GREEN'S FUNCTION MONTE CARLO CALCULATIONS OF LIGHT NUCLEI

Steven C. Pieper

Physics Division, Argonne National Laboratory

WORK WITH

Joe Carlson, Los Alamos Ken Nollett, Argonne & Inst. Nuclear Theory, Seattle Vijay Pandharipande, U. of Illinois, Urbana Rocco Schiavilla, Jefferson Lab. & Old Dominion U. Kalman Varga, Oak Ridge Robert Wiringa, Argonne

Work not possible without

NERSC IBM SP (Seaborg)

(421K CPU-hours ≈ 150 TFLOP hours in FY02) Argonne Math. & Comp. Science Division (Chiba City) (Est. 900K CPU-hours ≈ 110 TFLOP hours in FY02) Argonne Laboratory Computing Resource Center (Jazz) (170K CPU-hours ≈ 95 TFLOP hours since Nov 2002)

Two Problems in Microscopic Few- & Many-Nucleon Calculations

(I) What is the Hamiltonian?

- NN force is reasonably controlled
- 3N force must be determined while computing properties of light nuclei!

(II) Given \mathcal{H} , solve the Schrödinger equation for A nucleons accurately.

• Much recent progress for $A \leq 12$

Direct comparison of calculations to data is ambiguous if (II) is not solved.

Our goal is a microscopic description of nuclear structure and reactions from bare NN & 3N forces and consistent currents.

NUCLEAR HAMILTONIAN

$$\mathcal{H} = \sum_{i} K_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk}$$

 $\begin{aligned} v_{ij}: & \text{Argonne } v_{18} \\ v_{ij} &= v_{ij}^{\gamma} + v_{ij}^{CI} + v_{ij}^{CD}; \qquad v_{ij}^{CI} = \sum_{p=1,14} v_p(r_{ij}) O_{ij}^p \\ O_{ij}^{p=1,14} &= \\ & [1, \sigma_i \cdot \sigma_j, S_{ij}, \mathbf{L} \cdot \mathbf{S}, \mathbf{L}^2, \mathbf{L}^2 \sigma_i \cdot \sigma_j, (\mathbf{L} \cdot \mathbf{S})^2] \otimes [1, \tau_i \cdot \tau_j] \\ V_{ijk}: & \text{Urbana IX and new Illinois models} \\ & \text{Need to solve} \\ & \mathcal{H} \Psi(\vec{r}_1, \vec{r}_2, \cdots, \vec{r}_A; s_1, s_2, \cdots, s_a; t_1, t_2, \cdots, t_A) \\ &= E \Psi(\vec{r}_1, \vec{r}_2, \cdots, \vec{r}_A; s_1, s_2, \cdots, s_a; t_1, t_2, \cdots, t_A) \end{aligned}$

 s_i are nucleon spins: $\pm \frac{1}{2}$ t_i are nucleon isospins (proton or neutron): $\pm \frac{1}{2}$ $2^A \times \begin{pmatrix} A \\ Z \end{pmatrix}$ complex coupled 2^{nd} order equations in 3A - 3 variables (number of isospin states can be reduced) 12 C: 270,336 coupled equations in 33 variables VARIATIONAL MONTE CARLO

Minimize expectation value of \mathcal{H}

$$E_T = rac{\langle \Psi_T | \mathcal{H} | \Psi_T
angle}{\langle \Psi_T | \Psi_T
angle} \ge E_0$$

Simplified trial wave function:

$$|\Psi_T\rangle = [1 + \sum_{i < j < k} U_{ijk}] [\mathcal{S} \prod_{i < j} (1 + U_{ij})] \prod_{i < j} f_{ij} |\Phi\rangle$$

 U_{ijk} are 3-body correlations from V_{ijk} U_{ij} are non-commuting 2-body correlations from v_{ij} f_{ij} are central (mostly short-ranged repulsion) correlations

 Φ is a $1\hbar\omega$ shell-model w.f.

- determines quantum numbers of state
- fully antisymmetric
- translationally invariant
- has multiple spatial-symmetry components

GREEN'S FUNCTION (DIFFUSION) MONTE CARLO

VMC Ψ_T propagated to imaginary time τ :

$$\Psi(\tau) = e^{-(\mathcal{H} - E_0)\tau} \Psi_T$$
$$\Psi_0 = \lim_{\tau \to \infty} \Psi(\tau)$$
$$\mathcal{H}\Psi_0 = E_0 \Psi_0$$

Small time-step propagator:

$$\Psi(\tau) = \left[e^{-(\mathcal{H}-E_0)\Delta\tau}\right]^n \Psi_T; \quad \tau = n\Delta\tau$$
$$G_{\beta\alpha}(\mathbf{R}',\mathbf{R}) = \langle \mathbf{R}',\beta | e^{-(\mathcal{H}-E_0)\Delta\tau} | \mathbf{R},\alpha \rangle$$
$$\Psi(\mathbf{R}_n,\tau) = \int G(\mathbf{R}_n,\mathbf{R}_{n-1})\cdots G(\mathbf{R}_1,\mathbf{R}_0)\Psi_T(\mathbf{R}_0)d\mathbf{R}_{n-1}\cdots d\mathbf{R}_0$$
¹²C: 400 steps means 14,000-dimensional integral

Fermion sign problem limits maximum τ : G brings in lower-energy boson solution $\langle \Psi_T | \mathcal{H} | \Psi(\tau) \rangle$ projects back fermion solution Exponentially growing statistical errors

Constrained-path propagation removes steps that have

 $\overline{\Psi(\tau,\mathbf{R})^{\dagger}\Psi(\mathbf{R})}=0$

Many tests demonstrate reliability

MAKING IT PARALLEL

Master-slave structure

Each slave gets configurations to propagate

Results sent back to master for averaging as generated

During propagation, configs multiply or are killed

- Work load fluctuates
- Periodically master collects statistics and tells slaves to redistribute
- Slaves have work set aside to do during this synchronization
- Would be nice to have MPI construct for this

Large calculations have very low (minutes) frequency of communication

Parallelization efficiencies typically 95%

92% efficency obtained on 2048-processor Seaborg run; 0.55 TFLOPS.

TYPICAL CURRENT CALCULATIONS

- Propagation to $\tau = 0.2 0.4 \text{ MeV}^{-1}$
- $E(\tau)$ every $\tau = 0.01 \text{ MeV}^{-1}$ (0.02 for $A \ge 9$)
- Average of $E(\tau)$ for $\tau \ge 0.1$

	Config- urations	$ au_{ m max} { m MeV}^{-1}$	Statistical Error (MeV)	Processor hours*
⁶ Li	$50,\!000$	0.2	0.08	40
⁸ Li	$12,\!000$	0.2	0.2	600
⁹ Be	6,500	0.4	0.5	$10,\!000$
⁹ Li	8,000	0.4	0.4	$13,\!500$
${}^{10}B$	5,000	0.5	0.5	$5,\!000$
$^{10}\mathrm{Be}$	3,000	0.6	0.6	9,000
Preliminary:				
$^{12}\mathrm{C}$	$1,\!400$	0.7	1.4	37,500

*6 - 8:	IBM SP3 or SGI 250 MHz R10000 processors
9:	500 MHz P-III at \sim 110 MFLOPS (MCS Chiba)
10:	IBM SP at ~ 320 MFLOPS (NERSC Seaborg)
12:	2.4 GHz P-IV at 616 MFLOPS (Argonne Jazz)

Spectra of Light Nuclei

- AV18: Argonne v_{18} with no 3N potential - significantly underpredicts experimental values
 - error increases with increasing size of nucleus
- IL2: Argonne v_{18} and Illinois-2 3N potential
 - generally very good agreement with experiment
 - note correct ground-state spin for ^{10}B obtained only with 3N potential
- Many other nuclei and levels have been computed
- ¹²C results are preliminary

 ${}^{3}\mathrm{H}(lpha,\gamma){}^{7}\mathrm{Li}$ & ${}^{3}\mathrm{He}(lpha,\gamma){}^{7}\mathrm{Be}$ Capture Reactions

U. of Chicago & Argonne thesis work of Ken Nollett

Source of ⁷Li in the big bang

• Astrophysically important region is 20-500 keV.

⁷Be reaction also source of solar neutrinos

- Astrophysically important region is 20 keV.
- No data in this region

Full 7-nucleon calculation

• A = 7 wave functions have proper 3+4 cluster form. ²H $(\alpha, \gamma)^{6}$ Li also done

CONCLUSIONS AND OUTLOOK

- New computers and methods allow $\sim 1-2\%$ calculations of light p-shell nuclear energies
- Modern nuclear force models give average binding-energy errors < 0.7 MeV for A = 3 10 nuclei
- Many other nuclear properties can be computed, including experimentally difficult or inaccessible astrophysical reactions.
- GFMC for scattering states widths of resonances
- ¹²C by GFMC May need ~250,000 NERSC CPU hours (600,000 charge hours) for one complete calculation.

We are approaching a nuclear standard model for computing nuclear properties and reactions GFMC calculations are the benchmark for $6 \le A \le 10$