Vehicle to Grid Power

Briefing for:
Federal Energy Regulatory Commission
23 October 2007

by
Willett Kempton
University of Delaware, and
Mid-Atlantic Grid Interactive Car Consortium

Trends

- Gasoline increasingly untenable; electricity likely to be a major energy carrier for cars
- © CO₂ limits, air quality, and price will shift more generation to non-dispatchable resources (i.e. renewable energy)
- Thus, much greater need for dispatchable storage, in market terms, f or ancillary services (regulation, spinning reserves, etc)

Why V2G?

- There is almost no storage on the electric system; storage is valuable, and can be sold via Ancillary Service (A/S) power markets
- BEV and PHEV will have large batteries connected to the grid
- Grid needs some control of timing: e.g., charge during electricity surplus, and (less often), discharge during electricity deficit.

Plug-in Cars are Here

- Today: Tesla, AC Propulsion, Prius retrofits
- Plans: GM Volt, many other OEMs, both plug-in hybrid and all-electric
- But OEMs' designs are not suited for V2G: one-way flow, low power (1.5 kW), no anti-islanding, etc.
- OEMs lack familiarity with, and motivation to address, electric system opportunities and risks

V2G Terminology

- Emphasis varies with terminology
 - "Vehicle to grid" -- bidirectional circuit
 - "Cash-back Plug-in Hybrid" -- financial value
 - "Grid interactive car" -- communication & control
- Non-V2G
 - Plug-in cars (PHEV, BEV, etc)
 - Good, but not exploiting opportunities or even addressing peak load

Plug-in Vehicles

Arrows indicate direction of power flow

Vehicle to Grid

Arrows indicate direction of power flow

V2G Basic Math

- Average car driven 1 hour/day, thus, time parked is 23 hours/day; Daily average travel: 32 miles, storage for 100 250 miles
- Practical power draw from car: 10 20 kW
- US power: generation=978 GW; load=436 GW avg (EIA)
- US 241 million cars (FHWA 2005) x 15 kW = 3,615 GW, thus...

V2G Basic Math

- Average car driven 1 hour/day, thus, time parked is 23 hours/day; Daily average travel: 32 miles, storage for 100 - 250 miles
- Practical power draw from car: 10 20 kW
- US power: generation=978 GW; load=436 GW avg (EIA)
- US 241 million cars (FHWA 2005) x 15 kW = 3,615 GW, thus...
- Power of fleet is >3x generation; >8x load!

V2G Basic Math

- Average car driven 1 hour/day, thus, time parked is 23 hours/day; Daily average travel: 32 miles, storage for 100 - 250 miles
- Practical power draw from car: 10 20 kW
- US power: generation=978 GW; load=436 GW avg (EIA)
- US 241 million cars (FHWA 2005) x 15 kW = 3,615 GW, thus...
- Power of fleet is >3x generation; >8x load!

Daily Load versus Regulation (=correction of ACE)

Time of Day

Electric Markets

- Initial markets (high value, low impact on battery, no system changes):
 - Regulation ("Frequency regulation")
 - Spinning reserves
 - Intrahour adjustment
- Larger but more challenging markets
 - Peak power
 - UPS for the distribution system

How many cars for an A/S contract?

- PJM minimum A/S contract: 3 MW
- © CalISO minimum A/S contract: 1 MW
- Assume 2/3 availability (1/3 unavailable because driving, battery at wrong SOC, etc
- © Calculation: 2/3 availability means ...

 ____ kW/car * ____ cars * 2/3 = ____ MW
 - for 1 MW at 15 kW, need 100 cars
 - for 1 MW at 1.5 kW, need 1000 cars

Mid-Atlantic Grid-Interactive Car (MAGIC) Consortium

- Partners
 - University of Delaware
 - PHI: Delmarva Power, Atlantic Electric, PEPCO, etc
 - ACUA
 - PJM
 - AC Propulsion
 - Comverge
- Observers
 - Tesla Motors
 - Google.org
 - State of Delaware (DEDO, PSC, Energy Office)
 - anon

PJM as Part of the Eastern

Interconnection

KEY STATISTICS

-PJM member companies 400 -Millions of people served 51 144,796 -Peak load in megawatts -MWs of generating capacity 164,634 -Miles of transmission lines 56,070 -GWh of annual energy 728,000 -Generation sources 1,271 -Square miles of territory 164,260 13 states + DC -Area served

- 26% of generation in Eastern Interconnection
- 23% of load in Eastern Interconnection
- 19% of transmission assets in Eastern Interconnection
- 19% of U.S. GDP produced in PJM

MAGIC Current Project and Planning

- Phase I: ~5 cars + one bus, V2G directly from PJM regulation signal (\$1 M in hand)
- Phase II: ~300 cars in PHI, aggregator between PJM and cars, paying A/S contract (about \$15 M needed)
- Phase III: Self-sufficient businesses (OEMs, aggregators, ISOs)

MAGIC Phase I

- © Connect 5-6 vehicles to PJM Automatic Generation Control (AGC) signal
- Drive, charge, V2G -- develop, test and demonstrate technology
- Document parameters, and create opportunity for a V2G aggregator
- Then ready for Phase II

AGC control

Traditional AGC - PJM (Generator)

AC Propulsion Onboard Charger Is Bidirectional

Power can flow to or from vehicle

- Stand-alone or grid-tied
- Unity power factor
- Sine wave current draw
- GFI compatible

V2G opportunities with bidirectional charger

Additions by MAGIC

The Grid Interactive Car

V2G Phase I: One ARCOM controller per vehicle (eBox or eBus) Battery Commands VMS on RJ45 -ARCOM Director eBus vehicle Data Stream PEU or Internet Power computer eBus charger grid RS232 Binary protocol from ACP ------- Yeh/c/e operator -

The Grid Interactive Car

V2G Phase I: One ARCOM controller per vehicle (eBox or eBus)

V2G Phase II: One ARCOM controller per aggregator

Phase II

- For A/S contract: 300 car V2G fleet = 3 MW; demonstrate V2G business models, aggregator develops or emerges.
- Prove the power market business model, develop technology, drive down component costs
- Develop standards for V2G (e.g. response time, metering, at least 10 kW/car, drawdown limits, etc)
- THEN we need the OEMs, low-cost production at > 50,000 cars/year

Regulation Market: High revenues if aggregated

- Spreadsheets from Delmarva Power show that at moderate car production (a few thousand/year), A/S can pay for cars costing \$40,000
- However, to get to that production volume, first need to prove A/S business (via Phase II)
- Costs for Phase II fleet is primarily to buy down cost of vehicles for buyers, also some development, testing, and documentation

Potential Policies

- Public funds for 300 cars (3 MW) + RD&D, about \$15M, optionally add \$5M for a second region with 1 MW contract
- Or, tax credit for 50% subsidy on V2G cars, for 5 years
- Or, create a "fast-response regulation market" with price temporarily set at \$100/MW (vs. \$40 avg now). Limits: < 10% of regulation, only for cash-back vehicles, only for 5-year demonstration project</p>

Vision

- One-half vehicle fleet is electric drive (BEV + PHEV). National security & environment benefits.
- Lots of storage on the electric system, near loads.
- Electric system storage is dispatchable by ISO/ TSO and/or load serving entity.
- Electric grid is more stable and reliable, A/S is abundant and less expensive
- Intermittent renewables can be a much higher fraction of the US generation mix.

End

more info: www.udel.edu/V2G