BerkeleyGW at NERSC

Jack Deslippe

Part 1: Intro to GW/BSE

DFT Kohn-Sham Formulation

Minimize Energy Functional By Solving Kohn Sham Eqns

Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133.

$$\rho(r) = \sum_{nk}^{occ} |\psi_{nk}(r)| \qquad \left[-\frac{\nabla^2}{2} + V_{ion} + V_{Hartree} + V_{xc}KS \right] \psi_{nk} = E_{nk}KS \psi_{nk}$$

Total energy is exact so long as approximation for V_{xc} is good. Commonly use Local Density Approximation (LDA) and Gradient Approximations (GGA) – Hybrid functionals etc...

Interpretation of KS Eigenvalues (states)

Ordinary Kohn-Sham eigenvalues under-estimate the electronic gap

		LDA	Present	Expt.d
"Band Gap Problem"	Diamond			
	E_{g}	3.9	5.6	5.48
	$\Gamma_{1v} \rightarrow \Gamma_{25v}$	21.6	23.0	24.2 ± 1
	$\Gamma'_{25v} \rightarrow \Gamma_{15c}$	5.5	7.5	7.3
	$X_{4v} \rightarrow X_{1c}$	10.8	12.9	12.5
Silicon Indirect Gap	Silicon			
50% off in LDA	$\rightarrow E_g$	0.52	1.29	1.17
	$\Gamma_{1v} \rightarrow \Gamma'_{25v}$	11.93	12.04	12.5 ± 0.6
	$\Gamma'_{25v} \rightarrow \Gamma_{15c}$	2.57	3.35	3.4
	$L'_{3v} \rightarrow L_{1c}$	2.73	3.53	3.54
	$L'_{3v} \rightarrow L_{3c}$	4.58	5.50	5.51

*Hybertsen, M. S.; Louie, S. G. Phys. Rev. B 1986, 34, 5390.

¹⁷Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, in Vol. III of Landolt-Bornstein (Springer, New York, 1982), pt. 17a.

Quasiparticles

In many systems the Green's Function takes the form of an independent particle with complex Energy E

$$[E_{n\mathbf{k}} - H_0(\mathbf{r}) - V_H(\mathbf{r})] \psi_{n\mathbf{k}}(\mathbf{r}) - \int \Sigma(\mathbf{r}, \mathbf{r}', E_{n,\mathbf{k}}) \psi_{n\mathbf{k}}(\mathbf{r}') d\mathbf{r}' = 0$$

e-

GW Approximation

$\Sigma = iGW$

$$W(\mathbf{q},\mathbf{G},\mathbf{G}') = \varepsilon^{-1}(\mathbf{q},\mathbf{G},\mathbf{G}') \cdot V(\mathbf{q}+\mathbf{G}')$$

(L. Hedin. Phys. Rev. 139, A796 (1965))
(L. Hedin, S. Lundquist. Solid State Physics 23, 1 (1969))
M. S. Hybertsen, S. G. Louie, Phys. Rev. Lett. 55 (1985) 1418.

Materials:

InSb, InAs, Ge, GaSb, Si, InP, GaAs, CdS AlSb, AlAs, CdSe, CdTe, BP, SiC, C_{60,} GaP AlP, ZnTe, ZnSe, c-GaN, w-GaN, InS, w-BN, c-BN Diamond, w-AIN, LiCI, Fluorite, LiF

After S.G. Louie in Topics in Computational Materials Science (World Scientific, 1997)

Excitons and the Bethe-Salpeter Equation

$$\left(E_{ck}^{QP} - E_{vk}^{QP} \right) A^{s_{vck}} + \sum_{k'v'c'} \langle vck | K^{eh} | v'c'k' \rangle A^{s_{v'c'k'}} = \Omega^{s} A^{s_{vck}}$$

$$\varepsilon_{2}(\omega) = \frac{16\pi^{2}e^{2}}{\omega^{2}} \sum_{s} |\langle N, 0|e \cdot v | N, s \rangle|^{2} \delta(\Omega_{s} - \hbar\omega)$$

GW/BSE Method

GW Reputation

The Good:

-Quantitatively accurate for quasiparticle properties in a wide variety of systems.

The Bad:

-Prohibitively slow for large systems. Usually thought to cost orders of magnitude more time that DFT.

-Memory intensive and scales badly. Limited ~50 atoms.

GW Reputation

The Good:

-Quantitatively accurate for quasiparticle properties in a wide variety of systems.

The Bad:

-Prohibitively slow for large systems. Usually thought to cost orders of magnitude more that DFT.

-Memory intensive and set badly. Limited ~50 atoms.

BerkeleyGW on NERSC resources scales to 10'000+ cores and can handle systems with hundreds of atoms

Part 2: Using BerkeleyGW at NERSC

Resources and Getting Started

Resources:

http://www.berkeleygw.org http://arxiv.org/abs/1111.4429 https://www.nersc.gov/users/software/applications/materialsscience/berkeleygw

NERSC BGW Example:

% module load berkeleygw/1.0.3

% Is \$BGW_EXAMPLES/NERSC_silicon

NERSC Example

There is a NERSC ready silicon example in the berkeleygw module on hopper.

% module load berkeleygw/1.0.3

% Is \$BGW_EXAMPLES/NERSC_silicon

07-epsilon 08-sigma 09-kernel 10-absorption ESPRESSO README script_3 test_bgw.pbs

% cp -r \$BGW_EXAMPLES/NERSC_silicon \$SCRATCH/

% cd \$SCRATCH/NERSC_silicon

% qsub test_bgw.pbs

The GW Starting Point

$$[E_{n\mathbf{k}} - H_0(\mathbf{r}) - V_H(\mathbf{r})] \psi_{n\mathbf{k}}(\mathbf{r}) - \int \Sigma(\mathbf{r}, \mathbf{r}', E_{n,\mathbf{k}}) \psi_{n\mathbf{k}}(\mathbf{r}') d\mathbf{r}' = 0$$

When solved self-consistently, Dyson's equation independent of starting point.

Diagonal approximation

$$\epsilon_{GW}^n \approx \epsilon_{MF}^n + \langle \phi_{MF}^n | \Sigma - V_{xc} | \phi_{MF}^n \rangle$$

Accuracy depends MF wavefunction and operator.

Quantum ESPRESSO

Typically use DFT as the Mean-Field starting point for BGW.

Supported codes include PARATEC, SIESTA, Octopus, **Quantum ESPRESSO** +more coming soon

Step 1: QE SCF

Every GW calculations starts with the calculation of the charge density through an SCF calculation (e.g. DFT+LDA)

% Is \$SCRATCH/NERSC_silicon/ESRESSO/01-scf

in out reference silicon.save Si.UPF

Inputs: pseudopotential in ("calculation = 'scf")

Rel. Outputs: silicon.save/charge-density.dat silicon.save/data-file.xml

Considerations for QE SCF

By default QE divides up the Plane Waves among processors.

(ncores = # planes in the FFT Grid is limit of good scaling). To go beyond that:

-npools - Divide processors into pools over kpts
-ntg - Divide processors into pools for doing multiple FFTs at once.

-OpenMP - Add's more scalability

QE Performance on Hopper (1000 atom Supercell)

Step 2: QE NSCF

We need to generate wavefunction files with many empty bands \sim 10-100 x (# of occupied bands) on a few different grids.

% Is \$SCRATCH/NERSC_silicon/ESRESSO/04-wfn-co

in out pp_in pp_out reference rho.real silicon.save Si.UPF vxc.dat wfn.real

Inputs: pseudopotential charge-density.dat data-file.xml in ("calculation = 'bands'") pp.in

Outputs: wfn.real rho.real vxc.dat

Considerations for QE NSCF

Need Wavefunctions on 4 K-Grids:

- 1. Unshifted Coarse Grid
- 2. Shifted Coarse Grid
- 3. Unshifted Fine Grid
- 4. Shifted Fine Grid (velocity Op. Only)

Shifted Grids are required to compute the the $q = k - k' \sim 0$ limit of various quantities.

QE NSCF (1000 Bands) Performance on Hopper

Step 3 BGW Epsilon

After generating the required wavefunctions from Quantum ESPRESSO, we calculate the dielectric matrix for the material.

% Is \$SCRATCH/NERSC_silicon/07-epsilon

chi_converge.dat eps0mat epsilon.inp epsilon.log epsmat OUT.eps reference WFN WFNq

Inputs: WFN WFNq epsilon.inp Rel. Outputs: epsmat, eps0mat, epsilon.log chi_converge.dat

Step 3 BGW Epsilon

epsilon.log:

q= 0.0000 0.0000 0.0010 nmtx= 137 nind= 0 nrg=110 independent matrix elements of chi spin index= 1 1 g**2 gp**2 chi(g,gp) g 0 gp 0 0.00000 0 0 0 0.00000 -0.000005825 0 -1 -1 -1 1.12482 0 0 0.00000 -0.0000114117 0 0 0 0 0.00000 -1 0 0 1.12482 -0.0000116730 nspin= 1 inverse epsilon g gp 0 0 0 0 0 0.07959121 0 0 0 0 -0.00001097 -1 -1 -1 0.59728014 -1 -1 -1 -1 -1 -1 0 0 -1 -1 0.00426155 -1

Step 3 BGW Epsilon

$$\chi_{\mathbf{G}\mathbf{G}'}(\mathbf{q};\mathbf{0}) = \sum_{n}^{\mathrm{occ}} \sum_{n'}^{\mathrm{emp}} \sum_{\mathbf{k}} M_{n,n'}(\mathbf{k},\mathbf{q},\mathbf{G}) \cdot M_{n',n}^*(\mathbf{k},\mathbf{q},\mathbf{G}') \cdot \dots$$

1.
$$M_{n,n'}(\mathbf{k},\mathbf{q},\mathbf{G}) = \langle n\mathbf{k} + \mathbf{q} | e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}} | n'\mathbf{k} \rangle$$

FFTW Scaling – N³ In(N) Parallel scaling – N x In (N) (parallel over n,n')

2. Sum:
$$\chi_{\mathbf{G}\mathbf{G}'} = \mathbf{M}(\mathbf{G}, (n, n', \mathbf{k})) * \mathbf{M}^T((n, n', \mathbf{k}), \mathbf{G}')$$

Distributed over **G**,**G**' Scales N⁴ - Smaller prefactor Level 3 Blas

Epsilon Performance Considerations

For best use of resources. Choose a number of cores that evenly divides NC*NV. NC = # of conduction bands ; NV = # of valence bands

Epsilon Memory Considerations

Trick:

Use less than 24 MPI tasks per node on Hopper to give each task more memory

BGW 1.1 Allows use of OpenMP Threading - so all cores on node can be used for computation, while still giving each MPI task a large amount of memory.

Release date "soon". Contact me if you have an application that needs this.

Step 4 BGW Sigma

We compute diagonal (optionally off-diagonal) elements of the self-energy operator.

$$\varepsilon_{GW}^n \approx \varepsilon_{MF}^n + \langle \phi_{MF}^n | \Sigma - V_{xc} | \phi_{MF}^n \rangle$$

% Is \$SCRATCH/NERSC_silicon/08-sigma

ch_converge.dat eps0mat epsmat OUT.sig reference RHO sigma_hp.log sigma.inp sigma.log vxc.dat WFN_inner x.dat

Inputs: WFN epsmat eps0mat vxc.dat RHO **Outputs**: sigma.log ch_converge.dat

Step 4 BGW Sigma

sigma.log

k = 0.000000 0.000000 0.000000 ik = 1 spin = 1

elda ch sig eqp0 eqp1 Znk ecor SX-X VXC Х n -17.221 13.356 -7.061 -10.926 -10.447 -6.375 -6.220 -5.896 -5.896 0.677 2 6.007 6.007 -12.604 9.015 -8.038 -11.627 -11.250 5.630 5.707 0.794 6.007 3 6.007 -12.604 9.015 -8.038 -11.627 -11.250 5.630 5.707 0.794 6.007 6.007 -12.604 9.015 -8.038 -11.627 -11.250 5.630 5.707 0.794 4 8.567 8.567 -5.746 3.941 -7.701 -9.505 -10.047 9.109 8.993 0.786 5 6 8.567 8.567 -5.746 3.941 -7.701 -9.505 -10.047 9.109 8.993 0.786 7 8.567 8.567 -5.746 3.941 -7.701 -9.505 -10.047 9.109 8.993 0.786 9.299 9.299 -5.943 4.393 -8.766 -10.317 -10.833 9.814 9.701 0.780 8 9 13.710 13.710 -2.686 1.996 -6.963 -7.653 -8.089 14.146 14.049 0.778 10 13.797 13.797 -4.294 3.045 -7.817 -9.066 -10.063 14.794 14.566 0.772 13.797 13.797 -4.294 3.045 -7.817 -9.066 -10.063 14.794 14.566 0.772 11 12 17.165 17.165 -2.300 1.859 -7.517 -7.958 -8.537 17.744 17.592 0.738 13 17.165 17.165 -2.300 1.859 -7.517 -7.958 -8.537 17.744 17.592 0.738 14 17.165 17.165 -2.300 1.859 -7.517 -7.958 -8.537 17.744 17.592 0.738

Sigma Performance Considerations

Choose number of cores that divides the total number of occupied and unoccupied bands multiplied by the number of bands at which you wish to compute sigma.

Sigma Convergence

Sigma may converge very slowly with respect to the number of empty orbitals provided.

It is very important to look at the following file to test convergence:

ch_converge.dat

Step 5 BGW Kernel

Compute the Electron Hole Kernel Matrix

$$\left(E_{ck}^{QP}-E_{vk}^{QP}\right)A^{s_{vck}}+\sum_{k'v'c'}\left(vck\left|K^{eh}\right|v'c'k'\right)A^{s_{v'c'k'}}=\Omega^{s}A^{s_{vck}}$$

% Is \$SCRATCH/NERSC_silicon/09-kernel

bsedmat bsexmat eps0mat epsmat kernel.inp OUT.krn reference WFN_co

Inputs: epsmat eps0mat WFN_co Outputs: bsedmat bsexmat

Step 5 Kernel Considerations

For best performance: choose a number of cores = nk² or nk² * nc² and provide low_comm in kernel.inp

Changes in BGW 1.1: Parallel HDF5 I/O. Threads. Better scaling beyond nproc = nk²

Step 6 Absorption

Calculate the absorption spectra with and without the electron-hole interaction included.

% Is \$SCRATCH/NERSC_silicon/10-absorption

absorption_eh.dat bandstructure.dat dcmat_norm.dat eigenvalues.dat epsmat OUT.abs WFN_co absorption.inp bsedmat dtmat eps0mat eqp_co.dat reference WFN_fi absorption_noeh.dat bsexmat dvmat_norm.dat epsdiag.dat eqp.dat vmtxel

Inputs: eps0mat epsmat bsedmat bsexmat WFN_co WFN_fi

Outputs: absorption_eh.dat absorption_noeh.dat eivenvalues.dat eigenvectors.dat dvmat_norm.dat

Step 6 Absorption

% module load gnuplot % gnuplot gnuplot> plot 'absorption_noeh.dat', 'absorption_eh.dat'

Absorption Considerations

Check norms from interpolation (dvmat_norm. dat)

By default, absorption uses scalapack to do exact diagonalization. Choose a large square number of cores.

For larger system choose the haydock iterative scheme.

More Information:

Example Input Files for All Codes:

% module load berkeleygw/1.0.3

% Is \$BGW_DOCS/NERSC_silicon

absorption.inp epsilon.inp epsmat_merge.inp kernel.inp wfnmix_QSGW.inp epsconv.inp epsmat_intp.inp inteqp.inp summarize_eigenvectors.inp plotxct.inp sigma.inp nonlinearoptics.inp sig2wan.inp

View the Source Code and READMEs

% ls /usr/common/usg/berkeleygw/1.0.3/source

Visit - http://www.berkeleygw.org

Extra Slides

GW-BSE in Nano.

Example – SWCNT: GW-BSE predicts exciton binding energies as large as 1 eV in semiconducting tubes. 100 meV in metallic tubes*

Each interband transition gives rise to exciton complex 1u, 2g, 3u ...

*J. Deslippe, C.D. Spataru, D. Prendergast, S.G Louie. Nano Letters. 7 1626 (2007)

