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ABSTRACT: There are four different supported compilers on NERSC's recently 
acquired XE6, Hopper.  Our users often request guidance from us in determining 
which compiler is best for a particular application. In this paper, we will 
describe the comparative performance of different compilers on several MPI 
benchmarks with different characteristics. For each compiler and benchmark, we 
will establish the best set of optimization arguments to the compiler.  
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1. Introduction 

1.1 Hopper, the XE6 System Used 
 
The computer platform used in this study is 

NERSC’s new flagship system: a Cray XE6 system, 
Hopper.  Hopper was installed at NERSC in the last 
quarter of 2010 with early users on the system running 
codes free of computing hours charge until it was put into 
production.  Hopper entered formal production on May 1, 
2011. 

 
Hopper has 6,384 compute nodes, each consists of 2 

twelve-core AMD MagnyCours, 2.1 GHz processors, 
with a total of 153,126 compute cores available for 
scientific applications serving over 3,000 users from DOE 
and universities research communities. 

 
Each compute core has a peak performance of 8.4 

Gflops resulting in a system with a peak performance of 
1.28 Pflops. Most of the compute nodes have 32 GB (384 
nodes have 64 GB) DDR3 1333 MHz memory resulting 
the overall memory available on the compute nodes of 
about 218 TB. Each core has own 64 KB of L1 cache, and 
512 KB of L2 cache, and every 6 cores (one NUMA 
node) share 6 MB of L3 cache. There are 2 DDR3 1333 

MHz memory channels per die (6 cores, called a NUMA 
node) on the tweleve-core MagnyCours processor. The 
memory access within a NUMA node (local memory) 
differs from memory access to a remote NUMA node. 
Compute nodes are connected via the high-bandwidth, 
low-latency “Gemini” network in a 3D torus. 

 

1.2 Available Compilers on Hopper 
 
There are four compilers available on Hopper.  The 

user environment for each compiler is provided by Cray 
via loading a corresponding Programming Environment 
module.  The default compiler is PGI.   The other three 
compilers are Pathscale, Cray, and GNU, respectively. 

 
To use Pathscale Compilers: 
% module swap PrgEnv-pgi PrgEnv-pathscale 
 
To use Cray Compilers: 
% module swap PrgEnv-pgi PrgEnv-cray 
 
To use GNU Compilers: 
% module swap PrgEnv-pgi PrgEnv-gnu 
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1.3 How Codes are Compiled on Hopper 
 
Cross compilation from login nodes is used to build 

executables to run on the Hopper compute nodes.  To use 
a particular compiler, first swap to the corresponding 
PrgEnv module as shown in the previous section. Then 
use compiler wrappers: “ftn” for Fortran codes, “cc” for C 
codes, and “CC” for C++ codes, to compile the codes.  

The wrappers can find the proper system and MPI 
libraries automatically. 
 
1.4 Compiler Flags Comparison 
 
Table 1 shows the common compiler flags including 
optimization, IO, OpenMP, fixed or free source format, 
etc.  for different compilers.  
 
 

                                               
                                                              Table 1. Common Compiler Options Comparison 
 

PGI Pathscale Cray GNU Explanation 

-fast -Ofast -O3 -O3 High level optimization 

-mp=nonuma -mp -h omp (default) -fopenmp Enable OpenMP 

-byteswapio -byteswapio -h byteswapio -fconvert=swap Read files in big-endian 

-Mfixed -fixedform -f fixed -ffixed-form Fixed form source 

-Mfree -freeform -f free -ffree-form Free form source 

-V -dumpversion -V --version Show version info 

Not implemented -zerouv -e 0 -finit-local-zero Zero fill uninitialized values 

 
 

1.5 Motivations 

There are four different supported compilers on 
NERSC's recently acquired XE6, and our users often 
request guidance from us in determining which compiler 
is best for a particular application.  

 
In this paper, we will describe the comparative 

performance of different compilers on several MPI and 
benchmarks with different characteristics. For each 
compiler and benchmark, we will establish the best set of 
optimization arguments to the compiler. 

2. Benchmarks Tested 

2.1 NERSC6 Application Benchmarks 
 
Table 2 lists 5 of the 7 application benchmarks from 

the NERSC6 benchmark suite, a representation of typical 
NERSC workload used for Hopper procurement.  
Performance results from these 5 applications using 
different compilers will be presented. 

 
 

 
 

 

Table 2. Selected NERSC6 Application Benchmarks 
 

 
 

 

 

 

Benchmark Science Algorithm Concur
rency Language 

GTC Fusion PIC, finite 
difference 2048 F90 

IMPACT-T Accelerator 
Physics PIC, FFT 1024 F90 

 

MAESTRO Astrophysics Block structured-
grid multiphysics 2048 F90 

MILC Lattice Gauge 
Physics (QCD) 

Conjugate 
Gradient, sparse 
matrix, FFT 

1024 C, 
Assembly 

PARATEC Material DFT, FFT,BLAS 1024 F90 
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2.2 NPB3.3 MPI Benchmarks 
 
Table 3 shows the NPB 3.3 Kernel MPI Benchmarks 

used in this study, all at a concurrency of 256 processes. 
 
The NAS Parallel Benchmarks (NPB) are a small set 

of kernel programs and pseudo program designed to help 
evaluate the performance of parallel supercomputers. The 
benchmarks are developed and maintained by NASA 
Advances Supercomputing Division. 

 
Table 3. NPB 3.3 MPI Benchmarks  
 
Benchmark Full Name Level 

BT Block Tridiagonal D 
CG Conjugate Gradient E 
EP Embarassingly Parallel E 
FT Fast Fourier Transform D 

LU Lower-Upper Symmetric 
Gauss-Seidel E 

MG MultiGrid E 
SP Scalar Pentadiagonal D 

 

3. Recommended Compiler Options  

3.1 PGI Compiler 
 
In Chapter 3, Optimizing and Parallelizing, of the 

PGI Compiler User's Guide [3], the section "Getting 
Started with Optimizations" recommends "-fast -
Mipa=fast" as "a good set of options to use with any of 
the PGI compilers". In addition, Cray recommends “-
Mfprelaxed” which provides additional optimizations at 
the possible cost of a loss of floating point precision [4]. 

 
Our benchmarks runs will compare the performance 

of runs compiled with these options:  
 
• -fast - A level of optimization which chooses 

generally optimal flags for the target platform. 
 

• -fast -Mipa=fast - Enables interprocedural 
analysis and chooses generally optimal 
interprocedural options  for the target platform. 

 
• -fast -Mfprelaxed - Generates relaxed precision 

code for those floating point operations that 
generate a significant performance improvement, 
depending on the target processor. 

 
• -fast -Mipa=fast –Mfprelaxed  - The combination 

of all above options. 

3.2 Pathscale Compiler 
 
In Section 6, Basic Optimization, of the Pathscale 

Compiler Suite User Guide [5], 6.5 "Compiler Flag 
Recommendations", Pathscale recommends this 
optimization strategy, "start tuning with -O2, then -O3, 
then -O3 -OPT:Ofast and then -Ofast."  Cray recommends 
–Ofast [4]. 

 
Our benchmarks runs will compare the performance 

of runs compiled with these options: 
 
• -O2 - This turns on extensive, but conservative 

optimizations which are virtually always 
beneficial, avoiding changes which affect such 
things as floating point accuracy. 
 

• -O3 - This turns on aggressive optimizations 
which are generally beneficial but may hurt 
performance and require extensive compile 
times. 
 

• -O3 -OPT:Ofast - This adds optimizations which 
may affect floating point accuracy due to 
rearrangement of computations. 
 

• -Ofast - This adds interprocedural analysis to the 
optimizations above. 

 

3.3 Cray Compiler 
 

Cray recommends using the default optimization (“-
O2”), which is equivalent to the higher levels of 
optimization with other compilers. In addition, the “-O3” 
and “-Ofp3” options can improve performance on some 
codes [4]. 

 
Our benchmarks runs will compare the performance 

of runs compiled with these options: 
 
• default (-O2) 

 
• -O3 

 
• -Ofp3 - This gives the compiler maximum 

freedom to optimize floating-point operations, 
even at the expense of not conforming to the 
IEEE floating point standard. 

 
• -O3,fp3 – The combination of the above two 

options. 
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3.4 GNU Compiler 
 
NERSC has found that for this compiler, “-O3” 

produces well optimized code for many benchmarks.  In 
addition, Cray recommends these options for additional 
performance optimizations: “-ffast-math” and “-funroll-
loops” [4]. 

 
Our benchmarks runs will compare the performance 

of runs compiled with these options: 
 
• -O3 - This compiles with a high level of 

optimization. 
 

• -O3 -ffast-math - This performs optimizations at 
the expense of an exact implementation of IEEE 
or ISO rules/specifications for math functions. 
 

• -O3 -funroll-loops - This unrolls loops whose 
number of iterations can be determined at 
compile time or upon entry to the loop. It also 
turns on complete loop peeling (i.e. complete 
removal of loops with a small constant number 
of iterations).  This option makes code larger, 
and may or may not make it run faster. 
 

• -O3 -ffast-math -funroll-loops - The combination 
of all above options. 

 

4. Performance Results 

4.1 PGI Compiler Options 
 
Figure 1 shows the benchmark performance results 

using different PGI compiler optimization options 
discussed in Section 3.1. 

 
The wall clock time of each run will be normalized 

against the "-fast" time, so if a job compiled with "-fast" 
completes in 20 seconds, a job that completes in 23 
seconds would be shown on the graph as 1.15, and one 
that completes in 18 seconds would be shown as .9. 
 

 
Figure 1. Benchmark performance results using different PGI 
compiler options. 
 

Note: The Maestro benchmark does not run 
successfully with optimization options beyond "-fast". 
 

Generally speaking, the other options do not 
significantly improve the performance over that obtained 
with "-fast", and in some cases worsen it.  The only 
significant exception to this is the NPB FT Level D 
benchmark whose performance is greatly improved by 
each of the other three options. 

 

4.2 Pathscale Compiler Options 
 
Figure 2 shows the benchmark performance results 

using different Pathscale compiler optimization options 
discussed in Section 3.2. The wall clock time is 
normalized against the "-O2" time. 
 

 
Figure 2. Benchmark performance results using different 
Pathscale compiler options. 

 
Note:  The Impact benchmark does not run with “-

Ofast”.  The Maestro benchmark gets such poor 
performance with the “-O3” and "-O3 -OPT:fast" 
optimizations that the graph and mean would be seriously 
distorted. 
 

The Pathscale compiler does not optimize very well 
with “-O2” compared to the more aggressive 
optimizations. “-O3” optimizes almost every code quite 
well.  In general, the extra options do not improve 
performance significantly. 
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4.3 Cray Compiler Options 
 
Figure 3 shows the benchmark performance results 

using different Cray compiler optimization options 
discussed in Section 3.3. The wall clock time is 
normalized against the default (“-O2”) time. 
 
 

 
Figure 3. Benchmark performance results using different Cray 
compiler options. 

 
Note:  The GTC benchmark does not run when 

compiled with “-Ofp3” as one of the optimizations.  The 
FT Level D benchmark has much worse performance with 
“-O3” and “-O3,fp3” options than with the other two, so 
much so that including them in the graph would seriously 
distort the mean. 
 

Only one of the benchmarks shows a significant 
improvement over the default optimization, Paratec with 
“-Ofp3”.  For all the other benchmarks, the higher levels 
of optimization give little or no improvement in 
performance. 

 

4.4 GNU Compiler Options 
 
Figure 4 shows the benchmark performance results 

using different GNU compiler optimization options 
discussed in Section 3.4. The wall clock time is 
normalized against the “-O3” time. 
 

 
Figure 4. Benchmark performance results using different GNU 
compiler options. 

 

Note:  The Maestro benchmark does not run 
successfully when compiled with the “-ffast-math” 
option. 

 
“-O3” generally give a good level of optimization, 

but it seems to be worthwhile to try the “-ffast-math” 
option, since in many cases it does improve a code's 
performance significantly. 
 

4.5 Overall Compiler Comparisons 
 
In this section, for each benchmark, the best results 

for each compiler regardless of the optimizations that 
produced them, are compared against each other. Figure 5 
shows the performance results for all the benchmarks 
from each compiler.  The results are normalized against 
the PGI compiler. 
 

 
Figure 5. Benchmark performance results using different 
compilers. 
 

The Pathscale compiler gives the fastest performance 
for 6 out of the 12 benchmarks; The Cray compiler's gives 
the fastest performance on 3 of the 12.  The GNU 
compiler is fastest 2 of the 12, and the PGI compiler is 
fastest 1 of the 12.    

 
The Cray and Pathscale compiled codes run on the 

average about 5% faster than the PGI compiled codes, and 
the GNU compiled codes have on the average about the 
same performance as the PGI compiled codes, although 
there are wide variations with individual benchmarks. 

 
The Cray compiler is a relatively new product on 

AMD based systems, and we have noticed a steady 
improvement in its performance with newer releases.  
This compiler is only available on Cray systems, so if you 
port to another architecture, you would need to choose 
another compiler and develop another Makefile. 

 
The Pathscale compiler is available on other Intel and 

AMD platforms, but it is not very common, so it is very 
likely that any port to another system will require a 
different compiler and a new Makefile. 
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PGI is by far the most commonly available 
commercially produced compiler, and a PGI Hopper 
Makefile would require few changes to run on the many 
systems on which PGI is available.  The recommended "-
fast" option can have different optimizations depending 
on the underlying architecture on which it is compiled, 
and it should produce well optimized code on any 
platform. 
 

The GNU compiler is available for almost any Linux 
or Unix platform, and a GNU Hopper Makefile would 
also require few changes on other platforms, but there is 
no guarantee that its relatively good performance on 
Hopper would be repeated on other platforms. 

 

5. Summary  
In order to achieve best performance results, users 

should experiment with different compilers and compiler 
options to tune their applications on Hopper. 

 
On the average the Pathscale and Cray compilers 

produce somewhat faster code on Hopper (and other Cray 
systems), since they are specifically designed for these 
processors.  In addition the Cray compilers make use of 
the Cray math libraries at compile time to further 
optimize codes.  

 
PGI compilers are available on a wide variety of 

platforms besides Crays and produce well optimized 
codes on all platforms. A PGI targeted Makefiles on 
Hopper would work with few changes on many different 
platforms. 

 
Using the gnu compilers allows you to compile on 

virtually every Unix and Linux system.  Although the 
performance on Hopper for some codes with GNU 
compilers is quite good, there is no guarantee for optimal 
performance on other platforms. 
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