes, ncells, origin fromfile.
ndi rs = NUMBER OF MESH DI MENSI ONS;

nnodes = NUMBER OF NODES | N THE MESH;
ncells = NUMBER OF CELLS I N THE MESH;
origin = GET THE ARRAY CRIG N (0 or 1);

/] Read the X coordinates fromthe file.
float *xarray = new float[nnodes];
READ nnodes FLOAT VALUES | NTO xarray

/! Read the Y coordinates fromthe file.
float *yarray = new fl oat[nnodes];
READ nnodes FLOAT VALUES | NTO yarray

/! Read the Z coordinates fromthe file.
float *zarray = O;
if(ndinms > 2)
{
zarray = new fl oat[nnodes];
READ di ns[2] FLOAT VALUES | NTO zarray

}

/1 Read in the connectivity array. This exanpl e assunes that

Implementing your plugin 119

Creating a database reader plugin

/1 the connectivity will be stored: type, indices, type,
/1 indices, ... and that there will be a type/index |ist
/1 pair for each cell in the nesh.

int *connectivity = 0;
ALLOCATE connectivity ARRAY AND READ VALUES INTO IT.

/1

/1l Create the vtkPoints object and copy points into it.
/1

vt kPoi nts *points = vtkPoints:: New();

poi nt s- >Set Nunber O Poi nt s(nnodes) ;

float *pts = (float *) points->Cet Voi dPoi nter(0);

float *xc = xarray;

float *yc = yarray;

float *zc = zarray;

if(ndinms == 3)

{
for(int i = 0; i < nnodes; ++i)
{
*pts++ = *Xc++;
*pts++ = *yc++;
*pts++ = *zc++,
}
}
else if(ndins == 2)
{
for(int i = 0; i < nnodes; ++i)
{
*pts++ = *Xc++;
*pts++ = *yc++;
*pts++ = 0.
}
}

/1 Delete tenmporary arrays.
delete [] xarray;
delete [] yarray;
delete [] zarray;

/1

/1l Create a vtkUnstructuredGid to contain the point cells.
/1

vtkUnstructuredGid *ugrid = vtkUnstructuredGid:: New();
ugri d- >Set Poi nt s(poi nts);

poi nts->Del ete();

ugri d->Al | ocate(ncells);

vt kl dType verts[8];

int *conn = connectivity

for(int i =0; i < ncells; ++i)

{
int fileCell Type = *conn++;
/1 You file s cell Type will likely not match so you
/1 will have to translate fileCell Type to a VIK
/1 cell type.

120 Implementing your plugin

Creating a database reader plugin

int cell Type = MAP fileCell Type TO VIK CELL TYPE.

/1 Determ ne nunmber of vertices for each cell type.
i f(cell Type == VTK_VERTEX)
nverts = 1,
el se if(cell Type == VIK_LI NE)
nverts = 2,
el se if(cell Type == VIK_TRI ANGLE)
nverts = 3;
el se if(cell Type == VIK_QUAD)
nverts = 4,
el se if(cell Type == VIK_TETRA)
nverts = 4,
el se if(cell Type == VIK_PYRAM D)
nverts = 5;
el se if(cell Type == VIK_WEDCE)
nverts = 6;
el se if(cell Type == VIK_HEXAHEDRON)
nverts = 8§;
el se
{
delete [] connectivity;
ugrid->Del ete();
/1 Qher cell type - need to add a case for it.
/1 In the nmeantine, throw exception or if you
/1 know enough, skip the cell.
EXCEPTI ONO(I nval i dVari abl eExcepti on, meshnane);

}
/1 Make a list of node indices that make up the cell.
for(int j = 0; j < nverts; ++4j)

verts[j] = conn[j] - origin;
conn += nverts;

/'l Insert the cell into the nmesh.
ugrid->InsertNextCell (cell Type, nverts, verts);

}

delete [] connectivity;

return ugrid;

The previous code listing shows how to create an unstructured mesh in a

vt kUnst ruct ur edG i d object. The code listing contains underlined portionsthat you
must replace with working code to read the relevant data from your file format. The first
instance of code that must be replaced are the lines that read ndi ns, nnodes, ncel | s,
and ori gi n from thefile format. The ndi s variable should contain 2 or 3, depending
on whether your datais 2D or 3D. The nnodes variable should contain the number of
nodes that are used in the set of vertices that describe your unstructured mesh. The

ncel | s variable should contain the number of cells that will be added to your

Implementing your plugin 121

Creating a database reader plugin

unstructured mesh. The or i gi n variable should contain O or 1, depending on whether
your connectivity indices begin at 0 or 1. Once you have set those variables to the
appropriate values, you must read in the X,Y, and Z coordinate arrays from the file format
and store the valuesinto the xar r ay, yar r ay, and zar r ay array variables. If your file
format keeps X,Y,Z values together in asingle array then you may be able to read the
coordinate values directly into the vt kPoi nt object’s memory, skipping the step of
copying the X,Y,Z coordinate components into the vt kPoi nt object.

After reading in the coordinate values from your file format, unstructured meshes require
two more changes to the code in the listing. The next change requires you to allocate
memory for aconnect i vi t y array, which stores the type of cells and the nodes indices
of the nodes that are used in the cells. The final change that you must make to the source
codeinthelisting islocated further down in the loop that adds cellsto the

vt kUnst ruct ur edG i d object. The cell type read from your file format will most
likely not use the same enumerated type values that VTK uses for its cell types
(VTK_VERTEX, VTK_LI NE, ...) so you will need to add code to translate from your cell
type designation to VTK cell type numbers. After making the necessary changes and
rebuilding your plug-in, your plug-in’'s Get Mes h method should be capabl e of returning a
validvt kUnst ruct uredGri d object for Vislt to plot.

4.6 Returningascalar variable

Now that you can successfully create a Mesh plot of the meshesfrom your file format, you
can focus on other types of data such as scalars. If you exposed scalar variablesin your
plug-in's Popul at eDat abaseMet aDat a method then those variable names will
appear in the plot menus for plots that can use scalar variables (e.g. the Pseudocol or plot).
When you create a plot of a scalar variable and click the Draw button in the Vislt GUI,
Vislt will tell your database reader plug-in to open your file, read the mesh, and then your
plug-in's Get Var method will be called with the name of the variable that you want to
plot. The Get Var method, like the Get Mesh method, takes a variable name as an
argument. When you receive the variable name in the Get Var method you should access
your file and read out the desired variable and returnitin aVTK dataarray such asa

vt KFl oat Array oravt kDoubl eArray. A vt kFl oat Array isaVTK object that
encapsulates a dynamically allocated array of a given length. The length of the array that
you allocate to contain your variable must match either the number of cellsin your mesh
or the number of nodes in your mesh. The length is determined by the scalar variable’'s
centering (cell-centered, node-centered).

Listing 4-31: getvar.C: C++ Language example for returning data from GetVar.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file format.

#i ncl ude <vtkFl oat Array. h>

vt kDat aArray *

122

Implementing your plugin

Creating a database reader plugin

avt XXXFi | eFor mat : : Get Var (const char *varnane)
{
i nt nval s;
/1 Read the nunmber of vaues contained in the array
/'l specified by varnane.
nvals = NUMBER OF VALUES I N ARRAY NAMED BY var nane;

/1 Al'locate the return vtkFl oat Array object. Note that
/1 you can use vtkFl oat Array, vtkDoubl eArray,

/1 vtkUnsi gnedChar Array, vtklintArray, etc.

vt kFl oat Array *arr = vtkFloatArray:: New();

arr - >Set Nunmber OF Tupl es(nval s) ;

float *data = (float *)arr->Cet Voi dPoi nter(0);

READ nval s FLOAT NUMBERS | NTO THE dat a ARRAY.

return arr;

In the previous code listing, there are two underlined areas that need to have code added to
them in order to have acompleted Get Var method. The first change that you must make
isto add codeto read the size of the array to be created into the nval s variable. The value
that isread into the nval s variable must be either the number of cellsin the mesh on
which the variable is defined if you have a cell-centered variable or it must be the number
of nodes in the mesh. Once you have successfully set the proper valueinto thenval s
variable, you can proceed to read values from your file format into the data array, which
points to storage owned by the vt kFI oat Ar r ay object that will be returned from the
Get Var method. Once you have made these changes, you can rebuilt your plug-in and
begin plotting scalar variables.

4.7 Returning avector variable

If you exposed vector variablesin your plug-in's Popul at eDat abaseMet aDat a
method then those variable names will appear in the plot menus for plots that can use
vector variables (e.g. the Vector plot). When you create a plot of avector variable and
click the Draw button in the Vislt GUI, Vislt will tell your database reader plug-in to open
your file, read the mesh, and then your plug-in's Get Vect or Var method will be called
with the name of the variable that you want to plot. The Get Vect or Var method, like
the Get Mesh method, takes a variable name as an argument. When you receive the
variable name in the Get Vect or Var method you should access your file and read out
the desired variable and return it inaVTK dataarray such asavt kFl oat Array or a
vt kDoubl eArray. A vt kFl oat Array isaVTK object that encapsulates a
dynamically alocated array of agiven length. The length of the array that you allocate to
contain your variable must match either the number of cellsinyour mesh or the number of
nodes in your mesh. The length is determined by the scalar variable’s centering (cell-
centered, node-centered). In addition to setting the length, which like a scalar variableis
tied to the number of cells or nodes, you must also set the number of vector components.

Implementing your plugin 123

Creating a database reader plugin

In Vislt, vector variables always have three components. If the third component is not
needed then all values in the third component should be set to zero.

The Get Vect or Var code listing shows how to return avt kFl oat Ar r ay with
multiple components from the Get Vect or Var method. Aswith the code listing for
Get Var , this code listing requires you to replace underlined lines of code with code that
reads data from your file format and stores the results in the variables provided.

Listing 4-32: getvectorvar.C: C++ Language example for returning data from GetVectorVar.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file format.

#i ncl ude <vt kFl oat Array. h>
#i ncl ude <InvalidVari abl eException. h>

vt kDat aArray *
avt XXXFi | eFor mat : : Get Vect or Var (const char *var nane)

{

int nvals, nconps = 3;

/1 Read the nunmber of values contained in the array

/'l specified by varnane.

nval s = NUMBER OF VALUES I N ARRAY NAMED BY varnane;

nconps = NUMBER OF VECTOR COVPONENTS | N ARRAY NAMED BY var nane;

/1l Read conmponent 1 fromthe file.
float *conpl = new fl oat[nval s];
READ nval s FLOAT VALUES | NTO conpl

/1 Read conmponent 2 fromthe file.
float *conp2 = new fl oat[nval s];
READ nval s FLOAT VALUES | NTO conp2

/1 Read conmponent 3 fromthe file.
float *conp3 = O;
i f(ncomps > 2)
{
comp3 = new fl oat[nval s];
READ nval s FLOAT VALUES | NTO conp3

}

/1 Allocate the return vtkFl oatArray object. Note that
/1 you can use vtkFl oat Array, vtkDoubl eArray,

/'l vtkUnsi gnedCharArray, vtklntArray, etc.

vt kFl oat Array *arr = vtkFl oatArray:: New();

arr->Set Nunber O Conponent s(3) ;

arr->Set Nunber O Tupl es(nval s);

float *data = (float *)arr->GetVoi dPoi nter(0);

float *cl = conpl;
float *c2 = conp2;
float *c3 = conp3;

124

Implementing your plugin

Creating a database reader plugin

i f(nconmps == 3)

{
for(int i =0; i < nvals; ++i)
{
*dat a++ = *cl++;
*dat a++ = *C2++;
*dat a++ = *Cc3++;
}
}
el se if(nconmps == 2)
{
for(int i =0; i < nvals; ++i)
{
*dat a++ = *cl++;
*dat a++ = *C2++;
*data++ = 0. ;
}
}
el se
{

delete [] conpl;

delete [] conmp2;

delete [] comp3;

arr->Del ete();

EXCEPTI ON1(I nval i dVari abl eExcepti on, varnane);

}

/1l Delete tenporary arrays.
delete [] conpl;
delete [] comp2;
delete [] comp3;

return arr;

48 UsingaVTK reader class

The implementations so far for the Get Mesh, Get Var , and Get Vect or Var plug-in
methods have assumed that the database plug-in would do the work of interacting with the
file format to read datainto VTK form. Most of the work of reading afile and creating
VTK objects from it can be handled at the VTK level if you wish. Thismeansthat it is
possible to use an existing VTK reader classto read datainto Vislt if you are willing to
implement your plug-in methods so that they in turn call the VTK reader object’s methods.
See Vislt’'s VTK database reader plug-in for an example of how to call VTK reader objects
from inside a Vislt database reader plug-in.

Implementing your plugin 125

Creating a database reader plugin

5.0

Advanced topics

If you've implemented your database reader plug-in using only the techniques outlined in
this chapter so far then you likely have a database reader plug-in that works and correctly
serves up itsdatato Vislt in VTK form. This part of the chapter explains some of the more
advanced, though not necessarily required, techniques that you can use to enhance your
plug-in. For instance, you can enhance your plug-in so it returns the correct simulation
times from the datafiles. You can also add code to return data and spatial extents for your
data, enabling Vislt to make more optimization decisions when processing files with
multiple domains.

5.1 Returning cyclesand times

Simulations often iterate for many thousands of cycles while they solve their systems of
equations. Generally, each simulation cycle has an associated cycle number and time
value. Many file formats save thisinformation so it can be made available |ater to post-
processing tools such as Vislt. Vislt uses cycles and times to help you navigate through
time in your database by providing the same time frame of reference that your simulation
used. Vislt's File panel can display times next to each time state in a database and can
also show the current time value as you scroll through time using the time slider. Cycle
and time values for the current time state are often displayed in the visualization window.

Cycles and times in Vislt's user interface

e T T T T YL LRI N =P
a[e e

PFiots Operators PiotAlts OpAlts Variables
= Apply operators and salection to all plats
Engines |

Englne: [dngaban.lint gov

e
Humber of processors: 1
Humber of nodes: Detaun 1.0
Load batancing: St

Total Satus:
I
Stage Status:

1.0 2.0 3.0 é.0
womipt | cwarcocne | closs sngine Z-Axis

, I

user: whiloch
Wed Jun 28 17:12:43 2006

Figure 4-33: Cycles and times values are used to help you navigate through time

126

Advanced topics

Creating a database reader plugin

Returning cycle and time values from your plug-in is completely optional. In fact,
returning cycle and time values for data such as CAD drawings does not make sense.
Since returning cycles and timesis optional in a Vislt database reader plug-in, you can
choose to not implement the methods that return cycles and times. You can also implement
code to return time but not cycles or vice-versa.

The mechanics of returning cycles and times are alittle different depending on whether
you have written an ST or an M T database reader plug-in. In any case, if your plug-in
implements the methods to return cycles or times then those methods will be some of the
first methods called when Vislt accesses your database reader plug-in. Vislt callsthe
methods to get cycles and times and if the returned values appear to be valid then they are
added to the metadata for your file so they can be returned to the Vislt clients and used to
populate windows such as the File Information window, shown in Figure 4-34.

File information [=][oi[=]

File = localhost:/home/whitlocb/data/PDB/dbA00.pdb j

Database: /home/whitlocb/data/PDB/dbA00.pdb

Simulation: No

Database comment: Flash database: dbA for testing Vislt's database ct
File format: PDB_1.0

Num Time States: 10

MetaData Is NOT repopulated on state changes

useCatchAllMesh: 0

Forma
poral extents are from 14 to 18.5.

-
All Times are Accurate
Times: 14, 14.5, 15, 15.5, 16, 16.5,17,17.5, 18, 18.5
All Cycles are Accurate
chles: 0,1,2,3,4,56,7,8,9
Mes

Name = logical_mesh
Number of blocks =1

Block orlgin = 0 -
4] | »

Post | Dlsmlssl

Figure 4-34: The File Information window can be used to inspect
the cycles and times returned from your plug-in.

511 Returningcyclesand timesin an ST plug-in

When Vislt creates plug-in objectsto handle alist of filesusing an ST plug-in, thereisone
plug-in object per filein the list of files. Since each plug-in object can only ever be
associated with one file, the programming interface for returning cycles and times for an
ST plug-in provides methods that return a single value. The methods for returning cycles
and timesfor an ST plug-in are:

virtual bool ReturnsVal i dCycl e() const { return true; }
virtual int CGet Cycl e(voi d) ;

Advanced topics 127

Creating a database reader plugin

virtual bool ReturnsVal i dTi me() const { return true; }
virtual doubl e Cet Ti ne(voi d);

Implementing valid cycles and times can be done independently of one another and there
IS no requirement that you have to implement both or either of them, for that matter. The
Ret ur nsVal i dCycl e method isasimple method that you should exposeif you planto
provide a custom Get Cycl e method in your database reader plug-in. If you provide
CGet Cycl e thenthe Ret ur nsVal i dCycl e method should return true. The same
pattern appliesif you implement Get Ti e - except that you would also implement the
Ret ur nsVal i dTi me method. Replace the underlined sections of codein the listing
with code to read the correct cycle and time values from your file format.

Listing 4-35: cycletime_st.C: C++ Language example for returning cycles, times from ST plug-in.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file fornmat.

i nt

avt XXXFi | eFor mat : : Get Cycl e(voi d)

{
int cycle = OPEN FI LE AND READ THE CYCLE VALUE;
return cycle;

}

doubl e
avt XXXFi | eFor mat : : Get Ti ne(voi d)

doubl e dtinme = OPEN FI LE AND READ THE Tl ME VALUE;
return dtinme;

In the event that you implement the Get Cycl e method but no cycle value is availablein
thefile, you can return the | NVALI D_CYCLE value to make Vislt discard your plug-in's
cycle number and guess the cycle number from the filename. If you want Vislt to
successfully guess the cycle number from the filename then you must implement the

Get Cycl eFr onFi | enane method.

I I
i nt
avt XXXXFi | eFormat : : Get Cycl eFronti | ename(const char *f) const
{

}
I I

return QuessCycle(f);

128

Advanced topics

Creating a database reader plugin

512 Returningcyclesand timesin an MT plug-in

AnMT database reader plug-in may return cycles and times for multiple time states so the
programming interface for MT plug-ins allows you to return vectors of cycles and times.
In addition, an M T database reader plug-in prefers to know upfront how many time states
will be returned from the file format so in addition to Get Cycl es and Get Ti nes
methods, thereisa Get NTi mest eps method that is among the first methods called from
your database reader plug-in.

virtual void GetCycles(std::vector<int> &);
virtual void GetTines(std::vector<double> &) ;
virtual int GetNTinesteps(void);

Aswith ST plug-ins, there is no requirement that an M T plug-in must provide alist of
cyclesor times. However, an MT plug-in must provide a Get NTi mest eps method. If
you are enhancing your database reader plug-in to return cycles and timesthen it is
convenient to implement your Get NTi mest eps method such that it just calls your

Get Cycl es or Get Ti mes method and returnsthe length of the vector returned by those
methods. This simplifies the implementation and ensures that the number of time states
reported by your database reader plug-in matches the length of the cycle and time vectors
returned from Get Cycl es and Get Ti nes. Replace the underlined sections of code in
the listing with code to read the correct cycles and times from your file format.

Listing 4-36: cycletime_mt.C: C++ Language example for returning cycles, times from MT plug-in.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file format.

voi d
avt XXXFi | eFor mat : : Get Cycl es(std::vector<int> &cycl es)
{
int ncycles, *vals = 0;
ncycles = OPEN FILE AND READ THE NUMBER OF CYCLES;
READ ncycl es | NTEGER VALUES | NTO THE val s ARRAY;

/1 Store the cycles in the vector.
for(int i = 0; i < ncycles; ++i)
cycl es. push_back(val s[i]);

delete [] vals;

}

voi d
avt XXXFi | eFor mat : : Get Ti me(std: : vect or <doubl e> &ti nes)
{

int ntines;

doubl e *vals = O;

Advanced topics 129

Creating a database reader plugin

ntinmes = OPEN FILE AND READ THE NUMBER OF TI MES
READ ntinmes DOUBLE VALUES | NTO THE val s ARRAY

/1l Store the tines in the vector.
for(int i =0; i < ntines; ++i)
ti mes. push_back(vals[i]);

delete [] vals;

}

i nt
avt XXXXFi | eFor mat : : Get NTi mest eps(voi d)
{

std: :vector<doubl e> tines;

Cet Ti nes(tines);

return tines.size();

52 Auxiliary data

This section describes how to enable your MD database reader plug-in so it can provide
auxiliary data such as data extents, spatial extents, and materialsto Vislt if they are
availablein your file format. “Auxiliary data’, is the generic term for many types of data
that Vislt's pipeline can use to perform specific tasks such as I/0 reduction or material
selection. Vislt's database reader plug-in interfaces provide a method called

Get Auxi | i ar yDat a that you can implement if you want your plug-in to be capabl e of
returning auxiliary data. Note however that if your plug-inisMTMD then you will haveto
cache your spatial and data extents in the plug-in’'s variable cache in the

Popul at eDat abaseMet aDat a method instead of returning that information from the
CGet Auxi | i ar yDat a method. This subtle difference in how certain metadatais
accessed by Vislt must be observed by an MTMD plug-in in order for it to return spatia
and data extents.

The method arguments for the Get Auxi | i ar yDat a method may vary somewhat
depending on whether your database reader plug-inisbased onthe STSD, STMD, MTSD,
MTMD interfaces. Thereis an extrainteger argument for the time state if your plug-inis
MT and there is another integer argument for the domain if your plug-inis MD. Those
differences aside, the Get Auxi | i ar yDat a method always accepts the name of a
variable, a string indicating the type of data being requested, a pointer to optional data
required by the type of auxiliary data being requested, and areturn reference for a
destructor function that will be responsible for freeing resources for the returned data. The
variable name that Vislt passesto the Get Auxi | i ar yDat a method is the name of a
variable such as those passed to the Get Var method when Vislt wantsto read avariable’'s
data.

130

Advanced topics

Creating a database reader plugin

5.21 Returning data extents

When an MD database reader plug-in provides data extents for each of its domains, Vislt
has enough information to make important optimization decisionsin filters that support
data extents. For example, if you create a Contour plot using a specific contour value, Vislt
can check the data extents for each domain before any domains are read from disk and
determine the list of domains that contain the desired contour value. After determining
which subset of the domains will contribute to the final image, Vislt's compute engine
then reads and processes only those domains, saving work and accelerating VisIt's
computations. For amore compl ete explanation of data extents, see “Writing data extents’
on page 70.

In the context of returning data extents, Vislt first checks a plug-in’s variable cache for
extents. If the desired extents are not available then Vislt calls the plug-in's

Cet Auxi | i ar yDat a method with the name of the scalar variable for which data
extents are required and also passes AUXI LI ARY_DATA DATA EXTENTS asthe type
argument, indicating that the Get Auxi | i ar yDat a method is being called to obtain the
data extents for the specified scalar variable. If the data extents for the specified variable
are not available then the Get Auxi | i ar yDat a method should return O. If the data
extents are available then the list of minimum and maximum values for the specified
variable are assembled into an interval tree structure that Vislt usesfor fast comparisons of
different dataranges. Oncetheinterval treeisconstructed, as shown in the code listing, the
Get Auxi | i ar yDat a method must return the interval tree object and set the destructor
function argument to a function that can be called to later destroy the interval tree. To add
support for data extents to your database reader plug-in, copy the Get Auxi | i ar yDat a
method in the code listing and replace the underlined lines of code with code that reads the
required information from your file format.

Listing 4-37: dataextents.C: C++ Language example for returning data extents.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file fornmat.

#i ncl ude <avtlnterval Tree. h>

/1 STND version of GetAuxiliaryData.

void *

avt XXXXFi | eFor mat : : Get Auxi | i aryDat a(const char *var,
i nt dommin, const char *type, void *,
Destructor Function &df)
void *retval = 0;

i f(strcnp(type, AUXI LI ARY_DATA DATA EXTENTS) == 0)

/! Read the nunber of donmmins for the mesh.
int ndons = READ NUMBER OF DOVAI NS FROM FI LE;

Advanced topics 131

Creating a database reader plugin

/'l Read the mn/max val ues for each domain of the
/1 "var" variable. This infornmation should be in
/1 a single file and should be avail abl e w t hout
/1 having to read the real data.

doubl e *m nval s = new doubl e[ndons] ;

doubl e *maxval s = new doubl e[ndons] ;

READ ndons DOUBLE VALUES | NTO mi nval s ARRAY.

READ ndons DOUBLE VALUES | NTO nmaxval s ARRAY.

// Create an interval tree

avtinterval Tree *itree = new avtlnterval Tree(ndonms,

for(int dom= 0; dom < ndons; ++dom

{
doubl e range[2] ;
range[0] = m nval s[donj;
range[1] = naxval s[donj;
i tree->AddEl enent (dom range);
}

itree->Cal cul ate(true);

/1l Delete tenporary arrays.
delete [] m nvals;
delete [] maxval s;

/1 Set return val ues
retval = (void *)itree;
df = avtlnterval Tree:: Destruct;

}

return retval;

1);

5.22 Returning spatial extents

Another type of auxiliary datathat Vislt supports for MD file formats are spatial extents.
When Vislt knows the spatial extents for all of the domains that comprise a mesh, Vislt
can optimize operations such as the Slice operator by first determining whether the slice
will intersect a given domain. The Slice operator is thus able to use spatial extents to
determine which set of domains must be read from disk and processed in order to produce
the correct visualization. Spatial extents are used in thisway by many filters to reduce the

set of domains that must be processed.

When Vislt asks the database reader plug-in for spatial extents, the
Cet Auxi | 1 ar yDat a method is called with its type argument set to

AUXI LI ARY_DATA SPATI AL_EXTENTS. When Vislt creates spatial extents, they are
stored in an interval tree structure as they are with data extents. The main difference isthe
input into the interval tree. When adding information about a specific domain to the

interval tree, you must provide the minimum and maximum spatial valuesfor thedomain’s
X, Y, and Z dimensions. The spatial extents for one domain are expected to be provided in

132

Advanced topics

Creating a database reader plugin

the following order: xmin, xmax, ymin, ymax, zmin, zmax. To add support for spatial
extents to your database reader plug-in, copy the Get Auxi | i ar yDat a method in the
code listing and replace the underlined lines of code with code that reads the required
information from your file format.

Listing 4-38: spatialextents.C: C++ Language example for returning spatial extents.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file format.

#i ncl ude <avtlnterval Tree. h>

/1 STND version of GetAuxiliaryData.

voi d *

avt XXXXFi | eFor mat : : Get Auxi | i aryDat a(const char *var,
i nt domain, const char *type, void *,
Dest ruct or Functi on &df)

void *retval = 0O;

i f (strcnp(type, AUXI LI ARY_DATA SPATI AL_EXTENTS) == 0)
{

/1 Read the number of domains for the nesh.
int ndons = READ NUMBER OF DOVAI NS FROM FI LE;

/'l Read the spatial extents for each domain of the
/1 mesh. This information should be in a single

/1 and shoul d be avail able w thout having to

/1 read the real data. The expected format for

/1 the data in the spatialextents array is to

/'l repeat the follow ng pattern for each domain:

/[l Xmn, xmax, ymn, ymax, zmn, znax.

doubl e *spati al extents = new doubl e[ndonms * 6];

READ ndons*6 DOUBLE VALUES | NTO spati al extents ARRAY.

/] Create an interval tree
avtlnterval Tree *itree = new avtlnterval Tree(ndons, 3);
doubl e *extents = spati al extents;
for(int dom= 0; dom < ndons; ++dom
{
i tree->AddEl enent (dom extents);
extents += 6;

}

itree->Cal cul ate(true);

/1 Delete tenporary array.
delete [] spatial extents;

/1 Set return val ues
retval = (void *)itree;
df = avtlnterval Tree:: Destruct;

Advanced topics 133

Creating a database reader plugin

return retval;

5.23 Returning materials

Materials are another type of auxiliary data that database plug-ins can provide. A material
classifies different pieices of the mesh into different named subsets that can be turned on
and off using Vislt's Subset window. In the ssmplest case, you can think of a material as
acell-centered variable, or matlist, defined on your mesh where each cell contains an
integer that identifies a particular material such as*” Steel” or “Air”. Vislt's

avt Mat eri al object isused to encapsulate knowledge about materials. The

avt Mat eri al object containsthe matlist array and alist of names corresponding to
each unique material number in the matlist array. Materials can also be structured so that
instead of providing just one material number for each cell in the mesh, you can provide
multiple materials per cell with volume fractions occupied by each. So-called “mixed
materials’ are created using additional arrays, described in “Materials’ on page 81. To add
support for materialsin your database reader plug-in’s Get Auxi | i ar yDat a method,
replace the underlined lines in the code example with code that read the necessary values
from your file format.

Listing 4-39: matclean.C: C++ Language example for returning material data.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file fornat.

#i ncl ude <avtMaterial . h>

/1 STND version of GetAuxiliaryDat a.

void *

avt XXXXFi | eFormat : : Get Auxi | i aryDat a(const char *var,
int domai n, const char *type, void *,
Destructor Functi on &df)

void *retval = 0O;

i f(strcnp(type, AUXI LI ARY _DATA MATERI AL) == 0)
{

int dinms[3] = {1,1,1}, ndinms = 1;

/'l Structured nmesh case

ndins = MESH DI MENSION, 2 OR 3;

dinms[0] = NUMBER OF ZONES I N X DI MENSI ON
dims[1] = NUMBER OF ZONES I N Y DI MENSI ON;
dins[2] = NUMBER OF ZONES IN Z DIMENSION, OR 1 I F 2D

/1 Unstructured nesh case
dins[0] = NUMBER OF ZONES | N THE MESH
ndins = 1;

/! Read the nunmber of materials fromthe file. This

134

Advanced topics

Creating a database reader plugin

/'l must have already been read fromthe file when
/1 Popul at eDat abaseMet aDat a was cal | ed.
int nmats = NUMBER OF MATERI ALS;

/1 The matnos array contains the list of numbers that

/] are associated with particular materials. For exanple,
/1 matnos[0] is the nunber that will be associated with
/1 the first material and any tine it is seen in the

/1 matlist array, that nunber should be taken to nean

/1 material 1. The nunbers in the matnos array nust

/1 all be greater than or equal to 1.

int *matnos = new int[nmats];

READ nmats | NTEGER VALUES | NTO THE mat nos ARRAY.

/!l Read the material nanes fromyour file format or

/1 make up nanes for the materials. Use the sanme

/1 approach as when you created material names in

/1 the Popul at eDat abaseMet aDat a net hod.

char **nanes = new char *[nmats];

READ MATERI AL NAMES FROM YOUR FI LE FORMAT UNTI L EACH
ELEMENT OF THE nanes ARRAY PO NTS TO | TS OM STRI NG

/! Read the matlist array, which tells what the nateri al
/1 is for each zone in the nesh.

int nzones = dins[0] * dinms[1] * dins[2];

int *matlist = new int[nzones];

READ nzones | NTEGERS INTO THE natlist array.

/1l Optionally create m x_mat, mx_next, mx_zone, m x_vf
/1 arrays and read their contents fromthe file format.

/1 Use the information to create an avtMaterial object.
avtMaterial *mat = new avtMateri al (

nmat s,

mat nos,

names,

ndi s,

di nms,

0,

matlist,

0, // length of m x arrays
0, // mx_mt array
0, // mx_next array
0, // mx_zone array
0 // mx_vf array
)

/1 Clean up.

delete [] matlist;

delete [] matnos;

for(int i =0; i < nmats; ++i)
delete [] nanes[i];

delete [] nanes;

Advanced topics

135

Creating a database reader plugin

/] Set the return val ues.

retval = (void *)nat;

df = avtMaterial::Destruct;
}

return retval;

5.3 Returning ghost zones

Ghost zones are mesh zones that should not be visible in the visualization but may provide
additional information such as values along domain boundaries. Vislt uses ghost zones for
ensuring variable continuity across domain boundaries, for removing internal domain

boundary faces, and for blanking out specific zones. This section covers the code that must
be added to make your database reader plug-inin order for it to return ghost zonesto Visit.

5.3.1 Blanking out zones

Blanking out specific zones so they do not appear in a visualization is a common practice
for creating holes in structured meshes so cells zones that overlap or tangle on top of one
another can be removed from the mesh. If you want to create a mesh that contains voids
where zones have been removed then you can add a special cell-centered array to your
mesh before you return it from your plug-in's Get Mesh method. The code in the listing
can be used to remove zones from any mesh type and works by looking through a mesh-
sized array containing on/off values for each zone and sets the appropriate values into the
ghost zone array that gets added to the mesh object. Replace any underlined code with
code that can read the necessary values from your file format.

Listing 4-40: gz_blank.C: C++ Language example for returning a mesh with blanked out zones.

/1 NOTE - This code inconplete and requires underlined portions
/1 to be replaced with code to read values fromyour file format.

#i ncl ude <avt Ghost Dat a. h>
#i ncl ude <vt kUnsi gnedChar Array. h>

vt kDat aSet *
avt XXXXFi | eFor mat : : Get Mesh(const char *mneshnane)
{

/1 Code to create your nesh goes here.

vt kDat aSet *retval = CODE TO CREATE YOUR IVESH;

/1 Now that you have your nesh, figure out which cells need
/1 to be renoved.

int nCells = retval ->Get Nunber O Cel | s();

int *blanks = new int[nCells];

READ nCells | NTEGER VALUES | NTO bl anks ARRAY.

136

Advanced topics

Creating a database reader plugin

/1 Now that we have the bl anks array, create avtGhostZones.
unsi gned char real Val = 0, ghost = 0;
avt Ghost Dat a: : AddGhost ZoneType(ghost

ZONE_NOT_APPLI CABLE_TO _PROBLEM ;
vt kUnsi gnedChar Array *ghostCells = vtkUnsi gnedCharArray: : New() ;
ghost Cel | s- >Set Nane(" avt Ghost Zones") ;
ghost Cel | s->Al | ocate(nCel | s);

for(int i =0; i < nCells; ++i)
{
i f(blanks[i])
ghost Cel | s- >l nsert Next Val ue(real Val) ;
el se

ghost Cel | s- >l nsert Next Val ue(ghost) ;

}
retval - >Get Cel | Dat a() - >AddArray(ghost Cel | s);

ret val - >Set Updat eGhost Level (0);
ghost Cel | s->Del ete();

/1 Clean up
delete [] bl anks;

return retval;

5.3.2 Ghost zones at the domain boundaries

When ghost zones are used to ensure continuity across domains, an extralayer of zones
must be added to the mesh boundaries where the boundary is shared with another domain.
Once you have done that step, the approach for providing ghost zones is the same as for
blanking out cells using ghost zones if your bl anks array contains zeroes for only the
zones that appear on domain boundaries. The one minor difference is that you must
substitute the DUPLI CATED _ZONE | NTERNAL TO_ PROBLEMghost zonetype for the
ZONE_NOT_APPLI CABLE_TO_PROBLEMghost zone type in the code example.

54 Parallelizing your reader

Vislt isadistributed program made up of multiple software processes that act as awhole.
The software process that reads in data and processes it is the compute engine, which
comesin serial and paralel versions. All of thel i bE plug-insin Vislt also have both
serial and parallel versions. The paralel | i bE plug-ins can contain specialized MPI
communication to support the communication patterns needed by the algorithms used. If
you want to parallelize your database reader plug-in then, in most cases, you will have to
use the MD interface or convert from SD to MD. There are some SD formats that can
adaptively decompose their data so each processor has work (see the ViSUS plug-in) but
most database plug-ins that benefit from parallelism instead are implemented as MD plug-
ins. MD plug-ins are a natural fit for the parallel compute engine because they serve data
that is already decomposed into domains. Some database reader plug-ins, such asthe BOV

Advanced topics 137

Creating a database reader plugin

plug-in, take single domain meshes and automatically decompose them into multiple
domains for faster processing on multiple processors.

Deriving your plug-in from an MD interfaceisuseful sinceit naturally tells Vislt to expect
data from more than one domain when reading your file format. There are a number of
parallel optimizations that can be made inside of your MD database reader plug-in. For
example, you might have one processor read the metadata and broadcast it to all other
processors so when you visualize your datawith alarge number of processors, they are not
all trying to read the file that contains the metadata.

Vislt's parallel compute engine can use one of two different load balancing schemes: static
or dynamic. In static load balancing, each processor is assigned afixed list of domainsand
each of those domainsis processed one at atimein parallel visualization pipelines until
the result is computed. When static load balancing is used, the same code is executed on
all processors with different data and there are more opportunities for parallel, global
communication. When Vislt's parallel compute engine uses dynamic load balancing, the
master process acts as an executive that assigns work as needed to each processor. When a
processor needs work, it requests a domain from the executive and it processes the domain
in its visualization pipeline until the results for the domain have been calculated. After
that, the processor asks the executive for another domain. In dynamic load balancing, each
processor can be working on very different operations so there is no opportunity to do
global communication. Vislt attempts to do dynamic load balancing unless any one of the
filtersin its visualization pipeline requires global communication, in which case static
load balancing must be used. This means that the places where global communication can
occur are few.

Vislt's database plug-in interfaces provide the Act i vat eTi nest ep method asa
location where global, parallel communication can be performed safely. If your parallel
database reader needs to do parallel communication such as broadcasting metadata to all
processors, or figuring out data extents in parallel then that code must be added in the
Act i vat eTi mest ep method.

138 Advanced topics

Chapter 5 |nstrumenting asmulation

code

1.0

2.0

Overview

Some simulation programs include a runtime graphics package, which creates
visualizations of simulation results during execution. Runtime graphics have a number of
advantages over writing out graphics files that can be visualized after the fact by a
visualization tool. First of all, graphics files are written far less frequently than the
simulation calculates its data because of time and disk space limitations. Secondly,
runtime graphics packages have access to al of the variables that a simulation cal culates,
whereas a graphics file usually contains a small subset of the variables. Finally, by using
runtime graphics, users can visualize simulation results as the simulation executes and the
user can possibly intercede to change how the simulation runs.

Vislt provides alibrary that can be used by ssmulation codes in order to expose data to
Vislt, allowing you to use Vislt as a runtime graphics package. This chaper explainsin
detail the stepsrequired to instrument your C or Fortran simulation so that Vislt can access
its data for the purpose of runtime graphics.

Architecture

Parallel simulations often use a technique called domain decomposition (see Figure 5-1)
to break up the simulated problem into smaller pieces called domains. We've learned in
earlier chapters how to store data from different domainsin avariety of file formats such
as Silo and VTK. Simulations often write out 1 domain file per processor, and Vislt

Overview Getting Data into Vislt Manual 139

Instrumenting a simulation code

processes al of theindividual domain files to produce a unified picture with contributions
from all of the relevant domains.

Simulation Datafiles

/

processor 3

processor 2

>/

processor 1 ‘: n

4 . 3
processor 0 \q
k —

Figure 5-1: Simulation writing data files in parallel

Vislt has a distributed architecture which allows various functions to be grouped into
cooperating processes. Vislt's compute engine is particularly relevant when discussing
runtime graphics. The compute engine is responsible for reading data from files,
generating plots from the data, and sending the plots to Vislt's viewer where the plot can
be displayed. In short, Vislt's compute engine is the Vislt component that handles all of
the data. Figure 5-2 depicts Vislt's compute engine reading data files in parallel.

Vislt GUI and Viewer Compute engine Datafiles

processor 3

processor 2

processor 1

processor 0

Figure 5-2: Vislt's compute engine reads data files in parallel and sends data to the viewer
component.

140 Architecture

Instrumenting a simulation code

Vislt users often import their data viafiles that have been written to disk, making data
visualization and analysis a post-processing step. Vislt's| i bsi msimulation
instrumentation library can be inserted into a simulation program to make the ssmulation
act in many ways like a Vislt compute engine. Thel i bsi mlibrary, coupled with some
data access code that you must write and build into your simulation, gives Vislt's data
processing routines access to the ssmulation’s cal culated data without the need for the
simulation to write files to disk (see Figure 5-3). An instrumented simulation may begin
its processing while periodically listening for connections from an instance of Vislt using
i bsi mWhen! i bsi mdetects that Vislt wants to connect to the ssimulation so its data
can bevisualized, | i bsi mloadsthe Vislt Compute Engine Library (VCEL). VCEL isa
dynamically loaded library that contains all of the Vislt compute engine’s data processing
functions. Once VCEL isloaded, your simulation connects back to Vislt's viewer so
requests for plots and data can be made as though your simulation was aregular Vislt
compute engine.

When arequest for data comesin from Vislt’'s viewer, your ssmulation is asked to provide
data via some data access code. Data access code consists of a set of callback functions
that your simulation must provide in order to serve datato Vislt. Data access code is
written in the same language as your simulation program and it serves as the “glue” that
allows the VCEL to access your ssimulation’s data so it can be processed and plotted in
Vislt. Though theinitial portion of this chapter illustrates how to integratel i bsi m
routines into your simulation, much of the rest of this chapter will be devoted to writing
data access code.

Vislt GUI and Viewer Instrumented Simulation

(proch q
T — processor 2
o daja
processor 1 Hi
‘ ata

/procr 0 N ﬂ() >/

Y
< libsi rD <Data access code>
Y Y

Vislt compute engine | ibrary>

2

data

)

Figure 5-3: Vislt getting data from an instrumented parallel simulation

Architecture 141

Instrumenting a simulation code

3.0 Usinglibsm
Thefirst step in instrumenting a simulation so it can serve up datato Vislt isto add the
I i bsi mlibrary. Thel i bsi mlibrary isresponsible for listening for incoming Vislt
connections, connecting to them, and for dynamically loading VCEL (the piece that
allowsthe ssimulation to act asa Vislt compute engine). Thel i bsi mlibrary canlisten for
input from incoming Vislt instances, establish connectionsto Vislt, and respond to
console input or input from Vislt. As one might imagine, thisimplies that your
simulation’s main loop will need to be changed so it calls critical routinesfrom| i bsi m
Restructuring the main loop will be covered shortly.
3.1 Gettinglibsm
Vislt's| i bsi mlibrary islocated in the libsim/V1 directory, which isinstalled under the
version and plaform directories when Vislt isinstalled. For example, if you are building
against aLinux/Intel version of Vislt 1.5.4 installed in /usr/local/apps/visit then the full
path to the libsim directory would be: /usr/local/apps/visit/1.5.4/linux-intel/libsim. Note
that there may be multiple versions of thelibsim library in the future so the current version
1libsim library isinstalled in a V1 subdirectory. The V1 subdirectory containsi ncl ude
and | i b directoriesthat give you easy access to the required C and Fortran include files
and static libraries.
Thefilesthat you need in order to instrument a simulation vary depending on the language
that you used to write your simulation.
Language Include files
CIC++ VisltControlInterface V1.h VisltDatal nterface V1.h
Fortran visitfortransiminterface.inc
3.2 Buildingin libsim support
When you write your simulation in C or C++, you must include
VisltControl I nterface_ V1. hinyour simulation’s sourcefile. In addition, you
must add | i bsi m a to thelist of libraries against which your program is linked. When
your simulation is written in Fortran, you must also take care to include
visitfortransi m nterface.inc inyour Fortran simulation code to assure that
the compiler knows the names of the functions that come from | i bsi m You must link
your Fortran program against both | i bsi m aand| i bsi nf. a.
Listing 5-4: Including libsim header file in C-Language simulation. !
#include <VisltControl I nterface_V1. h>
int main(int argc, char **argv)
142 Using libsim

Instrumenting a simulation code

return O;

Listing 5-5: Including libsim header file in Fortran-Language simulation.

program mai n

implicit none

include “visitfortransimnterface.inc”
stop

end

Using | i bsi mon UNIX platforms, such as Linux, will most likely require you to link
your simulation with the dynamic loader library (-Idl) because! i bsi musesthe system’s
dlopen function to dynamically load the Vislt Compute Engine Library.

3.3 Initialization

This section discusses the changes to the main program that are involved when
instrumenting a simulation code with | i bsi m The following examples are cartoonish
but they show how the main program evolves from something very simple into amain
program that can serve as the skeleton of a ssimulation that can act as a Vislt compute
engine. Once you adapt one of your programsto usel i bsi m it iseasy to use that
program as atemplate for future simulations. Additions to the example programsin this
section will be underlined unless otherwise stated.

Listing 5-6: siml.c: C-Language simulation example before adding libsim

/* SI MPLE SI MULATI ON SKELETON */
voi d sinmulate _one_tinestep()

{
/[* Sinmulate 1 tinestep. */
}
int main(int argc, char **argv)
{
read_i nput _deck();
do
{
simul ate_one_timestep();
wite vis dump();
} while(!sinulation _done());
return O;
}

Using libsim 143

Instrumenting a simulation code

3.3.1 Setting up the environment and creating a .sim file

Thefirst step in instrumenting asimulation with | i bsi mistocall | i bsi m s
initialization functions, starting with the Vi sl t Set upEnvi onment function. The

Vi sl t Set upEnvi r onnent function adds important visit-related environment
variables to the environment, ensuring that Vislt has the environment that it needsto find
its plug-ins, etc.

Step 2 in instrumenting asimulation isto call the

VisltinitializeSocket AndDunpSi nFi | e function, which initializesthelibsim
library and writes out a.sim file to your .visit directory in your home directory. A .sim file
isasmall text file that contains details that tell Vislt how to connect to your running
simulation. The .sim file contains such information as the name of the computer where
your simulation is running, the port that should be used to connect to the simulation, and
the key that should be returned when you successfully connect to the simulation. The first
argumenttotheVi sl tinitiali zeSocket AndDunpSi nFi | e function isthe base
name that will be used to construct afilename for the .sim file. The name for a.simfileis
typically the specified file base with the time that the simulation started appended to it,
allowing you to distinguish between multiple simulations that may be running
concurrently. The second argument is a comment that can be used to further identify your
simulation. The third argument contains the directory path to where your simulation was
started, though it is mainly reserved for future use. The fourth argument, whichis
optional, contains the path and name to the simulation’s input file. The final argument,
which is aso optional, contains the name of an XML user interface file that Vislt can use
to create a custom user interface for controlling your simulation.

Listing 5-7: sim2.c: C-Language simulation example including libsim initialization

/* S| MPLE SI MJULATI ON SKELETON */
#include <VisltControllnterface V1. h>
voi d sinmulate _one_tinestep()

{
/[* Sinmulate 1 tinestep. */
}
int main(int argc, char **argv)
{

[* Initialize environnent variables. */
Vi sl t Set upEnvi ronnent () :
[* Wite out .simfile that Vislt uses to connect. */
VisltlinitializeSocket AndDunpSi nFil e("si mane",
"Sinulation Coment", "/path/to/where/sinmwas/started",

NULL, NULL):

read_i nput _deck();

do

{
simul ate_one_tinestep();
wite vis dump();

} while(!sinulation _done());

144

Using libsim

Instrumenting a simulation code

return O;

3.3.2 Paralle initialization

Parallel programs often require global communication to ensure that all processors are
working on the same activity. Thel i bsi mlibrary requires periodic global
communication to ensure that all processors service the same plot requests from Vislt's
viewer process. Using | i bsi min aparallel smulation requires alittle bit of extra setup.
The code in Listing 5-8 differs from the previous code listing in three important ways,
each labelled in the listing using comments: CHANGE 1, CHANGE 2, CHANGE 3,
respectively.

The first change in the code listing adds two broadcast functionsthat | i bsi mwill use
when it needs to broadcast integers or strings. The two callback functions from the code
listing can most likely be copied directly into your simulation. Note that the callback
functions are conditionally compiled since they are not needed in a serial simulation. The
first change aso includes two static integer variables that will contain the number of
processors that are used to run the simulation as well as the processor’s rank within that
group of processors. Various routines that we'll add in future code examples will use the
par _r ank, and par _si ze integersfor control flow because processor O needs to
behave alittle differently from the rest of the processors because it communicates with
Vislt's viewer.

The second changein Listing 5-8 includes initialization of the MPI library, par _r ank,
par _si ze,and!l i bsi m Once MPI isinitialized, the processor rank and sizeis queried
and stored in par _r ank and par _si ze sothey can be used toinitializel i bsi mas
well as later for control flow. Note that the broadcast functions defined in the first change
are registered with libsim, using Vi sl t Set Br oadcast | nt Funct i on and

Vi sl t Set Broadcast Stri ngFuncti on, sol i bsi mcan broadcast integers and
strings among processors. Once the broadcast callbacks are installed, par _r ank and
par _si ze areusedtotell | i bsi mhow many processors there are and whether the
simulationisparallel usingtheVi sl t Set Paral | el andVi sl t Set Par al | el Rank
functions.

Listing 5-8: sim2p.c: C-Language simulation example including parallel libsim initialization

/* SI MPLE PARALLEL SI MULATI ON SKELETON */
#include <VisltControl Interface V1.h>

#i ncl ude <nmpi . h>

void simulate_one_tinmestep()

{

}
/* CHANGE 1 */
#i f def PARALLEL

/* Simulate 1 tinestep. */

Using libsim 145

Instrumenting a simulation code

static int visit broadcast _int_call back(int *value, int sender)
L
return MPI _Bcast (value., 1, MPI _|INT, sender. MPI_COVM WORI D)
13
static int visit_broadcast_string callback(char *str, int len
int sender)
L
return MPl _Bcast(str, len. MPI _CHAR, sender., MPI_COVM WORL D)
13
#endi f
static int par_rank = 0O;
static int par_size = 1;
int main(int argc, char **argv)
{
/* Initialize environnment vari ables. */
Vi sl t Set upEnvi ronment () ;
/* CHANGE 2 */
#i fdef PARALLEL
[* Initialize MPI */
MPl _Init(&rgc, &argv):
MPI _Comm rank (MPI _COVM WORLD, é&par_rank):
MPI _Comm size (IMPI_COVM WORLD, é&par_size):
[* Install callback functions for global comunication. */
Vi sl t Set Broadcast | nt Function(visit_broadcast _int_call back):

Vi sl t Set Broadcast Stri ngFuncti on(visit

br oadcast _string_call back):

[* Tell libsimwhether the simulation is parallel. */
VisltSetParallel (par_size > 1):
VisltSetParall el Rank(par _rank):
#endi f
[* Wite out .simfile that Vislt uses to connect. Only do it
* _on processor 0.
*/
/* CHANGE 3*/
if(par_rank == 0)
L

VisltinitializeSocket AndDunpSi nFi |l e("si mane”,

"Si mul ati on Comment ",

NULL, NULL);
3
read_i nput _deck();
do
{

simul ate_one_timestep();
wite vis_dunmp();
} while(!sinulation_done());

#ifdef PARALLEL

MPlI _Finalize():
#endi f
return O;

"/ pat h/t o/ wher e/ si nf was/ started",

146

Using libsim

Instrumenting a simulation code

34 Restructuring the main loop

Given the example code from the previous example, thedo. . whi | e loop that serves as
the ssmulation’s main loop can be separated out into a new function called mai nl oop.

34.1 Creating a mainloop function

Moving thedo. . whi | e loop into a separate mai nl oop function will help in the next
stage where additional | i bsi mfunctionswill be called. If your simulation does not have
awell-defined function for simulating one time step, asin the previous example code, then
it is strongly recommended that you refactor your simulation so that code to simulate 1
time can be called from mai nl oop using either asingle function or asmall block of
code. The next examples assume that the simulation provides afunction called:

si mul at e_one_t i nmest ep that can be called over and over again to perform one
cycle of the ssimulation.

Listing 5-9: sim3.c: C-Language simulation example with a mainloop function.

/* SI MPLE SI MULATI ON SKELETON */
#include <VisltControl I nterface_V1. h>
voi d sinmulate _one_tinestep()

{
}

[* Sinmulate 1 tinestep. */

voi d nmai nl oop(voi d)

{

o

-

simul ate one tinmestep():
wite vis dunp():
} while(!sinulation done()):

3

int main(int argc, char **argv)
{
/* Initialize environnent variables. */
Vi sl t Set upEnvi ronnent () ;
/* Wite out .simfile that Vislt uses to connect. */
VisltlinitializeSocket AndDunpSi nFil e("si mane",
“Si nul ati on Comrent",
"/ no/ useful / pat h/ pat h/ t o/ wher e/ si nfwas/ started", NULL, NULL);

/* Read input problem setup, geonetry, data. */
read_i nput _deck();

Using libsim 147

Instrumenting a simulation code

/*

Call the nmain | oop. */

mai nl oop() :

return O;

34.2 Adding libsim functionsto mainloop

Now that the main loop of the program has been extracted from the main piece of the
simulation, we can perform an even larger change on the mai nl oop function. The
following code example keeps only the do. . whi | e loop and the call to

si mul at e_one_t i mest ep; everything elseis new. The structure of the mai nl oop
function will be very similar between simulations since most of the code is devoted to
detecting input from Vislt using | i bsi mand doing the right thing based on that input.

Listing 5-10: sim4.c: C-Language simulation example with fully instrumented mainloop function.

/* 1|s

the sinmulation in run node (not waiting for Vislt input) */

static int runFlag = 1;

voi d mai nl oop(voi d)

{

i nt

do
{

bl ocking, visitstate, err = O;

bl ocking = runFlag ? 0 : 1;
/* Get input fromVislt or tineout so the sinulation can run. */
visitstate = VisltDetectlnput(blocking, -1);

/* Do different things depending on the output from
Vi sltDetectlnput. */
if(visitstate <= -1)

fprintf(stderr, "Can't recover fromerror!\n");

err = 1,
else if(visitstate == 0)
{
/* There was no input fromVislt, return control to sim */
simul ate_one_timestep();
}
else if(visitstate == 1)
{
/* Vislt is trying to connect to sim */
i f(VisltAttenpt ToConpl et eConnection())
fprintf(stderr, "Vislt connected\n");
el se
fprintf(stderr, "Vislt did not connect\n");
}

148

Using libsim

Instrumenting a simulation code

else if(visitstate == 2)
{
/* Vislt wants to tell the engine sonething. */
runFlag = 0;
i f(!VisltProcessEngi neComrand())
{

/* Disconnect on an error or closed connection. */
Vi sl t Di sconnect () ;
/* Start running again if Vislt closes. */
runFlag = 1;

}

}
} while(!sinmulation_done() & err == 0);

There are severa functionsfrom| i bsi mthat are called in the new mai nl oop function.
Thefirst| i bsi mfunction that we call isthe Vi sl t Det ect | nput function, which
listens for inbound Vislt connections on a port that was allocated when | i bsi mwas
initialized. The Vi sl t Det ect | nput function can be called so that it blocks
indefinitely, or so that it times out after a brief period. When the simulation starts up,

Vi sl t Det ect | nput iscalled in non-blocking mode so that it times out. When a
timeout occurs, the Vi sl t Det ect | nput function returns zero and we call the

si mul at e_one_ti nmest ep function. Sincethe Vi sl t Det ect | nput function will
continue to time out until Vislt connects to it, this augmented main loop allows the
simulation to keep iterating, while still periodically listening for inbound Vislt
connections.

Using libsim 149

Instrumenting a simulation code

When Vi sl t Det ect | nput returnsone, thereis EEE
an inbound Vislt connection to which the

- - i g Simulation: -
simulation should try and connect. In this situation, | |

Attribute Value
we Ca“ the . Date Mon Feb 27 17:33:35 2006
Vi sl t Att enpt ToConpl et eConnecti on Host naboolinl.gov
function, which is responsible for two crucial Name proto
actions. Thefirst action isto dynamically load Num Processors ;_ S
VCEL (Vislt Compute Engine Library), whichis | [50™" et
the piece of the puzzle that allowsthe smulation to | |uirie SImGUI_1.ul
perform rciompute engine operations. After 10ading | g muiation status: stopped
VCEL, the
Vi sl t Att enpt ToConpl et eConnecti on i mus |
function tries to connect back to Vislt's viewer. In interrupt | Clearcache | isconnect
the event of asuccessful connection, theviewer and | Commands
the simulation will be connected and the ssmulation halt step run
will appear in the GUI’'s Compute Engines and restart | sync | Custom Commands
Simulation windows (see Figure 5-11).
. Post Dismiss

When Vi sl t Det ect | nput returnstwo, Vislt's

viewer is sending commands to generate plotsto Figure 5-11: Simulation window

the simulation. The simulation can handle

commands from the viewer simply by calling the Vi sl t Pr ocessEngi neConmand
function. The Vi sl t Pr ocessEngi neComrand function reads the commands coming
from the viewer and uses them to make requests of VCEL, which ends up requesting data
through your data access code and processing it. If the

Vi sl t ProcessEngi neComrand function fails for any reason, it usually means that
either Vislt quit or the communication link between Vislt and the simulation was severred.
When the simulation can no longer communicate with Vislt, it isimportant for it to call
libsims VisltD sconnect function. TheVi sl t Di sconnect function resets
I i bsi msoitisready to once again accept a new incoming Vislt connection. Note that
after calling Vi sl t Di sconnect , we aso set ther unFl ag variable to ensure that the
simulation begins to again run autonomously.

3.4.3 Setting up mainloop for a parallel simulation

In Vislt's parallel compute engine, only the first processor, processor 0, communicates in
any way with Vislt's viewer. When requests for plots come in, processor 0 broadcasts the
requests to all of the other processors so all can begin working on the request. Instead of
calling Vi sl t ProcessEngi neComrand directly in aparalel simulation, you will
have to add code to ensure that all slave processors aso call

Vi sl t ProcessEngi neCommand when needed. Listing 5-12 shows how instead of
calling Vi sl t ProcessEngi neComrand directly, you can cal it and broadcast the
appropriate cues to other processors, ensuring they also process input from Vislt's viewer.
Note that command communication also requires calling the

150 Using libsim

Instrumenting a simulation code

Vi sl t Set Sl avePr ocessCal | back function and registering a slave process
callback to be used in command communication.

Listing 5-12: sim4p.c: C-Language simulation example with fully instrumented parallel mainloop
function.

#define VI SIT_COMVAND PROCESS 0
#define VI SIT_COMVAND SUCCESS 1
#define VISIT_COVMVAND FAI LURE 2

[* Helper function for ProcessVisltComuand */
static void Broadcast Sl aveCommand(i nt *conmand)
L
#i f def PARALLEL
MPI _Bcast (command, 1, MPI _INT, 0, MPI _COVM WORLD) :
#endi f
18
[* Callback involved in command comruni cation. */
voi d Sl aveProcessCal | back()

{

int coomand = VI SIT COWAND PROCESS;
Br oadcast S| aveCommand(& omrand) ;

I3

[* Process commands fromviewer on all processors. */
int ProcessVisltCommand(void)

{

int conmand;
if (par _rank == 0)

{

int success = VisltProcessEngi neCommand() :
if (success)

L
command = VI SI T _COVMAND_ SUCCESS
Br oadcast Sl aveComand(& onmand) ;
return 1;
18
el se
L
command = VI SIT _COVVAND FAI L URE
Br oadcast Sl aveComand(& onmand) ;
return 0O:
18
18
el se
L

[* Note: only through the Sl aveProcessCallback call back

* above can the rank O process send a VISIT _COVMAND PROCESS
* instruction to the non-rank O processes. */

while (1)

L

Br oadcast S| aveCommand(& omrand) ;
switch (conmand)

{

Using libsim 151

Instrumenting a simulation code

case VISIT COMVAND PROCESS:
Vi slt ProcessEngi neConmand() ;
br eak:

case VISIT COMVAND SUCCESS:
return 1;:

case VISIT COMVAND FAI LURE:
return 0;

r
r
r
r

/[* 1Is the simulation in run node (not waiting for Vislt input) */
static int runFlag = 1;

/* New function to contain the progranis main |oop. */
voi d mai nl oop(voi d)

{

i nt blocking, visitstate, err = 0;

do
{
bl ocking = runFlag ? 0 : 1;
/[* Get input fromVislt or tineout so the sinulation can run. */
if(par _rank == 0)
visitstate = VisltDetectlnput(blocking, -1):
MPI _Bcast(visitstate, 1, MPI _INT, 0, MPI_COVM WORLD) ;

/* Do different things depending on the output from
Vi sltDetectlnput. */
if(visitstate >= -5 && visitstate <= -1)

fprintf(stderr, "Can't recover fromerror!\n");

err =1,
else if(visitstate == 0)
{
/* There was no input fromVislt, return control to sim */
simul ate_one_timestep();
}
else if(visitstate == 1)
{
/* Vislt is trying to connect to sim */
i f(VisltAttenpt ToConpl et eConnection())
{
fprintf(stderr, "Vislt connected\n");
VisltSet Sl aveProcessCal | back(Sl avePr ocessCal | back) ;
}
el se
fprintf(stderr, "Vislt did not connect\n");
}
else if(visitstate == 2)
{

/* Vislt wants to tell the engine sonething. */

152 Using libsim

Instrumenting a simulation code

runFlag = 0;
if(!ProcessVisltCommand())
{

/* Disconnect on an error or closed connection. */
Vi sl t Di sconnect () ;
/* Start running again if Vislt closes. */
runFlag = 1;

}

}
} while(!sinmulation_done() & err == 0);

3.5 Usinglibsim in aFortran simulation

So far, most of the examplesfor using | i bsi mhave been expressed in the C
programming language. It is also possible to instrument Fortran simulations so they can
serve their data up to Vislt. This subsection will list the entire code skeleton for alibsim-
instrumented Fortran simulation since the transitions that evolved a simple program into
one that can connect to Vislt have already been demonstrated in C. The principles for
instrumenting a Fortran program are the same. If you want to inspect the intermediate
stepsinvolved in converting a simple Fortran simulation program, examine the sample
programs that accompany this book.

The primary source of differences between the following code listing and the code in
Listing 5-10 result from Fortran’s treatment of string variables. Strings are not aways
null-terminated in Fortran asthey arein C, so any | i bsi mfunction that takes string
arguments will require the length of each string argument to be passed as well. The length
argument immediately follows any string argument in the argument list of al i bsi m
function.

The Fortran interfaceto | i bsi mdiffersin another significant way; it requires certain
functions to be defined in order to link successfully. Thel i bsi mlibrary uses callback
functions, or functions that must be provided by your simulation, in order to perform
certain operations. Since the Fortran programming language lacks pointers, it is not
possible to pass the address of afunction that will perform acertain actionto | i bsi m
The Fortran interfaceto | i bsi mcalled | i bsi nf, getsaround this limitation by
registering internal callback functions, which reference Fortran functions that must be
provided by your simulation. The data access functions requried to pass simulation data to
VCEL are handled using the same method, thus instrumenting a Fortran simulation
initially requires more steps than instrumenting a C ssmulation. The number of stepsto
instrument simulations in either language is ultimately the same.

Listing 5-13: fsim4.f: Fortran language simulation example with fully instrumented mainloop
function.

Using libsim 153

Instrumenting a simulation code

¢ Program nmin

Cccc

Cccc

program mai n

inmplicit none

include "visitfortransi m nterface.inc"
| ocal vari abl es

i nteger err

err = visitsetupenv()
err = visitinitializesim("fsim", 5,

"Fortran prototype simulation connects to Vislt",

"/ no/useful /path", 15,

VI SI T_F77NULLSTRI NG, VI SI T_F77NULLSTRI NGLEN
VI SI T_F77NULLSTRI NG, VI SI T_F77NULLSTRI NGLEN)
call mainl oop()

stop

end

subrouti ne mai nl oop()

inmplicit none

i nclude "visitfortransimnterface.inc"

| ocal vari abl es

integer visitstate, result, runflag, bl ocking

mai n | oop
runflag = 1
do 10
if(runflag.eq.1) then
bl ocking = 0
el se
bl ocking = 1
endi f

visitstate = visitdetectinput (bl ocking, -1)

if (visitstate.lt.0) then
goto 1234
el seif (visitstate.eq.0) then
call sinulate_one_tinestep()
el seif (visitstate.eq.1l) then
runflag = 0
result = visitattenptconnection()
if (result.eq.1) then
wite (6,*) "Vislt connected!
el se
wite (6,*) "Vislt did not connect!
endi f
el seif (visitstate.eq.2) then
runflag = 0
if (visitprocessengi necomrand().eq.0) then

46,

154

Using libsim

Instrumenting a simulation code

result = visitdisconnect()
runflag = 1
endi f
endi f
10 conti nue
1234 end

subroutine sinmulate_one_tinmestep()
c Sinmulate one tinme step

wite (6,*) "Sinulating tinme step’

call sleep(1)

end

The above code listing lists the functionsfrom | i bsi nf that must be called from the
program’s mai n function and main loop for a serial ssimulation. When instrumenting a
Fortran ssimulation using | i bsi nf , you must define the following functions in order to
link your program successfully:

Required subroutine/function Argument types
subroutine vistcommandcallback (cmd, lcmd, intdata, character*8 cmd,
floatdata, stringdata, Istringdata) stringdata

integer lemd,
Istringdata, intdata

real floatdata

integer function visitbroadcastintfunction(value, sender) integer value, sender

integer function visitbroadcaststringfunction(str, Istr, sender) | character*8 str

integer Istr, sender

subroutine visitslavepr ocesscallback ()

These functions are primarily for using | i bsi mwith aparallel ssmulation but they must
aways be defined. Extending a parallel Fortran ssmulation will be covered shortly. In
addition, there are functions related to data access code that must also be defined in order
to get your Fortran simulation to link successfuly. Look at thef si md. f source codefile
for examples of which functions must also be defined. Those additional functionswill be
covered later in this chapter.

3.6 Usinglibsimin aparallel Fortran ssimulation

A paralée Fortran smulation’s mai nl oop function should look very similar to its serial
counterpart in terms of how code is organized. Once you have adapted your simulation so
it can beinstrumented with | i bsi m it is possible to make further changes that allow
each processor to serve datato Vislt in parallel. There are many changes that need to
happen in order to instrument a parallel simulation so the process will be broken into

Using libsim 155

Instrumenting a simulation code

stages. The changes begin with telling Vislt the number of processors and the rank of the
current processor within the group beforethe call tothevi sitinitiali zesim
function. You can provide thisinformation to Vislt by calling MPI’s MPI _ COVM_RANK
and VPl _COWM _SI ZE functions and then passing the resulting rank and size data to the
vi sitsetparal |l el andvi sitsetparall el rank functions. Once the rank and
sizedatahave been giventol i bsi m the next change isto ensure that only the master, or
rank zero, processcallsthevi sitinitial i zesi mfunctionfroml| i bsi m Only the
master process should call thevi si ti ni tial i zesi mfunction to ensurethat only one

“ aml” fileis created.

Listing 5-14: fscalarp.f: Fortran language simulation example for parallel initialization.

C __
¢ Program main
c
C __
program mai n
inmplicit none
include "visitfortransimnterface.inc"
include "npif.h"
ccc | ocal vari abl es
i nteger err
ccc PARALLEL state conmon bl ock
i nteger par_rank, par_size
conmmon /PARALLEL/ par_rank, par_size

save / PARALLEL/

call MPI _INT(err)

c Determne the rank and size of this M

c Vislt’s libsimabout it.

call MPI _COVM RANK(MPI _COW WORLD, par_rank, err)
call MPI _COW SI ZE(MPI _COW WORLD, par_size, err)
if(par_size.gt.1) then

err = visitsetparallel (1)
endi f
err = visitsetparallelrank(par_rank)
err = visitsetupenv()

c Have the naster
i f(par
err =

rank. eqg.0) then

"/ no/ useful /path",

process wite the simfile.

visitinitializesim"fscal arp", 8,
"Denonstrat es scal ar

data access function",
15,

40,

VI SI T_F77NULLSTRI NG, VI SI T_F77NULLSTRI NGLEN

endi f

call mainl oop()
call MPI_FINALIZE(err)

VI SI T_F77NULLSTRI NG, VI SI T_F77NULLSTRI NGLEN)

task so we can tel

156

Using libsim

Instrumenting a simulation code

st op

end

The next step in instrumenting a parallel Fortran simulation isto change the nai nl oop
function. Thefirst change that you must make is to ensure that only the master process
callsvi si t det ect i nput . Remember that only the master processtalksto Vislt's
viewer process sothevi si t det ect i nput function should not be called by slave
processes. However, the slaves need to know the instructions that came from the viewer so
we must insert an MPI broadcast function to ensure that all processes get the value sent
from the viewer to the master process. In addition the

Vi si t processengi necomrand function must be exchanged for afunction that can
call vi si t processengi necomrand on all processes. For now, let’s call that new
function pr ocessvi si t conmand.

Listing 5-15: fscalarp.f: Fortran language simulation example for parallel mainloop function.

CCccC

CCccC

CcCccC

CcCccC

subrouti ne mai nl oop()
inmplicit none
i nclude "npif.h"

include "visitfortransi m nterface.inc"
functions
i nt eger processvi si t conmand

| ocal vari abl es

integer visitstate, result, blocking, ierr
S| MSTATE conmon bl ock

i nteger runflag, sintycle

real sintinme

common / S| MSTATE/ runfl ag, si ncycl e, sintime
save /S| MSTATH/

PARALLEL state common bl ock

i nteger par_rank, par_size

common /PARALLEL/ par_rank, par_size

mai n | oop

runflag = 1

sincycle = 0

sintime =0
do 10
if(runflag.eq.1) then
bl ocking = 0
el se
bl ocking = 1
endi f

c Detect input fromVislt on processor 0 and then broadcast
c the results of that input to all processors.

i f(par _rank.eq.0) then

Using libsim

157

Instrumenting a simulation code

visitstate = visitdetectinput(blocking, -1)
endi f
call MPI BCAST(visitstate, 1, MPl | NTEGER, O,
MPI _COVM WORI D, i err)

if (visitstate.lt.0) then
goto 1234
el seif (visitstate.eq.0) then
call sinulate_one_tinestep()
el seif (visitstate.eq.1l) then
runflag = 0
result = visitattenptconnection()
if (result.eq.1) then
wite (6,*) "Vislt connected!
el se
wite (6,*) "Vislt did not connect!
endi f
el seif (visitstate.eq.2) then
runflag = 0
if (processvisitconmand().eq.0) then
result = visitdisconnect()
runflag = 1
endi f
endi f
10 conti nue
1234 end

Now that you have changed the mai nl oop function it is time to define the
processvi si t command function. The pr ocessvi si t command function is used

by themai nl oop function asareplacement for thevi si t pr ocessengi neconmand

function. The new pr ocessvi si t command function must call the

Vi si t processengi necomrand function and it must do so in away that ensures the

functionis called on all processors. Sincethe pr ocessvi si t conmand function is
completely new, you will probably be able to paste it into your simulation with few
changes.

Listing 5-16: fscalarp.f: Fortran language simulation example for parallel processvisitcommand

function.
C ___
C processvisitcomand
C ___

i nteger function processvisitconmand()

inmplicit none

i nclude "nmpif.h"

include "visitfortransimnterface.inc
ccc PARALLEL state common bl ock

i nteger par_rank, par_size

conmmon / PARALLEL/ par _rank, par_size

158

Using libsim

Instrumenting a simulation code

i nteger conmand, e, dol oop, success, ret
i nteger VI SIT_COMVAND_ PROCESS
i nteger VISIT_COMVAND_SUCCESS
i nteger VISIT_COMVAND_ FAI LURE

paramet er (VI SI T_COMVAND PROCESS = 0)
paramet er (VI SI T_COMVAND SUCCESS = 1)
parameter (VI SI T_COMVAND FAI LURE = 2)

i f(par_rank.eq.0) then
success = vi sitprocessengi neconmand()

i f(success.gt.0) then
comand = VI SI T_COVMAND_SUCCESS

ret =1

el se
command = VI SI T_COVMAND_ FAI LURE
ret =0

endi f

call MPI _BCAST(conmand, 1, VPl _| NTEGER, 0, MPl _COVM WORLD, e)
el se
doloop =1
2345 call MPI _BCAST(conmand, 1, VPl _| NTEGER, 0, MPl _COVM WORLD, e)
i f (conmand. eq. VI SI T_COMVAND_PROCESS) t hen
success = Vi sitprocessengi neconmand()
el sei f (command. eq. VI SI T_COMVAND_SUCCESS) t hen
ret =1
doloop =0
el se
ret =0
doloop =0
endi f
i f(dol oop. ne.0) then
goto 2345
endi f
endi f
processvi sitcomand = ret
end

The alterations to the code that have been listed thus far are nearly enough to complete the
changesrequired for aparallel Fortran ssimulationto usel i bsi m The main program and

the

mai nl oop function have been changed to support the extra processing that needs to

happen to ensure that all processors properly receive instructions from Vislt's viewer.
However, there are some broadcast callback functions that must now be implemented to
ensurethat | i bsi mcan communicate with all processors. The callback functions:

vi si t broadcastintfunction,visitbroadcaststringfunction,and

vi si t sl aveprocesscal | back haveto date been stub functions that did not do any

Using libsim

159

Instrumenting a simulation code

real work. When you instrument a parallel Fortran simulation, those callback functions
need to perform broadcasts so | i bsi mcan properly communicate with all processors.

Listing 5-17: fscalarp.f: Fortran language simulation example for parallel broadcast functions.

C __
c visitbroadcastintfunction
C __
i nteger function visitbroadcastintfunction(val ue, sender)
inmplicit none
include "npif.h"
i nt eger val ue, sender
integer |ERR
call MPI_BCAST(val ue, 1, MPl _| NTEGER, sender, MPl _COVM WORLD, i err)
vi sitbroadcastintfunction = 0
end
C __
c visitbroadcaststringfunction
C __
i nteger function visitbroadcaststringfunction(str, Istr,
sender)
inmplicit none
include "npif.h"
character*8 str
i nteger Istr, sender
integer |ERR
call MPI_BCAST(str,lstr, MPl _CHARACTER, sender, MPI _COVM WORLD,
. derr)
vi sitbroadcaststringfunction = 0
end
C __
c visitslaveprocesscal l back
C __

subroutine visitslaveprocesscal |l back ()

inmplicit none

include "npif.h"

integer c, ierr, VISIT COWAND PROCESS

paraneter (VISIT_COWAND PROCESS = 0)

c = VISIT COMVAND PROCESS

call MPI _BCAST(c.1.MPl | NTEGER O, MPI _COVM WORLD, i err)
end

After making all of these changes, your parallel Fortran simulation should be ready to run
for the first time as an application to which Vislt can connect. You will not be able to
extract any data from your simulation just yet but you can begin to run connected to Vislt
and once you have that working you can begin to expose your datato Visit.

160 Using libsim

Instrumenting a simulation code

3.7 Running an instrumented simulation

Onceyou've added | i bsi mfunctions to your simulation and created amai nl oop
function capable of connecting to Vislt, you can run your modified simulation. The current
I i bsi mimplementation must be told where to locate Vislt's shared libraries and plug-ins
in order to have VCEL function properly. Vislt uses environment variables to locate its
shared libraries and plug-ins. If you use aLinux version of Vislt 1.5.4 installed in
lusr/local/apps/visit then use the following commands to ensure that VCEL can find the
necessary Vislt libraries when it runs:

Set VISIT to the directory where a version of Vislt is intalled
setenv VISIT /usr/local/apps/visit/1.5. 4/1inux-intel
env LD LI BRARY_PATH=$VI SI T/1ib VI SI TPLUG NDI R=$VI SI T/ pl ugins ./sim

If you use adifferent version of Vislt or run Vislt on aplatform other than Linux, make the
appropriate substitutions in the VISIT environment variable before trying to run.

3.8 Connecting to an instrumented ssimulation from Vislt

Once you've successfully launched your simulation, you can attempt to connect to it using
Vislt. Open aterminal window and run Vislt. When Vislt comes up, open the File
selection window and browse to ~/.visit/ssmulations, the directory where .sml filesare
stored. You should see afilein that directory with a.siml file extension. The .siml file
was created by your simulation when it started and called the
VisltlinitializeSocket AndDunpSi nFi | e functionfrom! i bsi m The.sml
file contains all of the information that Vislt needs to connect to your simulation. If you
add thefile to your selected fileslist and open it in Vislt's Main window, Vislt will
initiate contact with your simulation.

If your environment was not properly set when you ran your simulation, Vislt will not be
able to connect to it and you might see error messages like the following:

Sinmulating tinme step
Sinmulating tinme step
Vislt did not connect
Sinmulating tinme step
Sinmulating tinme step

Error messages such as those above appear in the terminal window where your simulation
was launched and they result from your environment not being set properly. Be sure that
the pathsthat you usefor LD_LIBRARY_PATH and VISTPLUGINDIR are valid paths that
contain Viglt files. The current Vislt implementation lacks some robustness with respect to
connecting to simulations. If Vislt cannot connect to your simulation then the viewer
process will be hung and you will have to kill it. Note that killing Vislt will not have any
impact on your simulation.

At this stage in instrumenting your simulation, if it was able to successfully create a
connection to Vislt then you will see the name of your simulation in the Compute

Using libsim 161

Instrumenting a simulation code

4.0

engines window and the Simulations window. Furthermore, you will seethe
following messages in the window where you launched your simulation:

Sinmulating tinme step

Sinmulating tinme step

Vi slt connected

Error opening plug-in file: /usr/gapps/visit/1.5.4/1inux-

i ntel/plugins/dat abases/|i bESIi mvlDat abase_ser. so: undefined synbol :
vi si t Cal | backs

Error opening plug-in file: /usr/gapps/visit/1.5.4/1inux-

i ntel/plugins/dat abases/| i bESIi mvVlDat abase_ser. so: undefined synbol :
vi si t Cal | backs

The above messages indicate that Vislt successfully connected back to your simulation.
Also notice that there are error messages about an undefined symbol called

vi si t Cal | backs. Thisisto be expected sincevi si t Cal | backs ispart of the data
access code that must be added to your simulation. Since no data access code has yet been
added to your simulation, VCEL cannot find thevi si t Cal | backs object that allows it
to call your data access functions, which ultimately pass your smulation’s datato VCEL.
Do not worry about the error messages because the next section explains how to write data
access code for your simulation. In the meantime, note how quitting Vislt causes your
simulation to resume cal cul ations.

Writing data access code

If you have made it thisfar then you probably have a simulation that has been restructured
tousel i bsi m Once asimulation has been instrumented using | i bsi m it should be
possible for Vislt to connect to it. Adding the code to alow Vislt to connect to your
simulation isonly the first part of instrumenting your simulation. The next phasein
instrumenting your simulation code is adding data access code to your simulation so
VCEL, the Vislt Compute Engine Library, can access your simulation’s data.

Writing data access code is much like writing a database reader plug-in. It all startswith
writing afunction to provide metadata to Vislt so that it knows the names of the meshes
and variables that are available for plotting. After your simulation is capable of telling
Vislt about its variables, the next step isto write functions that can pass your mesh or data
arraysto Vislt so they can be used in plots. If your datais not in aformat that Vislt readily
supports, you can create amore Vislt-friendly representation of the datain the data access
functions and hand it off to Vislt.

4.1 The Vislt Data I nterface

Vislt relies on the Vislt Data Interface (VDI), a C header file containing the structures and
formats of the data that are supported. The VDI determines how all of the objects passed
asdatato VCEL areto be stored in memory. When you write a data access function for
your simulation, you create objects of types defined in the VDI, populate their data, and

162

Writing data access code

Instrumenting a simulation code

return them. From there, the objects are used to serve data up to VCEL where your plots
are processed.

The VDI C-Language header fileiscalled Vi sl t Dat al nt er f ace_V1. h and it
defines the types and structures that are used when creating objects that pass data to Vislt.
The header fileisinstalled with the binary Vislt distribution. If aLinux version of Vislt
1.5.4 wasinstalled in /usr/local/apps/visit then the header file would be located in
lusr/local/apps/visit/1.5.4/linux-intel/include/visit/libsim/VV1/include. Of course, the actual
path depends on where Vislt was installed, the version of Vislt that wasinstalled, and the
platform.

If you are writing your simulation in Fortran thenthe Vi sl t Dat al nt erface_V1. h
header file will be of no consequence to you. Everything you need to instrument a Fortran
simulation codeislocated invi si t f ort ransi m nt erf ace. i nc, the samefile that
you've aready used to instrument your simulation so far. Fortran simulations do not create
structures directly to passtheir datato Vislt. Since the structures defined in

Vi sl t Dat al nt er f ace_V1. h are more advanced than what can be easily expressed
inFortran, vi si tfortransi m nterface. i nc defines many functions that can be
used to create objects of the right type. These functions are actually an intermediate layer,
making up thel i bsi nf library, that accept the data passed as arguments to the functions
and package them up in the form of the structures defined in

Vi sl t Dat al nt er f ace_V1. h before the datais passed to Vislt for processing. The
differences will become apparent in the remainder of this chapter.

4.2 How data access functions are called

Vislt data access functions are made known to Vislt using a special object called:

vi si t Cal | backs. Thevi si t Cal | backs object isan instance of the

Vi slt_Sinul ati onCal | back structure and it contains pointers to the data access
functions that are to be used by Vislt. When Vislt opens the .sim1 file corresponding to
your running simulation, Vislt knows that the datawill come from a simulation because
the .siml file is opened by the SimV 1 database reader plug-in. The SSimV1 plug-inisa
special Vislt database reader plug-in that uses the functionsinthevi si t Cal | backs
object to access data from your ssmulation. When VCEL isloaded into your simulation
and Vislt tells the simulation to make a plot, the request ends up in the SimV 1 database
reader plug-in. When the SimV 1 plug-in wants to read metadata, for example, it looks for
thevi si t Cal | backs object and usesit to get the pointer to the function that you've
provided in your simulation when Vislt wants to retrieve metadata. Once the function to
call in order to get metadata has been determined, Vislt callsit, which ends up calling your
function. Once your function returns a popul ated metadata object, the SimV 1 plug-in
transcribes the metadata from your metadata object into the avt Dat abaseMet aDat a
object that the SImV 1 plug-in must populate. The basic procedure by which al of the
other data access methods are called is similar.

Writing data access code 163

Instrumenting a simulation code

4.3 Compiler and platform issues

Instrumenting a simulation code on different plaforms, using different compilers and
linkers can require different steps to be taken. This section notes some of the special
methods that must be employed in order to get your instrumented simulation working.

431 Linkingyour simulation

The SimV 1 database reader plug-in must look for thevi si t Cal | backs object within
the symbols exposed by your simulation in order to find it successfully. If the SSmV 1 plug-
incannot findthevi si t Cal | backs object thenit failsto load and Vislt will not be able
to retrieve data from your simulation. The current approach for resolving

vi si t Cal | backs inthe SmV1 database reader plug-in relies on the dynamic linker,
which often must have additional information in the smulation executable in order to
properly perform the runtime linking. In short, the current approach means that you have
to add a special linker flag when linking your ssmulation. If your Makefile uses LDFLAGS
to contain command line arguments that are passed to the linker, then add this line to your
Makefile after LDFLAGS has been defined.

LDFLAGS=$(LDFLAGS) - W, --export-dynam c

The --export-dynamic linker flag isa GNU-specific linker flag that tellsthe linker to export
al public symbols to the dynamic symbol table. Adding this flag ensures that the runtime
linker can resolve the referencesto vi si t Cal | backs inside of the SimV 1 database
plug-in, using thevi si t Cal | backs object that you provide in your simulation. If you
do not use the --export-dynamic linker flag, or an equivalent, when linking your
simulation then the SimV 1 plug-in will fail to load and Vislt will not be able to access
your simulation’s data.

432 TheWindows platform

Thel i bsi mlibrary has not been fully ported to the Windows platform at the time of this
writing. Preliminary results suggest that the dynamic linker approach to resolving

vi si t Cal | backs inthe SimV1 plug-in will not work. Work-arounds have been
explored and have even been successful but no fully productized Windows port of

| i bsi mhasyet been made available.

44 Making data access functions available

The previous sections have established the role and the importance of the

vi si t Cal | backs abject in an instrumented simulation. Now that you know what the
vi si t Cal | backs object does, it istime to see how it is used to make data access
functions available. Thevi si t Cal | backs object is nothing more than a C-Language
structure that contains a set of function pointers that can be set to point to the data access
functions that you provide within your simulation. If you want to make a data access
function accessible to the SimV 1 database reader plug-in so Vislt can read your data,

164

Writing data access code

Instrumenting a simulation code

simply createaVi sl t _Si mul at i onCal | back struct called visitCallbacks and set its
Get Met aDat a function pointer to the address of the function that you wrote to provide
metadata about your simulation.

Listing 5-18: sim5.c: C-Language example for making a data access function available.

#i ncl ude <VisltDatal nterface V1.h>

Vi slt_Sinul ati onMet aData *Vi sl t Get Met aDat a(voi d)

{
/* Create a nmetadata object with no variables. */
size t sz = sizeof (Vislt_Sinulati onMetabDat a) ;
Vislt _SinulationMetaData *nd =

(Vislt_SimulationMetabData *)nmall oc(sz);

menset (nmd, 0, sz);
return nd,

}
Vislt _SinulationCallback visitcCallbacks =

{
&Vi sl t Get Met aDat a,
NULL, /* Get Mesh */
NULL, /* GetMaterial */
NULL, /* Cet Species */
NULL, /* GetScal ar */
NULL, /* GetCurve */
NULL, /* GetM xedScal ar */
NULL /* GCet Donmi nLi st */

Data access functions for Fortran simulations do not have to be made available explicitly
because that is taken care of in visitfortransiminterface.c, the file that defines the Fortran-
callable wrapper functionsfor | i bsi mand VDI. Instead of defining the data access
function and including itinvi si t Cal | backs, you only need to defineit. In fact, all
data access functions for Fortran simulations must be defined to successfully link your
simulation.

Listing 5-19: fsim5.f: Fortran language example for making a data access function available.

i nteger function visitgetnetadata(handl e)
inmplicit none

i nt eger handl e

i nclude "visitfortransimnterface.inc"
visitgetnetadata = VI SI T_OKAY

end

Writing data access code 165

Instrumenting a simulation code

45 Data access function for metadata

The first data access function that you write should be the one that popul ates a metadata
object. Vislt uses metadata to determine which meshes and variables are in a database and
reading a database’s metadata is the first thing Vislt does when accessing a new database.
The object of the data access function for returning metadata is to allocate and return a

Vi slt_Simul ati onMet aDat a object. TheVi sI't _Si nul ati onMet aDat a
object contains lists of the other metadata objects. In Fortran, you do not explicitly create a
Vi slt_Si mul at i onMet aDat a object. Instead, oneiscreatedinl i bsi nf anda
handleto it is passed to your data access function, which then passes the handle to helper
functionsin| i bsi nf that perform various operations on the allocated object. Good
starting points for a data access function that returns metadata are found in Listing 5-18
and Listing 5-19. The code listings found in this section may reproduce those listings,
however, as the listings get longer, the following code listings may instead contain code
fragments required to perform a particular operation. The code fragments can be included
into your simulation and modified until they expose the right variables for your
simulation.

451 Returning smulation state metadata

Simulation state metadata is important because it indicates the running state of the
simulation as well asits cycle iteration and simulated time. The C-Language examplein
Listing 5-20 shows that the simulation state can be set directly into the metadata object.
The Fortran language example in Listing 5-21 shows how to set the simulation state into
the metadata object using thevi si t ndset cycl et i nme and the

vi si t mdset r unni ng functions..

Listing 5-20: sim6.c: C-Language example for returning simulation state metadata.

static int sincycle = 0;
static double simine = 0.;
Vislt_SinulationMetabData *VisltGet MetabDat a(voi d)
{
/* Create a netadata object with no variables. */
size_t sz = sizeof (Vislt_Simul ati onMet aDat a) ;
Vislt_SinmulationMetabData *nd =
(Vislt_SimulationMetabData *)nal | oc(sz);
nenset (nd, 0, sz);

/* Set the sinmulation state. */

nmd- >current Mode = runFlag ? VI SI T_SI MMODE_RUNNI NG :
VI SI T_SI MMODE_ STOPPED;

nd- >current Cycl e = sintycl e;

nd->currentTine = sintinme;

return nd;

166 Writing data access code

Instrumenting a simulation code

Listing 5-21: fsim6.f: Fortran language example for returning simulation state metadata.

i nteger function visitgetnmetadata(handl e)

inmplicit none
i nteger handl e
include "visitfortransi m nterface.inc"

¢ S| MSTATE common bl ock (data shared with mai nl oop and

c sinul ate_one_tinestep)
i nteger runflag, sinctycle
real sintinme
common / SI MSTATE/
i nteger err

runfl ag,

err = visitmdsetcycl eti ne(handl e,
i f(runflag.eq.1) then

err = visitmdsetrunni ng(handl e,
el se

err = visitmdsetrunni ng(handl e,
endi f

vi sitgetnetadata =
end

VI SI T_OKAY

sinctycl e,

sinctycl e,

simine

simtime)
VI SI T_SI MMODE_RUNNI NG

VI SI T_SI MMODE_STOPPED)

452 Returning mesh metadata

If you want Vislt to be able to plot any of your simulation’s data then you must expose at
least one of your simulation’s meshes in the metadata. Remember that Vislt can support
several different mesh types from simple point meshes all the way up to complex multi-

domain unstructured meshes.

Writing data access code

167

Instrumenting a simulation code

Mesh metadatais stored in the |

Vi slt_Simul ati onMet aDat a asa [Plots PlotAtts OpAtts

dynamch |y alocated array of ey llection to all plots

Vi st _MeshMet aDat a objects. Each © Contour >

Vi sl't _MeshMet aDat a object contains =
information about a mesh such as its name, L 4 prdagobandintooy 2

Histogram »

type, dimensions, units, labels, etc. Note that

when you create new A Label [

Vi slt _MeshMet aDat a objects and add %ﬁi
them to the : meshad

Vi slt_Simul ati onMet aDat a object,
they become the property of the

Vi slt_Si mul ati onMet aDat a object
and should not be deallocated by you. The

:¥ scatter »

same principle applies to any string members ne| Dpisconnect simuiation
intheVi sl t _MeshMet aDat a object; be ¥ —
sure to use the strdup function to create h Ll ’ Hnnaet | n..nr..,.,_l;l

duplicate copies of strings so your strings are
not destroyed when Vislt deletes the
Vi slt_Si nmul ati onMet aDat a object.

1=l

Figure 5-22: Mesh variables in the plot menu

It is not important to set values for all of the

membersintheVi sl't _MeshMet aDat a object so long as you do set values for the
name, nmeshType, topol ogi cal D nension, spatial D nensi on, and
nunBl ocks structure members. The value that you use for the mesh’s name is the name
that will appear in Vislt's Plot menus (see Figure 5-22) aswell as the name that will be
passed to your data access function when Vislt wants to plot your mesh. TheneshType
value specifies the mesh’s type and can be any of the following values:

VI SI T_MESHTYPE_RECTI LI NEAR, VI SI T_MESHTYPE_CURVI LI NEAR,

VI SI T_MESHTYPE_UNSTRUCTURED, VI SI T_MESHTYPE_PO NT,

VI SI T_MESHTYPE_SURFACE. Thet opol ogi cal Di nensi on and

spat i al Di mensi on vaues should be either 2 or 3, depending on whether your mesh
existsin 2D or 3D. Finally, the nunBl ocks value should be set to the total number of
domains that comprise your mesh.

Listing 5-23: sim7.c: C-Language example for returning mesh metadata.

#defi ne NDOVAI NS 1

/* Al locate enough roomfor 2 nmeshes in the netadata. */
size t sz;

nd- >numveshes = 2;

sz = sizeof (Vislt _MeshMetabData) * nd->nunmVeshes;

nd- >neshes = (Vislt_MeshMetaData *)nmal |l oc(sz);
nenset (nd- >nmeshes, 0, sz);

/* Set the first nesh’s properties.*/
nd- >neshes[0] . nane = strdup("mesh2d");

168

Writing data access code

Instrumenting a simulation code

nd- >meshes[0] . meshType
nd- >meshes[0] . t opol ogi
nd- >meshes[0]
nd- >meshes[0] .
nd- >meshes[0] .
nd- >meshes[0] .
nd- >meshes[0] .
nmd- >meshes[0] . units
nd- >meshes[0] . xLabel
nd- >meshes[0] . yLabel
nd- >meshes|[0] . zLabel

bl ockTi t
bl ockPi e

/* Set the second nesh

. spati al D nmensi on
nunBl ocks

nunGa oups
strdup("cni);

VI SI T_MESHTYPE_RECTI LI NEAR;
cal Di nensi on 2;
2;
NDOVAI NS;
st rdup(" Domai ns");
st rdup("domai n");

l e
ceName
0;

strdup("Wdth");
strdup("Height");
strdup(" Depth");

'S properties.*/

nd- >meshes[1] . nanme = strdup("nesh3d");

nd- >meshes[1] . meshType = VI SI T_MESHTYPE_CURVI LI NEAR;
nd- >meshes[1] . t opol ogi cal Di nensi on = 3;

nd- >meshes[1] . spati al Di nensi on = 3;

nmd- >meshes[1] . nunBl ocks = NDOVAI NS;

nd- >meshes[1] . bl ockTitl e = strdup("Domai ns");

nd- >meshes[1] . bl ockPi eceNane = strdup("domain");

nmd- >meshes[1] . nun& oups = O;

nd- >meshes[1] . units = strdup("Mles");

nmd- >meshes| 1] . xLabel
nd- >meshes| 1] . yLabel
nmd- >meshes| 1] . zLabel

strdup("Wdth");
strdup("Hei ght");
strdup(" Depth");

The Fortran interface does not deal directly withVi st _MeshMet aDat a objectsand it
hides the complexities of inserting them into the Vi sl t _Si mul ati onMet aDat a
object. This difference in how metadata is added between the C and Fortran interfaces for
I i bsi misdue primarily to Fortran’s lack of direct support for dynamically allocated
objects. Instead of directly creating Vi sl t _MeshMet aDat a objectsin Fortran, the
interface providesthevi si t mdnmeshcr eat e function which creates a new

Vi slt _MeshMet aDat a object, insertsitintotheVi sl't _Si mul at i onMet aDat a
object, and returns an integer handle. The handle can be passed to other mesh-related
metadata functions such asvi si t ndneshset uni t s in order to set additional mesh

properties.

Listing 5-24: fsim7.f: Fortran language example for returning mesh metadata.

i nteger err, tdi
Add a 2D rectili
nt
tdim
sdim= 2

nmesh vi si t mdme
sdim 1)

2

m sdim nmesh, m

near mnesh

= VI SI T_MESHTYPE_RECTI LI NEAR

shcreate(handl e, "nesh2d", 6, nt, tdim

i f(mesh.ne. VISIT_ I NVALI D_ HANDLE) t hen

err visitnd
err visitnd
"Hei ght", 6,

" Dept h",

nmesh,
nmesh,

nmeshset uni t s(handl e,
nmeshset | abel s(handl e,
5)

"ent, 2)

"Wdth", 5,

Writing data access code

169

Instrumenting a simulation code

err
err

vi si t mdmeshset bl ocktitl e(handl e, nmesh, "Donains", 7)
vi si t ndnmeshset bl ockpi ecenane(handl e, nesh, "domain",

6)
endi f
c Add a 3D curvilinear nesh
tdim= 3
sdim= 3

nt = VISIT_MESHTYPE_CURVI LI NEAR
mesh = vi sitnmdnmeshcreat e(handl e, "nesh3d", 6, nt, tdim
. sdim 1)

i f(mesh.ne. VISIT_ I NVALI D_ HANDLE) t hen
err vi si t mdmeshset uni t s(handl e, nmesh, "M les", 5)
err vi sit mdnmeshset | abel s(handl e, nesh, "Wdth", 5,

"Hei ght", 6, "Depth", 5)
err vi si t mdmeshset bl ocktitl e(handl e, nmesh, "Donains", 7)
err vi si t ndnmeshset bl ockpi ecenane(handl e, nesh, "domain",

6)
endi f

45.3 Returning scalar variable metadata

Scalar variables must be exposed viathe metadata if they are to be plotted in Vislt. You
need not expose al of the scalar variables that you have; only those you want to plot in
Vislt. The Vi sl t _Si nul at i onMet aDat a object contains alist of

Vi slt _Scal ar Met aDat a objects, which contain the metadata for all of the scalars
that you expose to Vislt. Specifying a scalar variable only requires you to create a new
entry inthelist of Vi sl't _Scal ar Met aDat a objects. You must set the nane,
meshNane, and cent eri ng fieldsinthe Vi sl t _Scal ar Met aDat a structure. The
Fortran interface providesthevi si t ndscal ar cr eat e function to add metadata for a
new scalar variable to the metadata.

Listing 5-25: sim8.c: C-Language example for returning scalar metadata.

/* Add some scal ar variables. */

nmd- >nuntcal ars = 2;

sz = sizeof (Vislt_Scal ar MetabData) * nd->nunfcal ars;
nd- >scal ars = (Vislt_Scal arMetabData *)nal |l oc(sz);
menset (nd- >scal ars, 0, sz);

/* Add a zonal variable on nmesh2d. */

nd- >scal ars[0] . nanme = strdup("zonal ");

nd- >scal ar s[0] . neshNane = strdup("nesh2d");

nd- >scal ars[0] . centering = VI SI T_VARCENTERI NG_ZONE;

/* Add a nodal variable on nmesh3d. */
nd- >scal ars[1] . nanme = strdup("nodal ");
nd- >scal ars[1] . neshNane = strdup("nesh3d");

170

Writing data access code

Instrumenting a simulation code

nd- >scal ars[1].centering = VISl T_VARCENTERI NG_NODE;

Listing 5-26: fsim8.f: Fortran language example for returning scalar metadata.

i nteger scal ar

c Add a zonal variable on nesh2d.
scal ar = visitndscal arcreate(handle, "zonal", 5, "nmesh2d", 6,
. VI SI T_VARCENTERI NG_ZONE)
c Add a nodal variable on nesh3d.
scal ar = visitndscal arcreate(handl e, "nodal", 5, "mesh3d", 6,

VI SI T_VARCENTERI NG_NCDE)

45.4 Returning curve variable metadata

Aswith other variable types, curve variables (X-Y plot data) must also be exposed in the
metadata if they are to be plotted in Vislt. The Vi sl t _Si nul at i onMet aDat a object
containsalist of Vi si t _Cur veMet aDat a objects, which contain the attributes of the
curve variables that will be exposed to Vislt from the simulation. The only required field
that must be set inthe Vi sl t _Cur veMet aDat a object isthe nane field, which
specifies the name of the curve asit will be used in the Plot list and in your data access
function.

Listing 5-27: sim9.c: C-Language example for returning curve metadata.

/* Add a curve variable. */

nd- >numCur ves = 1;

sz = sizeof (Vislt_CurveMetaData) * nd->nunCurves;
nmd- >curves = (Vislt_CurveMetaData *)nmall oc(sz);
nmenset (nd- >curves, 0, sz);

nmd- >curves[0] . nanme = strdup("sine");

nmd- >curves[0] . xUnits = strdup("radi ans");
nmd- >curves[0] . xLabel = strdup("angle");

nmd- >curves[0] . yLabel = strdup("anplitude");

Listing 5-28: fsim9.f: Fortran language example for returning curve metadata.

i nteger err, curve
c Add a curve variable
curve = visitndcurvecreate(handle, "sine", 4)
i f(curve.ne.VISIT_I NVALI D HANDLE) then
err = visitndcurvesetl abel s(handl e, curve, "angle", 5,
"anplitude", 9)
err = visitndcurvesetunits(handl e, curve, "radians", 7,
VI SI T_F77NULLSTRI NG, VI SI T_F77NULLSTRI NGLEN)
endi f

Writing data access code 171

Instrumenting a simulation code

The Fortran interface providesthevi si t ndcur vecr eat e function to add a curve to
the metadata. Thevi si t ndcur vecr eat e function takes the metadata handle, the
name of the new curve, and the length of the curve name string as arguments. If the

vi si t ndcr eat ecur ve function succeeds then it returns a handle to the new curve
metadata object, which can be passed tovi si t ndcur veset | abel s and

vi si t ndcur veset uni t s to set additional attributes.

455 Returning material metadata

In addition to the variable types mentioned so far, the Vi sl t _Si mul ati onMet aDat a
object also contains alist of material variables. The list of material variablesis stored in
the materials member and iscomposed of Vi sIt _Mat eri al Met aDat a objects. A

Vi slt_Material Met aDat a object contains the name of the material, the mesh on
which it is defined, and the list of possible material names that can be used.

Listing 5-29: sim10.c: C-Language example for returning material metadata.

/* Add a material variable. */

md- >numvaterials = 1;

sz = sizeof (Vislt_Material MetaData) * nd->numvateri al s;
nmd->materials = (Vislt_Material MetaData *)mal |l oc(sz);
nenset (nd->materials, 0, sz);

nd- >mat eri al s[0] . nanme = strdup("mat");

nd- >mat eri al s[0] . meshNane = strdup("nesh2d");

nd- >mat eri al s[0] . nunmvaterials = 3;

/* Allocate nenory to store the [ist of material nanes. */
nd->material s[0] . materi al Nanes = (const char **)mal | oc(

si zeof (char *) * nd->material s[0].nunmVaterials);

nd- >mat eri al s[0] . mat eri al Nanes[0] strdup(“lron");

nd- >mat eri al s[0] . mat eri al Nanes|[1] st rdup(" Copper");

nd- >mat eri al s[0] . mat eri al Nanes|[2] strdup("N ckel ");

The Fortran interface provides a different interface once more to circumvent the
difficulties imposed by dynamic memory allocation. Instead of directly allocating a

Vi slt_WMateri al Met aDat a object, in the Fortran interface, you call

vi si t rdmat eri al cr eat e to create material metadata and acquire ahandletoit. The
returned handle can be used with thevi si t mdmat er i al add function to add materials
one at atimeto the list of material typesin the material metadata object.

Listing 5-30: fsim10.f: Fortran language example for returning material metadata.

i nteger err, nat
c Add a materi al
mat = visitnmdmaterial create(handle, "mat", 3, "nesh2d", 6)
i f(mat.ne.VISIT_I NVALI D_HANDLE) t hen
err vi sitndmat eri al add(handl e, mat, "lron", 4)
err vi sitndmat eri al add(handl e, mat, "Copper", 6)

172

Writing data access code

Instrumenting a simulation code

err = visitndmat eri al add(handl e, mat, "N ckel", 6)
endi f

45.6 Returning expression metadata

Vislt alows databases to return user-defined expressions that can be plotted or used to
create new expressionsin the Expressions window. The

Vi slt_Si mul ati onMet aDat a object contains an array of

Vi sl't _Expressi onMet aDat a objects that each contain the information for one
expression. An expression consists of an expression name, definition, and expression type.
The expression definition is a string that must contain avalid Vislt expression, as defined
in by the expression language documented in the Vislt User’s Manual.

Listing 5-31: simll.c: C-Language example for returning material metadata.

/* Add some expressions. */

nd- >nuExpr essi ons = 2;

sz = sizeof (Vislt_ExpressionMetaData) * nd->nunExpressi ons;
nd- >expressi ons = (Vislt_Expressi onMetaData *) mal | oc(sz);
nmenset (nd- >expressions, 0, sz);

nd- >expr essi ons[0] . nane = strdup("zvec");
nd- >expressi ons[0] . definition = strdup("{zonal, zonal, zonal}");
nd- >expressi ons[0] . vartype = VI SI T_VARTYPE_VECTOR;

nd- >expr essi ons[1] . nane = strdup("nid");
nd- >expressi ons[1] . definition = strdup("nodei d(nesh3d)");
nd- >expressi ons[1] . vartype = VI SI T_VARTYPE_SCALAR;

The Fortran interface provides afunction called vi si t ndexpr essi oncr eat e that
you can use to create expressions. The function takes the new expression’s name,
definition and variable type as arguments and inserts a new expression definition into the
Vi slt_Si mul at i onMet aDat a object.

Listing 5-32: fsim11.f: Fortran language example for returning material metadata.

c Add some expressions
e = visitndexpressioncreate(handl e, "zvec", 4,
"{zonal, zonal, zonal}", 21, VISIT_VARTYPE VECTOR)
e = visitndexpressioncreate(handl e, "nid", 3,
"nodei d(mesh3d)", 14, VI SI T_VARTYPE_SCALAR)

Writing data access code 173

Instrumenting a simulation code

457 Returning smulation-defined command metadata

Vislt alows your simulation to provide the names of user-defined commandsin the
metadata object. When such commands appear in asimulation’s metadata, it influences
Vislt to create special command buttons in the Simulations window. When you open
the Simulations window and click on the buttons, it causes a chain of events that ends
up calling your simulation’s command callback function, which then performs some
action based on the name of the command being executed. These custom commands give
you the opportunity to perform limited steering of your simulation from within Visit.
More advanced methods of simulation steering will be covered later in this chapter.

Example of simple simulation commands that you i

might want to expose in the metadata are the “run”, simutation: [EESPT T <]
“halt”, “step”. Imagine that you use Vislt to connect

. . Attribute [value |
to your simulation a_nd you cr_eate some plots. Once — e r—
you are done analyzing a particular time step, you Host dagobah.linl.gov
may want to click the “run” button in the Name sim12
Simulations window (shownin Figure 5-33) tolet | [NumProcessers 1
K A A comment Demonstrates creat...
your simulation proceed for awhile. After your path /path/to/where/simy...

simulation has advanced, you could click the “halt”
button to pause it while you investigate features that

Simulation Status: Stopped

have developed in the data for the simulation’s Vish Status |

current time Step Interrupt | Clear cache | Dlsconnectl
Com|

The C-Language mai nl oop function that was hat | sep | wun

created in Section 3.4.2 did not have support for a

command callback function. The following code

listing shows what the command callback function 7 | (]

would look like for asimulation that exposes three ' '

simple commands: halt, step, and run. The code Figure 5-33: Vislt's Simulations

listing al'so shows how the command callback window with custom

function isregistered with | i bsi musing the
Vi sl t Set ConmandCal | back function. The new
command callback function and the change to the mainloop function are underlined.

Listing 5-34: sim12.c: C-Language example for installing a command callback function.

/* 1s the simulation in run node (not waiting for Vislt input) */
static int runFlag = 1;
static int sincycle = 0;
static double simine = 0.;

[* Callback function for control commands. */
voi d Control CommandCal | back(const char *cnd,
int intdata, float floatdata,
const char *stringdata)

{

174

Writing data access code

Instrumenting a simulation code

if(strcnp(cnd, "halt") == 0)
runFlag = O;

else if(strcnp(cnd, "step") == 0)
simul ate_one_tinestep():
else if(strcnp(cnd, "run") == 0)
runFlag = 1;
13
voi d mai nl oop(voi d)
{
int blocking, visitstate, err = 0;
do
{

bl ocking = runFlag ? 0 : 1;
/[* Get input fromVislt or tineout so the sinulation can run. */
visitstate = VisltDetectlnput (bl ocking, -1);

/* Do different things depending on the output from
Vi sltDetectlnput. */
if(visitstate >= -5 && visitstate <= -1)

{
fprintf(stderr, "Can't recover fromerror!\n");
err = 1;
}
else if(visitstate == 0)
{
/* There was no input fromVislt, return control to sim */
simul ate_one_timestep();
}
else if(visitstate == 1)
{
/* Vislt is trying to connect to sim */
i f(VisltAttenpt ToConpl et eConnection())
fprintf(stderr, "Vislt connected\n");
Vi sl t Set CommandCal | back(Cont r ol ConmandCal | back) :
}
el se
fprintf(stderr, "Vislt did not connect\n");
else if(visitstate == 2)
{
/* Vislt wants to tell the engine sonething. */
runFlag = 0;
i f(!VisltProcessEngi neComrand())
{
/* Di sconnect on an error or closed connection. */
Vi sl t Di sconnect () ;
/* Start running again if Vislt closes. */
runFlag = 1;
}
}

} while(!sinulation_done() & err == 0);

Writing data access code 175

Instrumenting a simulation code

Listing 5-35: sim12.c: C-Language example for returning simulation commands in the metadata.

/* Add sone custom conmands. */

nd- >nunCGener i cCommands = 3;

sz = sizeof (Vislt_SinulationControl Cormand) * nd->nunCeneri cConmands;
nd- >generi cConmands = (Vislt_Si nul ati onControl Command *) mal | oc(sz);
nenset (nd- >generi cCommands, 0, sz);

nd- >generi cConmands[0] . nane = strdup("halt");
nd- >generi cConmands[0] . argType = VI SI T_CVDARG NONE
nd- >generi cConmands[0] . enabl ed = 1;

nd- >generi cConmands[1] . nane = strdup("step");
nd- >generi cConmands[1] . argType = VI SI T_CVDARG NONE
nd- >generi cConmands[1] . enabl ed = 1;

nd- >generi cConmands[2] . name = strdup("run");
nd- >generi cConmands[2] . argType = VI SI T_CVDARG NONE
nd- >generi cConmands[2] . enabl ed = 1;

Since the Fortran interface, defined in visitfortransiminterface.c requires callbacksto bein
place when the simulation is linked, the Fortran simulation examples so far have already
contained a command callback function. No changeis required to the mai nl oop
function in the Fortran simulations because the callback is aready installed. The
command callback function, which isaways named vi si t conmandcal | back ina
Fortran simulation, previously did nothing. The following code example shows how to
compare the names of acommand coming from abutton click in Vislt's Simulations
window with the names of the supported commands and how to perform the desired
action. The Fortran interface providesthevi si t st r cnp function, which isanalygousto
the C-Language’'sst r cnp function in order to make string comparisons easier in Fortran.
After the Listing 5-36, Listing 5-37 shows how to use the Fortran interface’s

vi si t addsi nconmmand function to add simulation commands to the metadata.

Listing 5-36: fsim12.f: Fortran language implementation of the command callback function.

subroutine visitcomuandcal | back (cnd, |cnd, intdata,
floatdata, stringdata, |stringdata)
inmplicit none
character*8 cnd, stringdata
i nt eger lcnd, Istringdata, intdata
r eal fl oat dat a
i nclude "visitfortransimnterface.inc"
ccc SI MSTATE comon bl ock

176

Writing data access code

Instrumenting a simulation code

i nteger runflag, sintycle

real sintine

comon / SI MSTATE/ runfl ag, sintycle, simine

C Handl e the conmands that we define in visitgetnetadata.

if(visitstrcnp(cnd, lcnd, "halt”, 4).eq.0) then
runflag = 0

el seif(visitstrcnp(cnd, lcnd, "step”, 4).eq.0) then
call simulate_one_tinestep()

elseif(visitstrcnp(cnd, lcnd, "run", 3).eq.0) then
runflag = 1

endi f

end

Listing 5-37: fsim12.f: Fortran language example for returning simulation commands in metadata..

i nteger err

c Add si mul ati on conmands
err = visitndaddsi ncommand(handl e, "halt", 4,
VI SI T_CVDARG NONE, 1)
err = visitndaddsi ncommand(handl e, "step", 4,
VI SI T_CVDARG NONE, 1)
err = visitndaddsi ncommand(handl e, "run", 3,
VI SI T_CVDARG NONE, 1)

4.6 Data access function for meshes

Now that you've implemented a function to return metadata about the meshes and
variablesin your smulation, you can write a new data access function to return the actual
mesh. Adding a new data access function means that you will be adding a new function
pointer to thevi si t Cal | backs object. If your simulation is written in Fortran, you
must implement the vi si t get nesh function to return your mesh’s data.

The data access function for meshesreturnsaVi sl t _MeshDat a object. The

Vi st _MeshDat a object isasimple structure, defined in

Vi sl t Dat al nterface_V1. h, consisting of pointersto structures, which contain data
for the different mesh types that Vislt supports. This section will first show how to return
the right mesh to Vislt and will then focus on passing different types of meshes back to
Vislt so they can be visualized.

4.6.1 Adding a mesh data access function

Adding a mesh data access function means that you have to first write afunction and set
thevi si t Cal | backs object’'s Get Mesh member so it points to your function. The
mesh data access function takes 2 arguments if you program in C. Thefirst argument isa
domain number, which you can use to return smaller pieces of the whole mesh. The
second argument is the name of the mesh that Vislt wants to read. The mesh name will be
one of the meshes that you added to the metadata. The basic procedure involved in writing

Writing data access code 177

Instrumenting a simulation code

amesh data access function is to first check the incoming name against the names of the
meshes that your simulation is prepared to return and when one is found, return it to Vislt
inaVi sl t _MeshDat a object. If your mesh data access routine does not recognize the
name of the mesh then you can return NULL instead of returning aVi sl t _MeshDat a

object.

Listing 5-38: mesh.c: C-Language example for installing a mesh data access function.

Vislt_MeshData *VisltGet Mesh(int domain, const char *nane)

{
Vislt_MeshData *mesh = NULL;
size_ t sz = sizeof (Vislt_MeshDat a);
i f(strcnp(nane, "mesh2d") == 0)
{
/* Allocate Vislt MeshData. */
mesh = (Vislt_MeshData *)mal | oc(sz);
nmenset (nesh, 0, sz);
/* Make Vislt_ MeshData contain a Vislt_Rectilinear Mesh.
sz = sizeof (Vislt_RectilinearMesh);
mesh->rnmesh = (Vislt_RectilinearMesh *)mall oc(sz);
nmenset (nesh->rnmesh, 0, sz);
/* Fill in the attributes of the Vislt_Rectilinear Mesh.
}
el se if(strcnp(nane, "nesh3d") == 0)
{
/* Al'locate Vislt MeshData. */
mesh = (Vislt_MeshData *)mal | oc(sz);
nmenset (nesh, 0, sz);
/* Make Vislt_ MeshData contain a Vislt_Curvilinear Mesh.
sz = sizeof (Vislt_CurvilinearMsh);
mesh->cnesh = (Vislt_CurvilinearMsh *)mall oc(sz);
nmenset (nesh->cnmesh, 0, sz);
/* Fill in the attributes of the Vislt_Curvilinear Mesh.
}
return nesh;
}
Vislt_SinmulationCall back visitCallbacks =
{

&Vi sl t Get Met aDat a,

&Vi sl t Get Mesh,

NULL, /* GetMaterial */
NULL, /* Cet Species */
NULL, /* GetScal ar */
NULL, /* GetCurve */

NULL, /* GetM xedScal ar */
NULL /* GCet Donmi nLi st */

*/

*/

*/

*/

178 Writing data access code

Instrumenting a simulation code

Remember that when writing a Fortran simulation, all of the data access functions must be
defined before you can actually link your simulation. That means that up until now, the
Fortran example programs have been using a simple implementation of the

vi si t get mesh function, which did nothing. The rest of this section will cover how to
add an appropriate, working implementation of thevi si t get mesh data access
function.

Listing 5-39: fmesh.f: Fortran language example of a mesh data access function.

i nteger function visitgetnesh(handl e, donain, nane, |nane)
inmplicit none
character*8 nane

i nt eger handl e, domain, |nane
include "visitfortransimnterface.inc"
integer m

m = VI SI T_ERRCR

i f(visitstrcnp(name, |nane, "mesh2d", 6).eq.0) then
c Create a rectilinear nesh here

el seif(visitstrcnp(nane, |name, "nmesh3d", 6).eq.0) then
c Create a curvilinear nesh here

endi f

visitgetmesh = m

end

4.6.2 Rectilinear meshes

Rectilinear meshes can be returned by the mesh data access function by allocating a

Vi slt_Rectilinear Mesh object and inserting it into the returned

Vi st _MeshDat a object. Don't forget to set the Vislt_MeshData' s meshType member
toVI SI T_MESHTYPE_RECTI LI NEAR. Once you've alocated the
Vislt_Rectilinear Mesh object, start initializing its members using information
about the mesh. For starters, set thendi s member to 2 or 3, depending on the number of
dimensions occupied by the mesh. Next, set the components of the di ns array so Vislt
will know the size of each of the coordinate arrays. The values that you storein the di ns
array are the number of mesh nodes in each dimension. Thedi ns array must always
contains 3 elements. If you are creating a 2D mesh, set the last element to one.

After setting the elementsin thedi s array to the right values for your mesh, you can set
the basel ndex member, which isan offset in X,Y,Z that will be added to your mesh’'s
zone numbers and node numbers when Vislt displays information about your mesh. You
can leave these values set at zero. However, when you want to create a multi-domain mesh

Writing data access code 179

Instrumenting a simulation code

that has global zone and node numbers, you should set the values for basel ndex.
Global node and zone numbers can make it easier to think of your domain-decomposed
mesh as a single entity by making Vislt features such as pick return global node or zone
numbers instead of per-domain node or zone numbers.

Now that you've set thevaluesinthe Vi sl t _Recti | i near Mesh object that indicate
itslogical size, you must tell Vislt whether the mesh has ghost zones. The

Vi slt _Rectil i near Mesh object indicates whether there are ghost zones by using
the values stored inthe m nReal | ndex and maxReal | ndex members. If you
initialized the entire object to zeroes using the memset function then you can omit code to
set thevaluesinthem nReal | ndex array. If your mesh has no ghost zones then you can
set the elementsin the maxReal | ndex array to the number of cellsin each dimension. If
your mesh has ghost zones in any of the dimensions then be sure that you add 1 to the
values stored inthem nReal | ndex array for the dimensions that have ghost zones.
Also be sure to subtract 1 from the elementsin the maxReal | ndex array for the
dimensions that have ghost zones.

The final stage in specifying your rectilinear mesh isto provide Vislt with the coordinate
arrays. TheVi sl't _Rect i | i near Mesh object contains three data array objects that
can be used to contain references to your simulation’s X,Y,Z mesh coordinate arrays or
they can contain copies of those arraysif you do not want to share them with Vislt. The
Vi slt _Creat eDat aArrayFr onfl oat utility function isused to store areferenceto
the simulation-owned mesh coordinate arraysintothe Vi sit _Recti | i near Mesh
object. The coordinate arrays will be the same arrays, thus the same memory locations, as
the simulation’s coordinate arraysif you use thethe VI SI T_OANER _SI Mflag when
creating data arrays for Vislt. If youinstead pass VI SI T_OANER VI SI T then Vislt will
create a copy of the coordinate array, requiring additional memory. Copying the arrays
when giving them to Vislt isagood choiceif your data are not readily stored in aformat
that Vislt can process. If you usetheVI SI T_OWER VI SI T flag then Vislt will free the
data arrays when they are no longer required.

Listing 5-40: mesh.c: C-Language example for returning a rectilinear mesh.

/* Simulation mesh */

float nmesh _x[] = {0., 1., 2.5, 5.};

float nesh_y[] = {0., 2., 2.25, 2.55, 5.};
i nt mesh_dins[] = {4, 5, 1};

i nt mesh_ndi ms = 2;

Vislt _MeshData *VisltGet Mesh(int donain, const char *nane)

{
Vislt MeshData *nesh = NULL;

size t sz = sizeof (Vislt_MeshData);
i f(strcnp(nane, "mesh2d") == 0)

/* Allocate Vislt MeshData. */
mesh = (Vislt_MeshData *)mal | oc(sz);

180

Writing data access code

Instrumenting a simulation code

nmenset (nesh, 0, sz);

/* Make Vislt _MeshData contain a Vislt_RectilinearMesh. */
sz = sizeof (Vislt_RectilinearMesh);

mesh->rnmesh = (Vislt_RectilinearMesh *)mall oc(sz);

nmenset (nesh->rnmesh, 0, sz);

/* Tell Vislt which mesh object to use. */
nesh->meshType = VI SI T_MESHTYPE_RECTI LI NEAR;

/* Set the nmesh’s number of dinensions. */
nmesh- >rnesh->ndi rs = nesh_ndi rs;

/* Set the mesh dinmensions. */

nmesh->rnmesh->di ns[0] = nesh_di ns[0] ;
mesh->rnmesh->di ns[1] = nesh_di ns[1];
mesh->rnmesh->di ns[2] = nesh_di ns[2];

nmesh- >r mnesh- >basel ndex| 0]
nmesh- >r mnesh- >basel ndex| 1]
nmesh- >r mnesh- >basel ndex| 2]

0;
0;
0;

nmesh->r nesh- >m nReal | ndex[0]
nmesh->r nesh- >m nReal | ndex][1]
mesh->r nesh- >m nReal | ndex] 2]
nmesh- >r nesh- >maxReal | ndex[0]
mesh- >r nesh- >maxReal | ndex][1]
nmesh- >r nesh- >maxReal | ndex][2]

0;
0;
0;
mesh_di ns[0] - 1;
mesh_di ns[1] - 1;
mesh_di ns[2] - 1;

/* Let Vislt use simulation’s copy of the nesh coordinates. */

nmesh- >r nesh- >xcoords = Vi slt_CreateDat aArrayFrontl oat (
VISIT_OMER SIM nesh_x);

nmesh- >rnesh->ycoords = Vislt_CreateDat aArrayFrontl oat (
VISIT_OMER SIM nesh_y);

}

return nesh;

The Fortran interface providesthevi si t meshrecti | i near function to create a
rectilinear mesh that can be passed back to Vislt. Thevi si t meshrecti |l i near
function essentially packages up the code from the C-Language example, making it
possible to dynamically createaVi sl t _Recti | i near Mesh object and populate its
members. The data arrays that make up the rectilinear mesh in the upcoming Fortran
example are stored in a Fortran common block, making the data accessible to the

si mul at e_one_ti mest ep function and thevi si t get mesh function. If you store
your datain common blocks, it is easy to make it accessible to Vislt.

Listing 5-41: fmesh.f: Fortran language example for returning a rectilinear mesh.

subroutine sinulate_one_tinestep()

Writing data access code 181

Instrumenting a simulation code

ccc RECTMESH common bl ock
i nteger NX, NY
paranmeter (NX = 4)
paranmeter (NY = 5)
real rmx(NX), rnmy(NY)
i nteger rndins(3), rmdins
comon / RECTMESH rmdins, rmmdinms, rnx, rny
save / RECTMESH
c Initial rectilinear nmesh
data rmmdi ns /2/
data rndins /4, 5, 1/
data rmx/0., 1., 2.5, 5./
data rny/0., 2., 2.25, 2.55, 5./
c Sinulate one tine step

end
C ___
c visitgetnesh
C ___

i nteger function visitgetnesh(handl e, donai n, name, | nane)
inmplicit none
character*8 nane
i nt eger handl e, domain, | nane
i nclude "visitfortransimnterface.inc"
ccc RECTMESH common bl ock (shared with sinul ate_one_ti nmestep)
i nteger NX, NY
paranmeter (NX = 4)
paranmeter (NY = 5)
real rmx(NX), rnmy(NY)
i nteger rndins(3), rmdins
comon / RECTMESH rnmdins, rmmdinms, rnx, rny

ccc | ocal vari abl es
i nteger m baseindex(3), mnrealindex(3), naxrealindex(3)
real rne

m = VI SI T_ERROR
if(visitstrcnp(nanme, |name, "nmesh2d”, 6).eq.0) then

basei ndex(1) =1
basei ndex(2) =1
basei ndex(3) =1

m nreal i ndex(1) =0
m nreal i ndex(2) =0
m nreal i ndex(3) = 0
maxreal i ndex(1) = rndinms(1)-1
maxreal i ndex(2) = rndins(2)-1
maxreal i ndex(3) = rndins(3)-1

c Create a rectilinear rmesh here
m = vi sitneshrectilinear(handl e, basei ndex, m nrealindex,
. maxreal i ndex, rndinms, rnndins, rnx, rmy, rng)
el seif(visitstrcnp(name, |nanme, "nesh3d”, 6).eq.0) then
c Create a curvilinear nesh here
endi f
visitgetnmesh = m

182 Writing data access code

Instrumenting a simulation code

end

4.0

3.0

Height

(em}

2.0

1.0

e.0
0.0 i.0

2..0 J..O
Wideh (em)

Figure 5-42: 2D rectilinear mesh returned by the previous
code examples.

46.3 Curvilinear meshes

Curvilinear meshes can be returned from your mesh data access function by creating a

Vi slt_Curvilinear Mesh object and storingitinsideaVi sl t _MeshDat a object.
With the exception of using a different structure name in C programs, the procedure for
creating a curvilinear mesh is exactly the same as that for creating a rectilinear mesh.
Remember that the only difference that Vislt recognizes between the two mesh typesisthe
size of the coordinate arrays. A curvilinear mesh must have the X,Y,Z coordinates of each
node in the mesh explicitly provided, whereas most of the coordinates are implicitly
defined in arectilinear mesh. Since the code for handling curvilinear meshesis so similar
to that for handling rectilinear meshes, refer to Section 4.6.2 for more detail on setting
valuesintotheVi sl t _Curvi | i near Mesh.

Listing 5-43: mesh.c: C-Language example for returning a curvilinear mesh.

/* Curvilinear nmesh */
float cnmesh_x[2][3][4] = {
{{0.,1.,2.,3.},{0.,1., 2.
{{0.,1.,2.,3.},{0.,1.,2
1
float cnmesh_y[2][3][4] = {
{{0.5,0.,0.,0.5},{1.,2.,1.,1.}, {1.5,2.,2.,1.5}},

Writing data access code 183

Instrumenting a simulation code

{{o.5,0.,0.,0.5},{2.,1.,1.,1.}, {1.5,2.,2.,1.5}}

b
float crmesh_z[2][3][4] = {
{{0.,0.,0.,0.},{0
bo{1

,0.,0.,
{{1.,1.,1.,1. 1.,1.

. 0.},{0.,0.,0.,0.}},
{1.,1.,1.,1.},{1.,1.,1.,1.}}

b
int cmesh_dins[] = {4, 3, 2};
int cnmesh_ndins = 3;

Vislt_MeshData *VisltGet Mesh(int domain, const char *nane)
{
Vislt_MeshData *mesh = NULL;
size_t sz = sizeof (Vislt_MeshData);
i f(strcnp(nane, "mesh3d") == 0)
{
/* Al'locate Vislt MeshData. */
mesh = (Vislt_MeshData *)mal | oc(sz)
nmenset (nesh, 0, sz);
/* Make Vislt _MeshData contain a Vislt_CurvilinearMesh. */
sz = sizeof (Vislt_CurvilinearMsh);
mesh->cnesh = (Vislt_CurvilinearMsh *)mall oc(sz);
nmenset (nesh->cnesh, 0, sz);

/* Tell Vislt which mesh object to use. */
nesh->meshType = VI SI T_MESHTYPE_CURVI LI NEAR;

/* Set the nmesh’s number of dinensions. */
nmesh- >cnesh->ndi ns = cnesh_ndi ns;

/* Set the mesh dinmensions. */

mesh->cnesh->di ns[0] = cnesh_di ns[0] ;
mesh->cnesh->di ns[1] = cnesh_di ns[1] ;
nmesh->cnesh->di ns[2] = cnesh_di ns[2] ;

0;
0;
0;

nmesh- >cnesh- >basel ndex] 0]
nmesh- >cnesh- >basel ndex| 1]
nmesh- >cnesh- >basel ndex| 2]

0;
0;
0;
cmesh_di nms[0] - 1;
cmesh_di ms[1] - 1;
cmesh_di nms[2] - 1;

mesh- >cnesh- >m nReal | ndex[0]
mesh- >cnesh- >m nReal | ndex][1]
mesh- >cnesh- >m nReal | ndex] 2]
nmesh- >cnesh- >maxReal | ndex[0]
nmesh- >cnesh- >maxReal | ndex][1]
nmesh- >cnesh- >maxReal | ndex][2]

/* Let Vislt use simulation’s copy of the nesh coordinates. */
nmesh- >cnesh->xcoords = Vislt_CreateDat aArrayFrontl oat (
VISIT OMER SIM (float *)cmesh_x);
nmesh- >cnesh->ycoords = Vislt_CreateDat aArrayFrontl oat (
VISIT OMER SIM (float *)cmesh_y);
nmesh- >cnesh->zcoords = Vislt_CreateDat aArrayFrontl oat (
VISIT OMNER SIM (float *)cnmesh_z);

184 Writing data access code

Instrumenting a simulation code

return nesh;

The Fortran interface providesthevi si t meshcur vi | i near function to create a
rectilinear mesh that can be passed back to Vislt. Thevi si t meshcur vi | i near
function essentially packages up the code from the C-Language example, making it
possible to dynamically createa Vi sl t _Cur vi | i near Mesh object and populate its
members. The data arrays that make up the curvilinear mesh in the upcoming Fortran
example are stored in a Fortran common block, making the data accessible to the

si mul at e_one_ti mest ep function and thevi si t get mesh function.

Listing 5-44: fmesh.f: Fortran language example for returning a curvilinear mesh.

subroutine simulate_one_tinmestep()
ccc CURVMESH comon bl ock
i nteger CNX, CNY, CNz

paranmeter (CNX = 4)
paranmeter (CNY = 3)
paranmeter (CNZ = 2)

i nteger cndins(3), cmdins
real cmx(CNX, CNY, CNZ), cny(CNX, CNY, CNZ), cne(CNX, CNY, CN2Z)
comon / CURVMESH c¢ndi ns, cmdi s, cnx, cny, cne
save / CURVMESH
c Curvilinear nmesh data

data cnmx/0.,1.,2.,3., 0.,1.,2.,3., 0.,1.,2.,3.,

0.,1.,2.,3., 0.,1.,2.,3., 0.,1.,2.,3./

data cny/0.5,0.,0.,0.5, 1.,1.,1.,1., 1.5,2.,2.,1.5,
. 0.50.,0.,0.5, 1.,1.,1.,1., 1.5,2.,2.,1.5/

data cne/0.,0.,0.,0., 0.,0.,0.,0., 0.,0.,0.,0,

1.,1.,12.,1., 1.,1.,1.,1., 1.,1.,1.,1./

data cmdi ns / 3/
dat a cndi nms/ CNX, CNY, CNz/
c Sinulate one tine step

end
C __
c visitgetnesh
C __

i nteger function visitgetnesh(handl e, donai n, name, | nane)
inmplicit none
character*8 nane
i nt eger handl e, domain, | nane
i nclude "visitfortransimnterface.inc"

ccc CURVMESH comon bl ock (shares with sinmul ate_one_ti mestep)
i nteger CNX, CNY, CNz

paranmeter (CNX = 4)
paranmeter (CNY = 3)
paranmeter (CNZ = 2)

i nteger cndins(3), cmdins
real cmx(CNX, CNY, CNZ), cny(CNX, CNY, CNZ), cne(CNX, CNY, CN2Z)
comon / CURVMESH cndi ns, cmmdi s, cnx, cny, cne

Writing data access code 185

Instrumenting a simulation code

Cccc

| ocal variables
i nteger m baseindex(3), mnrealindex(3), naxrealindex(3)

m = VI SI T_ERROR
i f(visitstrcnp(name, |name, "mesh3d", 6).eq.0) then

basei ndex(1) =1
basei ndex(2) =1
basei ndex(3) =1

m nreal i ndex(1) =0
m nreal i ndex(2) =0
m nreal i ndex(3) = 0
maxreal i ndex(1) = cndinms(1l)-1
maxreal i ndex(2) = cndins(2)-1
maxreal i ndex(3) = cndins(3)-1

c Create a curvilinear nesh here

endi f

m = vi si tnmeshcurvilinear (handl e, basei ndex, m nrealindex,
maxr eal i ndex, cndinms, cmndi ns, cnx, cmy, cne)

visitgetnmesh = m
end

4.6.4

D8: 001141344435 5im 12.5im 1
Cycle: 15 Time:0.201

O-D-——' i "'|'"--..___

[P0, idth
e 1.

| ¥

|

Miles

0o

Figure 5-45: 3D curvilinear mesh returned by the previous
code examples

Point meshes

Point meshes can be returned by the mesh data access function by allocating a
Vi sl t _Poi nt Mesh object and inserting it into the returned Vi sl t _MeshDat a
object. Don't forget to set the Vi sI't _MeshDat a’ s meshType member to

186

Writing data access code

Instrumenting a simulation code

VI SI T_MESHTYPE_PO NT. Once you've allocated the Vi sl t _Poi nt Mesh object,
start initializing its members using information about the mesh. Point meshes contain
relatively few elements - little more than alist of vertices. Be sure to set the ndi s
member, which tells Vislt how many of the coordinate arrays that your point mesh will
use: 2 or 3. After setting the number of dimensions, set the nnodes member - the number
of nodesin the point mesh. Finally, usethe Vi sl t _Cr eat eDat aAr r ayFr onFl oat
function to set the coordinate arrays for your point mesh. The coordinate arrays can either
be owned by the simulation (VI SI T_OANER_SI M), in which case Vislt will not free the
arrays. If youuse VI SI T_OWNER_VI SI T then Vislt will free the arrays once they are no
longer required.

Listing 5-46: point.c: C-Language example for returning a point mesh.

#define NPTS 100

float angle = 0.;

int pnesh_ndins = 3;

float pnmesh_x[NPTS], pnesh_y[NPTS], pnesh_z[NPTS];
voi d simul ate_one_tinestep(void)

{
int i;
for(i = 0; i < NPTS;, ++i)
{
float t = ((float)i) / ((float)(NPTS-1));
float a = 3.14159 * 10. * t;
prmesh x[i] =t * cos(a + (0.5 + 0.5 * t) *angle);
presh_y[i] =t * sin(a + (0.5 + 0.5 * t) * angle);
prmesh_z[i] =t;
}
angle = angle + 0.05;
}
Vislt MeshData *VisltGet Mesh(int domain, const char *nane)
{

Vislt MeshData *nesh = NULL;
size t sz = sizeof (Vislt_MeshData);

i f(strcnp(nane, "point3d") == 0)
{
/* Allocate Vislt MeshData. */
mesh = (Vislt _MeshData *)mal | oc(sz);
nenset (nesh, 0, sz);
/* Make Vislt MeshData contain a Vislt_ Point Mesh. */
sz = sizeof (Vislt_Poi nt Mesh);
nmesh->pnesh = (Vislt_Point Mesh *)mal | oc(sz);
nenset (nesh- >pnesh, 0, sz);

/* Tell Vislt which mesh object to use. */
nmesh->meshType = VI SI T_MESHTYPE_ PO NT;

/* Set the nmesh’s nunber of dinensions. */
nesh- >pnesh->ndi n6 = presh_ndi ns;

Writing data access code 187

Instrumenting a simulation code

}

/* Set the nunber of points in the nmesh. */
nmesh- >pnesh- >nnodes = NPTS;

/* Let Vislt use simulation’s copy of the nesh coordinates. */
nmesh- >pnesh- >xcoords = Vislt_CreateDat aArrayFronfl oat (
VISIT OMER SIM (float *)prmesh_x);
nmesh- >pnesh- >ycoords = Vislt_CreateDat aArrayFronfl oat (
VISIT OMER SIM (float *)pnesh_y);
nmesh- >pnesh- >zcoords = Vislt_CreateDat aArrayFronfl oat (
VISIT OMER SIM (float *)pnmesh_z);

return nesh;

The Fortran interface providesthevi si t meshpoi nt function so you can create a

Vi sl t _Poi nt Mesh object that can be returned to Vislt. Thevi si t neshpoi nt
function takes 6 arguments. The first argument is an integer handle to the mesh object that
was passed intothevi si t get mesh function. The second argument allows you to set the
number of dimensions that your point mesh will use: 2 or 3. The third argument lets you
set the number of nodes in your point mesh. The final three REAL arguments contain the
X,Y,Z coordinates, respectively.

Listing 5-47: fpoint.f: Fortran language example for returning a point mesh.

Cccc

Cccc

subroutine simulate_one_tinmestep()

PO NTMESH comon bl ock (shared wi th visitgetnesh)

i nt eger NPTS

paranmeter (NPTS = 100)

real pmx(NPTS), pny(NPTS), pnz(NPTS), angle

i nteger pmmdi ns, pmmnodes

common / RECTMESH pnx, pny, pne, pmdi ns, pmmnodes, angle
| ocal variables

real a, t

c Sinulate one tine step

10000

prmdins = 3

pmnodes = NPTS

do 10000 i = O, NPTS-1
t =float(i) / float(NPTS-1)
a = 3.14159 * 10. * t

pmx(i+1) =t * cos(a + (0.5 + 0.5 * t) * angle);
pmy(i+1) =t * sin(a + (0.5 + 0.5 * t) * angle);
pre(i+1l) =t

conti nue

angle = angle + 0.05

end

i nteger function visitgetnmesh(handl e, donai n, name, | nane)
inmplicit none

character*8 nane

i nt eger handl e, domain, | nane

188

Writing data access code

Instrumenting a simulation code

include "visitfortransi mnterface.inc"

ccc PO NTMESH common bl ock (shared with sinmul ate_one_ti nestep)
i nt eger NPTS
paranmeter (NPTS = 100)
real pmx(NPTS), pny(NPTS), pnz(NPTS), angle
i nteger pmmdi ns, pmmnodes
common / RECTMESH pnx, pny, pne, pmdi ns, pmmnodes, angle
ccc | ocal variables

i nteger m

m = VI SI T_ERROR

i f(visitstrcnp(nanme, |name, "point3d", 7).eq.0) then
c Create a point nesh here

m = vi si t meshpoi nt (handl e, pmmdi ns, pmmnodes,
endi f

visitgetnmesh = m

end

pnx, pny, pne)

Figure 5-48: 3D point mesh returned by the previous code
examples

46,5 Unstructured meshes

Unstructured meshes can be returned by the mesh data access function by allocating a
Vi slt_Unstruct uredMesh object and inserting it into the returned

Vi sl't _MeshDat a object. Don't forget to settheVi sIt _MeshDat a’ s neshType
member to VI SI T_MESHTYPE_UNSTRUCTURED. Once you've alocated the

Vi slt_Unstruct uredMesh object, start initializing its members using information

Writing data access code 189

Instrumenting a simulation code

about the mesh. The first member that you set should be the ndi s member, which tells
Vislt if themeshis 2D or 3D. Set the ndi ns member to 2 for a2D mesh and 3 for a3D
mesh. Next, set the nnodes and nzones members so Vislt will know how many nodes
make up the mesh and how many zones are connected out of that set of nodes.

You can specify the mesh’s coordinates by using the

Vi slt _Creat eDat aAr rayFr onfl oat function to create data arrays for the
xcoor ds, ycoor ds, and zcoor ds members. You can use the smulation’s data arrays
by passing VI SI T_OANER _SI Mor you can create copies of them by passing

VISIT ONWNER VI SIT.

Now you must tell Vislt whether the mesh has ghost zones. The

Vi sl't_Unstruct ur edMesh object indicates whether there are ghost zones by using
thevaluesstoredinthef i r st Real Zone and | ast Real Zone members. You can use
those membersto indicate that the first N zones are ghost zones and that the last M zones
are ghost zones. If your mesh has no ghost zones then you can set thel ast Real Zone
member to the number of zones in the mesh minus one. If your mesh has ghost zones then
besuretoset bothfi r st Real Zone and| ast Real Zone so they tell Vislt the indices
of the zones in the zone list where the real zones begin and end. If you do not set these
members then Vislt may become confused.

4
0 3
1
2 3 2

Tetrahedron Pyramid

4 7

2 5 :

5 ! 6

0. . 3

3 L

1 4 1 2
Wedge Hexahedron

Figure 5-49: Node ordering for 3D unstructured zone types

Thefinal step in creating an unstructured mesh is providing the zone connectivity
information. Connectivity information indicates how nodes are connected into zones of

190 Writing data access code

Instrumenting a simulation code

varying types. The connectivity information is stored in alinear array of integersin
sequences that list the zone type, followed by the node indices being used for that zone.
The node indices should begin at node zero, even in languages where the first array
element isone, such asin Fortran. This pattern is repeated until all zonesin the mesh have
been identified. Figure 5-49 shows the node ordering that must be used to create cells for
an unstructured mesh. Note that the node ordering (VTK’s node ordering) for all zone
typesisthe same asfor creating Silo files, except for the wedge zone type. You can usethe
Vi slt _Creat eDat aArrayFronl nt function to create an integer data array that can
be passed to Vislt. After supplying the connectivity array, be sure to set the

connecti vi t yLen member so the length of the connectivity array since Vislt uses that
value to determine when to stop iterating through the connectivity array.

Listing 5-50: unstructured.c: C-Language example for returning an unstructured mesh.

float umk[] = {0.,2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,1.,2.,4.,4.
float unmy[] = {0.,0.,0.,0.,2.,2.,2.,2.,4.,4.,4.,4.,6.,0.,0.,0.
float ume[] = {2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,0.,1.,4.,2.,0.

/* Connectivity *

int connectivity[] = {
VI SI T_CELL_HEX, 0,1,2,3,4,5,6,7, /' * hex, zone 1 */
VI SI T_CELL_HEX, 4,5,6,7,8,9,10,11, /* hex, zone 2 */
VI SI T_CELL_PYR, 8,9,10, 11,12, /* pyram d, zone 3 */
VI SI T_CELL_WEDGE, 1, 14,5, 2, 15, 6, /* wedge, zone 4 */
VI SI T_CELL_TET, 1,14,13,5 /* tet, zone 5 */

b

int | connectivity = sizeof(connectivity) / sizeof(int);
i nt umnodes = 16;

i nt umzones = 5;

Vislt _MeshData *VisltGet Mesh(int domain,
{

Vislt_MeshData *mesh = NULL;

size_ t sz = sizeof (Vislt_MeshDat a);

i f(strcnp(nanme, "unstructured3d") == 0)
{

/* Al'locate Vislt MeshData. */

mesh = (Vislt_MeshData *)mal | oc(sz);

nmenset (nesh, 0, sz);

/* Make Vislt_MeshData contain a Vislt_Poi nt Mesh. */

sz = sizeof (Vislt_UnstructuredMesh);
mesh->unesh = (Vislt_UnstructuredMesh *)nall oc(sz);
nmenset (nesh->unmesh, 0, sz);

/* Tell Vislt which nmesh object to use. */
nesh->meshType = VI SI T_MESHTYPE_UNSTRUCTURED,;
/* Set the nmesh’s number of dinensions. */
nmesh- >unesh->ndi s = 3;

/* Set the nunber

mesh- >unesh- >nnodes = ummnodes;

const char *nane)

of nodes and zones in the nesh. */

Writing data access code

191

Instrumenting a simulation code

mesh- >unesh- >nzones = unmzones;

/* Set the indices for the first and | ast real zones. */
mesh- >unesh->fir st Real Zone = 0;
mesh- >unesh- >| ast Real Zone = ummzones- 1;

/* Let Vislt use sinulation’s copy of the nesh coordinates. */
nmesh- >unesh- >xcoords = Vi slt_Creat eDat aArrayFrontl oat (
VISIT_ OMER _SIM unx);
nmesh- >unesh->ycoords = Vislt_CreateDat aArrayFrontl oat (
VISIT_ OMER _SIM uny);
nmesh- >unesh->zcoords = Vi slt_CreateDat aArrayFrontl oat (
VISIT_ OMNER _SIM ung);

/* Let Vislt use the sinulation’s copy of the connectivity. */
nmesh- >unesh->connectivity = Vislt_CreateDat aArrayFrom nt (

VISIT OMNER SIM connectivity);
nmesh- >unesh->connectivitylLen = | connectivity;

}

return nesh;

The Fortran interface providesthevi si t meshunst r uct ur ed function for creating
unstructured meshes and returning them to Vislt. Thevi si t mneshunst ruct ur ed
function takes 11 arguments. The first argument is an integer handle to the mesh object
that will contain your unstructured mesh. This handle was passed to your

vi si t get mesh function from visitfortransiminterface.c. The next argument isndi ns,
which letsyou tell Vislt whether your unstructured mesh is 2D or 3D. The third argument
isthe nnodes argument, indicating the number of nodes in your mesh’s coordinate
arrays. The fourth argument, nzones, tells Vislt how many zones are contained in your
mesh. The fifth argument isf i r st r eal zone, which is aghost zone argument
indicating the index of the mesh’sfirst real zone. Thefirst real zoneis set to zero in many
cases. The sixth argument isthel ast r eal zone argument, which lets you indicate the
index of the last real zone, above which are found the ghost zones. The next three
arguments (7,8,9) let you specify the mesh’s X,Y,Z coordinates in 32-bit floating point
form. The tenth argument is the length of the connectivity array. The final argument isan
integer zone connectivity array, which tells Vislt how to connect your mesh’s nodes into
Zones.

Listing 5-51: funstructured.f: Fortran language example for returning an unstructured mesh.

subroutine sinmulate_one_tinmestep()
inmplicit none
i nclude "visitfortransimnterface.inc"
ccc UNSTRUCTURED conmon bl ock (shared with visitgetnmesh)
i nteger NNODES, NZONES, LCONN
par anet er (NNODES = 16)
par anet er (NZONES = 5)
paraneter (LCONN = 36)

192

Writing data access code

Instrumenting a simulation code

real umx(NNODES), uny(NNODES), unz(NNODES)
i nt eger connectivity(LCONN)
comon / UNSTRUCTURED/ unx, uny, ung, connectivity
save / UNSTRUCTURED/
c Data val ues

data unx/0.,2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,1.,2.,4.,4./
data uny/0.,0.,0.,0.,2.,2.,2.,2.,4.,4.,4.,4.,6.,0.,0.,0./
data une/2.,2.,0.,0.,2.,2.,0.,0.,2.,2.,0.,0.,1.,4.,2.,0./
data connect|V|ty/V IT CELL_HEX, 0,1,2,3,4,5,6,7,
VISIT_CELL_HEX, 4,5,6,7,8,9,10, 11,

VISIT_CELL_PYR, 8,9, 10,11, 12,
VI SI T_CELL_WEDGE, 1, 14,5, 2, 15,6,
VI SI T_CELL_TET, 1,14, 13,5/

end
C ___
c visitgetnesh
C ___

i nteger function visitgetnesh(handl e, donai n, name, | nane)
inmplicit none
character*8 nane
i nt eger handl e, domain, | nane
i nclude "visitfortransimnterface.inc"
ccc UNSTRUCTURED conmmon bl ock (shared with sinul ate_one_ti nestep)
i nt eger NNCDES, NZONES, LCONN
par anmet er (NNODES = 16)
par anet er (NZONES = 5)
paranmeter (LCONN = 36)
real umx(NNODES), uny(NNODES), unz(NNODES)
i nt eger connectivity(LCONN)
comon / UNSTRUCTURED/ unx, uny, ung, connectivity
ccc | ocal variables
i nteger m

m = VI SI T_ERROR

if(visitstrcnp(nanme, |name, "unstructured3d", 14).eq.0) then
c Create an unstructured nesh here

m = vi si t meshunstructured(handl e, 3, NNODES, NZONES, O,

NZONES- 1, unx, umy, ung, LCONN, connectivity)

endi f

visitgetnmesh = m

end

Writing data access code 193

Instrumenting a simulation code

2

%00

Figure 5-52: 3D unstructured mesh returned by the previous
code examples

4.7 Data access function for scalars

This chapter has so far shown how to instrument a simulation code so Vislt can connect to
it and read out meshes so they can be plotted. This section will illustrate how to add a data
access function that lets Vislt access your simulation’s scalar data. Reading scalar data
requires a new data access function. Adding a new data access function means that you
will be adding a new function pointer to thevi si t Cal | backs object. If your
simulation iswritten in Fortran, you must implement thevi si t get scal ar functionto
return your simulation’s scalar data.

The data access function for scalarsreturnsa Vi sl t _Scal ar Dat a object. The

Vi slt _Scal ar Dat a object isasimple structure, defined in

Vi sl t Dat al nt erface_ V1. h, consisting of little more than adata array containing
the scalar values. This section will show how to return your simulation’s scalar data so
they can be visualized in Vislt.

4.7.1 Adding ascalar data accessfunction

Adding a scalar data access function means that you have to first write a function and set
thevi si t Cal | backs object’'s Get Scal ar member so it points to your function. The
scalar data access function takes 2 arguments if you program in C. The first argument isa
domain number, which you can use to return scalar data for a smaller piece of the whole
mesh. The second argument is the name of the scalar that Vislt wantsto read. The scalar

194

Writing data access code

Instrumenting a simulation code

name will be one of the scalars that you added to the metadata. The basic procedure
involved in writing a scalar data access function isto first check the incoming name
against the names of the scalars that your ssmulation is prepared to return and when oneis
found, returnitto VisltinaVi sl t _Scal ar Dat a object. If your scalar data access
routine does not recognize the name of the scalar then you can return NULL instead of
returningaVi sl t _Scal ar Dat a object.

Listing 5-53: scalar.c: C-Language example for installing a scalar data access function.

Vislt_Scal arData *VisltCGetScal ar(int domai n, const char *namne)
{
size_t sz = sizeof (Vislt_Scal arDat a) ;
Vislt_Scal arData *scalar = (Vislt_Scal arData*) mal | oc(sz);
nenset (scal ar, 0, sz);

i f(strcnp(nane, "zonal") == 0)

/* Make scalar return the zonal array. */
el se if(strcnp(nane, "nodal") == 0)

/* Make scal ar return the nodal array. */
el se
{

free(scal ar);

scal ar = NULL;
}

return scal ar;

}

Vislt_SinulationCallback visitcCallbacks =
{

&Vi sl t Get Met aDat a,

&Vi sl t Get Mesh,

NULL, /* GetMaterial */

NULL, /* Cet Species */

&Vi sl t Get Scal ar, /* GetScal ar */

NULL, /* GetCurve */

NULL, /* GetM xedScal ar */

NULL /* GCet Donmi nLi st */

The Fortran interface does not require you to install functionsinto the

vi si t Cal | backs structure because that istaken care for you by thel i bsi nf library.
In order to return scalar data from a Fortran simulation, you must implement the

vi si t get scal ar function. Thevi si t get scal ar function isthe Fortran
interface’s scalar data access function. The function takes four arguments. The first
argument is a handle to a scalar data object. The second argument is the domain number
for which Vislt wants the specified scalar. The domain argument can be ignored if your
simulation only has one domain per processor. The third and fourth arguments are the
name of the scalar to return and the length of that name string, respectively. Asin the C
interface, thevi si t get scal ar function must check the incoming names against the

Writing data access code 195

Instrumenting a simulation code

names of the scalarsthat the simulation has exposed to Vislt viametadata. You can use the
Vi si t st r cnp function to match the incoming name against the names of the known
scalars.

Listing 5-54: fscalar.f: Fortran language example of a scalar data access function.

i nteger function visitgetscal ar(handl e, domain, name, |nane)

implicit none

character*8 nane

i nt eger handl e, donai n, | name

include "visitfortransimnterface.inc"

i nteger m

m = VI SI T_ERROR

if(visitstrcnp(nanme, | name, "zonal", 5).eq.0) then
c Pass the scalar to Vislt, setting m

el seif(visitstrcnp(nanme, |nane, "nodal", 5).eq.0) then
c Pass the scalar to Vislt, setting m

endi f

visitgetscalar = m

end

472 Passingasimulation’sdataarray

The Vi sI't _Scal ar Dat a object contains only two items: the length of the data array,
and a data array object that points to the scalar data. Both the C and Fortran interfaces
provide multiple functionsfor passing asimulation’sdataintothe Vi sl t _Scal ar Dat a
object’s data array. There are multiple functions to account for multiple variable types
sinceaVi sl t _Scal ar Dat a object’sdata array can contain char ,i nt , f| oat , and
doubl e scalar arrays. The C interface provides the

Vi slt_Creat eDat aArrayFrontChar, Vi slt_Creat eDat aArrayFrom nt,
Vi slt _Creat eDat aArrayFrontl oat , and

Vi sl't _Creat eDat aAr r ayFr onDoubl e functions to pass simulation data into the
Vi slt _Scal ar Dat a object. Each of the functions accepts two arguments. an owner
and a pointer to the scalar data. The owner flag indicates whether or not Vislt will be
responsible for freeing the scalar data array when it is no longer needed. If you pass

VI SI T_OANER_SI Mthen Vislt will never free the data because the simulation owns the
scalar’'s memory. If you passVI SI T_OANNER VI SI T then Vislt will free the scalar’s
memory when the scalar is no longer needed.

Listing 5-55: scalar.c: C-Language example for returning a scalar variable.

i nt rmesh_dinms[] = {4, 5, 1};

float zonal[] ={1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.};
int cnesh_dims[] = {4, 3, 2};

doubl e nodal [2][3][4] = {

196

Writing data access code

Instrumenting a simulation code

{{1.,2.,3.,4.},{5.,6.,7.,8.},{9.,10.,11.,12}},
{{13.,14.,15.,16.},{17.,18.,19.,20.},{21.,22.,23.,24.}}
b
Vislt_ScalarData *VisltGetScal ar(int domain, const char *nane)
{
size t sz = sizeof (Vislt_Scal arDat a) ;
Vislt_Scal arData *scalar = (Vislt_Scal arData*)nal | oc(sz);
nmenset (scal ar, 0, sz);

i f(strcnp(nane, "zonal") == 0)
{
scalar->len = (rnesh_dins[0]-1) * (rrmesh_dins[1]-1);
scal ar->data = Vislt_CreateDat aArrayFrontl oat (
VISIT_OMER SIM zonal);

}
el se if(strcnp(name, "nodal") == 0)
{
scal ar->len = cnmesh_dins[0] * cnesh_dinms[1] *
cnesh_di ns[2] ;
scal ar->data = Vislt_CreateDat aArrayFronDoubl e(
VISIT_OMER _SIM (doubl e*)nodal);
}
el se
{
free(scal ar);
scal ar = NULL;
}
return scal ar;

The Fortran interface providesthevi si t scal ar set dat ac,

vi sitscal arsetdatai,vi si tscal arset dat af , and

vi si t scal ar set dat ad functions for passing your simulation’s scalar data back to
Vislt. The functions allow you to pass back char, integer, real, and double precision data,
respectively. Each of the functions takes four arguments. The first argument is the handle
that Vislt passed intothevi si t get scal ar function. The second argument isthe actual
array that contains the scalar. Be sure that you use the appropriate function for the type of
array that you are passing or you will experience runtime problems. The third argument is
a3 element integer array indicating the dimensions of the array that you're providing. The
dimensions should match the number of nodes in the mesh for nodal variables. If your
mesh is 2D then set the third array element to one. If you are providing a zonal scalar
variable then the array elements should contain your mesh’s number of zonesin each
dimension. If you are passing datafor an unstructured mesh then you should put either the
number of zones or nodes in the first element and add ones for the next two array
elements. If you adhere to the guidelines that have been given then you can provide 3 for

Writing data access code 197

Instrumenting a simulation code

the number of array dimensions; otherwise the number of dimensions should match the
number of mesh dimensions for structured meshes or use one for unstructured meshes.

Listing 5-56: fscalar.f: Fortran language example for returning a scalar variable.

i nteger function visitgetscal ar(handl e, donai n, name, | nane)
inmplicit none
character*8 nane
i nt eger handl e, domain, | nane
i nclude "visitfortransimnterface.inc"
ccc RECTMESH dat a
i nteger NX, NY
paranmeter (NX = 4)
paranmeter (NY = 5)
i nteger rndinms(3)
real zonal (NX-1, NY-1)
ccc CURVMESH dat a
i nteger CNX, CNY, CNz
paranmeter (CNX = 4)
paranmeter (CNY = 3)
paranmeter (CNZ = 2)
i nt eger cndi nms(3)
doubl e precision nodal (CNX, CNY, CNZ)
ccc | ocal vars
integer m sdins(3)
ccc Dat a
data rndins /4, 5, 1/
data zonal/1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12./
dat a cndi nms/ CNX, CNY, CNz/
data nodal/1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.,13., 14., 15.
16.,17.,18.,19.,20.,21.,22.,23.,24./

m = VI SI T_ERROR
if(visitstrcnmp(nane, | name, "zonal", 5).eq.0) then

c A zonal variable has 1 less value in each dinmension as there
c are nodes. Send back REAL dat a.
sdinms(1l) = rndinms(1)-1
sdinms(2) = rndins(2)-1
sdinms(3) = rndins(3)-1
m = vi si tscal arset dat af (handl e, zonal, sdins, rmdins)
el seif(visitstrcnp(nanme, |nane, "nodal", 5).eq.0) then

¢ A nodal variable has the sane nunber val ues in each dinension
c as there are nodes. Send back DOUBLE PRECI SI ON dat a.
m = vi si tscal arset dat ad(handl e, nodal, cndinms, cmdi ns)
endi f
visitgetscalar = m
end

198 Writing data access code

Instrumenting a simulation code

The scalar data access functions in the previous examples build on some of the earlier
mesh data access function examples, specifically the examples that returned rectilinear
and curvilinear meshes. The zonal variable returned in the examplesin this section return
data defined on the “mesh2d” rectilinear mesh. The nodal variable returned in the
examplesin this section return data on the “mesh3d” curvilinear mesh. Examples of both
scalar variables are shown in Figure 5-57.

Figure 5-57: Examples of scalar variables returned by a scalar data access function.

4.8 Data access function for curves

This section illustrates how to add a data access function that lets Vislt access your
simulation’s curve data. Reading curve data requires a new data access function, requiring
you to add a new function pointer tothevi si t Cal | backs object. If your smulationis
written in Fortran, you must implement the vi si t get cur ve function to return your
simulation’s scalar data.

The data access function for scalarsreturnsa Vi sl t _Cur veDat a object. The

Vi sl t _CurveDat a object isasimple structure, defined in

Vi sl t Dat al nt er f ace_V1. h, consisting of two arraysto contain the curve’'s X,Y
coordinate pairs. This section shows how to create a data access function for curves so
your simulation’s curve data are availablein Viglt.

48.1 Adding a curvedata accessfunction

Adding a curve data access function means that you have to first write a function and set
thevi si t Cal | backs object’sGet Cur ve member so it pointsto your function. If you
program in C, the curve data access function takes the name of a curve object as an
argument. The basic procedure for returning curve dataisto first check the incoming name
against the names of the curves that your simulation is prepared to return and when oneis
found, returnitto VisltinaVi sl t _Cur veDat a object. If your curve data access

Writing data access code 199

Instrumenting a simulation code

routine does not recognize the name of the curve then you can return NULL instead of
returningaVi sl t _Cur veDat a object.

Listing 5-58: curve.c: C-Language example for installing a curve data access function.

Vislt_CurveData *VisltGetCurve(const char *namne)
{
size t sz = sizeof (Vislt_CurveData);
Vislt _CurveData *curve = (Vislt_CurveData*)nmall oc(sz);
nmenset (curve, 0, sz);
i f(strcnp(name, "sine") == 0)

{
}

el se

{

/* Popul ate curve object’s data. */

free(curve);
curve = NULL;

}

return curve;

}

Vislt_SinmulationCall back visitCallbacks =
{

&Vi sl t Get Met aDat a,

&Vi sl t Get Mesh,

NULL, /* GetMaterial */

NULL, /* Get Species */

&Vi sl t Get Scal ar,

&Vi sl t Get Curve,

NULL, /* GetM xedScal ar */

NULL /* GCet Donai nLi st */

The Fortran interface does not require you to install functionsinto the

vi si t Cal | backs structure because that istaken carefor youinthel i bsi nf library.
In order to return curve data from a Fortran simulation, you must implement the

vi si t get cur ve function. Thevi si t get cur ve function isthe Fortran interface’s
curve data access function. The function takes three arguments. The first argument isa
handle to a curve data object. The second and third arguments are the name of the curveto
return and the length of that name string, respectively. Asin the C interface, the

vi si t get cur ve function must check the incoming names against the names of the
scalars that the simulation has exposed to Vislt via metadata. You can use the

Vi si t st r cnp function to match the incoming name against the names of the known
Ccurves.

Listing 5-59: fcurve.f: Fortran language example of a curve data access function.

200

Writing data access code

Instrumenting a simulation code

i nteger function visitgetcurve(handl e, nane, |namne)
inmplicit none
character*8 nane

i nt eger handl e, | nane
include "visitfortransi mnterface.inc"
i nteger m

m = VI SI T_ERROR

if(visitstrcnp(nanme, |[name, "sine", 4).eq.0) then
c Pass the curve to Vislt, setting m

endi f

visitgetcurve = m

end

4.8.2 Passing curvedatato Vislt

Now that you know how to install a curve data access function, you need to know how to
actually pass curve data back to Vislt. If you program in C, this meansfilling in the data
members of theVi sl t _Cur veDat a structure. TheVi sl t _Cur veDat a structure has
three members. First of all, it contains a number of points that make up the curve data.
Next, it contains x and y data arrays that contain the x and y coordinates of the points that
make up your curve object. The x and y arrays should have the same number of entries and
that number should match the length that you've indicated inthe Vi sl t _Cur veDat a
structure.

Listing 5-60: curve.c: C-Language example for passing curve data back to Vislt.

Vislt_CurvebData *VisltGetCurve(const char *nane)
{
size t sz = sizeof (Vislt_CurveData);
Vislt CurveData *curve = (Vislt_CurveData*)mall oc(sz);
nenset (curve, 0, sz);
i f(strcnp(nanme, "sine") == 0)
{ . .
int i;
/* Create a sine curve with 200 points. */
float *x = NULL, *y = NULL;
x = (float*)mall oc(200 * sizeof (float));
y = (float*)mall oc(200 * sizeof (float));
for(i = 0; i < 200; ++i)
{
x[i]
yli]

((float)i / (float)(200-1)) * 4. * 3.14159;
sin(x[i]);

}

/* Use VISIT OOWNER VISIT and Vislt will free the arrays. */
curve->len = 200;
curve->x=Vi slt_CreateDat aArrayFrontFl oat (VISIT OMNER VISIT, X);

Writing data access code 201

Instrumenting a simulation code

curve->y=Vislt_ CreateDataArrayFronFloat (VISIT OABNER VISIT, vy);

}
el se
{
free(curve);
curve = NULL;
}

return curve;

If you use the Fortran interface to return curve data then you will implement the

Vi si t get cur ve function. Whenthevi si t get cur ve function is passed the name of
avalid curve then you must call thevi si t cur veset dat af if your curve contains
single-precision dataor thevi si t cur veset dat ad function if your curve contains
double-precision floating point data. Both functions accept four arguments. The first
argument is the integer handle passed to your vi si t get cur ve function. The second
and third arguments are the arrays containing the x and y coordinates, respectively. The
final argument is an integer containing the number of points that make up your curve.

Listing 5-61: fcurve.f: Fortran language example for passing curve data back to Vislt.

i nteger function visitgetcurve(handl e, name, |nane)
inmplicit none
character*8 nane

i nt eger handl e, | name, m NPTS, i
par amet er (NPTS = 200)

real X(NPTS), y(NPTS), t
include "visitfortransi m nterface.inc"
integer m

m = VI SI T_ERROR
if(visitstrcnp(name, |nane, "sine", 4).eq.0) then
do 10000 i=1, NPTS
t = float(i-1) / float(NPTS-1)
x(i) =t * 4. * 3.14159
y(i) = sin(x(i))
10000 conti nue
m = vi sitcurvesetdataf (handl e, x, y, NPTS)
endi f
visitgetcurve = m
end

202 Writing data access code

Instrumenting a simulation code

Both of the code examples for returning curve data produce a sine curve, shownin

Figure 5-62.

0.0j?

amplitude

b

0.5 ! u J'
B ‘

’

‘

.D 2 4 L
angle (radians)

Figure 5-62: Sine curve produced by the curve data access
function example programs.

49 Data access function for the domain list

Thedomain list isan object that tells Vislt how many domainsthere arein your ssmulation

and to which processors they belong. Domain lists are used by Vislt's load balancer to
assign work to various processors when running in parallel. Since most parallel
simulations only ever process a single domain’s worth of data, the domain list will almost
always contain a single domain, though the total number of domainsis free to change.
Note that you must provide a domain list when you run a parallel smulation so VisIt's
load balancer can retrieve domains from the appropriate simulation processors.

Installing adomain list data access function is done using the same procedure as for
installing other types of data access functions. If you program in C then you must create a
new function and add it tothevi si t Cal | backs object by setting the

Get Donmmi nLi st member.
|

Listing 5-63: curve.c: C-Language example for returning a domain list.

Vi slt_Domai nLi st *Vi slt Get Domai nLi st (voi d)

{
int np =1, rank = 0;

size_t sz = sizeof (Vislt_DonainList);

203

Writing data access code

Instrumenting a simulation code

Vislt_Domai nList *dl = (Vislt_DomainLi st*)nmall oc(sz);
menset (dl, 0, sz);

#i f def PARALLEL
/* Get nunmber of processors and rank from WMPI. */
/* Set np, rank using those val ues. */

#endi f

dl ->nTot al Domai ns = np

dl ->nMyDonai ns = 1;

dl - >nyDomai ns = Vi slt_Creat eDat aArrayFrom nt (
VISIT_OMER SIM &rank);

return dl;

}

Vislt_SinmulationCall back visitCallbacks =
{

&Vi sl t Get Met aDat a,

&Vi sl t Get Mesh,

NULL, /* GetMaterial */

NULL, /* Get Species */

&Vi sl t Get Scal ar,

&Vi sl t Get Curve,

NULL, /* GetM xedScal ar */

&Vi sl t Get Donmi nLi st

If you use the Fortran interface then you must implement the vi si t get donai nl i st
function. Thevi si t get domai nl i st function is called when Vislt needs the number
and distribution of the domainsin use by your ssmulation. You can provide this
information by calling thevi si t set donai nl i st function. The

vi si tset domai nl i st function takes four arguments. The first argument is a handle
totheVi sl t _Domai nLi st object that was passed into your vi si t get domai nl i st
function. The second argument is an integer containing the total number of domainsin
your simulation. The total number of domainsis almost always equal to the number of
processors used by your ssmulation. The third argument isalist of domainid’s. If your
simulation assigns 1 domain per processor then you can use the processor’s rank for the
singlevaluein thelist of domainid's. The final argument is an integer containing the
number of domainsin the domain list.

Listing 5-64: fcurve.f: Fortran language example for returning a domain list.

i nteger function visitgetdonainlist(handle)
inmplicit none

i nteger handl e

i nclude "visitfortransimnterface.inc"

204

Writing data access code

Instrumenting a simulation code

ccc | ocal variables
i nt eger total donai ns, domainids(1l), ndom ds

1
0

t ot al domai ns
dormai ni ds(1)
ndomds =1
vi sitgetdonai nlist = visitsetdonainlist(handl e, total domains,
dormai ni ds, ndom ds)

end

Writing data access code 205

Instrumenting a simulation code

206 Writing data access code

|ndex

A

avtM aterial 134

B

BOV fileformat 9
BOV header file 10
Brick of Floats 10
Brick of Values 10

C

Command line argument -debug 101
Command line argument -debug 5 100
Creating anew Silo file 15
Curvefileformat 11

Cycle 17

Cycles 126

D

Data extents 70, 131

Dealing with time 16
Debugging logs 100
Debugging your plugin 100
dlopen 143

Double precision 45
Dynamic load balancing 138

E

EMPTY keyword 52
export-dynamic linker flag 164

G

Ghost zones 74, 136, 137

|

Inspecting Silo files 14

208

L

LD_LIBRARY_PATH 161

LDFLAGS 164

libsim - VisltAttemptToCompleteConnection
150

libsim - VisltControlInterface V1.h 142
libsim - VisltDetectlnput 149

libsim - VisltDisconnect 150

libsim - visitfortransiminterface.inc 142

libssm - VisltinitializeSocketAndDumpSim-
File 144, 161

libsim - VisltProcessEngineCommand 150
libsim - VisltSetBroadcastI ntFunction 145
libsim - VisltSetBroadcastStringFunction 145
libsim - VisltSetCommandCallback 174
libsim - VisltSetParallel 145

libsim - VisltSetParallelRank 145

libsim - VisltSetupEnvionment 144

M

Materials 81, 82, 83, 84, 134
MPI 137

O

Option lists 17

P

Plugin development - ActivateTimestep 138
Plugin development - Auxiliary data 130
Plugin development - avtDatabaseMetaData
103

Plugin development - Curvilinear meshes 113
Plugin development - expression metadata 108
Plugin development - GetAuxiliaryData 130,
131

Plugin development - GetMesh 99, 110, 111,
112, 114, 115, 116, 118, 119

Plugin development - GetVar 99, 122, 123
Plugin development - GetVectorVar 99, 123
Plugin development - libE 89, 137

Plugin development - libl 89

Plugin development - libM 89

Plugin development - material metadata 108
Plugin devel opment - mesh metadata 103
Plugin development - MTMD 90

Plugin development - MTSD 90

Plugin development - Parallelizing your reader
137

Plugin development - Point meshes 115
Plugin development - PopulateDatabaseM eta-
Data 99, 103, 122, 123

Plugin development - Rectilinear meshes 111
Plugin development - Returning a mesh 109
Plugin development - Returning a scalar vari-
able 122

Plugin development - Returning a vector vari-
able 123

Plugin development - Returning cycles and
times 126

Plugin development - Returning ghost zones
136

Plugin development - Returning materials 134
Plugin development - scalar metadata 106
Plugin development - STMD 90

Plugin development - STSD 90

Plugin development - Unstructured meshes 118
Plugin development - Using a VTK reader
class 125

209

Plugin development - vector metadata 107
Plugin development - xml2info 94

Plugin development - xml2makefile 94, 96, 97
Plugin development - xml2plugin 94

Plugin development - XMLEdit 90

S

Silo9

Silo - browser 14

Silo- DB_CHAR 38

Silo- DB_F77NULL 20

Silo- DB_FLOAT 37

Silo- DB_HDF5 15

Silo- DB_NODECENT 38
Silo- DB_NONCOLLINEAR 22
Silo- DB_PDB 15

Silo- DB_ZONECENT 38

Silo - DBAddOption 17

Silo - DBCresate 15

Silo - DBFreeOptlist 17, 32, 44
Silo - DBMakeOptlist 17, 32, 44
Silo- DBOPT_UNITS 44

Silo - DBPutdefvars 45

Silo - dbputdefvars 46

Silo - dbputmat 85

Silo - DBPutMaterial 84

Silo - dbputmmesh 49

Silo - DBPutMultimesh 48

Silo - DBPutMultivar 50, 72
Silo - dbputpm 26

Silo - DBPutPointmesh 25

Silo - DBPutPointVarl 41

Silo - dbputgm 20, 21, 23, 24
Silo - DBPutQuadmesh 18, 20, 22, 81
Silo - DBPutQuadvarl 35, 37, 38, 44
Silo - dbputqvl 38

Silo - DBPutUcdmesh 28

Silo - DBPutUcdvarl 43, 44
Silo - dbputuvl 43

Silo - DBPutZonelist 28

Silo - dbset2dstrlen 46

Silo - header files 12

Silo - linking with 13

SimV 1 database reader plugin 163, 164
Spatial extents 73, 132

Static load balancing 138

Strategies 2

T

Time 17
Times 126
topological dimension 104

Units 44

\Y%

VCEL 141

Vislt Compute Engine Library 141
Vislt_CreateDataArrayFromChar 196
Vislt_CreateDataArrayFromDouble 196

Vislt_CreateDataArrayFromFloat 180, 187,

196
Vislt_CreateDataArrayFromint 191, 196
Vislt_CurveData 199

Vislt_ MateridMetaData 172

Vislt MeshData 177

Vislt MeshMetaData 168

VISIT_ OWNER_SIM 180, 196
VISIT_ OWNER_VISIT 180, 196
Vislt_PointMesh 186
Vislt_ScalarData 194, 196
Vislt_ScalarMetaData 170
Vislt_SimulationMetaData 166
visit_writer - write_curvilinear_mesh 58
visit_writer - write_point_mesh 61
visit_writer - write_regular_mesh 54
visit_writer - write_unstructured_mesh 62
visitaddsimcommand 176
visitbroadcastintfunction 159, 160
visitbroadcaststringfunction 159, 160
visitCallbacks 162, 163, 164
visitcommandcallback 176
visitdetectinput 157

visitgetcurve 199, 200

visitgetmesh 177, 192

visitgetscalar 194, 195
visitinitializesim 156
visitmdcurvecreate 172
visitmdcurvesetlabels 172
visitmdcurvesetunits 172
visitmdexpressioncreate 173
visitmdmaterialadd 172
visitmdmaterialcreate 172
visitmdmeshcreate 169
visitmdmeshsetbl ockpiecename 170
visitmdmeshsetblocktitle 170
visitmdmeshsetlabels 169
visitmdmeshsetunits 169
visitmdscalarcreate 170
visitmdsetcycletime 166, 167
visitmdsetrunning 166, 167
visitmeshcurvilinear 185
visitmeshrectilinear 181
visitmeshunstructured 192
VISITPLUGINDIR 161
visitprocessenginecommand 157
visitscalarsetdatac 197
visitscalarsetdatad 197

visitscal arsetdataf 197

visitscal arsetdatai 197

visitsetparallel 156
visitsetparallelrank 156
visitslaveprocesscallback 159, 160
visitstrcmp 176, 196

VTK 9, 125

vtkFloatArray 122, 123
vtkRectilinearGrid 111
vtkStructuredGrid 113
vtkUnstructuredGrid 115, 118, 122

X

X-Y plots 11

211

212

	Getting Data Into VisIt
	September 2006
	Version 1.5.4

	DISCLAIMER
	Introduction
	Creating compatible files
	Creating compatible files II Advanced topics
	Creating a database reader plug-in
	Instrumenting a simulation code

	Chapter 1 Introduction
	1.0 Overview
	2.0 Manual chapters
	3.0 Manual conventions
	4.0 Strategies
	5.0 Picking a strategy
	6.0 Definition of terms

	Chapter 2 Creating compatible files
	1.0 Overview
	2.0 Creating a conversion utility or extending a simulation
	3.0 Survey of database reader plug-ins
	3.1 BOV file format
	Listing 2-1: bov.c: C-Language example for creating data that the BOV plug-in can read.
	Listing 2-2: fbov.f: Fortran language example for creating data that the BOV plug-in can read.

	3.2 X-Y Curve file format

	4.0 Writing Silo files
	4.1 Using the Silo library
	4.1.1 Including Silo
	4.1.2 Linking with Silo
	4.1.3 Using Silo on Windows

	4.2 Inspecting Silo files
	4.3 Silo files and parallel codes
	4.4 Creating a new Silo file
	Listing 2-3: basic.c: C-Language example for creating a new Silo file.
	Listing 2-4: fbasic.f: Fortran language example for creating a new Silo file..

	4.5 Dealing with time
	Listing 2-5: time.c: C-Language example for dealing with time.

	4.6 Option lists
	4.6.1 Cycle and time
	Listing 2-6: optlist.c: C-Language example for saving cycle and time using an option list..
	Listing 2-7: foptlist.f: Fortran language example for saving cycle and time using an option list..

	4.7 Writing a rectilinear mesh
	Figure 2-8: Rectilinear mesh and its X,Y node coordinates.
	Listing 2-9: rect2d.c: C-Language example for writing a 2D rectilinear mesh.
	Listing 2-10: frect2d.f: Fortran language example for writing a 2D rectilinear mesh.
	Figure 2-11: Rectilinear mesh and its X,Y,Z coordinates
	Listing 2-12: rect3d.c: C-Language example for writing a 3D rectilinear mesh.
	Listing 2-13: frect3d.f: Fortran language example for writing a 3D rectilinear mesh.

	4.8 Writing a curvilinear mesh
	Figure 2-14: Curvilinear mesh and its X,Y node coordinates
	Listing 2-15: curv2d.c: C-Language example for writing a 2D curvilinear mesh.
	Listing 2-16: fcurv2d.f: Fortran language example for writing a 2D curvilinear mesh.
	Figure 2-17: 3D Curvilinear mesh and its X,Y,Z coordinates
	Listing 2-18: curv3d.c: C-Language example for writing a 3D curvilinear mesh.
	Listing 2-19: fcurv3d.f: Fortran language example for writing a 3D curvilinear mesh.

	4.9 Writing a point mesh
	Figure 2-20: 2D point mesh
	Listing 2-21: point2d.c: C-Language example for writing a 2D point mesh.
	Listing 2-22: fpoint2d.f: Fortran language example for writing a 2D point mesh.
	Figure 2-23: 3D point mesh
	Listing 2-24: point3d.c: C-Language example for writing a 3D point mesh.
	Listing 2-25: fpoint3d.f: Fortran language example for writing a 3D point mesh.

	4.10 Writing an unstructured mesh
	Figure 2-26: 2D unstructured mesh composed of triangles and quadrilaterals. The node numbers are labelled red and the zone numbers are labelled blue.
	Listing 2-27: ucd2d.c: C-Language example for writing a 2D unstructured mesh.
	Listing 2-28: fucd2d.f: Fortran language example for writing a 2D unstructured mesh.
	Figure 2-29: Node ordering for Silo’s 3D unstructured zone types
	Figure 2-30: Node numbers on the left and the mesh, colored by zone type, on the right. Hexhadrons (red), Pyramid (blue), Prism (yellow), Tetrahedron (green).
	Listing 2-31: ucd3d.c: C-Language example for writing a 3D unstructured mesh.
	Listing 2-32: fucd3d.f: Fortran language example for writing a 3D unstructured mesh.
	4.10.1 Adding axis labels and axis units
	Figure 2-33: Custom mesh labels and units along the X and Y axes
	Listing 2-34: rect2d.c: C-Language example for associating new axis labels and units with a mesh.
	Listing 2-35: frect2d.f: Fortran language example for associating new axis labels and units with a mesh

	4.11 Writing a scalar variable
	4.11.1 Zone centering vs. Node centering
	Figure 2-36: Zone-centering (left) and Node-centering (right)

	4.11.2 API Commonality
	Figure 2-37: Variables in VisIt’s plot menus

	4.11.3 Rectilinear and curvilinear meshes
	Figure 2-38: Zone-centered variables. Clock-wise from upper left, float, double-precision, integer, char
	Listing 2-39: quadvar2d.c: C-Language example for writing zone-centered variables.
	Listing 2-40: fquadvar2d.f: Fortran language example for writing zone-centered variables.
	Listing 2-41: quadvar2d.c: C-Language example for writing node-centered variables.
	Listing 2-42: fquadvar2d.f: Fortran language example for writing node-centered variables.
	Figure 2-43: Zone-centered variable in 3D and a node-centered variable in 3D (shown with a partially transparent plot)
	Listing 2-44: quadvar3d.c: C-Language example for writing variables on a 3D mesh.
	Listing 2-45: fquadvar3d.f: Fortran language example for writing variables on a 3D mesh.

	4.11.4 Point meshes
	Figure 2-46: Scalar variable defined on a point mesh
	Listing 2-47: pointvar3d.c: C-Language example for writing variables on a 3D point mesh.
	Listing 2-48: fpointvar3d.f: Fortran language example for writing variables on a 3D point mesh.

	4.11.5 Unstructured meshes
	Figure 2-49: A 2D unstructured mesh with a zonal variable (left) and a nodal variable (right).
	Listing 2-50: ucdvar2d.c: C-Language example for writing variables on an unstructured mesh.
	Listing 2-51: fucdvar2d.f: Fortran language example for writing variables on an unstructured mesh.

	4.11.6 Adding variable units
	Figure 2-52: Plot legend with units
	Listing 2-53: ucdvar2d.c: C-Language example for writing a variables with units.
	Listing 2-54: fucdvar2d.f: Fortran language example for writing a variables with units.

	4.12 Single precision vs. Double precision
	Listing 2-55: C-Language example for writing a mesh with double-precision coordinates.

	4.13 Writing expressions
	Listing 2-56: defvars.c: C-Language example for writing out expression definitions.
	Listing 2-57: fdefvars.f: Fortran language example for writing out expression definitions.

	4.14 Creating a master file for parallel
	4.14.1 Creating a multimesh
	Figure 2-58: Multimesh colored by its domain number
	Listing 2-59: multimesh.c: C-Language example for writing a multimesh.
	Listing 2-60: fmultimesh.f: Fortran language example for writing a multimesh.

	4.14.2 Creating a multivar
	Figure 2-61: Multivar displayed on its multimesh
	Listing 2-62: multivar.c: C-Language example for writing a multivar.
	Listing 2-63: fmultivar.f: Fortran language example for writing a multivar.

	4.14.3 EMPTY contributions
	Listing 2-64: C-Language example using the EMPTY keyword.

	5.0 Writing VTK files
	5.1 Getting started with visit_writer
	5.1.1 Using visit_writer in C programs
	5.1.2 Using visit_writer in Python programs

	5.2 Regular meshes with data
	Figure 2-65: Regular mesh with data created using visit_writer
	Listing 2-66: vwregmesh.c: C-Language example for writing a regular mesh with data.
	Listing 2-67: vwregmesh.py: Python language example for writing a regular mesh with data.

	5.3 Rectilinear meshes with data
	Figure 2-68: 2D rectilinear mesh with zonal variable
	Listing 2-69: vwrect2d.c: C-Language example for writing a rectilinear mesh with data.
	Listing 2-70: vwrect2d.py: Python language example for writing a rectilinear mesh with data.

	5.4 Curvilinear meshes with data
	Figure 2-71: 3D curvilinear mesh with zonal variable
	Listing 2-72: vwcurv3d.c: C-Language example for writing a curvilinear mesh with data.
	Listing 2-73: vwcurv3d.py: Python language example for writing a curvilinear mesh with data.

	5.5 Point meshes with data
	Figure 2-74: Point mesh with scalar data and vector data
	Listing 2-75: vwpoint3d.c: C-Language example for writing a point mesh with data.
	Listing 2-76: vwpoint3d.py: Python language example for writing a point mesh with data.

	5.6 Unstructured meshes with data
	Figure 2-77: 2D unstructured mesh with zonal variable
	Listing 2-78: vwrucd2d.c: C-Language example for writing an unstructured mesh with data.
	Listing 2-79: vwucd2d.py: Python language example for writing an unstructured mesh with data.

	5.7 Creating a master file for parallel (.visit file)

	Chapter 3 Creating compatible files II Advanced topics
	1.0 Overview
	2.0 Writing vector data
	3.0 Adding metadata for performance boosts
	3.1 Writing data extents
	Figure 3-3: Example Mesh and Pseudocolor plots with the data extents for each domain of the Pseudocolor plot’s scalar variable.
	Figure 3-4: Only process domain 3 (left) to yield the Contour plot of value 11.5 (right).

	3.2 Writing spatial extents
	Figure 3-7: Only the red domains need to be processed to compute the slice plane if spatial extents are provided.

	4.0 Ghost zones
	Figure 3-10: VisIt can use ghost zones to ensure continuity and to remove internal surfaces
	4.1 Writing ghost zones to your files
	Figure 3-11: The zones that are both red and green are real zones in one domain and ghost zones in another.

	5.0 Materials
	Figure 3-14: A mesh with both clean and mixed material zones
	Figure 3-15: Mixed material example

	Chapter 4 Creating a database reader plug-in
	1.0 Overview
	2.0 Structure of VisIt
	Figure 4-1: VisIt’s architecture
	2.1 plug-ins

	3.0 Starting your plug-in
	3.1 Picking a database reader plug-in interface
	3.2 Using XMLEdit
	Figure 4-2: XMLEdit plug-in tab
	Figure 4-3: XMLEdit plug-in tab with plug-in name and type selected
	Figure 4-4: XMLEdit plug-in tab with database type and extensions selected
	3.2.1 Makefile options
	Figure 4-5: XMLEdit Makefile tab with compiler options and additional files specified.

	3.3 Generating a plug-in code skeleton
	Figure 4-6: Files generated by xml2plugin

	3.4 Building your plug-in
	Figure 4-7: Example of a “YOU MUST IMPLEMENT THIS” message
	Figure 4-8: Example of corrections made to a “YOU MUST IMPLEMENT THIS” message needed to make the source code compile
	Figure 4-9: Files are created in the .visit directory when a plug-in is built.

	3.5 Calling your plug-in for the first time
	Figure 4-10: File Information window confirming use of your plug-in.

	4.0 Implementing your plug-in
	4.1 Required plug-in methods
	4.2 Debugging your plug-in
	4.2.1 Debugging logs
	Listing 4-11: debugstream.C: C++-Language example for using debug streams.

	4.2.2 Dumping VTK objects to disk
	Figure 4-12: Output of running with the -dump command line argument

	4.3 Opening your file
	Listing 4-13: invaliddbtype.C: C++-Language example for a file format constructor that must throw an exception.

	4.4 Returning file metadata
	4.4.1 Returning mesh metadata
	Figure 4-14: Topological dimensions. One zone is highlighted blue.
	Figure 4-15: AVT mesh types (AVT_CSG_MESH not pictured).
	Listing 4-16: meshmetadata.C: C++-Language example for returning mesh metadata.

	4.4.2 Returning scalar metadata
	Listing 4-17: scalarmetadata.C: C++-Language example for returning scalar metadata.

	4.4.3 Returning vector metadata
	Listing 4-18: vectormetadata.C: C++-Language example for returning vector metadata.

	4.4.4 Returning material metadata
	Listing 4-19: materialmetadata.C: C++-Language example for returning material metadata.

	4.4.5 Returning expressions
	Listing 4-20: expressionmetadata.C: C++-Language example for returning expression metadata.

	4.5 Returning a mesh
	4.5.1 Determining which mesh to return
	Listing 4-21: getmesh1.C: C++ Language example for which mesh to return in GetMesh.

	4.5.2 Rectilinear meshes
	Figure 4-22: Rectilinear mesh and its X,Y node coordinates.
	Listing 4-23: getmesh_rect.C: C++ Language example for creating vtkRectilinearGrid in GetMesh.

	4.5.3 Curvilinear meshes
	Figure 4-24: Curvilinear mesh and its X,Y node coordinates
	Listing 4-25: getmesh_curv.C: C++ Language example for creating vtkStructuredGrid in GetMesh.

	4.5.4 Point meshes
	Figure 4-26: 3D point mesh
	Listing 4-27: getmesh_point.C: C++ Language example for returning a point mesh from GetMesh.

	4.5.5 Unstructured meshes
	Figure 4-28: 2D unstructured mesh composed of triangles and quadrilaterals. The node numbers are labelled red and the cell numbers are labelled blue.
	Figure 4-29: Node ordering for some VTK unstructured cell types
	Listing 4-30: getmesh_ugrid.C: C++ Language example for returning an unstructured mesh from GetMesh.

	4.6 Returning a scalar variable
	Listing 4-31: getvar.C: C++ Language example for returning data from GetVar.

	4.7 Returning a vector variable
	Listing 4-32: getvectorvar.C: C++ Language example for returning data from GetVectorVar.

	4.8 Using a VTK reader class

	5.0 Advanced topics
	5.1 Returning cycles and times
	Figure 4-33: Cycles and times values are used to help you navigate through time
	Figure 4-34: The File Information window can be used to inspect the cycles and times returned from your plug-in.
	5.1.1 Returning cycles and times in an ST plug-in
	Listing 4-35: cycletime_st.C: C++ Language example for returning cycles, times from ST plug-in.

	5.1.2 Returning cycles and times in an MT plug-in
	Listing 4-36: cycletime_mt.C: C++ Language example for returning cycles, times from MT plug-in.

	5.2 Auxiliary data
	5.2.1 Returning data extents
	Listing 4-37: dataextents.C: C++ Language example for returning data extents.

	5.2.2 Returning spatial extents
	Listing 4-38: spatialextents.C: C++ Language example for returning spatial extents.

	5.2.3 Returning materials
	Listing 4-39: matclean.C: C++ Language example for returning material data.

	5.3 Returning ghost zones
	5.3.1 Blanking out zones
	Listing 4-40: gz_blank.C: C++ Language example for returning a mesh with blanked out zones.

	5.3.2 Ghost zones at the domain boundaries

	5.4 Parallelizing your reader

	Chapter 5 Instrumenting a simulation code
	1.0 Overview
	2.0 Architecture
	Figure 5-1: Simulation writing data files in parallel
	Figure 5-2: VisIt’s compute engine reads data files in parallel and sends data to the viewer component.
	Figure 5-3: VisIt getting data from an instrumented parallel simulation

	3.0 Using libsim
	3.1 Getting libsim
	3.2 Building in libsim support
	Listing 5-4: Including libsim header file in C-Language simulation.
	Listing 5-5: Including libsim header file in Fortran-Language simulation.

	3.3 Initialization
	Listing 5-6: sim1.c: C-Language simulation example before adding libsim
	3.3.1 Setting up the environment and creating a .sim file
	Listing 5-7: sim2.c: C-Language simulation example including libsim initialization

	3.3.2 Parallel initialization
	Listing 5-8: sim2p.c: C-Language simulation example including parallel libsim initialization

	3.4 Restructuring the main loop
	3.4.1 Creating a mainloop function
	Listing 5-9: sim3.c: C-Language simulation example with a mainloop function.

	3.4.2 Adding libsim functions to mainloop
	Listing 5-10: sim4.c: C-Language simulation example with fully instrumented mainloop function.
	Figure 5-11: Simulation window

	3.4.3 Setting up mainloop for a parallel simulation
	Listing 5-12: sim4p.c: C-Language simulation example with fully instrumented parallel mainloop function.

	3.5 Using libsim in a Fortran simulation
	Listing 5-13: fsim4.f: Fortran language simulation example with fully instrumented mainloop function.

	3.6 Using libsim in a parallel Fortran simulation
	Listing 5-14: fscalarp.f: Fortran language simulation example for parallel initialization.
	Listing 5-15: fscalarp.f: Fortran language simulation example for parallel mainloop function.
	Listing 5-16: fscalarp.f: Fortran language simulation example for parallel processvisitcommand function.
	Listing 5-17: fscalarp.f: Fortran language simulation example for parallel broadcast functions.

	3.7 Running an instrumented simulation
	3.8 Connecting to an instrumented simulation from VisIt

	4.0 Writing data access code
	4.1 The VisIt Data Interface
	4.2 How data access functions are called
	4.3 Compiler and platform issues
	4.3.1 Linking your simulation
	4.3.2 The Windows platform

	4.4 Making data access functions available
	Listing 5-18: sim5.c: C-Language example for making a data access function available.
	Listing 5-19: fsim5.f: Fortran language example for making a data access function available.

	4.5 Data access function for metadata
	4.5.1 Returning simulation state metadata
	Listing 5-20: sim6.c: C-Language example for returning simulation state metadata.
	Listing 5-21: fsim6.f: Fortran language example for returning simulation state metadata.

	4.5.2 Returning mesh metadata
	Figure 5-22: Mesh variables in the plot menu
	Listing 5-23: sim7.c: C-Language example for returning mesh metadata.
	Listing 5-24: fsim7.f: Fortran language example for returning mesh metadata.

	4.5.3 Returning scalar variable metadata
	Listing 5-25: sim8.c: C-Language example for returning scalar metadata.
	Listing 5-26: fsim8.f: Fortran language example for returning scalar metadata.

	4.5.4 Returning curve variable metadata
	Listing 5-27: sim9.c: C-Language example for returning curve metadata.
	Listing 5-28: fsim9.f: Fortran language example for returning curve metadata.

	4.5.5 Returning material metadata
	Listing 5-29: sim10.c: C-Language example for returning material metadata.
	Listing 5-30: fsim10.f: Fortran language example for returning material metadata.

	4.5.6 Returning expression metadata
	Listing 5-31: sim11.c: C-Language example for returning material metadata.
	Listing 5-32: fsim11.f: Fortran language example for returning material metadata.

	4.5.7 Returning simulation-defined command metadata
	Figure 5-33: VisIt’s Simulations window with custom simulation commands.
	Listing 5-34: sim12.c: C-Language example for installing a command callback function.
	Listing 5-35: sim12.c: C-Language example for returning simulation commands in the metadata.
	Listing 5-36: fsim12.f: Fortran language implementation of the command callback function.
	Listing 5-37: fsim12.f: Fortran language example for returning simulation commands in metadata..

	4.6 Data access function for meshes
	4.6.1 Adding a mesh data access function
	Listing 5-38: mesh.c: C-Language example for installing a mesh data access function.
	Listing 5-39: fmesh.f: Fortran language example of a mesh data access function.

	4.6.2 Rectilinear meshes
	Listing 5-40: mesh.c: C-Language example for returning a rectilinear mesh.
	Listing 5-41: fmesh.f: Fortran language example for returning a rectilinear mesh.
	Figure 5-42: 2D rectilinear mesh returned by the previous code examples.

	4.6.3 Curvilinear meshes
	Listing 5-43: mesh.c: C-Language example for returning a curvilinear mesh.
	Listing 5-44: fmesh.f: Fortran language example for returning a curvilinear mesh.
	Figure 5-45: 3D curvilinear mesh returned by the previous code examples

	4.6.4 Point meshes
	Listing 5-46: point.c: C-Language example for returning a point mesh.
	Listing 5-47: fpoint.f: Fortran language example for returning a point mesh.
	Figure 5-48: 3D point mesh returned by the previous code examples

	4.6.5 Unstructured meshes
	Figure 5-49: Node ordering for 3D unstructured zone types
	Listing 5-50: unstructured.c: C-Language example for returning an unstructured mesh.
	Listing 5-51: funstructured.f: Fortran language example for returning an unstructured mesh.
	Figure 5-52: 3D unstructured mesh returned by the previous code examples

	4.7 Data access function for scalars
	4.7.1 Adding a scalar data access function
	Listing 5-53: scalar.c: C-Language example for installing a scalar data access function.
	Listing 5-54: fscalar.f: Fortran language example of a scalar data access function.

	4.7.2 Passing a simulation’s data array
	Listing 5-55: scalar.c: C-Language example for returning a scalar variable.
	Listing 5-56: fscalar.f: Fortran language example for returning a scalar variable.
	Figure 5-57: Examples of scalar variables returned by a scalar data access function.

	4.8 Data access function for curves
	4.8.1 Adding a curve data access function
	Listing 5-58: curve.c: C-Language example for installing a curve data access function.
	Listing 5-59: fcurve.f: Fortran language example of a curve data access function.

	4.8.2 Passing curve data to VisIt
	Listing 5-60: curve.c: C-Language example for passing curve data back to VisIt.
	Listing 5-61: fcurve.f: Fortran language example for passing curve data back to VisIt.
	Figure 5-62: Sine curve produced by the curve data access function example programs.

	4.9 Data access function for the domain list
	Listing 5-63: curve.c: C-Language example for returning a domain list.
	Listing 5-64: fcurve.f: Fortran language example for returning a domain list.
	A
	B
	C
	D
	E
	G
	I
	L
	M
	O
	P
	S
	T
	U
	V
	X

