

PDSF at NERSC Site Report – HEPiX Spring 2012 Workshop

Eric Hjort, Larry Pezzaglia, Iwona Sakrejda

National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory

April 2012

National Energy Research Scientific Computing Center

Snapshot of NERSC NERSC

- Located at LBNL, NERSC is the primary computing center for the US DOF Office of Science
 - NERSC serves a large population of ~4000 users, ~400 projects, and ~500 codes

Eusion

- Focus is on "unique" resources
 - Expert computing and other services
 - 24x7 monitoring
 - High-end computing and storage systems
- NERSC is known for
 - Excellent services and user support Physics
 - Diverse workload

Snapshot of NERSC

Large-Scale Computing Systems

Franklin (NERSC-5): Cray XT4

- 9,532 compute nodes; 38,128 cores
- ~25 Tflop/s on applications; 356 Tflop/s peak

Hopper (NERSC-6): Cray XE6

- 6,384 compute nodes, 153,216 cores
- 120 Tflop/s on applications; 1.3 Pflop/s peak

Clusters 140 Tflo Carver

140 Tflops total

• IBM iDataplex cluster

Magellan Cloud testbed

 IBM iDataplex cluster Magellan+Carver =~10k cores total

GenePool (JGI)

• ~5K core throughput cluster

PDSF (HEP/NP)

• ~1.5K core cluster

- 1.5 PB capacity
- 5.5 GB/s of bandwidth

HPSS Archival Storage

- 59 PB capacity
- 4 Tape libraries

3

150 TB disk cache

Analytics

Euclid (512 GB shared memory) Dirac GPU testbed (48 nodes)

NERSC Update

- Franklin (Cray XT4) will be retired on 2012-04-30
- Ongoing integration of the Joint Genome Institute (JGI) computational systems and supporting infrastructure.
 - Workload is mostly serial, high-throughput jobs
- Upcoming mid-range procurement
- Transition to ServiceNow ticketing system complete

PDSF Overview

PDSF Overview

Parallel Distributed Systems Facility

- A commodity Linux cluster at NERSC serving HEP and NS projects
- IGbE and 10GbE interconnect
- In continuous operation since 1996
- ~1500 compute cores on ~200 nodes
- Over 750 TB shared storage in 17 GPFS filesystems
- Over 650 TB of XRootD storage
- Supports SL5 and SL6 environments with CHOS
- Univa Grid Engine (formerly Sun Grid Engine) batch system

PDSF Workloads

- PDSF has a broad user base (including non-CERN and non-LHC projects)
- Workload consists of serial, high-throughput jobs
- Fair share scheduling mechanism with UGE
 - Projects "buy in" to PDSF and the UGE share tree is adjusted accordingly
- PDSF is Tier-1 for STAR, Tier-2 for ALICE (with LLNL), and Tier-3 for ATLAS

PDSF Data Flow

- Large quantities of experimental data are transferred into PDSF from other centers
- Processed data is shared with other centers.
- PDSF is well-situated to handle this model:
 - Excellent 10GbE connections to mass storage
 - Close proximity to ESnet
 - High-capacity and high-quality storage:
 - PDSF GPFS filesystems ("elizas") (Over 750TB)
 - PDSF XRootD storage (Over 650TB)
 - 1.4PB "/project" NERSC Global Filesystem (mounted on all NERSC systems)
 - Local disks on compute nodes

Grid services (OSG stack)

- Data transfer nodes supporting BeStMan (SRM)
- Gatekeeper interface to the UGE batch system
- Production "project" accounts (GSISSH based)

Highlighted PDSF Changes

PDSF Changes

- Staff Changes
- Dell Support Challenges
- Ongoing SL6 Deployment
- XRootD for STAR
- Improved node and image management with xCAT

Staff Changes

- Recap from October's update:
 - Jay Srinivasan became the Computational Systems Group (CSG) Lead
 - Iwona Sakrejda returned to PDSF as the PDSF System Lead
- Elizabeth Bautista became the Computer Operations and ESnet Support (CONS) Group Lead
- Larry Pezzaglia is still with PDSF
- Eric Hjort continues to provide user support

Dell Support

- We have a significant quantity of Dell equipment:
 - Servers: R410 and R710
 - Storage: MD3200/MD3000 and MD1200/MD1000
- Dell is not well equipped to support external storage attached to Linux servers
 - Communication barrier between Storage and Servers support groups
 - Storage support analysts are generally unfamiliar with Linux fundamentals and common UNIX/Linux tools (e.g., dd and ssh)
 - Most analysts assume a Microsoft shop using MD3xxx units to export LUNs via iSCSI for VMware VMs

- RHEL is a "certified" platform, but SL is not
- We understand that building a support infrastructure is not easy and we want to work with Dell to improve this situation

SL6 Deployment

- We have a production SL6 environment made available via CHOS.
- We are performing a rolling upgrade of node base OSes to SL6
 - ~50% of nodes have been converted
- EL6 challenges:
 - pam_tally vs pam_tally2 for tracking login failures
 - Ganglia 3.0 vs 3.1
 - Porting CHOS to EL6-based kernel
- Overall, SL6 is a solid release. Our thanks and congratulations to the SL team.

XRootD for STAR

- STAR is deploying XRootD on PDSF compute nodes in a similar manner as is done for STAR at RCF
- This is in addition to the existing ALICE XRootD storage
- This model will provide STAR with multiple benefits:
 - Leverages inexpensive disks on the compute nodes to serve read-only data to data-intensive tasks
 - Reduces reliance on large shared file systems that can be a single point of failure for a workflow
 - It also adds some costs:
 - XRootD configuration and deployment
 - Data maintenance (e.g., handling of disk failures)

xCAT Management

- xCAT (Extreme Cloud Administration Toolkit) is an infrastructure management software package
 - http://xcat.sf.net
 - We also use xCAT on Carver, our IBM iDataPlex system
- xCAT is an excellent and extensible tool
- Particularly helpful for PDSF have been:
 - Node discovery and auto-configuration
 - Node image build and management framework

NERSC XCAT Node Discovery

- New nodes are discovered, configured, and managed by xCAT.
 - 1. xCAT knows to which Ethernet switch and to which switch port every new node is connected
 - 2. When a new node boots, it is allocated a temporary IP address and requests "discovery".
 - 3. xCAT queries Ethernet switches via SNMP to determine the switch port to which the new node is connected
 - With this information, xCAT now knows the identity of the new node.
 - xCAT configures the node's IPMI BMC and boots it into the production base OS.

xCAT Images

- xCAT provides a framework for building and booting netboot node images.
 - These nodes are termed "diskless" in xCAT parlance.
- Our image build scripts:
 - 1. Modify the stock xCAT "genimage" utility
 - 2. Use "genimage" to create a minimal image
 - 3. Modify the image to add required PDSF packages (e.g., GPFS, CVMFS, Ganglia)
 - 4. Commit the changes to an SCM repository
 - 5. Perform a clean checkout from SCM
 - 6. Call the xCAT "packimage" utility to enable the image for production use.

Image versioning

- Every time the image is changed, it is re-assembled from scratch.
 - This ensures a reproducible and maintainable image.
- We use FSVS ("Fast System VerSioning", pronounced fisvis) to version the image.
 - We can easily determine what changed between any two image revisions
 - We can easily revert to any previous image version
 - http://fsvs.tigris.org

PDSF History

History

2003

Shane Canon Cary Whitney Iwona Sakrejda Tom Langley

2012

Iwona Sakrejda

Eric Hjort

Questions?

National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory