
NERSC NUG Training 5/30/03

Understanding and Using
Profiling Tools on Seaborg

Richard Gerber
NERSC User Services

ragerber@nersc.gov
510-486-6820

NERSC NUG Training 5/30/03

Overview

• What is Being Measured?
• POWER 3 Hardware Counters
• Available Tools
• Interpreting Output
• Theoretical Peak MFlops
• Simple Optimization Considerations

NERSC NUG Training 5/30/03

What is Being Measured?

• The Power 3 processor has counters in hardware on
the chip.
– E.g. cycles used, instructions completed, data moves to and

from registers, floating point unit instructions executed.

• The tools discussed here read the hardware counters.
• These tools know nothing about MPI or other

communication performance issues.
– VAMPIR (http://hpcf.nersc.gov/software/tools/vampir.html)

– tracempi (http://hpcf.nersc.gov/software/tools/sptools.html#trace_mpi)

• Xprofiler, gprof can give CPU time spent in functions
– (http://hpcf.nersc.gov/software/ibm/xprofiler/)

http://hpcf.nersc.gov/software/tools/vampir.html
http://hpcf.nersc.gov/software/tools/sptools.html
http://hpcf.nersc.gov/software/ibm/xprofiler/

NERSC NUG Training 5/30/03

Profiling Tools

• The tools discussed here are simple & basic
ones that use the POWER 3 hardware
counters to profile code

• There are more sophisticated tools
available, but have a steeper learning curve

• See the PERC website for more
– http://perc.nersc.gov/

• Also see the ACTS toolkit web site
– http://acts.nersc.gov

http://perc.nersc.gov/
http://acts.nersc.gov/

NERSC NUG Training 5/30/03

POWER 3 Hardware Counters

• Power 3 has 2 FPUs, each capable of an FMA
• Power 3 has 8 hardware counters
• 4 event sets (see hpmcount –h)

Default Event Set

FMAs
executed

FPU1 opsFPU0 ops

Loads
Completed

Stores
Completed

TLB MissesInstructions
Completed

Cycles

NERSC NUG Training 5/30/03

Performance Profiling Tools

NERSC NUG Training 5/30/03

PAPI

• Standard application programming interface
(API)

• Portable, don’t confuse with IBM low-level
PMAPI interface

• User program can read hardware counters
• See

– http://hpcf.nersc.gov/software/papi.html
– http://icl.cs.utk.edu/projects/papi/

http://hpcf.nersc.gov/software/papi.html
http://icl.cs.utk.edu/projects/papi/
http://icl.cs.utk.edu/projects/papi/

NERSC NUG Training 5/30/03

The hpmcount Utility

• Easy to use; no need to recompile code…
• BUT, must compile with –qarch=pwr3 (-O3+)
• Minimal effect on code performance
• Profiles entire code
• Reads hardware counters at start and end of program
• Reports flip (floating point instruction) rate and

many other quantities

NERSC NUG Training 5/30/03

How to Use hpmcount

• To profile serial code
– %hpmcount executable

• To profile parallel code
– %poe hpmcount executable –nodes n -procs np

• Reports performance numbers for each task
• Prints output to STDOUT (or use –o filename)
• Beware! These profile the poe command

– %hpmcount poe executable
– %hpmcount executable (if compiled with mp* compilers)

NERSC NUG Training 5/30/03

Sample Code

[Declarations]...
!**
! Initialize variables
!**

Z=0.0
CALL RANDOM_NUMBER(X)
CALL RANDOM_NUMBER(Y)

DO J=1,N
DO K=1,N

DO I=1,N
Z(I,J) = Z(I,J) + X(I,K) * Y(K,J)

END DO
END DO

END DO
[Finish up] ...

NERSC NUG Training 5/30/03

hpmcount Example Output

% xlf90 -o xma_hpmcount –O2 –qarch=pwr3 ma_hpmcount.F
% hpmcount ./xma_hpmcount

hpmcount (V 2.4.3) summary
Total execution time (wall clock time): 4.200000 seconds
PM_CYC (Cycles) : 1578185168
PM_INST_CMPL (Instructions completed) : 3089493863
PM_TLB_MISS (TLB misses) : 506952
PM_ST_CMPL (Stores completed) : 513928729
PM_LD_CMPL (Loads completed) : 1025299897
PM_FPU0_CMPL (FPU 0 instructions) : 509249617
PM_FPU1_CMPL (FPU 1 instructions) : 10006677
PM_EXEC_FMA (FMAs executed) : 515946386

Utilization rate : 98.105 %
TLB misses per cycle : 0.032 %

Avg number of loads per TLB miss : 2022.479
Load and store operations : 1539.229 M
MIPS : 599.819
Instructions per cycle : 1.632
HW Float points instructions per Cycle : 0.329
Floating point instructions + FMAs : 1035.203 M
Float point instructions + FMA rate : 240.966 Mflip/s
FMA percentage : 99.680 %
Computation intensity : 0.673

NERSC NUG Training 5/30/03

The poe+ Utility

• By default, hpmcount writes separate
output for each parallel task

• poe+ is a utility written by NERSC to
gather & summarize hpmcount output for
parallel programs

• poe+ combines all hpmcount output and
outputs one summary report to STDOUT

NERSC NUG Training 5/30/03

How to Use poe+

• %poe+ executable –nodes n –procs np
– Prints aggregate number to STDOUT

• Do not do these!
– hpmcount poe+ executable …

– hpmcount executable (if compiled with mp* compiler)

• See man poe+ on Seaborg
• In a batch script, just use this on the command

line
– poe+ executable

NERSC NUG Training 5/30/03

poe+ Example Output

% poe+ ./xma_hpmcount –nodes 1 –procs 16
hpmcount (V 2.4.2) summary (aggregate of 16 POE tasks) (Partial output)
Average execution time (wall clock time) : 4.46998 seconds
Total maximum resident set size : 120 Mbytes
PM_CYC (Cycles) : 25173734104
PM_INST_CMPL (Instructions completed) : 41229695424
PM_TLB_MISS (TLB misses) : 8113100
PM_ST_CMPL (Stores completed) : 8222872708
PM_LD_CMPL (Loads completed) : 16404831574
PM_FPU0_CMPL (FPU 0 instructions) : 8125215690
PM_FPU1_CMPL (FPU 1 instructions) : 182898872
PM_EXEC_FMA (FMAs executed) : 8255207322
Utilization rate : 84.0550625 %
Avg number of loads per TLB miss : 2022.0178125
Load and store operations : 24627.712 M
Avg instructions per load/store : 1.84
MIPS : 9134.331
Instructions per cycle : 1.63775
HW Float points instructions per Cycle : 0.3300625
Total Floating point instructions + FMAs : 16563.28 M
Total Float point instructions + FMA rate : 3669.55 Mflip/s (= 408 / task)
Average FMA percentage : 99.68 %
Average computation intensity : 0.673

NERSC NUG Training 5/30/03

Using HPMLIB

• HPM library can be used to instrument code
sections

• Embed calls into source code
– Fortran, C, C++

• Access through the hpmtoolkit module
– %module load hpmtoolkit

• compile with $HPMTOOLKIT env variable
– %xlf –qarch=pwr3 –O2 source.F \

$HPMTOOLKIT

• Execute program normally
• Output written to files; separate ones for each task

NERSC NUG Training 5/30/03

HPMLIB Functions

• Include files
– Fortran: f_hpmlib.h
– C: libhpm.h

• Initialize library
– Fortran: f_hpminit(taskID, progName)
– C: hpmInit(taskID, progName)

• Start Counter
– Fortran: f_hpmstart(id,label)
– C: hpmStart(id,label)

NERSC NUG Training 5/30/03

HPMLIB Functions II

• Stop Counter
– Fortran: f_hpmstop(id)
– C: hpmStop(id)

• Finalize library when finished
– Fortran: f_hpmterminate(taskID, progName)
– C: hpmTerminate(taskID, progName)

• You can have multiple, overlapping counter
stops/starts in your code

NERSC NUG Training 5/30/03

HPMlib Sample Code

[Declarations]...

Z=0.0
CALL RANDOM_NUMBER(X)
CALL RANDOM_NUMBER(Y)

!**
! Initialize HPM Performance Library and Start Counter
!**

CALL f_hpminit(0,"ma.F")
CALL f_hpmstart(1,"matrix-matrix multiply")

DO J=1,N
DO K=1,N

DO I=1,N
Z(I,J) = Z(I,J) + X(I,K) * Y(K,J)

END DO
END DO

END DO
!**
! Stop Counter and Finalize HPM
!**

CALL f_hpmstop(1)
CALL f_hpmterminate(0)

[Finish up] ...

NERSC NUG Training 5/30/03

HMPlib Example Output

% module load hpmtoolkit
% xlf90 -o xma_hpmlib –O2 –qarch=pwr3 ma.F \

$HPMTOOLKIT
% ./xma_hpmlib

libHPM output in perfhpm0000.67880

libhpm (Version 2.4.2) summary - running on POWER3-II
Total execution time of instrumented code (wall time): 4.185484 seconds
. . .
Instrumented section: 1 - Label: matrix-matrix multiply - process: 0
Wall Clock Time: 4.18512 seconds
Total time in user mode: 4.16946747484786 seconds

. . .
PM_FPU0_CMPL (FPU 0 instructions) : 505166645
PM_FPU1_CMPL (FPU 1 instructions) : 6834038
PM_EXEC_FMA (FMAs executed) : 512000683

. . .
MIPS : 610.707
Instructions per cycle : 1.637
HW Float points instructions per Cycle : 0.327
Floating point instructions + FMAs : 1024.001 M
Float point instructions + FMA rate : 243.856 Mflip/s
FMA percentage : 100.000 %
Computation intensity : 0.666

NERSC NUG Training 5/30/03

The hpmviz tool

• The hpmviz tool has a GUI to help browse
HPMlib output

• Part of the hpmtoolkit module
• After running a code with HPMLIB calls, a
*.viz file is also produced for each task.

• Usage:
– %hpmviz filename1.viz filename2.viz …

– Eg.
•%hpmviz hpm0000_ma.F_67880.viz

NERSC NUG Training 5/30/03

hpmviz Screen Shot 1

NERSC NUG Training 5/30/03

hpmviz Screen Shot 2

Right clicking on the Label line in the
previous slide brings up a detail window.

NERSC NUG Training 5/30/03

Interpreting Output and
Metrics

NERSC NUG Training 5/30/03

Floating Point Measures

• PM_FPU0_CMPL (FPU 0 instructions)
• PM_FPU1_CMPL (FPU 1 instructions)

– The POWER3 processor has two Floating Point
Units (FPU) which operate in parallel.

– Each FPU can start a new instruction at every cycle.
– This is the number of floating point instructions

(add, multiply, subtract, divide, FMA) that have
been executed by each FPU.

• PM_EXEC_FMA (FMAs executed)
– The POWER3 can execute a computation of the

form x=s*a+b with one instruction. The is known as
a Floating point Multiply & Add (FMA).

NERSC NUG Training 5/30/03

Total Flop Rate

• Float point instructions + FMA rate
– Float point instructions + FMAs gives the

floating point operations. As a performance
measure, he two are added together since an
FMA instruction yields 2 Flops.

– The rate gives the code’s Mflops/s.
– The POWER3 has a peak rate of 1500

Mflops/s. (375 MHz clock x 2 FPUs x
2Flops/FMA instruction)

– Our example: 241 Mflops/s.

NERSC NUG Training 5/30/03

Memory Access

• Average number of loads per TLB miss
– Memory addresses that are in the Translation

Lookaside Buffer can be accessed quickly.
– Each time a TLB miss occurs, a new page (4KB, 512 8-byte

elements) is brought into the buffer.

– A value of ~500 means each element is accessed ~1
time while the page is in the buffer.

– A small value indicates that needed data is stored in
widely separated places in memory and a redesign of
data structures may help performance significantly.

– Our example: 2022

NERSC NUG Training 5/30/03

Cache Hits

• The –sN option to hpmcount specifies a
different statistics set

• -s2 will include L1 data cache hit rate
• Power 3 has a 64K L1 data cache
• 98.895% for our example
• See http://hpcf.nersc.gov/software/ibm/hpmcount/HPM_README.html

for more options and descriptions.

http://hpcf.nersc.gov/software/ibm/hpmcount/HPM_README.html

NERSC NUG Training 5/30/03

MIPS & Instructions per Cycle

• The Power 3 can execute multiple instructions
in parallel

• MIPS
– The average number of instructions completed per

second, in millions.
– Our example: 600

• Instructions per cycle
– Well-tuned codes may reach more than 2

instructions per cyle
– Our example: 1.632

NERSC NUG Training 5/30/03

Computation Intensity

• The ratio of load+store operations to
floating point operations

• To get best performance for FP codes, this
metric should be <1

• Our example: 0.673

NERSC NUG Training 5/30/03

Low-Effort Optimization

NERSC NUG Training 5/30/03

Simple Optimization Considerations

• Try to keep data in L1, L2 caches
– L1 data cache size: 64 KB
– L2 data cache size: 8192 KB

• Use stride one memory access in inner loops
• Use compiler options
• Maximize: FP ops / (Load+Store ops)
• Unroll loops
• Use PESSL & ESSL whenever possible; they

are highly tuned

NERSC NUG Training 5/30/03

Stride 1 Array Access

• Consider previous example, but exchange
DO loop nesting (swap I, J)

• Inner loop no longer accessed sequentially
in memory (Fortran)

• Mflops/s goes 245 -> 11.
DO I=1,N

DO K=1,N

DO J=1,N

Z(I,J) = Z(I,J) + X(I,K) * Y(K,J)

END DO

END DO

END DO

NERSC NUG Training 5/30/03

Compiler Options

• Effects of different compiler optimization
levels on original code
– No optimization: 23 Mflips/s
– -O2: 243 Mflips/s
– -O3: 396 Mflips/s
– -O4: 750 Mflips/s

• NERSC recommends
– -O3 –qarch=pwr3 –qtune=pwr3 –qstrict

– See http://hpcf.nersc.gov/computers/SP/options.html

http://hpcf.nersc.gov/computers/SP/options.html

NERSC NUG Training 5/30/03

Max. Flops/Load+Stores

• The POWER 3 can perform 2 Flips or 1
register Load/Store per cycle

• Flips and Load/Stores can overlap
• Try to have code perform many Flips per

Load/Store
• For simple loops, we can calculate a

theoretical peak performance

NERSC NUG Training 5/30/03

Theoretical Peak for a Loop

• How to calculate theoretical peak
performance for a simple loop
– Look at the inner loop only
– Count the number of FMAs & unpaired +, -, *,

& the number of divides*18 = No. Cycles for
Flops

– Count the number of loads and stores that
depend on the inner loop index = No. Cycles
for load/stores

– No. of cycles needed for loop = max(No. cycles
for Flips,No. cycles for Loads+Stores)

NERSC NUG Training 5/30/03

Theoretical Peak Cont’d

• Count the number of FP operators in the loop;
one for each +, -, *, /

• Mflops/s = (375 MHz) * (2 FPUs) * (No. FP
operators) / (Cycles needed for loop)

• Example
– 1 store (X) + 2 loads (Y,Z(J)) = 3 cycles
– 1 FMA + 1 FP mult = 2 cycles
– 3 FP operators
– Theoretical Pk = (375 MHz)*(2 FPUs) * (3Flops) / (3 Cycles) = 750 Mflops

DO I=1,N
DO J=1,N

X(J,I) = A + Y(I,J)*Z(J) * Z(I)
END DO

END DO

NERSC NUG Training 5/30/03

Peak vs. Performance for Example

• Our previous example code has a theoretical
peak of 500 Mflops.

• Compiling with –O2 yields 245 Mflops
• Only enough “work” to keep 1 FPU busy

!**
! Theoretical peak: Examine Inner Loop
! 1 Store
! 2 Loads
! 1 FMA (= 2 Flops)
! Theoretical Peak = (375 MHz)*(2 FPUs)*(2 Flops)/(3 Cycles for Load/Store)
! = 500 MFlops/sec
!**

DO J=1,N
DO K=1,N

DO I=1,N
Z(I,J) = Z(I,J) + X(I,K) * Y(K,J)

END DO
END DO

END DO

NERSC NUG Training 5/30/03

Unrolling Loops

• “Unrolling” loops provides more work to
keep the CPU and FPUs busy

• -O3 optimization flag will unroll inner
loops

This loop:
DO I=1,N

X(I) = X(I) + Z(I) * Y(J)
END DO
Can be unrolled to something like
DO I=1,N,4

X(I) = X(I) + Z(I) * Y(J)
X(I+1) = X(I+1) + Z(I+1) * Y(J)
X(I+2) = X(I+2) + Z(I+2) * Y(J)
X(I+3) = X(I+3) + Z(I+3) * Y(J)

END DO

NERSC NUG Training 5/30/03

Unrolling Outer Loops

• Unrolling outer loops by hand may help
• With –O2 the following gets 572 Mflops;

FPU1 and FPU0 do equal work
!**
! Theoretical peak: Examine Inner Loop
! 4 Store
! 5 Loads
! 4 FMA (= 8 Flops)
! Theoretical Peak = (375 MHz)*(2 FPUs)*(8 Flops)/(9 Cycles for Load/Store)
! = 667 MFlops/sec
!**

DO J=1,N,4
DO K=1,N

DO I=1,N
Z(I,J) = Z(I,J) + X(I,K) * Y(K,J)
Z(I,J+1) = Z(I,J+1) + X(I,K) * Y(K,J+1)
Z(I,J+2) = Z(I,J+2) + X(I,K) * Y(K,J+2)
Z(I,J+3) = Z(I,J+3) + X(I,K) * Y(K,J+3)

END DO
END DO

END DO

NERSC NUG Training 5/30/03

ESSL is Highly Optimized

• ESSL & PESSL provide highly optimized
routines

• Matrix-Matrix multiply routine DGEMM
gives 1,300 Mflops or 87% of theoretical
peak.

• Mflops/s for various techniques
Technique idim - Row/Column Dimension

100 500 1000 1500 2000 2500
Fortran Source 695 688 543 457 446 439
C Source 692 760 555 465 447 413
matmul (default) 424 407 234 176 171 171
matmul (w/ essl) 1176 1263 1268 1231 1283 1234
dgemm (-lessl) 1299 1324 1296 1243 1299 1247

NERSC NUG Training 5/30/03

Real-World Example

• User wanted to get a high percentage of the
POWER 3’s 1500 Mflop peak

• An look at the loop shows that he can’t
Real-world example (Load/Store dominated):

!**
! Loads: 4; Stores 1
! Flops: 1 FP Mult
!Theoretical Peak:
! (375 MHz)*(2 FPUs)*(1 Flop)/(5 Cycles) = 150 MFlops
!Measured: 57 MFlips
!**

do 56 k=1,kmax
do 55 i=28,209
uvect(i,k) = uvect(index1(i),k) * uvect(index2(i),k)

55 continue
56 continue

NERSC NUG Training 5/30/03

Real-World Example Cont’d

• Unrolling the outer loop increases
performance

!**
!Theoretical Peak:
! Loads: 10
! Stores: 4
! Flops: 4 FP Mult
!Theoretical Peak:
! (375 MHz)*(2 FPUs)*(4 Flop)/(14 Cycles) = 214 MFlops
!Measured: 110 MFlips
!**

do 56 k=1,kmax,4
do 55 i=28,209
uvect(i,k) = uvect(index1(i),k) * uvect(index2(i),k)
uvect(i,k+1) = uvect(index1(i),k+1) * uvect(index2(i),k+1)
uvect(i,k+2) = uvect(index1(i),k+2) * uvect(index2(i),k+2)
uvect(i,k+3) = uvect(index1(i),k+3) * uvect(index2(i),k+3)

55 continue
56 continue

NERSC NUG Training 5/30/03

Summary

• Utilities to measure performance
– hpmcount
– poe+
– hpmlib

• The compiler can do a lot of optimization,
but you can help

• Performance metrics can help you tune your
code, but be aware of their limitations

NERSC NUG Training 5/30/03

Where to Get More
Information

• NERSC Website: http://hpcf.nersc.gov
• PAPI

– http://hpcf.nersc.gov/software/tools/papi.html

• hpmcount, poe+
– http://hpcf.nersc.gov/software/ibm/hpmcount/
– http://hpcf.nersc.gov/software/ibm/hpmcount/counter.html

• hpmlib
– http://hpcf.nersc.gov/software/ibm/hpmcount/HPM_README.html

• Compilers, general NERSC SP info
– http://hpcf.nersc.gov/computers/SP/

http://hpcf.nersc.gov/
http://hpcf.nersc.gov/software/tools/papi.html
http://hpcf.nersc.gov/software/tools/papi.html
http://hpcf.nersc.gov/software/ibm/hpmcount/
http://hpcf.nersc.gov/software/ibm/hpmcount/counter.html
http://hpcf.nersc.gov/software/ibm/hpmcount/HPM_README.html

	
	Overview
	What is Being Measured?
	Profiling Tools
	POWER 3 Hardware Counters
	Performance Profiling Tools
	PAPI
	The hpmcount Utility
	How to Use hpmcount
	Sample Code
	hpmcount Example Output
	The poe+ Utility
	How to Use poe+
	poe+ Example Output
	Using HPMLIB
	HPMLIB Functions
	HPMLIB Functions II
	HPMlib Sample Code
	HMPlib Example Output
	The hpmviz tool
	hpmviz Screen Shot 1
	hpmviz Screen Shot 2
	Interpreting Output and Metrics
	Floating Point Measures
	Total Flop Rate
	Memory Access
	Cache Hits
	MIPS & Instructions per Cycle
	Computation Intensity
	Low-Effort Optimization
	Simple Optimization Considerations
	Stride 1 Array Access
	Compiler Options
	Max. Flops/Load+Stores
	Theoretical Peak for a Loop
	Theoretical Peak Cont’d
	Peak vs. Performance for Example
	Unrolling Loops
	Unrolling Outer Loops
	ESSL is Highly Optimized
	Real-World Example
	Real-World Example Cont’d
	Summary
	Where to Get More Information

