

Cray User Group 2011 Proceedings 1 of 6

Benchmark Performance of Different Compilers on a Cray XE6

Michael Stewart and Yun (Helen) He
 National Energy Research Scientific Computing Center

(NERSC)

ABSTRACT: There are four different supported compilers on NERSC's recently
acquired XE6, Hopper. Our users often request guidance from us in determining
which compiler is best for a particular application. In this paper, we will
describe the comparative performance of different compilers on several MPI
benchmarks with different characteristics. For each compiler and benchmark, we
will establish the best set of optimization arguments to the compiler.

KEYWORDS: XE6, Compilers, Performance.

1. Introduction

1.1 Hopper, the XE6 System Used

The computer platform used in this study is

NERSC’s new flagship system: a Cray XE6 system,
Hopper. Hopper was installed at NERSC in the last
quarter of 2010 with early users on the system running
codes free of computing hours charge until it was put into
production. Hopper entered formal production on May 1,
2011.

Hopper has 6,384 compute nodes, each consists of 2

twelve-core AMD MagnyCours, 2.1 GHz processors,
with a total of 153,126 compute cores available for
scientific applications serving over 3,000 users from DOE
and universities research communities.

Each compute core has a peak performance of 8.4

Gflops resulting in a system with a peak performance of
1.28 Pflops. Most of the compute nodes have 32 GB (384
nodes have 64 GB) DDR3 1333 MHz memory resulting
the overall memory available on the compute nodes of
about 218 TB. Each core has own 64 KB of L1 cache, and
512 KB of L2 cache, and every 6 cores (one NUMA
node) share 6 MB of L3 cache. There are 2 DDR3 1333

MHz memory channels per die (6 cores, called a NUMA
node) on the tweleve-core MagnyCours processor. The
memory access within a NUMA node (local memory)
differs from memory access to a remote NUMA node.
Compute nodes are connected via the high-bandwidth,
low-latency “Gemini” network in a 3D torus.

1.2 Available Compilers on Hopper

There are four compilers available on Hopper. The

user environment for each compiler is provided by Cray
via loading a corresponding Programming Environment
module. The default compiler is PGI. The other three
compilers are Pathscale, Cray, and GNU, respectively.

To use Pathscale Compilers:
% module swap PrgEnv-pgi PrgEnv-pathscale

To use Cray Compilers:
% module swap PrgEnv-pgi PrgEnv-cray

To use GNU Compilers:
% module swap PrgEnv-pgi PrgEnv-gnu

Cray User Group 2011 Proceedings 2 of 6

1.3 How Codes are Compiled on Hopper

Cross compilation from login nodes is used to build

executables to run on the Hopper compute nodes. To use
a particular compiler, first swap to the corresponding
PrgEnv module as shown in the previous section. Then
use compiler wrappers: “ftn” for Fortran codes, “cc” for C
codes, and “CC” for C++ codes, to compile the codes.

The wrappers can find the proper system and MPI
libraries automatically.

1.4 Compiler Flags Comparison

Table 1 shows the common compiler flags including
optimization, IO, OpenMP, fixed or free source format,
etc. for different compilers.

 Table 1. Common Compiler Options Comparison

PGI Pathscale Cray GNU Explanation

-fast -Ofast -O3 -O3 High level optimization

-mp=nonuma -mp -h omp (default) -fopenmp Enable OpenMP

-byteswapio -byteswapio -h byteswapio -fconvert=swap Read files in big-endian

-Mfixed -fixedform -f fixed -ffixed-form Fixed form source

-Mfree -freeform -f free -ffree-form Free form source

-V -dumpversion -V --version Show version info

Not implemented -zerouv -e 0 -finit-local-zero Zero fill uninitialized values

1.5 Motivations

There are four different supported compilers on
NERSC's recently acquired XE6, and our users often
request guidance from us in determining which compiler
is best for a particular application.

In this paper, we will describe the comparative

performance of different compilers on several MPI and
benchmarks with different characteristics. For each
compiler and benchmark, we will establish the best set of
optimization arguments to the compiler.

2. Benchmarks Tested

2.1 NERSC6 Application Benchmarks

Table 2 lists 5 of the 7 application benchmarks from

the NERSC6 benchmark suite, a representation of typical
NERSC workload used for Hopper procurement.
Performance results from these 5 applications using
different compilers will be presented.

Table 2. Selected NERSC6 Application Benchmarks

Benchmark Science Algorithm Concur
rency Language

GTC Fusion PIC, finite
difference 2048 F90

IMPACT-T Accelerator
Physics PIC, FFT 1024 F90

MAESTRO Astrophysics Block structured-
grid multiphysics 2048 F90

MILC Lattice Gauge
Physics (QCD)

Conjugate
Gradient, sparse
matrix, FFT

1024 C,
Assembly

PARATEC Material DFT, FFT,BLAS 1024 F90

Cray User Group 2011 Proceedings 3 of 6

2.2 NPB3.3 MPI Benchmarks

Table 3 shows the NPB 3.3 Kernel MPI Benchmarks

used in this study, all at a concurrency of 256 processes.

The NAS Parallel Benchmarks (NPB) are a small set

of kernel programs and pseudo program designed to help
evaluate the performance of parallel supercomputers. The
benchmarks are developed and maintained by NASA
Advances Supercomputing Division.

Table 3. NPB 3.3 MPI Benchmarks

Benchmark Full Name Level

BT Block Tridiagonal D
CG Conjugate Gradient E
EP Embarassingly Parallel E
FT Fast Fourier Transform D

LU Lower-Upper Symmetric
Gauss-Seidel E

MG MultiGrid E
SP Scalar Pentadiagonal D

3. Recommended Compiler Options

3.1 PGI Compiler

In Chapter 3, Optimizing and Parallelizing, of the

PGI Compiler User's Guide [3], the section "Getting
Started with Optimizations" recommends "-fast -
Mipa=fast" as "a good set of options to use with any of
the PGI compilers". In addition, Cray recommends “-
Mfprelaxed” which provides additional optimizations at
the possible cost of a loss of floating point precision [4].

Our benchmarks runs will compare the performance

of runs compiled with these options:

• -fast - A level of optimization which chooses

generally optimal flags for the target platform.

• -fast -Mipa=fast - Enables interprocedural
analysis and chooses generally optimal
interprocedural options for the target platform.

• -fast -Mfprelaxed - Generates relaxed precision

code for those floating point operations that
generate a significant performance improvement,
depending on the target processor.

• -fast -Mipa=fast –Mfprelaxed - The combination

of all above options.

3.2 Pathscale Compiler

In Section 6, Basic Optimization, of the Pathscale

Compiler Suite User Guide [5], 6.5 "Compiler Flag
Recommendations", Pathscale recommends this
optimization strategy, "start tuning with -O2, then -O3,
then -O3 -OPT:Ofast and then -Ofast." Cray recommends
–Ofast [4].

Our benchmarks runs will compare the performance

of runs compiled with these options:

• -O2 - This turns on extensive, but conservative

optimizations which are virtually always
beneficial, avoiding changes which affect such
things as floating point accuracy.

• -O3 - This turns on aggressive optimizations
which are generally beneficial but may hurt
performance and require extensive compile
times.

• -O3 -OPT:Ofast - This adds optimizations which
may affect floating point accuracy due to
rearrangement of computations.

• -Ofast - This adds interprocedural analysis to the
optimizations above.

3.3 Cray Compiler

Cray recommends using the default optimization (“-
O2”), which is equivalent to the higher levels of
optimization with other compilers. In addition, the “-O3”
and “-Ofp3” options can improve performance on some
codes [4].

Our benchmarks runs will compare the performance

of runs compiled with these options:

• default (-O2)

• -O3

• -Ofp3 - This gives the compiler maximum

freedom to optimize floating-point operations,
even at the expense of not conforming to the
IEEE floating point standard.

• -O3,fp3 – The combination of the above two

options.

Cray User Group 2011 Proceedings 4 of 6

3.4 GNU Compiler

NERSC has found that for this compiler, “-O3”

produces well optimized code for many benchmarks. In
addition, Cray recommends these options for additional
performance optimizations: “-ffast-math” and “-funroll-
loops” [4].

Our benchmarks runs will compare the performance

of runs compiled with these options:

• -O3 - This compiles with a high level of

optimization.

• -O3 -ffast-math - This performs optimizations at
the expense of an exact implementation of IEEE
or ISO rules/specifications for math functions.

• -O3 -funroll-loops - This unrolls loops whose
number of iterations can be determined at
compile time or upon entry to the loop. It also
turns on complete loop peeling (i.e. complete
removal of loops with a small constant number
of iterations). This option makes code larger,
and may or may not make it run faster.

• -O3 -ffast-math -funroll-loops - The combination
of all above options.

4. Performance Results

4.1 PGI Compiler Options

Figure 1 shows the benchmark performance results

using different PGI compiler optimization options
discussed in Section 3.1.

The wall clock time of each run will be normalized

against the "-fast" time, so if a job compiled with "-fast"
completes in 20 seconds, a job that completes in 23
seconds would be shown on the graph as 1.15, and one
that completes in 18 seconds would be shown as .9.

Figure 1. Benchmark performance results using different PGI
compiler options.

Note: The Maestro benchmark does not run
successfully with optimization options beyond "-fast".

Generally speaking, the other options do not
significantly improve the performance over that obtained
with "-fast", and in some cases worsen it. The only
significant exception to this is the NPB FT Level D
benchmark whose performance is greatly improved by
each of the other three options.

4.2 Pathscale Compiler Options

Figure 2 shows the benchmark performance results

using different Pathscale compiler optimization options
discussed in Section 3.2. The wall clock time is
normalized against the "-O2" time.

Figure 2. Benchmark performance results using different
Pathscale compiler options.

Note: The Impact benchmark does not run with “-

Ofast”. The Maestro benchmark gets such poor
performance with the “-O3” and "-O3 -OPT:fast"
optimizations that the graph and mean would be seriously
distorted.

The Pathscale compiler does not optimize very well
with “-O2” compared to the more aggressive
optimizations. “-O3” optimizes almost every code quite
well. In general, the extra options do not improve
performance significantly.

Cray User Group 2011 Proceedings 5 of 6

4.3 Cray Compiler Options

Figure 3 shows the benchmark performance results

using different Cray compiler optimization options
discussed in Section 3.3. The wall clock time is
normalized against the default (“-O2”) time.

Figure 3. Benchmark performance results using different Cray
compiler options.

Note: The GTC benchmark does not run when

compiled with “-Ofp3” as one of the optimizations. The
FT Level D benchmark has much worse performance with
“-O3” and “-O3,fp3” options than with the other two, so
much so that including them in the graph would seriously
distort the mean.

Only one of the benchmarks shows a significant
improvement over the default optimization, Paratec with
“-Ofp3”. For all the other benchmarks, the higher levels
of optimization give little or no improvement in
performance.

4.4 GNU Compiler Options

Figure 4 shows the benchmark performance results

using different GNU compiler optimization options
discussed in Section 3.4. The wall clock time is
normalized against the “-O3” time.

Figure 4. Benchmark performance results using different GNU
compiler options.

Note: The Maestro benchmark does not run
successfully when compiled with the “-ffast-math”
option.

“-O3” generally give a good level of optimization,

but it seems to be worthwhile to try the “-ffast-math”
option, since in many cases it does improve a code's
performance significantly.

4.5 Overall Compiler Comparisons

In this section, for each benchmark, the best results

for each compiler regardless of the optimizations that
produced them, are compared against each other. Figure 5
shows the performance results for all the benchmarks
from each compiler. The results are normalized against
the PGI compiler.

Figure 5. Benchmark performance results using different
compilers.

The Pathscale compiler gives the fastest performance
for 6 out of the 12 benchmarks; The Cray compiler's gives
the fastest performance on 3 of the 12. The GNU
compiler is fastest 2 of the 12, and the PGI compiler is
fastest 1 of the 12.

The Cray and Pathscale compiled codes run on the

average about 5% faster than the PGI compiled codes, and
the GNU compiled codes have on the average about the
same performance as the PGI compiled codes, although
there are wide variations with individual benchmarks.

The Cray compiler is a relatively new product on

AMD based systems, and we have noticed a steady
improvement in its performance with newer releases.
This compiler is only available on Cray systems, so if you
port to another architecture, you would need to choose
another compiler and develop another Makefile.

The Pathscale compiler is available on other Intel and

AMD platforms, but it is not very common, so it is very
likely that any port to another system will require a
different compiler and a new Makefile.

Cray User Group 2011 Proceedings 6 of 6

PGI is by far the most commonly available
commercially produced compiler, and a PGI Hopper
Makefile would require few changes to run on the many
systems on which PGI is available. The recommended "-
fast" option can have different optimizations depending
on the underlying architecture on which it is compiled,
and it should produce well optimized code on any
platform.

The GNU compiler is available for almost any Linux
or Unix platform, and a GNU Hopper Makefile would
also require few changes on other platforms, but there is
no guarantee that its relatively good performance on
Hopper would be repeated on other platforms.

5. Summary
In order to achieve best performance results, users

should experiment with different compilers and compiler
options to tune their applications on Hopper.

On the average the Pathscale and Cray compilers

produce somewhat faster code on Hopper (and other Cray
systems), since they are specifically designed for these
processors. In addition the Cray compilers make use of
the Cray math libraries at compile time to further
optimize codes.

PGI compilers are available on a wide variety of

platforms besides Crays and produce well optimized
codes on all platforms. A PGI targeted Makefiles on
Hopper would work with few changes on many different
platforms.

Using the gnu compilers allows you to compile on

virtually every Unix and Linux system. Although the
performance on Hopper for some codes with GNU
compilers is quite good, there is no guarantee for optimal
performance on other platforms.

Acknowledgments
This work was supported by the Director, Office of

Science, Division of Mathematical, Information, and
Computational Sciences of the U.S. Department of
Energy under contract number DE-AC02-05CH11231.

This research used resources of the National Energy

Research Scientific Computing Center, which is
supported by the Office of Science of the U.S.
Department of Energy.

References

1. NERSC Web Page on Hopper:
http://www.nersc.gov/users/computational-
systems/hopper/

2. NPB Parallel Benchmarks. http:
//www.nas.nasa.gov/Resources/Software/npb.html

3. PGI Compiler User’s Guide. Release 2011.
http://www.pgroup.com/doc/pgiug.pdf

4. Jeff Larkin. “XE6 Porting and Tuning Tips”. Using the

Cray XE6 Workshop, Feb 7-8, 2011. NERSC.
Oakland, CA.

5. Pathscale Compiler Suite User Guide. Version 3.2.
http://www.pathscale.com/docs/UserGuide.pdf

About the Authors
Both Michael Stewart and Helen He are High

Performance Computing Consultants at NERSC. Email:
pmstewart@lbl.gov, yhe@lbl.gov.

