Federal Aviation Administration

Memorandum

Date: OCT 192010
To: Chas. Frederic Anderson, Manager, National Aeronautical Navigation Services, AJW-37

From: Leslie H. Smith, Manager, Flight Technologies and Procedures Division, AFS-400

Subject: Harmonized Flight Instrument Procedure Design Calculations

We received many questions reference to the official standard design airspeeds ($V_{\text {KIAS }}$) and formulas for determining true airspeed ($\mathrm{V}_{\text {KTAS }}$), assumed tailwind ($\mathrm{V}_{\mathrm{KTW}}$), turn radius (R), and bank angles (ϕ). The current documents for RNAV and RNP SAAAR contain differing information since they were written at different times and the standard has evolved over time. The following table and formulae are the current standard for determining $\mathrm{V}_{\text {KIA }}, \mathrm{V}_{\text {KTAS }}, \mathrm{V}_{\mathrm{KTW}}, \mathrm{R}$, and ϕ for all instrument procedure design: conventional and performance based navigation (PBN).

1. Apply the following airspeed table:

* The minimum speed restriction values are for use to reduce turn radius. Only one speed restriction per approach segment is allowed and the fastest airspeed appropriate for the highest speed category of aircraft serviced by the approach procedure must be used to determine the speed. AFS-400 or appropriate military authority approval is required when more than one speed restriction is required for a particular approach segment (e.g. initial, intermediate, missed approach). AFS-400 or appropriate military authority approval is also required for missed approach airspeed restrictions when used for other than obstacle/terrain avoidance requirements. **Publish a chart note indicating the maximum or minimum Catergory E airspeed as appropriate.

2. Use Order 8260.54A, formula 2-3a, for True Airspeed calculation.
```
Pseudo Code:
start
Remark: Calculate true airspeed ( }\mp@subsup{V}{\mathrm{ KTAS }}{}\mathrm{ ) in knots per hour
(1) input V VIAs is indicated airspeed
                                    alt is the highest expected altitude in the operation
(2)
    V
                    (288-0.00198*alt)^2.628,0)
Remark: }303\mathrm{ is the value for ISA at MSL (15 ' C) on the Kelvin scale
        (288K=0}\mp@subsup{0}{}{\circ}\textrm{C},+1\mp@subsup{5}{}{\circ}\textrm{C}=303\textrm{K}
end
```

3. Use Order 8260.54 A , formula 2-3b, for Tailwind calculation.

Pseudo Code:
start
Remark: Calculate tailwind component ($\mathrm{V}_{\mathrm{KTw}}$) in knots per hour
(1) input alt is the highest expected altitude in the operation apt ${ }_{\text {elev }}$ is the airport elevation of record
(2) if (alt-apt ${ }_{\text {elev }}$) $\leq \mathbf{2 0 0 0}$ then $\mathrm{V}_{\mathrm{K} T \mathrm{w}}=30$
else
$\mathrm{V}_{\mathrm{KTW}}=\operatorname{round}\left(0.00198^{*}\right.$ alt $\left.+47,0\right)$
end if
end
4. Use Order 8260.54 A , formula 2-3c, for turn radius calculation for all except use 18° for optimum bank angle (ϕ) for all categories below 19,500 and 5° for 19,500 and above.

```
Pseudo Code:
start
Remark: Calculate turn radius (R) in nautical miles
(1) input }\mp@subsup{v}{\mathrm{ kTAS }}{}\mathrm{ is the result of formula 2-3a above
    alt is the highest expected altitude in the operation
    apt elev is the airport elevation of record
    \phi is the effective turn bank angle
    \beta is magnitude of heading change in degrees}
Remark: First, determine ground speed in knots per hour ( }\mp@subsup{\textrm{V}}{\mathrm{ ground}}{}\mathrm{ )
(2) if alt>19,500 then
            Vground}=round(min(570,0.9941*alt/100+287),0
        end if
        if alt\geq10,000 and alt\leq19,500 then
            if ( }\mp@subsup{\textrm{V}}{\textrm{KTAS}}{}+\mp@subsup{V}{\textrm{KTW}}{})>500\mathrm{ then
                    Vground
            else
```

```
                        Vground}=\mp@subsup{V}{\textrm{KTAS}}{}+\mp@subsup{V}{\textrm{KTW}}{
    end if
    end if
    if alt<10,000 then
    V ground}=\mp@subsup{V}{\mathrm{ KTAS }}{}+\mp@subsup{V}{\textrm{KTw}}{
    end if
(3) R=round(V (Vround}\mp@subsup{}{}{\wedge}2/(\operatorname{tan}(\phi*pi/180)*68625.4),2
    If R*}\operatorname{tan}(\beta/2*pi/180)>20 then
        R=20/tan(\beta/2*pi/180)
        end if
```

end
5. Use Order 8260.54A, formula 2-8, for RF Bank Angle calculation.

```
Pseudo Code:
start
Remark: Calculate bank angle ( }\phi\mathrm{ ) in degrees given radius in NM, V VTAS
            and }\mp@subsup{V}{\mathrm{ KTw }}{}\mathrm{ in knots per hour
(1) input alt is the highest expected altitude in the operation
                                apt}\mp@subsup{}{\mathrm{ elev }}{}\mathrm{ is the airport elevation of record
                VkTAs is the result of formula 2-3a above
                \mp@subsup{V}{KTw}{}}\mathrm{ is the value from formula 2-3b above
                R}\mathrm{ is the given turn radius
Remark: First, determine ground speed in knots per hour ( }\mp@subsup{V}{\mathrm{ ground}}{}\mathrm{ )
(2) if alt>19,500 then
                            Vground}=round(min(570,0.9941*alt/100+287),0
    end if
        if alt\geq10,000 and alt }\leq19,500 the
            if ( }\mp@subsup{\textrm{V}}{\mathrm{ KTAS }}{}+\mp@subsup{V}{\mathrm{ KTW }}{\mathrm{ N }
                V ground}=50
            else
                V ground
            end if
        end if
        if alt<10,000 then
            V ground}= \mp@subsup{V}{\mathrm{ KTAS }}{}+\mp@subsup{V}{\mathrm{ KTW }}{
        end if
(3) }\phi=\operatorname{round}(\operatorname{atan}(\mp@subsup{V}{\mathrm{ ground }}{}\mp@subsup{}{}{\wedge}2/(\mp@subsup{R}{}{*}68625.4))*180/pi,0
end
```

If you have any questions, please contact Mr. Harry Hodges, Manager, Flight Procedure Standards Branch, AFS-420, at (405) 954-4164.

