

Estimating the Potential for Cost Effective Electric and Peak Demand Savings in Connecticut

Tom Rooney & Richard Spellman – GDS Associates Mike Rufo – Quantum Consulting Jeff Schlegel – ECMB Consultant

2004 ACEEE Summer Study on Energy Efficiency in Buildings

Objective

- Study in 2003-04 for the Connecticut Energy Conservation Management Board (ECMB)
- To estimate the Maximum Achievable Cost Effective Potential for energy conservation and energy efficiency resources over the period from 2003-2012 in three areas:
 - Connecticut Statewide
 - The 52 towns in the constrained SW Area of CT
 - The 16 critical constrained towns in SW CT (Norwalk-Stamford area)

Definition of Maximum Achievable Cost Effective Potential

The maximum penetration of cost effective energy efficiency measures that would be adopted given unlimited funding, and assuming a concerted, sustained campaign involving highly aggressive programs and market intervention.

Steps to Estimate Potential

- 1. Identification of data sources
- 2. Identification of measures to be included
- 3. Estimate of measure inputs (cost, savings, life, etc.)
- 4. Calculation of measure-level cost effectiveness
- 5. Development of market baselines and forecast (e.g., equipment saturation, kWh and kW sales)
- 6. Development of efficiency supply curves
- 7. Estimate of technical and maximum achievable potential
- 8. Estimate of annual potential over ten year period

Data Sources for Connecticut Potential Study

				•
Load Forecasts				8
Residential Sector				34
Commercial/Industrial Sectors	+			21
Recent Technical Potential Studies			- 1	10
CT Saturation Studies				4
State, Regional, & National Studies		 · •	- 1	14
Electronic Files Supplied by UI				17
Electronic Files Supplied by CL&P				38
Industry References				42
Other Data Sources				<u> 3</u>

TOTAL

191

Results of Measure Cost Effectiveness Assessment

Results of Statewide Cost Effectiveness Screening Analysis						
		Number of Measures	Number of Measures			
Sector		Assessed	with $TRC \ge 1.0$			
Residential	2011	68	29			
Commercial		104	77			
Industrial	(8)	106	100			
Total		278	206			

Assumptions for Measure Installations

- <u>Market Driven</u> replace with high efficiency equipment at the time of equipment burn-out
 - Incremental cost and incremental savings
- <u>Retrofit</u> equipment is replaced at any time in order to move to more efficient product
 - Full cost and total savings
- <u>Early Replacement</u> acceleration of replacement to capture energy and demand savings sooner
 - Hybrid of approaches using assumption of when measure would have been replaced (~ 3-5 years out)

Estimated Ramp-In Rates for Energy Efficiency Measures

8

Development of Maximum Achievable Potential Estimates

- Maximum achievable measure adoption potential is based on:
 - a comprehensive review of actual penetration rates achieved by aggressive energy efficiency programs in other States
 - a literature review of market penetration studies
 - input received from a panel of experts convened for this study
- Estimated maximum achievable penetration rate of energy efficiency measures is 80% across all sectors.

Reordering Potential Estimates

- Potential studies commonly estimate technical potential, economic (cost effective) potential, and achievable potential, in that order
- CT study modified the common order, with an estimate of achievable potential developed before applying cost-effectiveness
- Why? Avoided costs were increasing; ECMB and others wanted to be able to use the study results with future changes in avoided costs

Summary of Results

- For 2003-2012
- Technical potential: 1,748 MW on a statewide basis (24% reduction vs. the base forecast)
- Maximum achievable cost effective potential: 908 MW (13% reduction vs. base forecast)
- Maximum achievable cost effective potential: 4,466 GWh (13.4 percent by 2012)
- Capturing achievable cost effective potential statewide can save consumers and businesses
 \$1.8 billion over the next decade, or about
 \$1,228 for each of the 1.45 million households

Peak Load Savings Potential

Connecticut Summer Peak Load Forecast (MW): Base Case, Continued Current Energy Efficiency, and Maximum Achievable Cost Effective Potential

*For the "Continued Energy Efficiency" scenario from the 2003 Load Forecast, values for the CL&P service territory for years 2009 to 2012 are estimates based on the average of prior year values.

Distribution of GWh Savings

Achievable Cost-Effective Potential

Connecticut Statewide TRC

	Total Resource Benefits, Costs, and Net Benefits					
			PV of	Benefit-		
	Preser	nt Value	Net	Cost		
State of Connecticut	Benefit	<u>Cost</u>	Benefits	Ratio		
Commercial Sector	\$1,411,460,062	\$358,414,779	\$1,053,045,283	3.94		
Residential Sector	\$1,062,432,855	\$390,141,582	\$672,291,273	2.72		
Industrial Sector	\$341,431,615	\$79,413,671	\$262,017,944	4.30		
All Sectors	\$2,815,324,532	\$827,970,032	\$1,987,354,500	3.40		
O&M Benefits (inc. avoided inc. bulb purchases)		\$(80,156,204)				
Other Program Costs (25%)*		\$206,992,508		1 6		
All Sectors	\$2,815,324,532	\$954,806,336	\$1,780,361,992	2.95		

*Other program costs estimated as 25% of total incremental measure costs, net of any O&M savings. Values were calculated using version 9 of the "NSTAR" model, with CL&P avoided cost estimates..

CT Results - Comparison

Sector	Connecticut 2012	California 2011 (Rufo 2002; Coito 2003)	Vermont 2012 ¹ (Optimal 2002)	Mass. 2007 ¹ (RLW 2001)	New York 2012 ² (Optimal 2003)	Southwest 2020 ³ (SWEEP 2002)		
Technical Potential								
esidential	21%	22%			39%	26% ⁽⁶⁾		
R mmercial	25%	18%		+	42%	37% ⁽⁶⁾		
Co _{ndustrial}	20%	15%			22%	33% ⁽⁶⁾		
¹ otal	24%	18%			38%	<i>33%</i> ⁽⁶⁾		
T Maximum Achievable Potential								
esidential	17%		30%					
R mmercial	17%		32%			4		
Co ndustrial	15%		32%					
I otal	17%		31%			- 1 lie 1		
T Maximum Achievable Cost Effective Potential								
esidential	13%	10%		31%	28%			
R mmercial	14%	10%		21%	40%			
Co _{ndustrial}	13%	9%		21%	20%			
l otal	13%	10%		24%	33%.			
T 1. Vermont and 2. NY Maximu 3. Southwest y	d Massachusetts st m Achievable Cos alues represent tec	udies reported commerci st Effective Potential value chnical cost effective potential	al and industrial ues are Economic ential.	sectors togethe c Potential Und	r. er High Avoided Co	osts.		

Use of Supply Curves

- Allows comparison of individual energy efficiency measures
- Y axis shows cost of conserved energy; X axis shows how much can be saved at various CCE levels
- Eliminates double counting
- Typically, but not always, reflect diminishing returns, i.e., as costs increase rapidly and savings decrease significantly at the end of the curve.
- Costs are usually annualized (levelized)

Connecticut Statewide Supply Curve

Maximum Achievable Savings Potential as Percent of Total Electricity Sales

Residential Sector Potential

- Major Electric Savings Opportunities:
 - Electric Water Heating
 - Lighting (CFLs)
 - Resistant Heating Measures & High Efficiency Dishwashers Are Also Significant Energy Savers
- Residential Lighting Measures have the Highest Energy Saving Potential
- Water Heating Pipe Wrap has the Lowest Cost of Conserved Energy (CCE).

Residential Sector Supply Curve

Maximum Achievable Savings Potential Residential Sector -S tate of Connecticut

Maximum Achievable Savings Potential as Percent of Total Electricity Sales

19

Commercial Sector Potential

- Major Electric Savings Opportunities:
 - Lighting (largest savings of any end use category)
 - HVAC Equipment and Controls
 - Efficient Office Equipment and Controls
- Installation of Super T-8's was found to have the most potential kWh savings for this sector
- Nighttime Shutdown of Desktop Computers was the Measure with the Lowest CCE at \$0.0005/kWh
- The median CCE for the Commercial sector is \$0.046/kWh (\$0.0266 for measures with TRC > 1.0)

Commercial Sector Supply Curve

Industrial Sector Potential

- Pump controls in paper manufacturing was found to have the most potential kWh savings
- Near Net Shape Casting in the metal manufacturing industry was the measure with the lowest CCE at -\$0.09/kWh (negative value is result of productivity and energy savings exceeding cost)
- The median CCE for the Industrial sector is \$0.01/kWh

Industrial Sector Supply Curve

Lessons Learned

- Current saturations of energy efficient equipment are a critical input and were difficult to estimate due to very limited available data
- Program administration costs offer an area of uncertainty due to the magnitude of potential program scope
- Local utility input and technical support is essential in obtaining load forecasts and related data

Conclusions

- The maximum achievable cost effective potential for energy efficiency in CT is very large, and the potential NPV dollar savings to ratepayers in CT are over \$1.8 billion with aggressive programs
- There are sufficient cost effective commercially available energy efficiency technologies to reduce peak load growth to less than a 0.1% annually from 2003 to 2012 (Base case = 1.5% annual growth)
- There are significant environmental benefits associated with the maximum achievable cost effective potential scenario

Use of the Study

Context: CT C&LM (SBC) fund was being "redirected" by legislature to deficit reduction, and for other uses

Public policy objectives:

- Demonstrate/document that there is a large amount of cost-effective energy efficiency potential remaining in Connecticut
- Reducing C&LM funding significantly reduces value to businesses and consumers

How the study was/is being used:

- Press release, public media
- Various public policy forums including state energy planning and forecasting, climate change, and CEAB preferential guidelines