

A Grassroots Renewable Fuels Revolution

Presenters

Forrest Jehlik -Argonne National Laboratory

Contributors

Danny Bocci (Argonne National Laboratory). Bob Bolles (Circle Track Magazine). Rob Fisher (Circle Track Magazine). Dave Kalen (Sensors, Inc.). Horace Mast (Mast Motorsports). Jim McFarland (Engineer, Performance Professor). Zehr Racing.

Project objectives

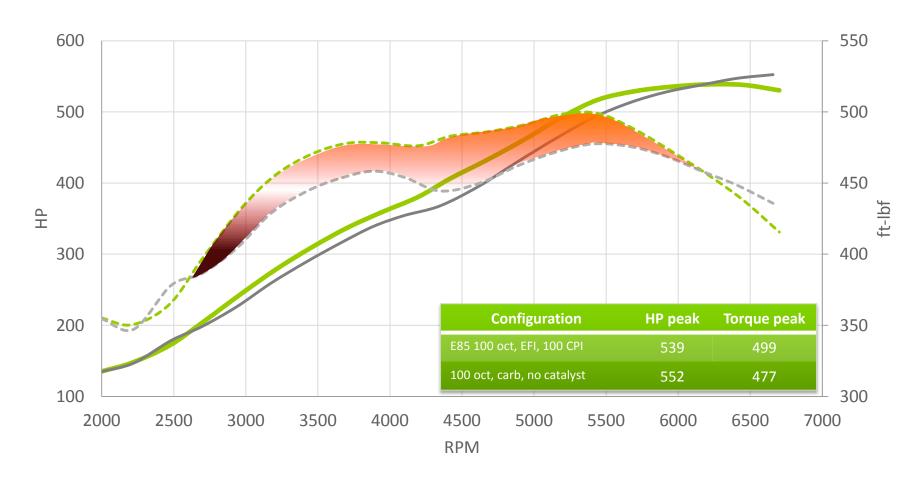
- Demonstrate using renewable fuels and modern technology:
 - 1) Significant petroleum displacement
 - 2) Significant well-to-wheel (WTW) greenhouse gas reduction
 - 3) Significant criteria emission reduction
 - 4) Increased performance
 - 5) Greatly reduced operational cost

Generate significant educational outreach:

- 1) Supply a market for sustainable renewable fuels
- 2) Reduce apprehension for adopting the use of newer fuels/technologies
- 3) Increase the numbers of racers, spectators, and open new business opportunity's

Engine testing

- LS3 based 6.2L GM CT-525 engine was tested at Mast Motorsports
- Testing benchmarked technologies and fuels:
 - 1) Fuel injection vs. carburetion
 - 2) E85 vs. 100 octane race fuel
 - 3) Catalyst vs. non catalyst
- Sensors, Inc. SEMTECH DS was used for emissions/fuel consumption analysis (portable emissions measurement system- PEA



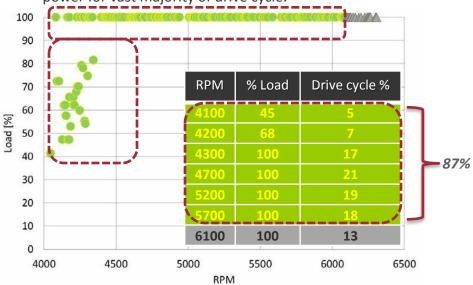
E85 EFI w/ catalysts vs. 100 octane carburetor

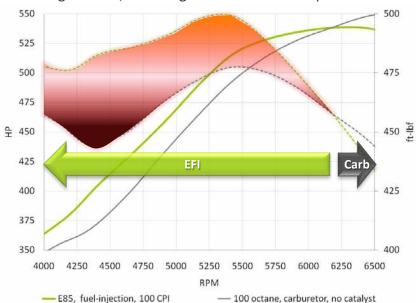
E85, fuel-injection, 100 CPI

— 100 octane, carburetor, no catalyst

EFI = Electronic Fuel Injected E85 = ethanol fuel (85% ethanol, 15% petroleum) carb = carbureted nocat = no catalyst 100CPI = 100 cell per inch catalyst 300CPI = 300 cell per inch catalyst 100oct = 100 octane race fuel

Track testing

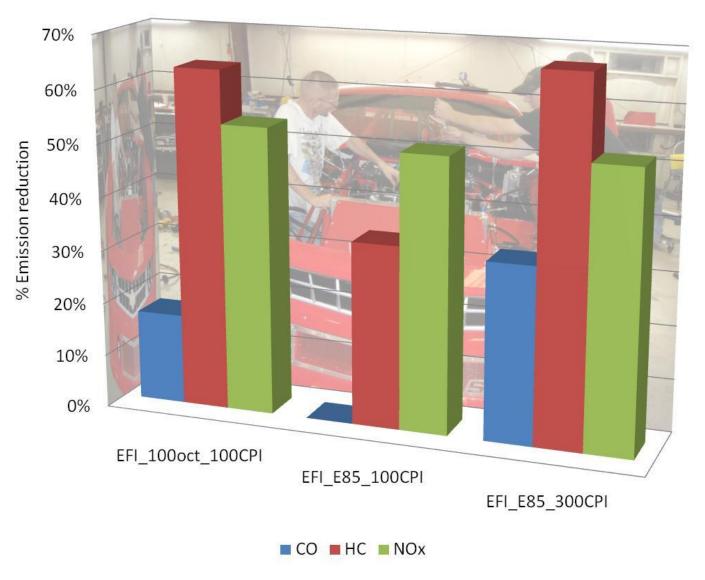

- The same 6.2L GM CT-525 engine was used in a Chevrolet Camaro circle track car and tested at New Smyrna raceway
- Sensors, Inc. SEMTECH DS portable emissions measurements system was used for emissions/fuel consumption analysis
- Testing matrix benchmarked technologies and fuels:
 - 1) E85 vs. 100 octane race fuel
 - 2) Fuel injection vs. carburetion
 - 3) Catalyst vs. non catalyst



Dynamometer/track tests detail increased performance

On track recorded engine speed/load points. Data points color coded between EFI/E85 and carburetor. E85 more power for vast majority of drive cycle.

E85, EFI configuration with catalysts makes more power and torque 87% of the time weighted engine RPM/load range: Results = faster lap times.

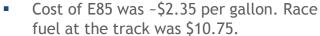


Catalyst emission reduction - EFI configuration

EFI = Electronic Fuel Injected E85 = ethanol fuel (85% ethanol, 15% petroleum) carb = carbureted nocat = no catalyst 100CPI = 100 cell per inch catalyst 300CPI = 300 cell per inch catalyst 100oct = 100 octane race fuel

Race demonstration

- The Chevrolet Camaro circle track race car using the same 6.2L GM CT-525 engine was raced at the La Crosse-Wisconsin Oktoberfest, 2010
- Data acquisition system measured real time fuel flow, CAN parameters, GPS
- Race car ran exclusively on E85, fuel injection, catalytic convertors (100 CPI)
- Data was analyzed and the petroleum displacement/GHG reduction determined



La Crosse Speedway - ½ mile asphalt track

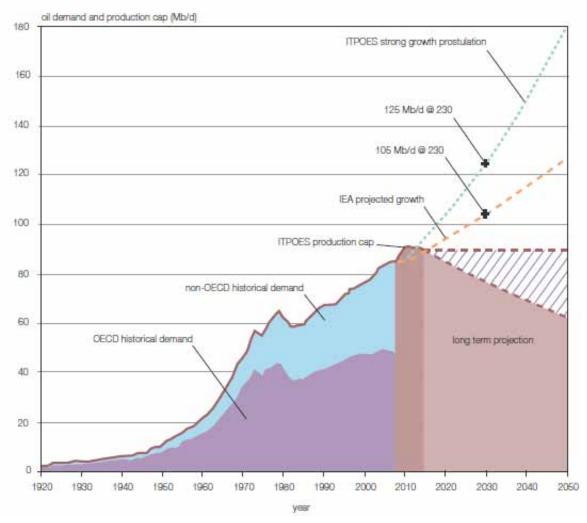
...and what did it cost us? E85 + tech saved \$31,593

- Consuming just over 16 gallons of E85, our fuel cost for the weekend was \$38.
- Accounting for the per gallon E85 energy deficit, race fuel would have cost \$131.

- The GM production CT-525 engine costs approximately \$8500 (our engine).
- Custom built fuel injected LS3 engines cost approximately ~\$14,000 (605 HP).
- Race engines at the event cost approximately \$40,000.

These cost savings would grow the market size and support for renewable fuels





The U.S. consumes over 20 million barrels of oil per day, ¼ the worlds total. How much is that?

One day of U.S. consumption, 20 million barrels side-by-side, would stretch from California to the east coast, back to the west coast, then back to Nebraska.

The upcoming global oil gap^[1]

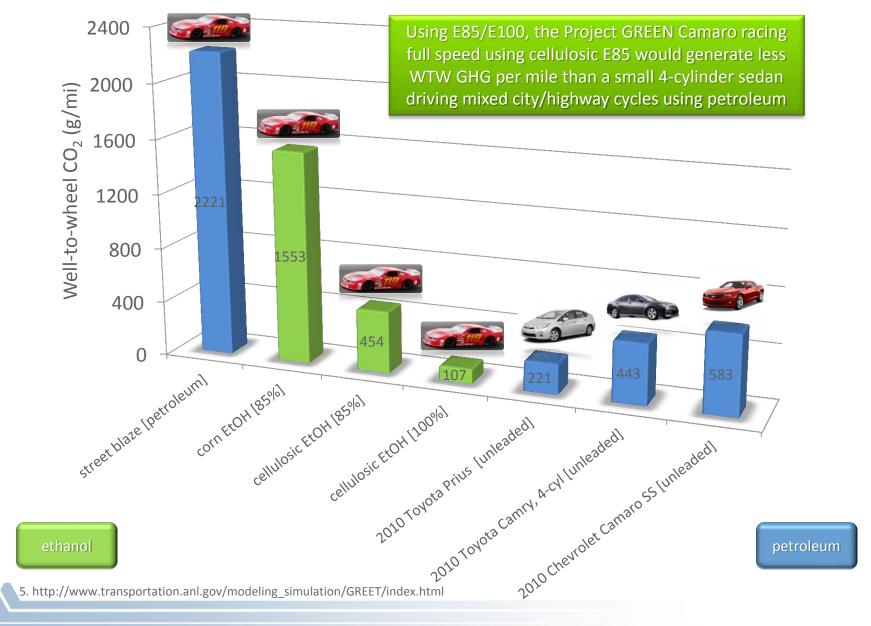
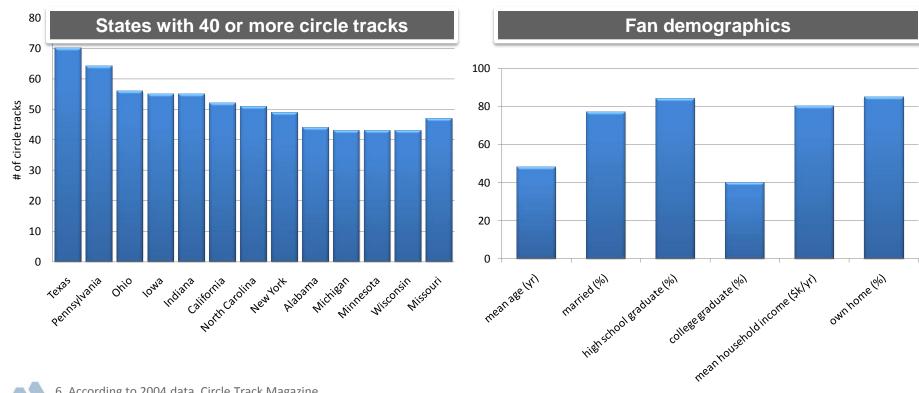

1. <u>The Oil Crunch- A wake-up call for the UK economy</u>, Industry Taskforce on Peak Oil & Energy Security Second report of the UK Industry Taskforce on Peak Oil & Energy Security (ITPOES). February 2010.

Fig 6.6 Oil demand for the historical period 1920-2008, with extrapolations to 2050 for the IEA 'Reference Case' (1% growth rate) and the ITPOES 'strong growth' case. Also shown are two projections for production: a plateau (based on Shell's paper in the first ITPOES Oil Crunch Report, 2008), and the ITPOES production cap (Section 3) followed by a 1 percent per annum net depletion rate. (Sources: BP Statistical Review of World Energy and the IEA's World Energy Outlook 2009).

Petroleum displacement - 33 laps of racing (~21 mi)



GREET modeled greenhouse gas results^[5]

Circle track racing has tremendous renewable fuels and advanced technology outreach potential!

- 20+ million people attend grassroots oval track races (annually)
- Auto racing is the #2 television audience sport in the U.S. (second to the NFL)
- There are approximately 443,000 participants (teams/drivers) in the United States [6]
- There are over 1,100 oval tracks in the U.S.- every state has an oval race track

Faster. Cheaper. Cleaner. Sustainable. There are no Compromises

- Going green and going faster <u>are</u> synonymous
 - increased performance at a ~75% cost reduction
 - reduced petroleum consumption ~ 80% with domestically generated renewable fuels
 - reduced GHGs by ~75%
 - criteria emissions by ~60%
- Circle track racing offers tremendous audience for renewable fuels and sustainability
- Tremendously powerful message if cellulosic E85/advanced technology used:
 - In a 100 lap race, E85 would consume roughly 2.0 gallons of petroleum, less than a 4-cylinder small sedan, using petroleum, covering the same distance in mixed city/highway driving
 - GREET analysis shows that less WTW GHG would be emitted, per mile, using cellulosic E85 than a 4cylinder small sedan using petroleum

Environmentalists?

Environmentalists!

