
Algae: The Source of Reliable, Scalable, & Sustainable Liquid Transportation Fuels

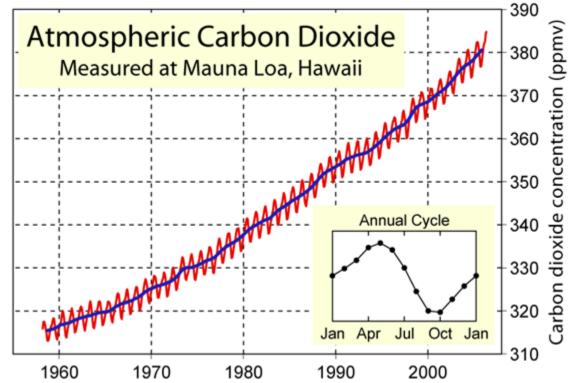
February 12, 2009

Brian L. Goodall Vice President of Downstream Technology Sapphire Energy, San Diego, CA

We have an enormous, and growing, problem

We make up the difference by spending billions of dollars on foreign oil

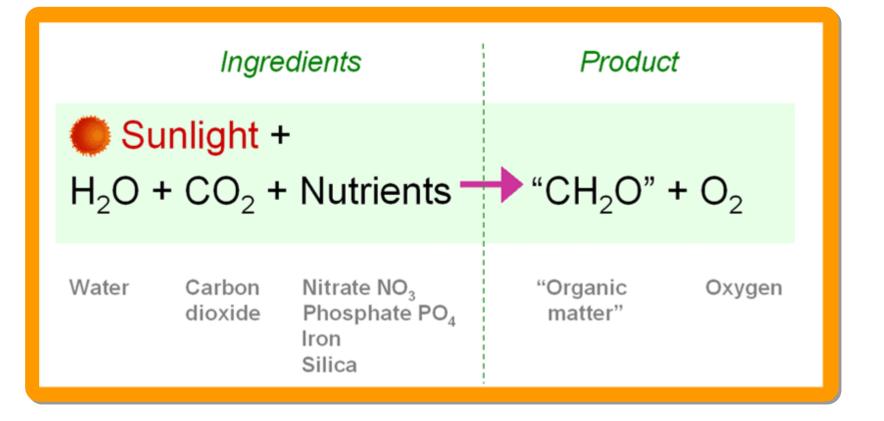
Daily US imports of crude oil	
Canada	3.2 MBD
Mexico	2.0 MBD
Venezuela	3.4 MBD
Middle East	2.9 MBD
North Africa	1.0 MBD
Asia	2.5 MBD
Russia	0.6 MBD
Off-shore EU	1.3 MBD
Total	17.0 MBD


	Total annual		
Avg price	imports		
per bbl	(\$billion)		
\$40	\$248		
\$50	\$310		
\$60	\$372		
\$70	\$434		
\$80	\$496		
\$90	\$558		
\$100	\$621		
\$110	\$683		
\$120	\$745		
\$130	\$807		
\$140	\$869		
\$150	\$931		
\$160	\$993		

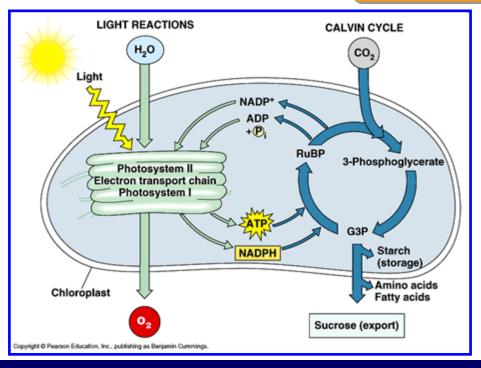
And the other costs?

NOAA, 2008; David Keeling, Scripps

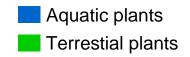
The ideal way we can fill this enormous – *and widening* – gap in liquid transportation fuels is by developing fuels which meet the following criteria

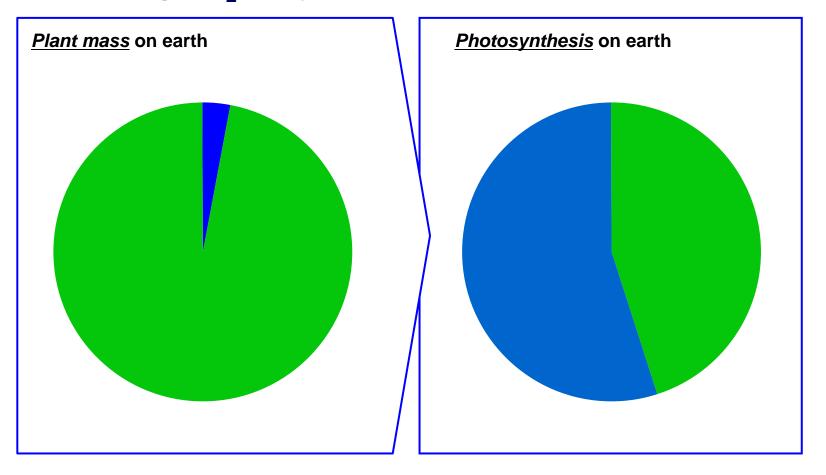

- Fuels that are **completely fungible** (100% "drop in solutions") with
 - Existing oil and fuel movement infrastructure (e.g., pipelines, terminals)
 - Existing fleet of land and air vehicles (i.e., cars, trucks, jets)
 - Existing refining infrastructure
- Fuels that do not compete with agricultural products, agricultural land, or fresh water
- Fuels that have a favorable life cycle with respect to CO₂ compared to conventional petroleum
- Fuels that can be scaled to well over 1,000,000 barrels per day to meaningfully impact the widening gap between US fuel production and consumption

Why Algae?

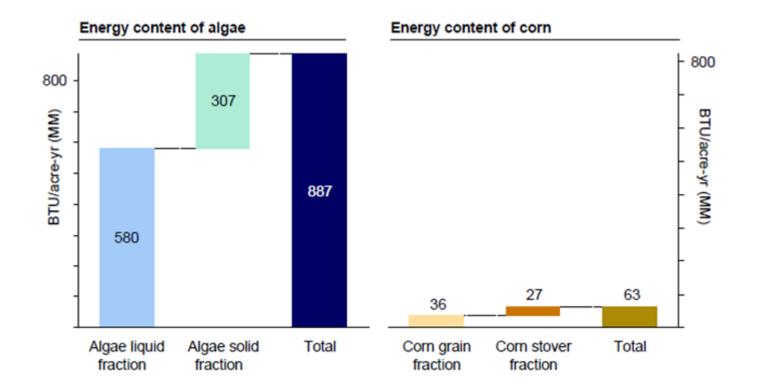

The most important chemical reaction on our planet

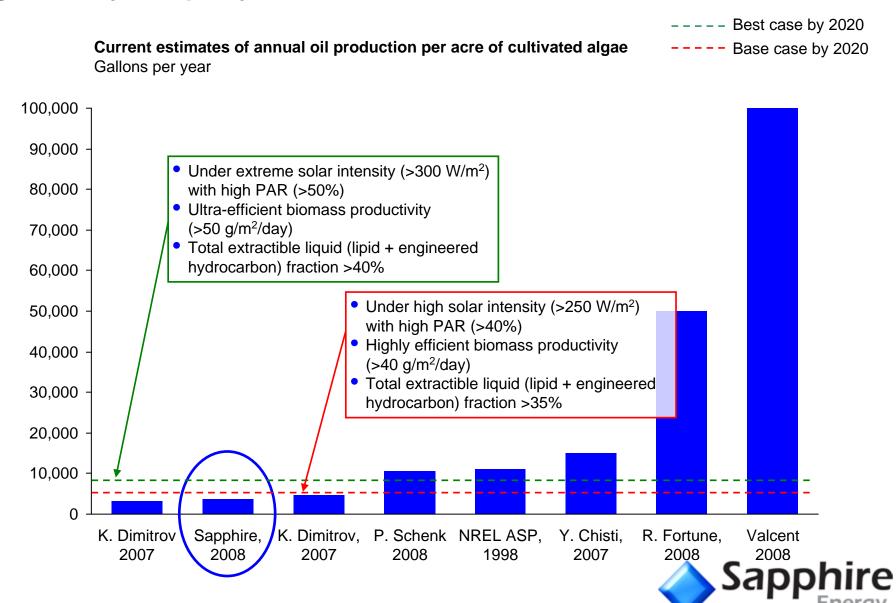
The most important chemical reaction on our planet was tailor made for algae

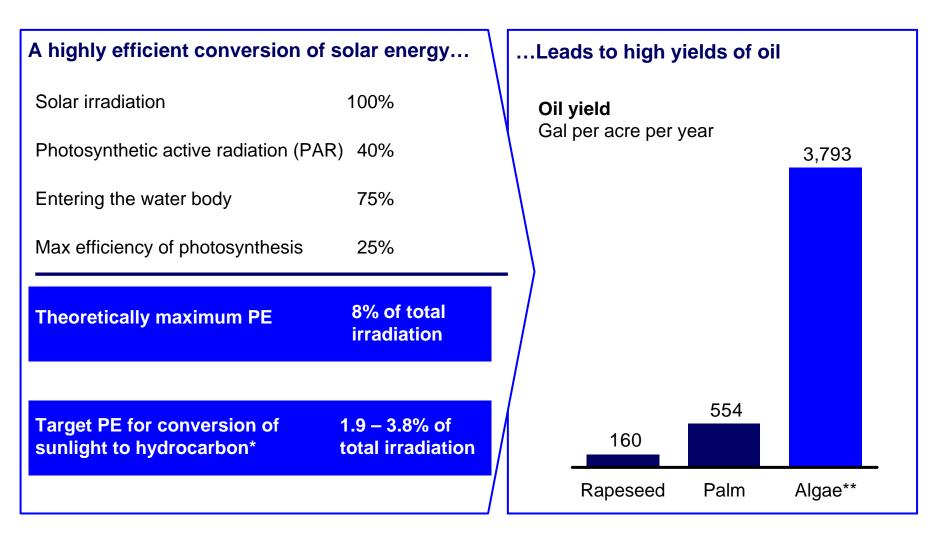

Ingredients			Product	
	+ CO ₂ +	⊦ · Nutrients ─	➡ "CH ₂ O" +	+ O ₂
Water	Carbon dioxide	Nitrate NO ₃ Phosphate PO ₄ Iron Silica	"Organic matter"	Oxygen



- Nearly all of the biomass of algae is concentrated in the chloroplast – the engine that turns sunlight and CO₂ into organic carbon (i.e., C-C and C-H bonds)
- Algae "waste" no time or energy making stalks, roots, leaves, or fruit
- The result is maximum hydrocarbon per unit area


Algal oil production dwarfs that of all terrestial plants because of the enormous advantage they have converting CO₂ to hydrocarbons


Algae are 40x more efficient at converting sunlight to hydrocarbon than terrestial plants



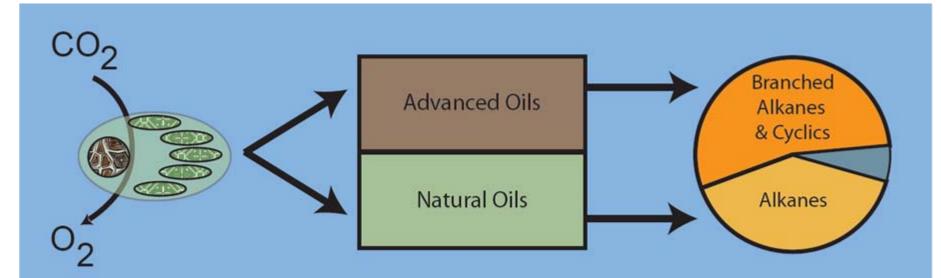
There is no shortage of estimates for how much oil an acre algae can yield per year...

...but even with the most conservative estimates, extraordinary yields are likely

* Assuming 25-50% of theoretical maximum PE is achievable

** Yield at 30 g/m²/day (Medium irradiation); 30% oil content

The implications of (even conservative) oil yields are dramatic


	Current trajectory	Base case, 2020	Best case, 2020	
	3,800	5,000	8,000	Gallons oil per acre per year
Entire USAF jet fuel consumption (200,000 bpd)	800,000 acres 35x35 miles	600,000 acres 31x31 miles	400,000 acres 25x25 miles	
5% of US consumption (1,000,000 bpd)	4 MM acres 80x80 miles	3 MM acres 70x70 miles	2 MM acres 55x55 miles	
10% of US consumption (2,000,000 bpd)	8 MM acres 112x112 miles	6 MM acres 97x97 miles	4 MM acres 80x80 miles	
25% of US consumption (5,000,000 bpd)	20 MM acres 180x180 miles	15 MM acres 150x150 miles	10 MM acres 125x125 miles	Total US oil production , including off-shore and arctic is 5 million bpd
50% of US consumption (10,000,000 bpd)	40 MM acres 250x250 miles	30 MM acres 215x215 miles	20 MM acres 175x175 miles	Droductivity of corp for others!
4% of US consumption by vo (800,000 bpd equivalent)	blume*	23 MM acres** 190x190 miles		Productivity of corn for ethanol – 25% of corn growing land was used to make ethanol to displace 4% of US fuel

* 3% Based on energy content. Numbers based on 2007 production figures from USDA, Greencarcongress

Carbon Neutral, Renewable transportation fuel of the future

Sunlight + CO2 = Fuels

Sapphire Production Green Crude Platform

Aviation Fuel Diesel & Gasoline

Biology and Engineering = CO_2 Neutral, Renewable Fuels

 Nothing in modern agriculture would be where it is today without thousands of years of directed evolution and, ultimately, genetic engineering

- With energy crops like algae we gain the benefits of science and engineering
- Without the luxury of thousands of years to direct the evolution of algae, the only solution for commercial scale is genetic engineering

Rapid Developments

Algae Jet Fuel made in partnership with

http://www.sapphireenergy.com/mediacenter

Sapphire Energy Overview and Accomplishments

- •Leaders in development of green crude from algae
- •HQ San Diego, Development facilities Las Cruces New Mexico
- •Team is best in class in biotechnology, algal production, civil engineering, biorefining, biofuels, and business development
- •First algal feedstock refined to green gasoline, green diesel, and green jet fuel
- •First commercial aircraft flight using algal fuel -- January 7, 2009, Continental Airlines
- •Largest cultivation of enhanced algal strains
- •Dominant IP portfolio, with over 200 patents in algal fuel space
- •Raised over \$100 million from top tier investors
- •90+ employees

