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Preface 

 

The Ensemble Verification System (EVS) is a Java-based software tool developed by 

the Hydrological Ensemble Prediction (HEP) group of the US National Weather 

Service’s Office of Hydrologic Development (OHD). It is designed to verify 

ensemble forecasts of hydrologic and hydrometeorological variables, such as 

temperature, precipitation, streamflow and river stage. The EVS is intended to be 

flexible, modular and open to accommodate enhancements and additions, not only by 

its developers but also by its users. As such, we welcome your participation in the 

continuing development of the EVS toward a versatile and standardized tool for 

ensemble verification. 

 

1
 EVS Primary Point of Contact, James.D.Brown@noaa.gov, 301-713-0640 ext 224 
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Disclaimer 

 

This software and related documentation was developed by the National Weather 

Service (NWS). Pursuant to title 17, Section 105 of the United States Code this 

software is not subject to copyright protection and may be used, copied, modified, and 

distributed without fee or cost. Parties who develop software incorporating 

predominantly NWS developed software must include notice, as required by Title 17, 

Section 403 of the United States Code. NWS provides no warranty, expressed or 

implied, as to the correctness of the furnished software or its suitability for any 

purpose. NWS assumes no responsibility, whatsoever, for its use by other parties, 

about its quality, reliability, or any other characteristic. The NWS may change this 

software to meet its mission needs or discontinue its use without prior notice. The 

NWS cannot assist non-NWS users and is not obligated to fix reported problems; 

however, the NWS will make an attempt to fix reported problems where possible. 
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1.  INTRODUCTION 
 

Ensemble forecasting is widely used in meteorology and, increasingly, in hydrology 

to quantify and propagate modeling uncertainty (Stensrud et al., 1999; Brown and 

Heuvelink, 2007; Park and Xu, 2009). Uncertainties in model predictions originate 

from the inputs, structure and parameters of a model, among other things (Brown 

and Heuvelink, 2005; Gupta et al., 2005). In practice, ensemble forecasts cannot 

account for all of these uncertainties, and some uncertainties are difficult to quantify 

accurately (NRC, 2006). Thus, ensemble forecasts are subject to errors. These 

errors are manifest as differences between the forecast probabilities and the 

corresponding observed probabilities over a large sample of forecasts and verifying 

observations (subject to sampling and observational uncertainty; Jolliffe and 

Stephenson, 2003; Hashino et al., 2006; Wilks, 2006). Unlike single-valued forecasts, 

ensemble forecasts cannot be verified with deterministic measures, such as the 

mean error or the root mean square error (RMSE). Rather, each ensemble member, 

and thus each error, is associated with only a partial probability of occurrence. Many 

of the techniques used to verify ensemble forecasts were pioneered in meteorology 

(Wilks, 2006). For example, the Brier Score (BS; Brier, 1950) was developed to verify 

probability forecasts of discrete weather events, such as tornados. The BS measures 

the average squared difference between the forecast probability of an event and its 

observed probability (which is 1 if the event occurred and 0 otherwise). With the 

growth of probabilistic forecasting, ensemble verification is increasingly used in other 

disciplines, such as hydrology (Bradley et al., 2004), oceanography (Park and Xu, 

2009), ecology (Araújo and New, 2007) and volcanology (Bonadonna et al., 2005).  

 

The basic attributes of ensemble forecast quality are broadly applicable, since they 

are concerned with probability distributions or measures on probability distributions. 

However, the specific approach to verification will depend on the forecast variables 

and their temporal and spatial scales, as well as the intended applications and users 

of the forecasts (e.g. research versus operational forecasting). In order to support 

ensemble verification for a wide range of applications in hydrology and beyond, 

flexible and user-friendly software is required. This is illustrated with an example from 

the National Weather Service (NWS). The River Forecast Centers (RFCs) of the 

NWS produce ensemble forecasts of temperature, precipitation and streamflow at a 

variety of lead times (Schaake et al., 2007; Demargne et al., 2007; Demargne et al., 

2009, Wu et al., 2010). In one experimental operation, ensemble traces of 
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precipitation and temperature are generated from single-valued forecasts using an 

Ensemble Pre-Processor (EPP; Schaake et al., 2007, Wu et al., 2010). These traces 

are input into the Ensemble Streamflow Prediction (ESP) subsystem of the NWS 

River Forecast System (NWSRFS; NWS, 2005), from which ensemble traces of 

streamflow are output. There is a need to verify these forecasts and to identify the 

factors responsible for model error and skill in different situations. Verification is 

required at multiple temporal and spatial scales, ranging from minutes and kilometers 

(e.g. for flash flood guidance) to years and entire regions (e.g. for water resource 

planning and national verification). Furthermore, there is a need to support both 

operational forecasting within the RFCs and hydrologic research and development 

within the NWS. In order to meet these needs, work on ensemble verification is 

separated into two themes (see Demargne et al., 2009 for further details); 1) 

verification and bias-correction of real-time ensemble forecasts, which should directly 

improve decisions that rely on forecast probabilities (“real-time verification”; see 

Brown and Seo, 2010a); and 2) verification of archived operational forecasts and 

hindcasts, which should indirectly improve decision making via enhanced techniques 

for generating ensemble forecasts (“diagnostic verification”). 

 

The Ensemble Verification System (EVS) is a flexible, user-friendly, software tool that 

is designed to verify ensemble forecasts of continuous numeric variables, such as 

temperature, precipitation and streamflow (Brown et al., 2010b).  The EVS can be 

applied to forecasts from any number of geographic locations (points or areas) and 

issued with any frequency and lead time. It can also aggregate forecasts in time, 

such as daily precipitation totals based on hourly forecasts, and can aggregate 

verification statistics across several discrete locations. However, it does not support 

the verification of uncertain spatial fields, such as gridded atmospheric pressure, or 

uncertain spatial objects, such as storm cells.  

 

A verification study with the EVS is separated into three stages (Brown et al., 2010b), 

namely: 1) Verification; 2) Aggregation; and 3) Output. In the Verification stage, one 

or more Verification Units (VUs) are defined. Each VU comprises a set of forecasts 

and verifying observations for one environmental variable at one geographic location. 

The ensemble forecasts and observations are provided in an XML or ASCII format. 

The Verification stage also requires one or more verification metrics to be selected. 

The forecasts and observations are then paired by forecast lead time and the 

verification metrics computed. The results are written to the Output dialog, where the 

metrics can be plotted in an internal viewer or written to file in a variety of graphical 
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formats or in XML. The Aggregation stage allows for the averaging of verification 

statistics across multiple VUs.  

 

The verification metrics in the EVS comprise both deterministic metrics, which verify 

the ensemble mean forecast, and probabilistic metrics, which verify the forecast 

probabilities. The probabilistic metrics comprise distribution-oriented metrics, which 

verify the joint probability distribution of the forecasts and observations (or its 

factors), and measure-oriented statistics, which summarize the forecast quality in a 

score. Their combination allow for specific attributes of forecast quality, such as 

reliability and discrimination, to be examined in varying levels of detail. This is 

important, as the EVS is intended for a wide range of applications and users, 

including both scientific researchers and operational forecasters in the National 

Weather Service (NWS). In addition to implementing standard measures of forecast 

quality, the EVS provides a platform for testing new verification metrics.  

 

The EVS is currently being used by operational forecasters at several of the NWS 

RFCs. It is also used routinely to support scientific research and development within 

the NWS (e.g. Demargne et al., 2007; Wu et al., 2010; Brown et al., 2010b). In future, 

the EVS will be expanded to allow for the verification of both single-valued and 

probabilistic forecasts issued by the RFCs. Such verification is needed to identify the 

nature and sources of forecasting error, document forecast performance as a 

function of changing practices, and to support targeted improvements in forecast 

models and field data collection.  These topics are being pursued by the NWS in 

collaboration with Environment Canada, the European Center for Medium Range 

Weather Forecasting (ECMWF), the Verification Testbed of the Hydrologic Ensemble 

Prediction Experiment (HEPEX), and with several universities. It is hoped that the 

introduction of verification standards, supported by a common verification tool, will 

allow for inter-comparisons of forecasting models and methods in different regions 

and over extended periods of time, contributing to the better use of uncertain weather 

and water forecasts, as outlined in NRC (2006). 

 

The EVS is free to use, distribute, and modify, but is provided without technical 

support.  
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2.  INSTALLATION INSTRUCTIONS AND START-UP 

 

2.1 Contents of the full distribution 

 

Currently, the full distribution of the EVS can be downloaded from: 

 

http://www.nws.noaa.gov/oh/evs.html  

 

The full distribution comprises (** are required to run the EVS): 

 

Item Description 

EVS.jar** The main executable and associated libraries 

EVS_4.0_MANUAL.pdf This manual 

EVS_4.0_RELEASE_NOTES.pdf The release notes, including changes and bug-fixes 

EVS_4.0_TEST_DATA.zip An example dataset for running the EVS 

/reporting Contains a template to report bugs or suggested enhancements 

EVS_4.0_SOURCE.zip A directory containing the Java source-code for the EVS 

/javadoc A directory containing “Javadoc” source code documentation 

evs/resources/rscripts/ A series of scripts for generating custom verification plots in R 

evs/resources/statsexplained/ Html guides to particular metrics available in the EVS. 

EVS.bat Example Windows batch file and command to use more RAM 

 

2.2 Requirements 

 

No formal installation of the EVS is required. However, in order to run the EVS you 

will need: 

 

1. The JavaTM Runtime Environment (JRE) version 6.0 (1.6) or higher. You can 

check your current version of Java by opening a command prompt and 

typing java –version. If the command is not recognized, you do not have a 

version of the JRE installed. If the installed version is older than 1.6, you 

should update the JRE. The JRE is free software and may be downloaded 

from the Sun website: 

    

 http://java.sun.com/javase/downloads/index.jsp 
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2. The EVS executable, EVS.jar, and associated resources in EVS_4.0.zip; 

3. Microsoft Windows (98/2000/NT/XP/Vista/7) or Linux Operating System 

(OS). In addition, you will need:  

 

− A minimum of 256MB of Random-Access Memory (RAM) and ~50MB of 

hard-disk space free (not including the associated datasets).   

− For many applications of the EVS, involving verification of large datasets 

more RAM and disk space will be required. A minimum of 1GB of RAM 

and 2GB of disk space is recommended (see Section 2.7).    

 

2.3 Unpacking and running the EVS  

 

Once you have obtained the EVS software, unpack the zipped archive to any 

directory of your computer (e.g. C:/Program Files/EVS_4.0/) using, for 

example, WinZipTM on Windows or the unzip command in Linux/Unix: 

 

unzip EVS_4.0.zip 

 

There are two possible ways of running the EVS, namely: 1) by executing the 

Graphical User Interface (GUI); and 2) by executing the EVS from the command line 

with a pre-defined project file. 

 

Executing the EVS with the GUI: 

 

Once you have unpacked the software, you may run the EVS by double-clicking on 

“EVS.jar” in Windows or by opening a command prompt, navigating to the root 

directory, and typing a java command that references the EVS jar file, such as: 

  

java –jar EVS.jar.  

 

Executing the EVS without the GUI: 

 

In order to execute the EVS without the GUI, you must have one or more pre-defined 

EVS projects available. The EVS projects are specified in XML (see Appendix A2) 

and may be created with or without the GUI. For example, a base project may be 

created with the GUI and then altered manually or with a script outside of the GUI 
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(e.g. changing the input and output data sources). One or more EVS projects may be 

invoked from a command prompt by typing a java command with the paths to the 

project(s) listed afterwards, for example:  

 

java –jar EVS.jar project_1.evs 

 

where project_1.evs is an EVS project (the project need not be located in the 

root directory, but should be referenced by its full path otherwise). By default, the 

graphical and numerical results are written to the output directories specified in the 

projects.  

 

2.4 Troubleshooting the installation  

 

List of typical problems and actions: 

 

− “Nothing happens when executing EVS.jar” 

 

Ensure that the Java Runtime Environment (JRE) is installed on your machine and is 

in your PATH. The JRE should be version 6.0 (1.6) or higher. To check that a 

suitable version of the JRE is installed and in your PATH, open a command prompt 

and type: 

 

java -version 

 

If the command is not recognized, the JRE is not installed and in your PATH. If the 

version is below 6.0 (1.6), update the JRE (see above). 

 

If this does not help, check the root directory of your installation for a log file named 

evs.log. Send the error message to the authors for advice on how to proceed 

(James.D.Brown@noaa.gov).   

 

− “An error message is thrown when executing EVS.jar” 

 

If an error message is thrown by the JRE (i.e. a java error appears in the message), 

the error may be caused by the local installation of Java.  
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2.5 Altering memory settings 

 

By default, the amount of RAM memory available to the EVS is restricted by the Java 

Virtual Machine. In order to perform ensemble verification with large datasets, it may 

be necessary to change this default and increase the amount of memory available. 

This is achieved by executing the EVS on the command line, whether invoking the 

GUI or running a project without the GUI. To execute the GUI with altered memory 

settings, navigate to the installation directory of the EVS, and type:   

 

java –Xmx1000m –jar EVS.jar 

 

where 1000 is the maximum amount of memory (in megabytes) allocated to the EVS 

in this example. The maximum memory allocation should be significantly lower than 

the total amount of RAM available on your machine, as other programs, including the 

OS, will require memory to run. For example, on a 32-bit Windows OS with 4000 

megabtyes of memory, around 1200 megabytes of memory will typically be available 

for the EVS. The EVS will only start with an increased memory setting if the Java 

Virtual Machine can actually allocate the desired amount of memory. 

 

2.6 Source code and documentation 

 

The Java source code for the EVS can be found in the src.zip archive in the root 

directory of your installation. The Application Programming Interface (API) is 

described in the html documentation, which accompanies the software (in the 

/javadoc directory). 

 

2.7 Computer resource considerations 

 

The time required to execute an EVS project, as well as the amount of RAM and 

hard-disk space required, will depend on a wide range of factors, including: 

 

• The number of forecast locations; 

• The number of paired forecasts and observations for each location, which itself 

depends on the forecast frequency, the forecast horizon or number of “lead 

times”, the number of ensemble members etc; 
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• The verification metrics required and the number of thresholds at which they are 

computed; 

• Whether the forecasts and observations are already paired (quicker) or need to 

be paired and written to an associated paired file (slower); 

• When performing conditional verification (i.e. with a subset of the overall pairs), 

whether those pairs should also be written to file (slower, and the default) or not 

written (quicker);  

• When aggregating verification results across several locations, whether the 

verification metrics should be computed by averaging the values of the 

verification metrics at the individual locations (quicker, and the default) or by 

pooling the pairs and then computing the metrics for the pooled pairs (much 

slower);  

• The requirements for computing confidence intervals via bootstrap resampling, 

including the number and types of metrics for which confidence intervals are 

required and the number of samples requested. When several processors/cores 

are directly available to the EVS, the bootstrap samples will be distributed across 

the available processors/cores (the bootstrap algorithm is multi-threaded); and 

• Whether the EVS is executed from the command line or via the GUI (in terms of 

RAM consumed). When executing from the command line, each VU and AU is 

executed sequentially and the numerical and/or graphical outputs are written 

sequentially. When executing from the GUI, all of the verification results (not the 

verification pairs, unless pooling pairs with aggregation) are stored in memory, 

until a decision is made about what outputs to generate. 

• The computer resources available.  

 

All floating point numbers stored and manipulated by the EVS are double-precision 

(64-bit) numbers. Thus, a single observed or forecast (ensemble member) value will 

consume 8 bytes of RAM. The EVS requires more RAM than implied by the data, as 

some duplication of data is necessary, and the EVS itself has an overhead of ~15 

megabytes. In the absence of sufficient memory to complete a calculation, an 

OutOfMemoryError will be thrown. To save disk space, the default maximum 

precision for writing floating point numbers (the forecasts and observations) to the 

EVS paired file is five decimal places, with fewer decimal places written as required. 

The maximum precision may be controlled via the GUI (see Section 4) or directly via 

the <paired_write_precision> tag within the EVS project file (see Appendix 

A2, but note that calculations are always performed in double-precision). 
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3. OVERVIEW OF FUNCTIONALITY 

 

3.1 Summary of functionality in the EVS Version 4.0  

 

A complete list of the enhancements, changes in default behavior, and bug fixes 

between successive versions of the EVS can be found in the release notes that 

accompany this distribution (EVS_4.0_RELEASE_NOTES.pdf). 

 

The functionality currently supported by the EVS includes: 

 

• Pairing of observed and ensemble forecast values, which may be provided in a 

variety of file formats, to perform verification for a given forecast point or area. 

The observed and forecast values may be in different time systems or at different 

temporal scales, the times and scales being defined by the user; 

 

• Computation of multiple verification metrics for arbitrary numeric forecast 

variables (e.g. precipitation, temperature, streamflow, river stage) at a single 

forecast point or area. The verification metrics are computed for each of the 

forecast lead times available. The available metrics include:  

- For verification of the ensemble average forecast (mean, median, mode):  

� the correlation coefficient;  

� the mean error,  

� the root mean square error;  

� the mean absolute error; and  

� the relative mean error (the mean error as a fraction of the mean 

observation). 

- For verification of the ensemble-derived forecast probabilities:  

� the Brier Score, including its calibration-refinement factors (“reliability”, 

“resolution” and “uncertainty”) and likelihood-base-rate factors (“Type-

II conditional bias”, “discrimination” and “sharpness”);  

� the Brier Skill Score and its calibration-refinement and likelihood-base-

rate factors;  

� the Continuous Ranked Probability Score and its calibration-

refinement factors;  

� the Continuous Ranked Probability Skill Score and its calibration-

refinement factors;  
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� the Relative Operating Characteristic, including the fitting of a smooth 

curve (bivariate normal model);  

� the Relative Operating Characteristic Score, including the integration 

of a fitted curve (bivariate normal model);  

� the reliability diagram; and  

� several newly-developed metrics (see Section 6.2). 

 

• Conditional verification. Two forms of conditional verification are supported by the 

EVS, namely 1) the identification of logical “pre-conditions” to sub-select pairs; 

and 2) verification with respect to thresholds (for metrics that verify discrete 

events, such as flooding, these thresholds are necessary, as they define the 

events). The pre-conditions include: 1) a restricted set of dates (e.g. months, 

days, weeks, hours of the day, or some combination of these); 2) a restricted set 

of observed or forecast values (e.g. ensemble mean exceeding some threshold, 

maximum observed values within a 90 day window, forecast probability of 

exceeding some threshold greater than 0.95, observed values of another variable 

not exceeding some threshold). When verifying the remaining pairs against 

particular thresholds, the thresholds may be defined with respect to the 

climatological probability distribution (based on a specified sample of observed 

data), such as the 95th percentile flow, or in real values, such as flood stage;  

 

• Aggregation of verification results across a group of forecast locations, either by 

averaging the verification metrics from the individual locations (possibly weighed) 

or by pooling the pairs and computing the verification metrics for the pooled pairs. 

When aggregating in space, the individual locations must have common 

properties (e.g. common variables, units and scales); and 

 

• Generation of graphical and numerical products, which may be written to file in 

various formats (e.g. png, jpeg, svg files) or plotted within EVS. In addition, 

several R scripts are provided in the /resources/rscripts directory for 

importing and plotting data in the R statistical environment (R Development Core 

Team, 2008). 

 
• The ability to compute verification results for each of m bootstrap re-samples of 

the (possibly conditional) verification pairs and to generate associated measures 

of sampling uncertainty, such as one or more confidence intervals (of which one 

can be displayed for each metric). The bootstrap resampling procedure can 
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account for space-time dependence in the verification pairs across multiple lead 

times and locations and the computational load is distributed across the available 

processors/cores. 

 

3.2 Planned functionality 

 

The additional functionalities planned for future versions of the EVS includes, in no 

particular order: 

 

• The addition of options for combining several metrics into one plot and for 

increasing the flexibility of plotting more generally; 

 

• Functionality for verifying joint distributions; that is, the statistical dependencies in 

space and time, as well as the marginal distributions (e.g. to verify the reliability of 

the correlations associated with forecast values across several lead times); 

 

• The ability to compute forecast skill for several reference forecasts at once, such 

as climatology, persistence or raw model output (e.g. before data assimilation or 

manual adjustment). Currently, only one reference forecast may be defined for 

each combination of forecast point and skill score; 

 

• The development of a batch language to support generation of verification 

products without running the GUI. For example, it should be possible to create a 

template point and apply this to a wider group of forecast points, changing only 

the observed and forecast data sources via a batch processor; and  

 

• The ability to separate errors in hydrologic forecasts into phase (timing) and 

amplitude errors. 
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4. GETTING STARTED 

 

As indicated above, there are two possible ways to use the EVS, namely: 1) with the 

Graphical User Interface (GUI); and 2) from the command line with a pre-defined 

project. The GUI provides a structured interface for defining an ensemble verification 

study and is considered in some detail below. Once familiar with the software, or 

when conducting verification at a large number of forecast points, execution via the 

command line, with a pre-defined project, may be preferred. 

 

4.1 Structure of the GUI 

 

A verification study with the EVS is separated into three stages: 

 

1. Verification: identification of one or more Verification Units (VUs), pairing of 

forecasts and observations, and computation of verification metrics. Each VU 

comprises a set of forecasts and verifying observations for one environmental 

variable at one geographic location, together with a list of verification metrics to 

be computed; 

 

2. Aggregation: identification of one or more Aggregation Units (AUs). Each 

aggregation unit comprises two or more VUs and is used to measure the 

average performance across these VUs. This is an optional stage; 

 

3. Output: production of graphical and numerical outputs of the verification 

statistics for one or more previously defined VUs and AUs.  

 

These stages are separated into “tabbed panes” in the GUI, which also contains a 

taskbar for administrative operations, such as creating, opening, and saving projects 

(Fig. 1). Initially, a verification study may involve linearly navigating through these 

tabbed panes until one or more VUs and AUs have been defined, the verification 

statistics generated, and the results written to file. However, once a VU has been 

defined and saved, the point of entry into the software may vary. For example, an 

existing project may be modified, a new AU identified from a set of pre-existing VUs, 

or new graphical outputs generated. Project files, which are written in an XML format 

(see Section 4.4 for the file data formats), can be created or edited manually and 

then executed from a command prompt (e.g. Microsoft DOS, Cygwin, Linux) rather 
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than from the GUI, thereby allowing simple batch processing of VUs and AUs 

through shell scripting.  

 

Each tabbed pane within the GUI comprises one or more panels, which correspond 

to intermediate steps within the verification stage, such as the specification of data 

sources (one panel in Stage 1) and the selection of verification statistics to compute 

(another panel in Stage 1). At each stage, “basic options”, such as the identification 

of observed and forecast data, are separated from more “advanced options”, such as 

the selection of specific months over which to verify the forecasts. The latter are 

accessible via pop-up dialogs.  

 

4.2 Stage 1: Verification 

 

The first stage of a verification study in the EVS involves the identification of a VU, 

followed by the selection and computation of verification metrics (Fig. 1). The basic 

attributes of a VU are: 

 

- a unique identifier, which is built from a ‘location identifier’, an ‘environmental 

variable identifier’ and, optionally, an ‘additional identifier’, which can be used to 

distinguish between forecasts from several modeling systems, among other 

things; 

- the paths to the observed and forecast data; 

- the file formats in which the forecasts and observations are stored (Section 4.4) 

- the time systems in which the forecasts and observations are stored (e.g. UTC);  

- the temporal and spatial ‘support’ of the forecasts and observations (i.e. space-

time scale) and their associated measurement units; 

- the period for which verification statistics should be computed; 

- the forecast lead times for which verification statistics should be computed; and 

- the location where verification outputs should be written. 

 

 

 

 

 

 

 

 



 18 

Fig. 1: The opening panel in the “Verification” stage 

 

 

 

In addition to the basic attributes of a VU, several refinements are possible. For 

example, the verification period may be refined to include only winter months or 

specific days of the week. Similarly, the analysis may be restricted to a subset of the 

observed and forecast values, such as temperature forecasts whose ensemble mean 

is below freezing. Collectively, these “pre-conditions” lead to some of the pairs being 

ignored when computing the verification results. Another common requirement is to 

verify the forecasts at aggregated temporal scales. For example, six-hourly 

precipitation totals may be aggregated to daily totals before conducting verification. 

Temporal aggregation is achieved by applying an aggregation function (e.g. the sum) 

to each ensemble trace within the period of aggregation, and then collating the traces 

into an aggregated ensemble forecast. This ensures that any statistical 

dependencies between forecast lead times are preserved in the aggregated traces. 

Temporal disaggregation is not supported by the EVS. 
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Fig. 2: The second panel in the “Verification” stage 

 

 

 

Once a VU has been defined, one or more verification metrics are selected from a 

tabular display for calculation (Fig. 2). The metrics are grouped into ‘deterministic 

metrics’, which evaluate the quality of the ensemble average forecast (e.g. mean, 

median or mode), ‘probabilistic metrics’, which measure errors in the forecast 

probabilities, and ‘skill scores’, which measure the relative performance of two 

forecasting systems in terms of a given, probabilistic, metric. When selecting a 

particular metric (Fig. 2), a description of that metric, including links to further reading 

(online and offline), appear in the adjacent dialog (Fig. 2). Many of the probabilistic 

metrics are formulated for discrete events, such as the occurrence of precipitation or 

flooding, rather than the forecast probability distribution as a whole, which comprises 

an infinite number of possible events. Here, the forecast events are verified after 

applying any pre-conditions to remove pairs (see above). Thus, in designing a 

verification study, the identification of discrete events should be considered jointly 

with the specification of any pre-conditions to remove pairs (e.g. selecting particular 

months or verification pairs whose observation exceeds a threshold).  
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The metrics may be computed for several discrete events (conditions), for which the 

event thresholds and associated logical conditions must be defined (e.g. <, >). The 

event thresholds may be given in real units, such as flow in m3 s-1, or in observed 

climatological probabilities. Real units are useful when an event threshold is 

physically meaningful, such as exceedence of a flood threshold. Climatological 

probabilities are useful when the aim is to verify the full range of forecast conditions 

or when the verification results will be averaged across several locations with 

different observed climatologies. However, the climatological probabilities are 

computed from a limited sample of observations and are, therefore, subject to 

sampling uncertainty. For convenience, the option to verify against thresholds is also 

provided for the deterministic metrics and for those probabilistic metrics that do not 

require discrete events. While these metrics depend continuously on the data, they 

may be computed for subsets of the overall dataset (selected by thresholds) in order 

to evaluate the ensemble forecast quality in a conditional sense. The thresholds may 

be input manually or generated semi-automatically using a combination of: 1) the 

number of thresholds; 2) the first threshold; and 3) a constant increment between 

thresholds, which may be positive (increasing from the first threshold) or negative 

(decreasing). Optionally, the thresholds identified for one metric can be applied to all 

other metrics for the selected VU (the “Do all” button in Fig. 2). The thresholds may 

be identified as “main” thresholds or “auxiliary” thresholds. Currently, this distinction 

affects plotting only; the verification results for “main” thresholds are plotted within the 

EVS and the results for both “main” and “auxiliary” thresholds are written to file, 

allowing more complex plots to be generated outside of the EVS (e.g. plots of 

verification scores as a “continuous” function of threshold value). 

 

Depending on the chosen verification metric, other parameters may be modified (see 

Section 5.3 also). For example, the reliability of the forecast probabilities may be 

computed by grouping the forecast probabilities into smaller bins (with finer 

resolution, but fewer samples per bin) or larger bins (coarser resolution, but more 

samples per bin).   

 

On executing a VU for the first time, the forecasts and observations are paired 

together by forecast valid time and lead time. Verification is conducted separately for 

each forecast lead time, as forecasting errors depend strongly on lead time. The 

paired data are then written to file (Section 4.4), both to enable quality control and to 

improve the speed of execution when modifying and re-running VUs. Since all of the 

outputs from the EVS are based on the paired data, they should be checked to 
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ensure that the forecasts and observations were read and interpreted correctly (e.g. 

that the time systems were correctly specified). 

 

4.3 Stage 2: Aggregation 
 

In order to evaluate the aggregate performance of a forecasting system across a 

range of forecast locations, two or more VUs may be aggregated. This is conducted 

in the Aggregation panel of the EVS, where an Aggregation Unit (AU) is defined (Fig. 

3). The potential AUs are determined automatically by the GUI upon adding or editing 

VUs. A potential AU is added to the Aggregation panel for each set of VUs that are 

completely defined and comparable. Two VUs are comparable if they share forecast 

variables with common temporal support (after temporal aggregation), common 

measurement units, and verification statistics with common parameter values.  

 

Fig. 3: The only panel in the “Aggregation” stage 

 

 

 

By default, the verification results for an AU comprise a weighed average of the 

verification results from the component VUs. Optionally (under the advanced options 

accessed via the “More” button in Fig. 3), the verification metrics may be derived by 
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pooled the pairs from several locations, rather than averaging the verification results 

(this is rarely feasible for large datasets). Once a potential AU has been determined 

in the GUI, four attributes are user-defined (Fig. 3): 1) a unique identifier for the AU; 

2) the component VUs, which are selected from a list of candidates; 3) the weight 

associated with each VU in the aggregation (which is ignored when pooling pairs); 

and 4) the output directory for the aggregated statistics. On executing an AU, the 

verification metrics from the component VUs are collated and their weighed averages 

determined. For verification metrics that comprise binned statistics (e.g. the reliability 

diagram; see below), the sample means are computed for each bin in turn. For 

verification statistics that are conditional upon one or more event thresholds, the 

statistics are averaged across the same thresholds at each location. In order to have 

a meaningful spatial aggregation, the threshold must have a consistent physical 

interpretation in space and time, such as the exceedence of a local flood threshold 

rather than a fixed river stage. The weights assigned to each VU must be within [0,1] 

and the sum of all weights must be equal to 1. By default, equal weights are assigned 

to each VU, but unequal weights may be input manually or the character ‘S’ specified 

to weigh by the relative sample size at the first forecast lead time (maintaining 

constant weights across lead times).  

 

4.4 Stage 3: Output 
 

The Output panel of the EVS stores the verification results for each of the VUs and 

AUs in the current project. The results are organized by the unique identifier of the 

VU or AU, the name of the verification metric, and by forecast lead time (Fig. 4). The 

VUs and AUs available for plotting are shown in the top left table and are colored 

blue and red, respectively (Fig. 4). On selecting a particular VU or AU, a list of 

metrics with available results appears in the right-hand table. On selecting a 

particular metric, the bottom left table displays a list of lead times (in hours) for which 

the metric results are available. The basic options for plotting and writing metrics are 

shown in the bottom-right dialog. Options are provided on the tables for selecting 

particular combinations of metric and lead time. The options are provided in menus, 

which are displayed by right-clicking on one of the tables. For example, by right-

clicking on the table of metrics (top right in Fig. 4), an option appears for selecting all 

metrics and lead times. The metrics can be plotted in an internal graphing tool, which 

includes basic functionality for animating metrics across a sequence of lead times, or 

written to file in a variety of graphical formats (Section 4.4). Also, the underlying 
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statistics can be written to file in an XML format and viewed in a text editor or web 

browser.         

 

Fig. 4: The only panel in the “Output” stage 

 

 

 

4.5 File data formats supported by the EVS 
 

The file data formats supported by the EVS are summarized in Table 1. Further 

details can be found in Appendix A2. They are separated into: 1) input data, 

comprising the ensemble forecasts and verifying observations for each VU; 2) paired 

data, comprising the paired forecasts and observations for a specific VU; 3) output 

data, comprising the verification statistics for a particular VU or AU in a graphical or 

numerical format; and 4) a project file, containing the parameter values of one or 

more VUs and AUs.  

 

As indicated above, a VU is defined for each forecast variable and location. The input 

data for a single VU comprises the ensemble forecasts, which may be provided in 

one or multiple files, and the single-valued observations, which are provided in a 

single file.  
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Table 1: main file formats supported by the EVS 

 

Data store Format Extension Description 

Project data XML evs Stores VUs and AUs and their parameters 

Paired data XML xml Stores paired forecasts and observations 

ASCII fcst Stores ensemble forecasts 

ASCII obs Stores observed data  

XML xml Stores observed data (PI-XML format) 
Input data 

XML xml Stores forecast data (PI-XML format) 

JPEG jpg Plots of verification metrics in raster format 

PNG png Plots of verification metrics in raster format Graphical output 

SVG svg Plots of verification metrics in vector format 

Numerical output XML xml Numerical output of verification metrics 

 

The forecasts and observations can be provided in XML or ASCII formats. Various 

internal formats are used by the NWS for storing and exchanging ensemble forecasts 

and observations. These can also be read by the EVS, but are not described here. 

The ASCII format for storing the ensemble forecasts comprises one forecast per line 

(Fig. 5a shows sixteen forecasts). Each forecast requires the forecast valid date and 

time, the forecast lead time, and the forecast ensemble members in trace-order (this 

is important to preserve any temporal statistical dependencies when aggregating 

forecasts in time). The default format for dates and times is mm/dd/yyyy hh, but other 

formats can be defined manually (see Section 5.2). The forecast lead times are 

always given in hours. Adjacent entries are separated by whitespace or a comma. 

The ASCII format for storing the single-valued observations also comprises one 

instance per line, and includes the date and time of the observation, together with the 

observed value (Fig. 5b). Again, adjacent entries can be separated by whitespace or 

a comma. The XML format for storing the observed and forecast data (as opposed to 

paired data: see below) follows the Published-Interface (PI-) XML format used in the 

Flood Early Warning System (FEWS). The XML format is described in detail here: 

 

http://public.deltares.nl/display/FEWSDOC/The+Delft-Fews+Published+interface+(PI) 

 

Several NWS formats are also supported by the EVS, including the “NWS Card 

format” and the “NWS CS binary” format. The NWS Card format is described here: 
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http://www.nws.noaa.gov/ohd/hrl/nwsrfs/users_manual/part7/_pdf/72datacard.pdf 

 

Fig. 5: The ASCII format for ensemble forecasts (upper) and observations (lower) 

 

 

 

 

Once a VU has been executed in the EVS, the forecasts and observations are written 

to a paired file in an XML format. The paired file stores each ensemble forecast 

together with its verifying observation. Each pair contains the date and time in 

Coordinated Universal Time (UTC), the forecast lead time, the observed value and 

the ensemble members, in trace-order, separated by commas (Fig. 6). The pairs are 

organized by forecast valid time, from the earliest forecast to the latest, and by 

forecast lead time, from the shortest lead time to the longest. The decimal precision 

with which to write pairs can be controlled (see Section 5.2). 
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Fig. 6: The paired file format 

 

 

 

The output files from the EVS comprise the verification statistics for a specific VU or 

AU in one of several graphical formats, and corresponding numerical results in an 

XML format (see Appendix A2). The supported graphical formats include two raster 

formats: the Portable Network Graphic (PNG) format (a lossless format) and the Joint 

Photographic Experts Group (JPEG) format (a lossy format). The Scalable Vector 

Graphics (SVG) format is also supported by the EVS, as this allows for verification 

plots to be rescaled without loss of quality. Scripts are also available to import and 

plot the numerical results in R (R Development Core Team, 2008), where many more 

output formats and plotting options are available. Example scripts are provided in the  

evs\resources\rscripts directory of the installation.   

 

Finally, the parameters of each VU and AU are saved in a project file in an XML 

format. The project files are ordinarily written by the EVS, but may be produced or 

edited outside of the EVS (e.g. with a script, to enable batch processing). The XML is 

organized by VU and AU, with entries for each input required in the GUI (Fig. 7).   
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Fig. 7: The project file format 

 

 

 

4.6 Command line options 
 

Alongside the Java command line options (e.g. for allocating memory), the EVS 

provides several command line options for running an existing project file, together 

with utilities for converting between input data formats, which are summarized in 

Table 2. 

 

Table 2: command line options in the EVS 

 

Option Example Description 

-p -p in.xml out.asc Converts a paired file, in.xml, to ASCII, out.asc 

-aggOnly -aggOnly Executes the aggregation units only 

-g -g  Suppress the writing of graphics 

-n -n Suppress the writing of numerics 
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-fcardtoasc -fcardtoasc in.fsct out.fcst 
Convert an NWS Card forecast file, in.fsct, to 
ASCII, out.fcst 

-ocard2asc -ocardtoasc in.obs out.obs 
Convert an NWS Card observed file, in.obs, to 
ASCII, out.obs 

-bin2asc -obintoasc in.CS out.fcst 
Convert an NWS CS binary forecast file, in.CS, to 
ASCII, out.fcst 

 

4.7 Creating custom plots of the EVS outputs in R 
 

The numerical outputs from the EVS can be read into the R environment for 

statistical computing (www.R-project.org). A utilities script is provided in the 

/evs/resources/rscripts directory at the root of the installation.  There are 

three methods for reading the different EVS outputs, namely readEVSScores, 

which reads the deterministic measures (e.g. mean error of the ensemble mean) and 

probabilistic verification scores (e.g. Brier score), readEVSDiagrams, which reads 

the verification diagrams (e.g. reliability diagram) and readEVSBoxPlots, which 

reads the EVS box plots. In addition to the utilities script, example scripts are 

provided in /evs/resources/rscripts/example_scripts for plotting specific 

(sets of) EVS metrics in R, including the plotting of sampling uncertainties (via 

confidence intervals).   
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5. A DETAILED GUIDE TO THE OPTIONS IN EACH WINDOW OF THE GUI 
 

This section provides a guide to the options available in each window of the GUI.  

 

5.1 Administrative functions in the main window 
 

The opening window of the GUI, together with the Taskbar, is shown in Fig 1. The 

opening window displays the verification units loaded into the software. The Taskbar 

is visible throughout the operation of the GUI and is used for administrative tasks, 

such as creating, opening, closing and saving a project. The Taskbar options are 

explained in table 3. Shortcuts are provided on the Taskbar for some common 

operations, but all operations are otherwise accessible through the dropdown lists.  

 

Table 3: Menu items 
 

Menu Function Use 

New project Creates a new project 

Open project Opens a project file (*.evs) 

Close project Closes a project 

Save project Updates or creates a project file (*.evs) 

Save project as Updates or creates a named project file (*.evs) 

File 

Exit Exits EVS 

Messages on/off  Displays/hides tool tips 

Console Shows the details of errors thrown Help 

About Credits 

 

All work within the EVS can be saved to a project file with the .evs extension. A new 

project is created with the New project option under the File dialog. An existing 

project is saved using the Save or Save As… options. These options are also 

available on the Taskbar. Project files are stored in an XML format and may be 

opened in a web browser or text editor. An example is given in Fig. 7. 

 

5.2 The first window in the Verification stage 

 

The first stage of an ensemble verification study requires one or more Verification 

Units (VUs) to be defined (Fig. 1). In this context, a VU comprises a time-series of a 

single variable at one location. The spatial scale or support of the variable is not 

identified in the EVS, but is assumed to be consistent for the observed and forecast 
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data. For example, observations from a rain gauge should not, in general, be 

compared with precipitation forecasts averaged over a large grid cell. The actual 

spatial support may be arbitrarily small or large, but should be comparable for the 

forecasts and observations. A VU is uniquely identified by a location ID and a 

variable ID. These IDs must be entered in the first window, and are then displayed in 

the table and identifiers panel. A new VU may be added to the current project by 

clicking “Add” in the bottom left corner of the window (Fig 1.). This adds a VU with 

some default values for the identifiers. On entering multiple VUs, the basic properties 

of the selected VU (i.e. the item highlighted in the table) will be shown in the panels 

on the right. Existing units may be deleted or copied by selecting an existing unit in 

the table and clicking “delete” or “copy”, respectively. On copying a unit, all of the 

properties of the unit are copied except the identifiers, which must be unique. This 

provides a convenient way to specify multiple units with the same verification 

properties (multiple segments to be verified for the same variable with the same 

temporal parameters).  

 

The VU is defined by four different dialogs: Identifiers, Input data, Verification 

window, and Output data. 

 

Identifiers dialog: 

 

- Location ID: an identifier denoting the location of the forecast point;  

- Environmental variable identifier: an identifier denoting the environmental 

variable to be verified;  

- Additional identifier: arbitrary additional ID. For example, this may be used to 

distinguish between forecasts from different models for a common variable 

and location. 

 

The names of the location and environmental variable are unrestricted (aside from a 

blank name or a name containing the character ‘.’, which is used to separate the 

identifiers). Several default names for environmental variables are provided by right-

clicking on the variable identifier box (Fig. 1). 

  

Input data dialog: 

 

- Files or folder containing forecast data: path to the folder containing the 

ensemble forecast files (and no other file types), or a file array chosen 
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through the associated file dialog. If possible, when the ensemble 

forecasts are distributed across multiple files, only those files that 

contain relevant forecasts should be selected, as all files must be 

processed before being checked against verification conditions (e.g. if 

the files are separated by date, and a limited set of dates is subsequently 

defined);  

- File containing observed data: path to concurrent observations of the forecast 

variable, which are used to verify the forecasts; 

- File type: The file types for the ensemble forecasts and observations; 

- Time zones: the time zones for the forecasts and observations. The time 

zones are required for pairing (on the basis of date and time); 

 

The paths to the observed and forecast data may be entered manually or by clicking 

on the adjacent button, which opens a file dialog.  

 

When conducting verification for the first time, the observations and forecasts are 

paired. These pairs are used to compute the differences between the observed and 

forecast values (i.e. the forecast ‘errors’) at concurrent times, i.e. the valid times. For 

subsequent work with the same VU, no pairing is necessary unless some of the input 

parameters that affect the pairs have changed (at which point, the pairs are deleted). 

The paired data are stored in an XML format, which may be opened in a web 

browser or text editor. Each forecast-observation pair is stored with a date in UTC 

(year, month, day, and hour of day), the forecast lead time in hours, the observed 

value, and the corresponding forecast ensemble members. A detailed explanation is 

also provided in the paired file header. An example of a paired file is given in Fig. 6. 

One paired file is always written by the EVS, namely a file containing the “raw pairs” 

(with extension _pairs_raw.xml), and one file is written optionally, namely a file 

containing the “conditional pairs” (with extension _pairs_cond.xml).  The raw 

pairs comprise the paired forecasts and observations after any required change of 

support but before any changes in measurement units, temporal aggregation (of the 

pairs), or any other conditioning. The values should match those contained in the 

original observed and forecast files (after any change of support). The conditional 

pairs comprise the paired forecasts and observations from which the verification 

metrics will be computed. By default, the conditional pairs are also written to file, but 

this may be time-consuming (especially if few or no conditions were defined), and 

can be switched off (see the Output data options below). 
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In the EVS GUI, basic verification options are separated from more ‘advanced’ 

options, which are accessible through pop-up windows. For example, the “More” 

button within the Input data dialog opens a window for entering information about the 

scales at which the forecasts and observations are defined, among other things (Fig. 

8a and Fig 8b). Scale information includes the units of measurement (e.g. cubic 

feet/second) and temporal support at which the forecasts and observations are 

recorded (e.g. instantaneous vs. time-averaged). The forecasts and observations 

must be defined at equivalent temporal (and spatial) scales for a meaningful 

comparison between them. In the absence of user-defined information on the 

temporal scales, a warning message will be presented on conducting verification. 

This warning message is avoided if the temporal scale information is entered 

explicitly.  

 

Fig. 8a: The Additional options dialog, accessed from the input data dialog 

 

 

 

In most cases, changes of scale should be conducted before using the EVS, but 

some options are provided internally. In particular, the measurement or “attribute” 

units of the forecasts or observations may be changed with some restrictions: 
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• Changes in attribute units are achieved by either: 1) specifying a named change 

from the current “Attribute units” to the “Target attribute units” 

(Fig. 8a); or 2) specifying a factor by which to multiply the current “Attribute 

units”, in order to arrive at the “Target attribute units”. Named changes 

of units (without specifying a multiplier) are currently limited to:  

 

� DEGREES (CELCIUS) <--> DEGREES (FAHRENHEIT); 

� MILLIMETRE <--> INCH 

� METRE <--> FEET 

� METRE CUBED/SECOND <--> FEET CUBED/SECOND  

 

In addition to changes in attribute units, there is some flexibility for verifying forecasts 

and observations with different temporal support when the verification is desired at 

an aggregated level of support (see the discussion below on temporal aggregation, 

and Fig. 9c).  This is only possible under the following conditions: 

 

1. The temporal support is INSTANTANEOUS, and the desired temporal aggregation 

involves a supported function (e.g. mean) over a period that is exactly divisible by 

the frequency of the data; 

2. The temporal support is the TOTAL over a specified period and the desired level 

of aggregation is a total over a longer period that is an exact multiple of the 

shorter period and the frequency of the data (e.g. verifying at a daily timestep 

when the observations are six-hourly totals, available every six hours).  

 

The “Other options” tab of the “Additional options” dialog (Fig. 8b) contains further 

options for interpreting the input data, namely:  

 

− Global no-data value: the global identifier for ‘null’ or missing values (i.e. 

values ignored throughout a verification study including metric calculation; by 

default, the null value is -999.000); 

− Omit no-data values from paired file: the omission of null values from the 

paired files (default is true);  

− Number of decimal places for writing pairs: the number of decimal places for 

writing pairs (default is 5);  

− Date format used in ASCII forecast/observed data files: the date formats used 

for observations and forecasts in ASCII format (ignored for other file types). 



 34 

The dates are formed from the elements yyyy (year), MM (calendar month), 

dd (day of month), HH (hour of day in the 24-hour clock), mm (minute of hour) 

and ss (second of minute) using appropriate, single-character, separators or 

whitespace (e.g. MM/dd/yyyy HH) or no separators (e.g. yyyyMMddHH). The 

default date format is MM/dd/yyyy HH; and 

− Use all observations for climatology: this controls how the “observed 

climatology” is determined from the observed data, specifically for deriving 

real-valued thresholds from the climatological probability distribution (an 

option described later; see Fig. 10). By default, the climatological distribution 

is determined from the paired observations (i.e. the conditional pairs). 

Optionally, it may be determined from the full period of observations (again, 

after applying any changes in attribute units, temporal aggregation and pre-

conditions except for a limited verification period; see below).  

 

Fig. 8b: Other options (Additional options), accessed from the input data dialog  

 

 

 

Verification window: 

 

- Start of verification period: the start date for verification purposes. This may 

occur before or after the period for which data are available. Missing periods 
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will be ignored. The verification period is defined in UTC hours from 00 UTC 

on the input start date. The start date may be entered manually or via a 

calendar utility accessed through the adjacent button; 

- End of verification period: as above, but defines the last date to consider. The 

end date is also defined as 00 UTC on the specified date (i.e. add one day if 

the input date should be included in the verification window); 

- Forecast lead time horizon: at each forecast time, a prediction is made for a 

period into the future. This duration is referred to as the lead time horizon or 

lead period. For example, if the forecasts are issued every 6 hours and 

extend 14 days into the future, the lead time horizon is 14 days.  The lead 

time horizon may comprise several different lead times (14*6=84 in this 

example) and may be shorter than the period covered by the input data; 

- Aggregation period: when evaluating long-term ensemble forecasts (e.g. with 

a one-year forecast horizon), verification results may be confused by short-

term variability, which is not relevant for the types of decisions that inform 

long-term forecasting, such as water supply forecasting. Aggregation of the 

forecasts and observations allows short-term variability to be removed by 

averaging over the period that does matter for decision making purposes. For 

example, daily forecasts may be aggregated into ninety-day averages 

(assuming that the forecast time horizon is at least ninety days). When the 

temporal support of the forecasts and observations is different, verification 

may still be possible at an aggregated temporal support (see above). 

 

The verification window may be refined using various “pre-conditions” on the dates 

considered, as well as the size of the observed and forecast values included in the 

verification study. These options are accessed via the “More” button in the 

Verification window. For example, verification may be restricted to ‘winter months’ 

within the overall verification period, or may be limited to forecasts whose ensemble 

mean is below a given threshold (e.g. zero degrees for temperature forecasts). When 

conditioning on variable value, conditions may be built for the current unit (selected in 

the main verification window) using the values of another unit (e.g. select streamflow 

when precipitation is non-zero), providing the variables have the same prediction 

dates and intervals. Such conditioning may be relatively simple or arbitrarily complex 

depending on how many conditions are imposed simultaneously. However, there is a 

trade-off between the specificity of a verification study, which is increased by 

conditioning, and the number of samples available to compute the verification 

statistics, which is reduced by conditioning (i.e. sampling uncertainty is increased).  
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The dialog for conditioning on date and variable value is shown in Fig. 9a and 9b, 

respectively. The conditions on dates or variable values entered in the verification 

window apply to all verification metrics computed for that VU. Alongside these pre-

conditions, the individual metrics may be computed with respect to one or more 

threshold values, such as flows exceeding flood stage (see below). When designing 

a verification study, the pre-conditions used to sub-select pairs should be compatible 

with any discrete events that might be verified later. For example, it would not make 

sense to assess the quality of Probability of Precipitation (PoP) forecasts (using a 

discrete threshold for PoP) after removing all (non-) precipitation events via pre-

conditions on the pairs. In contrast, it may make sense to eliminate “blown” forecasts 

(identified by conditions on variable values) before computing any verification 

metrics, including those for particular events. 

 

Fig. 9a: Dialog for refining verification window: conditioning with dates 

 

Categories for refining dates considered          Consider only specific months 
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Fig. 9b: Dialog for refining verification window: conditioning with variable value 

 

Variables available for conditioning        Forecast ensemble mean > 0 

 

 

 

Additional refinement options are available in the “Other options” section of the 

refinement dialog (Fig. 9c). These include: 

 

− Temporal aggregation function: this allows for a temporal aggregation function 

to be defined. By default, aggregations requested in the main verification 

window involve a mean average over the specified period. This may be 

changed to a total (i.e. accumulation), minimum or maximum value, among 

others;   

− Minimum sample fraction: this allows for the specification of a minimum 

sample size per forecast lead time for computing verification results. The 

sample size constraint is set by a fraction in the range [0,1]. The fraction is 

multiplied by the average number of pairs across all lead times to determine 

the minimum sample size as a numbers of pairs. For example, a fraction of 

0.5 implies that verification results will not be computed for any lead time with 

fewer than 50% of the average number of pairs across all lead times.  
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− Aggregation start hour: the time of day in hours UTC [0,23] at which temporal 

aggregation begins. By default, aggregation begins at the first available 

verification pair (i.e. the start of the time-series of forecasts and observations 

that cover a given forecast ensemble trace). 

 

Fig. 9c: Dialog for refining the verification window: other options 

 

 

 

Output data dialog: 

 

- Folder for output statistics: path to the folder for writing the paired files and 

the verification output data generated by the system, if written output is 

requested (see below). 

- A “More” button, which opens an advanced options dialog. The dialog 

contains an option to write the conditional pairs (true, by default).  

 

5.3 The second window in the Verification stage 
 

The second window in the Verification stage is shown in Fig. 2 and is accessed by 

clicking “Next” from the first window (Fig. 1). The second window shows the 

verification metrics available for the VU selected in the first window.   
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The EVS includes deterministic measures, which can be used to verify the ensemble 

average forecast (mean, median or mode), and statistics that measure the quality of 

the forecast probabilities. While deterministic metrics cannot verify the forecast 

probabilities, they are useful for evaluating the “best estimate” from the ensemble 

forecast. Currently, the deterministic measures available in the EVS include the 

mean error, the RMSE, the mean absolute error, the relative mean error, and the 

coefficient of correlation between the ensemble mean forecast and observed values. 

Table 4 lists the metrics available in the EVS, which contain varying levels of detail 

about forecast quality. Some of the ensemble verification metrics verify discrete 

events, such as the (non-)exceedence of a particular threshold (e.g. flood stage), 

whereas other metrics evaluate the forecasting errors across all possible thresholds. 

Further information about the metrics available in the EVS can be found in Section 6 

and Appendix A1. Examples of their interpretation can be found in Section 7. 

 

Table 4: summary of the verification metrics available in the EVS 

 

Metric name Quality attribute tested Discrete events? Detail 

Sample size None N/A N/A 

Mean error Ensemble average (deterministic) No Lowest 

Relative mean error Ensemble average (deterministic) No Lowest 

RMSE Ensemble average (deterministic) No Lowest 

Mean absolute error Ensemble average (deterministic) No Lowest 

Correlation coefficient Ensemble average (deterministic) No Lowest 

Brier Score Lumped error score Yes Low 

Brier Skill Score Lumped error score vs. reference Yes Low 

Mean CRPS Lumped error score No Low 

Mean CRPS reliability Lumped reliability score No Low 

Mean CRPS resolution Lumped resolution score No Low 

CRPSS Lumped error score vs. reference No Low 

ROC score Lumped discrimination score Yes Low 

Mean error of prob.  Reliability (unconditional bias) No Low 

MCRD Probability of real-valued error No High 

Spread-bias diagram Reliability (conditional bias) No High 

Reliability diagram Reliability (conditional bias) Yes High 
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ROC diagram Discrimination Yes High 

Modified box plots Error visualization No Highest 

 

On selecting a given metric in the table, information about that metric is provided in 

the top right dialog, and the parameters of the metric are displayed for 

entering/editing in the bottom-left panel. A metric is included, and its parameter 

values are enabled for editing, by checking the box adjacent to the metric in the top 

left table. The parameters of each metric are listed in Table 5. After modifying the 

verification statistics and their parameters, the new information is saved to the 

current unit by clicking “Save”. 

 

Table 5: Parameters for each verification metric 

 

Metric  Parameter (and type) Meaning 

Thresholds (basic) 

Produces the metric for each subset of data 
specified by the threshold. The thresholds may 
be defined in real units or in probabilities. By 
default, they refer to non-exceedence 
probabilities from the observed climatology. 

Ignore conditions on 
variable value (advanced) 

Any conditions on the observed or forecast 
values used to subset pairs (an advanced option 
in the verification window) will be ignored for this 
metric. 

Average of ensemble 
members (advanced) 

Select the desired average of the ensemble 
member values to verify. Options include the 
ensemble mean, median and mode values. By 
default, the ensemble mean is verified. 

Threshold values are 
observed probabilities 
(advanced) 

If this parameter is true (checked; the default 
option), the threshold parameter (above) will 
refer to probabilities in the observed probability 
distribution. For example, a threshold value of 
0.2 would select pairs in relation to the real value 
corresponding to probability 0.2 in the observed 
probability distribution. The form of the 
relationship will depend on the logical condition 
for the threshold (below). 
 
If this parameter is false (unchecked), the 
thresholds are interpreted as real-values in 
observed units (e.g. cubic feet per second). 

Mean Error 

Logical condition for event 
threshold (advanced) 

Changes the logical condition for any thresholds 
used to subset data. For example, if the logical 
condition is “greater than”, only those forecast -
observation pairs whose observed values are 
greater than the threshold will be used. 
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Root Mean Square 
Error 

Same as mean error Same as mean error 

Relative mean error Same as mean error Same as mean error 

Mean Absolute 
Error 

Same as mean error Same as mean error 

Correlation 
Coefficient 

Same as mean error Same as mean error 

Same as mean error Same as mean error 

Brier score 
Select score 
decomposition 
(advanced) 

Allows for the calibration-refinement (CR) and/or 
the likelihood-base-rate (LBR) decompositions of 
the Brier Skill Score. In terms of the CR, the 
overall score comprises reliability - resolution + 
uncertainty. In terms of the LBR, it comprises 
Type-II conditional bias – discrimination + 
sharpness. 

Same as Brier Score Same as Brier Score 

Brier Skill Score 
Reference forecast for 
skill (advanced) 

Allows a reference forecast to be selected for 
use in the skill calculation. The reference 
forecast must be loaded into the EVS as another 
VU. By default, the reference forecast is sample 
climatology. 

Same as mean error Same as mean error 

Mean Continuous 
Ranked Probability 
Score 

Select score 
decomposition 
(advanced) 

Allows for the calibration-refinement 
decomposition of the overall score into 
contributions due to (lack of) reliability, resolution 
and uncertainty (climatological variability). The 
overall score comprises reliability - resolution + 
uncertainty. 

Same as Mean 
Continuous Ranked 
Probability Score 

Same as Mean Continuous Ranked Probability 
Score Mean Continuous 

Ranked Probability 
Skill Score 

Reference forecast for 
skill (advanced) 

Same as parameter for Brier Skill Score 

Same as mean error Same as mean error 

Mean Error of 
Probability diagram Number of points in 

diagram (advanced) 

Sets the number of equally-spaced probability 
values (from 0-1) for which the metric will be 
computed and plotted.   

Mean Capture Rate 
Diagram 

Same as Mean Error of 
Probability diagram 

Same as Mean Error of Probability diagram 

Modified box plot 
pooled by lead time 

Ignore conditions on 
variable value (advanced) 

Same as parameter for mean error 
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Number of points in 
diagram (advanced) 

Sets the number of equally-spaced probability 
values (from 0-1) at which the boxes will be 
computed and plotted. The middle thresholds 
form the boxes and outer thresholds form the 
whiskers.  

Modified box plot 
per lead time by 
observed value 

Same as modified box plot 
pooled by lead time 

Same as modified box plot pooled by lead time 

Same as Mean Error of 
Probability diagram 

Same as Mean Error of Probability diagram 

Relative Operating 
Characteristic Fit a smooth function to 

empirical ROC 
(advanced) 

If this parameter is true (checked; not the default 
option), the binormal approximation will be used 
to model the bivariate distribution of the 
Probability of Detection (PoD) and Probability of 
False Detection (PoFD). The empirical pairs of 
PoD and PoFD are provided alongside the 
binormal fit.   
 
If this parameter is false, only the empirical pairs 
of PoD and PoFD will be provided. 

Same as Mean Error of 
Probability diagram 

Same as Mean Error of Probability diagram 

Reference forecast for 
skill (advanced) 

Same as parameter for Brier Skill Score 

Fit a smooth function to 
empirical ROC 
(advanced) 

Same as parameter for Relative Operating 
Characteristic  Relative Operating 

Characteristic 
Score 

Method for computing 
AUC (advanced) 

Sets the method for computing the Area Under 
the Curve (AUC). By default, the score is 
computed using the algorithm described in 
Mason and Graham (2000).  
 
Alternatively, the trapezoid rule may be used to 
integrate the Relative Operating Characteristic 
curve based on the specified number of points. 

Ignore conditions on 
variable value (advanced) 

Same as parameter for mean error 

Use a constant sample 
count in each bin 
(advanced) 

If this parameter is false (unchecked; the default 
option), the forecasts probability bins for which 
the reliability values are computed will take a 
fixed width in the range 0-1 depending on the 
number of points requested for the diagram 
(below).  
 
If this parameter is true (checked), the forecast 
probability bins for which the reliability values are 
computed will vary in width such that each bin 
captures the same number of forecasts. 

Reliability Diagram 

Threshold values are 
observed probabilities 
(advanced) 

Same as parameter for mean error 
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Logical condition for event 
threshold (advanced) 

Same as parameter for mean error 

Number of points in 
diagram (advanced) 

Sets the number of probability bins (from 0-1) for 
which the metric will be computed and plotted. 
These bins may capture an equal sample count 
(see above) or may be equally spaced.    

Ignore conditions on 
variable value (advanced) 

Same as parameter for mean error 

Threshold values are 
observed probabilities 
(advanced) 

Same as parameter for mean error 

Center windows around 
forecast median 
(advanced). 

If this parameter is false (unchecked; the default 
option), the probability of an observation falling 
within a forecast bin is determined for bins 
separated by probabilities within the forecast 
distribution. For example, if the parameter for the 
‘Number of points in the diagram’ (see below) is 
10, probabilities will be determined for bins 
representing deciles of the forecast.  
 
If this parameter is true (checked), probabilities 
of the observation falling within a forecast bin will 
be determined for symmetric forecast bins 
defined with respect to the forecast median. 

Logical condition for event 
threshold (advanced). 

Same as parameter for mean error 

Spread-Bias 
Diagram 

Number of points in 
diagram (advanced). 

Defines the number of forecast bins for which 
the probability of an observation falling within 
that bin is determined. 

 

Most of the ensemble verification metrics compare the observed and forecast values 

at specific thresholds. In some cases, these thresholds define a subset of data from 

which the metric is calculated. Most of the metrics can be computed from all data, as 

well as subsets of data defined by the thresholds. Other metrics verify only discrete 

events within the continuous forecast distributions. For example, the reliability 

diagram, relative operating characteristic and the Brier score, require one or more 

thresholds to be defined, and cannot be computed from all data. For these metrics, 

the thresholds represent cutoff values from which discrete events are computed. By 

default, the thresholds refer to non-exceedence probabilities within the climatological 

probability distribution and must, therefore, cover an interval of [0,1]. For example, a 

threshold of 0.2 would refer to all pairs whose observed values have an eighty 

percent chance of being exceeded, on average. The climatological probability 

distribution is computed from the observed (sample) data provided in the first 

verification window and is, therefore, subject to sampling uncertainty. The thresholds 
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can be edited and added or deleted manually, via the table of thresholds, or semi-

automatically by specifying a positive number of thresholds, the first threshold, and a 

non-zero increment between thresholds (positive to increase from the first threshold, 

negative to decrease). The types of thresholds may be modified via the “More” 

button, which displays an advanced options dialog. For example, the thresholds may 

be changed to real-values, rather than probabilities (e.g. flood stage) and the logical 

condition can be changed to non-exceedence, among others (see below also). 

 

Depending on the selected verification metric, there are additional, advanced, 

parameters that can be altered. These parameters are available through the “More” 

button when a particular metric is selected. The parameter options comprise two 

tabbed panes (Fig. 10a), one comprising the “main options” for a particular metric 

and one comprising the options for computing confidence intervals (Fig 10b). For 

example, when computing ensemble metrics using thresholds, the thresholds may be 

treated as non-exceedence (<, <=) or exceedence (>, >=) thresholds, which may be 

useful for exploring low- versus high-flow conditions, respectively (Fig. 10a). The 

parameter options for each metric are summarized in table 3. A ‘basic’ parameter is 

accessed through the main window in EVS, while an ‘advanced’ parameter is 

accessed through the “More” button (as in Fig. 10a). 

 

Fig. 10a: Advanced parameter options for a selected metric (ROC in this case) 
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Confidence intervals can be computed for any of the verification metrics within the 

EVS, except for the box plots. In future, knowledge of the sampling distributions of 

particular verification metrics may be incorporated into the EVS. Currently, however, 

confidence intervals are derived numerically using a common algorithm for all 

metrics, namely the stationary block bootstrap (Fig 10b). The parameters for deriving 

the confidence intervals are: 

 

- Technique: select “none” (default) to omit confidence intervals from the 

verification results and “Stationary block bootstrap” to use the stationary block 

bootstrap (Politis and Romano, 1994). 

- Sample size: The number of bootstrap samples to use in computing the 

confidence intervals. Each sample represents one bootstrap configuration of 

the verification pairs and associated metric calculation. Using more samples 

implies a better estimate of the confidence interval, but (potentially much) 

greater computational time. Also, bootstrapping is a resampling procedure 

and thus inherently constrained by the available verification pairs (sample 

size/diversity).  In general, somewhere between 1000 and 10000 bootstrap 

samples may be appropriate (which implies between 1000 and 10000 

computations of the chosen metric at all required thresholds). 

- Minimum sample size: the minimum number of samples required in order to 

compute confidence intervals. If fewer than the required number of samples 

are found, the intervals will be omitted. The sample size constraint applies to 

a specific metric and (un)conditional sample. For example, when computing 

the unconditional mean error (mean error for “All data”) at a particular forecast 

lead time, the minimum sample size should exceed the total number of 

verification pairs available (after applying any pre-conditions). When 

computing the reliability diagram for a particular forecast lead time and 

threshold, the confidence intervals will be computed for each forecast 

probability bin in which the minimum sample size was exceeded. Thus, 

depending on the minimum sample size and metric, confidence intervals may 

be displayed for none, some, or all of the metric results at a given forecast 

lead time. Also, depending on the bootstrap samples generated, the actual 

number of samples that meet the minimum requirements (and hence the 

presence and appearance of the confidence intervals) will vary each time the 

bootstrapping is repeated. In general, a minimum sample size of 50 is 

reasonable. 
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- Average block size: the stationary block bootstrap attempts to account for 

temporal statistical dependence by randomly sampling contiguous ‘blocks’ of 

verification pairs that may be assumed statistically independent given the 

average block length. The blocks are sampled from a geometric probability 

distribution, which is completely defined by its mean (the average block 

length). The central time index of each block is sampled from a discrete 

uniform distribution whereby each time in the paired sample is equally 

probable. A single bootstrap sample comprises a resampled paired dataset 

with an equal number of pairs to the original dataset. When computing 

confidence intervals for several VUs, the component VUs may be assumed 

statistically dependent or statistically independent (see Section 5.4).  

- Units for block size: the time units for the average block size. 

- Interval specification: confidence intervals are computed from the bootstrap 

sample of metric values. One or more intervals may be defined by their lower 

and upper limits (e.g. [0.05,0.95]). Optionally, one interval can be selected for 

display in the graphical outputs by denoting that interval a “main” interval. All 

intervals are written to the numerical outputs (XML).   

 

Fig. 10b: Confidence intervals for a selected metric (ROC in this case) 
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All of the information necessary to verify the ensemble forecasts is now available, 

and verification may be performed by clicking “Run” for the current VU or “All” to 

execute all VUs in the current project. A progress dialog is then displayed. The 

progress dialog provides options to cancel processing, to minimize (iconify) the GUI, 

and to show further details of any errors thrown during processing. Processing may 

take several minutes or longer (i.e. hours or even days), depending on the size of the 

project. If not already available, the paired files are created (see above) and the 

selected metrics are then computed for each unit. No products are displayed or 

written at this stage; instead the numerical results are stored in memory, in 

preparation for generating these products in the Output window (see Section 5.5).  

 

5.4 The Aggregation window 
 

Alongside verification of ensemble forecasts from a single point or area, it is possible 

to aggregate verification statistics across multiple locations (e.g. for precipitation 

across multiple river basins). This is achieved in the aggregation window (Fig. 3). 

Only those points for which aggregation is possible will be displayed in the 

aggregation window. If no aggregation units (AUs) are displayed, no comparable VUs 

have been defined. Two VUs are comparable if they share the same variable, 

temporal support (after any requested aggregation), and forecast time horizon.  

 

The properties of an AU may be viewed or edited by selecting an AU in the table. 

Each AU is given a default identifier, which may be altered by the user. Multiple AUs 

may be defined in one project to generate aggregate statistics from various groups of 

VUs with common verification parameters (see below). On selecting a particular AU, 

a list of candidate VUs appears under “Verification units to include in aggregation” 

and the common properties of those VUs appear under “Common parameter values”. 

Two or more VUs must be selected to perform aggregation. The output folder in 

which the aggregated statistics will be written appears under “Output data”. After 

defining one or more AUs, aggregation is performed by clicking “Run.”   

 

Editing of the VUs upon which one or more AUs is based will result in a warning 

message and the option to either remove the edited VU from each of the AUs to 

which it belongs or to cancel the edits. 
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Aggregation is achieved by either: 1) averaging the verification results from the input 

metrics or: 2) by pooling the verification pairs. Averaging of the outputs is preferred 

over pooling of the input pairs for reasons of computational efficiency (especially 

when pooling across many VUs), but pooling of pairs is preferred when the 

verification metrics are not a simple (linear) function of the data (e.g. the correlation 

coefficient and most other metrics in the EVS). Pooling of pairs is required when 

computing confidence intervals for an AU (in general, this is extremely time-

consuming). Averaging comprises a weighed sum of the input metrics from the 

individual VUs, with user-defined weights that sum to 1.0. For verification metrics that 

comprise binned statistics (e.g. the reliability diagram; see below), the sample means 

are computed for each bin in turn. For verification statistics that are conditional upon 

one or more event thresholds, the statistics are averaged across the same thresholds 

at each location. The weights assigned to each VU must be within [0,1] and the sum 

of all weights must be equal to 1. By default, equal weights are assigned to each VU, 

but unequal weights may be input manually or a value of ‘S’ defined to weigh by the 

relative sample size at the first forecast lead time (maintaining constant weights 

across lead times). The default approach to spatial aggregation adopted in the EVS 

is somewhat pragmatic. In general, computing the average of a set of metrics 

(outputs) will not produce the same results as computing the metric from the pooled 

inputs, i.e. the pooled pairs. The option to pool pairs, rather than average metrics, is 

available in the advanced options dialog, which is accessed by the “More” button in 

the aggregation window (Fig. 3). The advanced options are shown in Fig. 11 and 

comprise:  

 

- Pool pairs: if selected (default is not selected), the verification metrics will be 

computed from the pooled pairs, otherwise they will be computed from the 

pooled verification results (i.e. a weighed averaged). When pooling pairs, the 

weights associated with the VUs in the main aggregation window (Fig. 3) will 

be ignored. 

- Compute confidence intervals:  by default, confidence intervals are not 

computed for any AUs. When selected, confidence intervals will be computed, 

providing they are also chosen for the component VUs (and are consistent 

across the VUs).  

- Verification units are statistically dependent in space: when computing 

confidence intervals, the stationary block bootstrap can account for spatial 

dependence between the component VUs by fixing (in absolute time) the 

sampled block of pairs across the component VUs, i.e. by sampling within the 
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same window for the component VUs. Otherwise (by default), no spatial 

dependence is assumed, and the bootstrap samples are derived separately 

for each VU.  

 

Fig. 11: advanced aggregation options 

 

 

 

5.5 The Output window 
 

The Output window of the EVS allows for plotting of the verification results from one 

or more VUs or AUs. The units available for plotting are shown in the top left table, 

with VUs colored blue and AUs colored red (see Fig. 4). On selecting a particular unit 

under “Units with results”, a list of metrics with available results appears in the right-

hand table. On selecting a particular metric, the bottom left table displays a list of 

lead times (in hours) for which the metric results are available.  

 

When verifying or aggregating the paired data, the sample from which verification 

metrics are computed is generated by pooling pairs from equivalent lead times. 

Products may be generated for some or all of these lead times, and will vary with the 

metric selected. For example, in selecting ten lead times for the modified box plot, it 

is possible to produce one graphic with ten boxes showing the (pooled) errors across 
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those ten lead times. In contrast, for the reliability diagram, one graphic is produced 

for each lead time, with reliability curves for all thresholds specified in each graphic. 

The units, products, and lead times and are selected by checking the adjacent boxes 

in the last column of each table. In addition, when the product and lead time tables 

are populated, right clicking on these tables will provide additional options for 

selecting multiple products and lead times. The additional options comprise: 

 

Right-click on the units table (1a): 

 

- Select all products for all units: selects all verification metrics at all forecast 

lead times across all units. This is the “select all” option. 

- Clear selection:  this is the “select none” option. 

 

Right-click on the products table (1b): 

 

- Select all times and products: selects all verification metrics and associated 

forecast lead times for the unit selected in the units table (above). 

- Select all times for the highlighted products: selects the highlighted products 

and associated forecast lead times for the unit selected in the units table 

(multiple rows may be highlighted).  

- Select all times for the highlighted products across all units: selects the 

highlighted products and associated forecast lead times across all units in the 

units table (if they exist for other units). 

- Clear selection:  clears the selection for the current unit. 

 

Right-click on the lead times table (1c): 

 

- Select all times: selects all forecast lead times for the verification metric 

selected in the products table (above). If multiple verification metrics are 

selected in the products table, the lead times will be displayed and selected 

for the metric that was chosen first, i.e. for the metric at the anchor selection 

index. 

- Select highlighted times: selects the highlighted forecast lead times. 

- Clear selection:  clears the selection of forecast lead times. 

 

Products are generated with default options by clicking “Run”. The default options 

are to write the numerical results in an XML format and the corresponding graphics in 
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png format to the predefined output folder. The file naming convention is 

unit_identifiers.metric_name.lead_time for plots that comprise a single 

lead time and unit_identifiers.metric_name for the plots that comprise 

multiple lead times and for the numerical results. 

 

As indicated above, the default output options are defined for each project, and 

comprise writing of numerical results to an XML file and writing of graphical results to 

a PNG file. These options are displayed in the bottom right dialog of the main Output 

window (Fig 4.). Fig. 12a and Fig. 12b show the writing and display options in more 

detail. The image parameters and formats for writing image files may be modified, 

and include the PNG and JPEG raster formats and the SVG vector format (which 

writes much larger files, but maintains line quality with re-scaling). The graphical 

result may be plotted, edited (re-titled etc.) and saved using an internal viewer, and 

the numerical results can be shown within the default web-browser. When plotting 

results for multiple graphics in the internal viewer, a warning is given when more than 

five graphics will be plotted. A tabbed pane is used to collect plots together for 

metrics that have one plot for each lead time (Fig. 13). For rapid viewing, these plots 

may be animated by pressing the “Animate” button.       

 

Fig. 12a: product writing options 
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Fig. 12b: product display options 

 

 

 

When writing numerical outputs for metrics that are based on one or more thresholds 

of the observations, such as the Brier Score, Relative Operating Characteristic and 

Reliability diagram, information about these thresholds is written to an XML file with 

the _metadata.xml extension. Specifically, the probability thresholds are written 

for each time step, together with their values in real units (of the observations) and 

the numbers of samples selected by those thresholds. An example is given in Fig. 

14. 
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Fig. 13: plot collection for a metric with one plot for each lead time 

 

 

                                                    

                   

                                      Current lead time (hours)             Animate lead times 
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Fig. 14: example of a metadata file for metrics based on observed thresholds  

  

Probability thresholds used at first lead time     Real values of thresholds 

 

 

 

Sample counts for each threshold       
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6. THE VERIFICATION METRICS AVAILABLE IN THE EVS 
 

6.1 Classes of verification metric and attributes of forecast quality 
 

Detailed reviews of ensemble forecast quality can be found in Wilks (2006) and 

Jolliffe and Stephenson (2003). This section focuses on the verification metrics 

available in the EVS and the attributes of forecast quality to which they refer. In this 

context, “attribute” refers to a specific dimension of quality, such as the unbiasedness 

or “reliability” of the forecast probabilities. Important attributes of forecast quality are 

obtained by examining the joint probability distribution function (pdf) of the forecasts, 

Y, and observations, X, XYf ( x, y ) . The joint distribution can be factored into 

⋅X|Y Yf ( x | y ) f ( y ) , which is known as the “calibration-refinement” factorization or 

⋅Y|X Xf ( y | x ) f ( x ) , which is known as the “likelihood-base rate” factorization (Murphy 

and Winkler, 1987). Differences between Xf ( x )  and Yf ( y )  describe the 

unconditional biases in the forecast probabilities. The conditional pdf, X|Yf ( x | y ) , 

describes the conditional reliability of the forecast probabilities when compared to 

Yf ( y )  and “resolution” when only its sensitivity to Yf ( y )  is considered. For a given 

level of reliability, forecasts that contain less uncertainty, i.e. “sharp forecasts”, may 

be preferred over “unsharp” ones, as they contribute less uncertainty to decision 

making (Gneiting et al., 2007). By way of illustration, a flood forecasting system is 

“reliable”, or conditionally unbiased in its forecast probabilities, if flooding is observed 

twenty percent of the time when it is forecast with probability 0.2 (repeated for all 

forecast probabilities). A flood forecasting system has “resolution” if small changes in 

the forecast probabilities are associated with different observed outcomes, whether 

or not the forecast probabilities are reliable. In contrast, Y|Xf ( y | x )  measures the 

ability of the forecasts to “discriminate” between different observed outcomes. An 

ensemble forecasting system is discriminatory with respect to an event if it 

consistently forecasts the event’s (observed) occurrence with a probability higher 

than chance (i.e. climatology) and consistently forecasts its (observed) non-

occurrence with a probability lower than chance. In general, the utility of a forecasting 

system will depend on several attributes of forecast quality (Jolliffe and Stephenson, 

2003). However, for a particular application of the forecasts, some attributes of 

forecast quality may be more important than others. For example, when issuing flood 

warnings, it is particularly important that observed flood flows and non-flood flows are 
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discriminated between, because flood warnings are only effective if they are 

consistently correct and do not “cry wolf”.  

 

For any given attribute of forecast quality, there are several possible metrics or 

measures of quality. For example, summary statistics for reliability and resolution can 

be obtained from quadratic error statistics, such as the BS (Brier, 1950), which 

contains a summed contribution from these two components (Murphy, 1996). When 

more details are required, specific events may be defined, such as flooding or the 

occurrence of precipitation, and forecast quality determined over specific ranges of 

forecast probability (as in the reliability diagram; Hsu and Murphy, 1986). Only those 

metrics thought to convey significantly different aspects of forecast quality are 

included in the EVS, which includes metrics that convey specific attributes of quality 

at various levels of detail (see Table 4). The flexibility to consider different attributes 

of forecast quality at various levels of detail is important, as the EVS is intended for a 

wide range of applications and users.  

 

The EVS includes single-valued error statistics, which can be used to verify the 

ensemble mean forecast, and statistics that measure the quality of the forecast 

probabilities. While deterministic metrics cannot verify the forecast probabilities, they 

are useful for comparing single-valued forecasts with the “best estimate” from the 

ensemble forecast (such as the ensemble mean), particularly if the ensemble 

forecasts were derived from single-valued forecasts (e.g. via Model Output Statistics; 

Gneiting et al., 2005). However, caution should be exercised when using 

deterministic measures to verify the ensemble mean forecast, because the ensemble 

spread adds potential skill to the ensemble forecast and is not verified by a 

deterministic measure. Currently, the deterministic measures available in the EVS 

include the mean error, the mean absolute error, the RMSE, and the coefficient of 

correlation between the ensemble mean forecast and observed outcome (Table 4). 

Other measures of central tendency applied to an ensemble forecast, such as the 

median, or measures of high probability, such as the mode, may be included in 

future. Table 4 lists the verification metrics that are currently available in the EVS, 

which contain varying levels of detail about the forecasting errors. The verification 

scores, such as the BS and the Continuous Ranked Probability Score (CRPS) are 

integral measures of forecast quality and are less sensitive to sampling uncertainty. 

Sampling uncertainty is an important concern when verifying forecast probabilities 

(Jolliffe and Stephenson, 2003; Wilks, 2006), particularly for extreme events (Bradley 
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et al., 2003). Also, the BS and CRPS may be decomposed into summed 

contributions from (lack of) reliability and resolution (Murphy 1996, Hersbach 2000). 

 

As indicated above, reliability and discrimination are two key attributes of ensemble 

forecast quality. Both unconditional and conditional biases contribute to a lack of 

reliability in the forecast probabilities. If the forecasting system is conditionally 

unbiased, it is also unconditionally unbiased, but the reverse may not hold. The 

conditional biases are often considered alongside the forecast spread or “sharpness”, 

because sharp forecasts are more informative, but not necessarily more reliable 

(Gneiting et al., 2007). For example, a forecast that issues the climatological 

probability of an event is unconditionally unbiased, because the average observed 

and forecast probabilities are, by definition, the same. However, it is conditionally 

biased, because hydrologic events are conditional upon several factors, such as 

precipitation amount and antecedent soil conditions. The conditional bias 

corresponds to the difference between a forecast issued from a perfectly reliable 

forecasting system (the diagonal line in the reliability diagram; Hsu and Murphy, 

1986) and the climatological probability of occurrence (a horizontal line in the 

reliability diagram). Several metrics are available in the EVS for assessing the 

unconditional and conditional biases that contribute to unreliable forecast 

probabilities. In order of increasing detail, these include; 1) the reliability component 

of the mean CRPS (CRPS ; Matheson and Winkler, 1976; Hersbach, 2000); 2) a plot 

of the unconditional biases in the forecast probabilities (the mean error of probability 

diagram, MEPD); 3) a plot of the conditional biases in the forecast probabilities (the 

spread-bias diagram, SBD), which that is similar to the cumulative rank histogram 

(Anderson, 1996; Hamill, 1997; Talagrand, 1997); and 4) the reliability diagram, 

which plots the conditional biases in the forecast probabilities of a discrete event, 

such as flooding, and includes a plot of sharpness (Hsu and Murphy, 1986).  

 

The reliability component of the CRPS  measures the average reliability of the 

ensemble forecasts across all possible events (Hersbach, 2000). Specifically, it 

shows whether the observed outcome falls below the jth of m ranked ensemble 

members, {zj-1≤ zj; j=2,…,m} , in proportion to j/m, on average. The MEPD shows the 

frequency with which an observed outcome falls below a probability threshold in the 

unconditional or “climatological” forecast distribution (Section 6.2). The SBD is 

closely related to the reliability component of the CRPS . It shows the frequency with 

which an observed outcome falls below a probability threshold in the (conditional) 
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forecast distribution (see Section 6.2). The MEPD, the SBD, and the reliability 

diagram all measure bias in probability and have a common graphical interpretation. 

In each case, a deviation from the diagonal line represents to a lack of calibration in 

the forecast probabilities, whether unconditional (the MEPD) or conditional upon the 

forecast ensemble (the SBD) or specific forecast events (the reliability diagram). The 

reliability diagram plots the conditional probability that an event is observed to occur, 

given the forecast, against its forecast probability of occurrence (Hsu and Murphy, 

1986; Bröcker and Smith, 2007a). It is useful to distinguish between the unconditional 

and conditional biases in the forecast probabilities, because the unconditional biases 

are more easily removed (e.g. through post-processing; Hashino et al., 2006), and 

may originate from different sources. 

 

One measure of resolution and two measures of discrimination are currently 

available in the EVS, namely: 1) the resolution component of the CRPS  (Hersbach, 

2000); 2) the Relative Operating Characteristic (ROC) score (Mason and Graham, 

2002; Fawcett, 2006); and; 3) the ROC curve (Green and Swets, 1966; Mason and 

Graham, 2002). The resolution component of the CRPS  measures the average 

ability of the forecasts to distinguish between different observed outcomes, whether 

or not they were forecast reliably (Hersbach, 2000). The forecasting system has 

positive resolution if it performs better than the climatological probability forecast. The 

ROC score and ROC curve measure the ability of the forecasts to discriminate 

between observed events and non-events, such as flooding versus no flooding. In 

this context, there is a trade-off between the correct prediction of occurrences and 

the correct prediction of non-occurrences, or the probability level at which actions are 

triggered. For example, if a flood warning is triggered by only a small probability of 

flooding, there is a smaller chance that a flood event will evade detection, but there is 

a concomitantly higher chance that a non-event will be forecast incorrectly (i.e. of 

“crying wolf”; other factors being equal). Thus, the ROC curve plots the probability of 

detection against the probability of false detection for a range of forecast probability 

levels (Green and Swets, 1966). The ROC score measures the average gain over 

climatology for all probability levels (based on the integral of the ROC curve).  

 

In addition to measures of reliability and discrimination, there are several composite 

measures of forecasting error provided in the EVS. In order of increasing information 

content, these include: 1) the BS; 2) the CRPS ; 3) the Mean Capture Rate Diagram 

(MCRD); and 4) box plots of errors in the forecast ensemble members. The BS and 
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the CRPS  quantify the mean square error of the forecast probabilities for a single 

threshold and for all thresholds, respectively. In contrast, the MCRD and box plots 

show the forecasting errors in linear units (see Section 6.2). The quadratic form of 

the BS and the CRPS  allows for their decomposition into reliability, resolution, and 

uncertainty (Murphy, 1996). However, this also complicates their use in operational 

forecasting, where low-probability, high-impact, events are crucial, but the square 

errors of probability in the forecasts are necessarily small (see Section 6.2 also). In 

order to support comparisons between forecasting systems and across hydroclimatic 

regimes, the Brier Skill Score (BSS) and the Continuous Ranked Probability Skill 

Score (CRPSS) are also provided in the EVS. In both cases, the reference forecast is 

user-defined, and is introduced by defining an additional VU in the EVS. 

 

6.2 Metrics developed for the EVS with an emphasis on operational forecasting 
 

In addition to the standard metrics for reliability, resolution and discrimination, the 

EVS provides a platform for testing new metrics. Currently, these include the mean 

error of probability diagram (MEPD), which measures the unconditional biases in the 

forecast probabilities, the spread-bias diagram (SBD), which is similar to the 

(cumulative) rank histogram and tests the forecasts for conditional reliability 

(Anderson, 1996; Hamill, 1997; Talagrand, 1997), the Mean Capture Rate Diagram 

(MCRD), which is based on the Probability Score of Wilson et al. (1999), and 

modified box plots of the ensemble forecast errors versus observed amount. An 

important aim in developing these metrics was to provide operational forecasters with 

more application-oriented measures of ensemble forecast quality. 

 

The MEPD measures the reliability of an ensemble forecasting system in an 

unconditional sense. Let zij denote the jth of m ensemble members from the ith of n 

ensemble forecasts and let xi
o denote the observed outcome associated with the ith 

ensemble forecast. The forecast climatology has an empirical distribution function, 

nmF̂ ( v ) , which is computed from the n ensemble forecasts as      

 

{ }
= =

= = ≤∑ ∑ 1
i i

n m

nm m m iji 1 j 1

ˆ ˆ ˆ1 1F ( v ) F ( v ) where F ( v ) z v ,
n m

       (1) 

 

and {}⋅1  is a step function that assumes value 1 if the condition is met and 0 

otherwise. Let = ∈H [ a,b | a,b [0,1]]  denote an interval of fixed width on the 



 60 

support of nmF̂ ( v ) . The MEPD counts the fraction of observations that fall within the 

interval, H, namely 

 

{ }.
=

= ∈∑ 1
n o

nm ii 1

ˆ1MEPD(H ) F ( x ) H
n                    (2) 

 

An ensemble forecasting system is unconditionally reliable or marginally calibrated 

over the interval, H, if it captures observations in proportion to the width of that 

interval 

 

{ }{ }
=→∞

∈ = −∑ 1
n o

nm ii 1n,m

ˆ1lim F ( x ) H b a.
n

                  (3) 

 

The MEPD shows MEPD( H )  against the width of H for each of k windows that 

span the unit interval. In practice, the k windows may cover any subintervals of the 

unit interval. The MEPD is similar to the quantile-quantile (Q-Q) plot (Wilks, 2006) 

and the probability-probability (P-P) plot (Shorack and Wellner, 1986; Gneiting et al., 

2007). The Q-Q plot compares the order statistics of two samples, or the order 

statistics of one sample against the values of a theoretical distribution at 

corresponding quantiles (Wilks, 2006). The P-P plot compares the quantiles 

corresponding to these order statistics. Indeed, the MEPD is equivalent to a P-P plot 

of the climatological distributions of X and Y when evaluated for the n intervals, 

{ }= = =+j j j

j
H [0,b ] |b , j 1,...,n .

n 1
 As indicated above, the MEPD assumes 

asymptotic convergence of MEPD( H )  as n→∞. In practice, this may be evaluated 

by comparing the MEPD( H )  for g subsamples of the n available data.  

 

For continuous random variables, such as temperature and streamflow, the SBD 

provides a simple measure of conditional reliability. It involves counting the fraction of 

observations, SBD( I ) , that fall within an interval of fixed width on the support of the 

ith forecast, = ∈I [ c,d | c,d [0,1]]  

 

{ }.
=

= ∈∑ 1
i

n o

m ii 1

ˆ1SBD( I ) F ( x ) I
n

                     (4)  
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An ensemble forecasting system is reliable over the interval, I, if it captures 

observations in proportion to the width of that interval 

 

{ }{ }
=→∞

∈ = −∑ 1
i

n o

m ii 1n,m

ˆ1lim F ( x ) I d c.
n

                   (5) 

 

By defining k windows on the unit interval, { }= ∈ =j j j j jI [ c ,d ] | c ,d [0,1]; j 1,...,k , 

the reliability can be determined for the entire range of forecast probabilities. In 

practice, the k windows may cover any subintervals of the unit interval. Certain 

windows may be preferred for some applications or for sampling reasons. For 

example, if the forecasts are uncertain in the tails, windows centered on the forecast 

median may be preferred. The SBD shows the observed frequency, SBD( I ) , 

against the expected frequency, d-c. Any deviation from the diagonal line represents 

a lack of reliability in the forecast probabilities. More specifically, the ensemble 

forecasts are unreliable if the observed frequency, SBD( I ) , deviates from the 

expected frequency by more than the sampling uncertainty of SBD( I ) . If the k 

windows each cover a probability interval of 1/k, the expected frequency has a 

uniform probability distribution, and the actual reliability can be tested for its 

goodness-of-fit to a uniform distribution (e.g. using the one-sided Cramer von Mises 

test; Anderson, 1962; Elmore, 2005; Bröcker, 2008).  

 

For continuous random variables, the expected SBD( I )  is equal to the width of the 

interval, I, and is, therefore, strictly increasing as the width increases (see above). 

However, for mixed random variables, such as precipitation and wind-speed, the 

discrete portion of the probability distribution comprises an infinite number of intervals 

of different width. Although the window definition could be adapted for this case (see 

Hamill and Colucci, 1997 for a similar discussion), the reliability diagram may be 

preferred for mixed random variables.  

 

While the SBD is analogous to the cumulative rank histogram, it explicitly defines the 

width of the interval, I, into which observations fall. When these windows are based 

on non-exceedence probabilities and are uniform in width (as well as non-

overlapping and exhaustive), the SBD is also analogous to the Probability Integral 

Transform (PIT) (Casella and Berger, 1990), although the latter involves fitting a 

parametric cdf to the ensemble forecast distribution prior to evaluating the PIT 

(Gneiting et al., 2005). In that case, the SBD, the cumulative rank histogram and the 
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PIT can also be summarized with the reliability component of the CRPS  (Hersbach, 

2000), which tests whether an observation falls below a threshold with a frequency 

proportional to the cumulative probability of that threshold (averaged across all 

thresholds). 

 

Integral measures of forecasting error are widely used in ensemble verification and 

include the BS and CRPS. As indicated above, the BS and CRPS may be 

decomposed into a reliability component, a resolution component, and an uncertainty 

component (Hersbach, 2000). In addition, they have the important property of being 

“strictly proper” (Bröcker and Smith, 2007b; Gneiting et al., 2007). A scoring rule is 

“proper” if it is maximized for a forecaster’s true belief and is “strictly proper” if its 

maximum is unique (Gneiting et al., 2007). While linear scores are improper, 

quadratic scores, such as the BS and CRPS, are strictly proper. Nevertheless, if the 

user has a strong risk aversion towards extreme events, quadratic scores may not be 

desirable. The Probability Score (PS) of Wilson et al. (1999) is not strictly proper but 

has some appeal in operational forecasting (see also, Mason, 2008). The PS 

integrates the forecast probability distribution, 
Yf ( y ) , over a symmetric window of 

width, w, around the observed outcome, xo, and is defined as
o

YPS( f ,x ,w )  

 

+

−
= ∫

o

o

x 0.5w
o

Y Y
x 0.5w

PS( f ,x ,w ) f ( y )dy.                      (6)  

 

As with the CRPS , the o

YPS( f ,x ,w )  is averaged over n pairs of forecasts and 

verifying observations to form the PS( w )  

 

=
= ∑ i

n o

Y ii 1

1PS( w ) PS( f ,x ,w ).
n

                    (7)  

 

On average, the probability that a forecast value (or ensemble member) will fall within 

w of the observed value is PS( w ). The expected PS of a perfect forecasting system 

is 1, because any given window around xo will fully capture 
Yf ( y ) . The PS( w ) may 

be separated into an unconditional bias term, UPS ( w ) , and a conditional bias term, 

CPS ( w ) , where = +U CPS( w ) PS ( w ) PS ( w ) . The UPS ( w )stems from a lack of 

reliability in the forecast climatology, Yf , relative to the observed climatology, Xf , 
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and is given by the absolute difference in the PS( w ) for the forecasts Yf  and Xf , 

i.e. = =
= −∑ ∑i i

n no o

U Y i X ii 1 i 1

1 1PS ( w ) PS( f ,x ,w ) PS( f ,x ,w ) .
n n  

The conditional bias 

may be deduced from = −C UPS ( w ) PS( w ) PS ( w ) .  

 

When basing decisions on the PS( w ), w may be interpreted as a “significant 

operating error”. For example, when forecasting dam inflows, a high probability of 

realizing an error greater than w (i.e. 1- PS( w )), on average, may have some 

practical implications for regulating dam outflows. In other cases, there may be no 

single w on which to base decisions. The Mean Capture Rate Diagram (MCRD) plots 

1- PS( w )  for all possible w (see Section 5 for an example). The integral of the MCRD 

for the perfect forecasting system is 0, since E[1-PS]=0 for all real values of w. While 

the PS is not strictly proper, there is an analytical relationship between the integral of 

the MCRD, denoted IPS, where 
+

−
= ∫ ∫

o

o

x 0.5w

Y
x 0.5w

IPS f ( y )dy dw , and the strictly proper 

CRPS 

 

= + ⋅ −YIPS CRPS 2E[ X F ( y )] E[ X ].                   (8) 

 

Thus, the integral of the MCRD is directly related to the CRPS . However, of greater 

practical significance, the IPS is more sensitive to errors in the tails of the forecast 

probability distribution than the CRPS . 

 

 

 

 

 

 

 

 

 

 

 

 

 



 64 

7. EXAMPLE APPLICATIONS OF THE EVS 
 

7.1 Precipitation forecasts from the NWS Ensemble Pre-Processor (EPP) 

 

Six-hourly mean areal precipitation (MAP) totals were hindcast for a 17 year period 

between 1 January 1979 and 31 December 1996 for the North Fork of the American 

River above the North Fork Dam (USGS stream gauge station 11427000, NWS 

forecast point NFDC1), near Sacramento, California. The hindcasts were produced 

with the NWS Ensemble Pre-Processor (EPP; Schaake et al., 2007) for two MAP 

areas that contribute to streamflow at NFDC1. The EPP uses a form of Model Output 

Statistics (MOS) to generate ensemble forecasts of precipitation from single-valued 

forecasts. The technique is based on a linear regression of the single-valued 

forecasts and observations in normal probability space. Ensemble traces are then 

sampled from the conditional probability distribution of the observations, given the 

single-valued precipitation forecast (Schaake et al., 2007). When sampling from the 

conditional probability distribution at different lead times, the temporal correlations 

are reconstructed approximately using the Schaake Shuffle technique (Clark et al., 

2003). In the current application, the single-valued forecasts were obtained from the 

frozen version of the Global Forecast System (GFS; frozen circa 1998) of the 

National Centers for Environmental Prediction (NCEP) and comprise the ensemble 

mean of the GFS forecasts (Toth et al., 1997; Hamill et al., 2006; Schaake et al. 

2007; Wei et al., 2008). The GFS-EPP precipitation ensembles comprise a 

continuous record of six-hourly forecasts, with lead times ranging from 6 to 336 hours 

in six-hourly increments. Each GFS-EPP forecast contains 40 ensemble members, 

and each member represents an equally likely prediction of the total precipitation 

within the six-hour period. Using the EVS, the forecasts were aggregated from six-

hourly totals to daily totals, and the verification statistics were averaged across the 

two MAP areas. 

 

Fig. 15 shows the reliability of the GFS-EPP forecasts for daily precipitation totals 

exceeding 0.0 (i.e. probability of precipitation, PoP), 5.0, 12.5, and 25 mm at lead 

times of 1, 2, 4, 6, 10 and 14 days. The sampling uncertainties were too large to 

evaluate forecast reliability at thresholds exceeding 25 mm. As indicated in Fig. 15, 

the forecast probabilities are reliable for PoP and low precipitation amounts (e.g. >5.0 

mm), particularly at lead times of 4 and 6 days, and are reasonably reliable for other 

precipitation amounts. At moderate (>12.5 mm) and high (>25 mm) precipitation 

thresholds, there is a tendency for the forecast probabilities to fall below the 
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observed relative frequencies. This is associated with a low-bias in the ensemble 

mean forecast for large precipitation amounts (see the upper-right plot in Fig. 17, 

together with Fig. 18). Also, as the event thresholds and lead times increase, the 

number of forecasts issued with high probability, i.e. the “sharpness”, declines 

rapidly.  

 

Fig. 15: Reliability diagrams for the EPP precipitation forecasts 
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ROC measures the ability of an ensemble forecasting system to discriminate 

predefined events, such as the occurrence versus non-occurrence of precipitation, 

and is insensitive to reliability. The ROC curves in fig. 16 show the Probability of 

Detection (POD) versus the Probability of False Detection (POFD) for varying 

probability levels of the GFS-EPP forecasts. Here, an event is defined for daily 
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precipitation totals exceeding 0.0, 5.0, 12.5 or 25 mm at lead times of 1, 2, 4, 6, 10 or 

14 days. The POD and POFD are plotted for twelve, equally spaced, probability 

thresholds. The diagonal line in each plot represents the climatological probability 

forecast or “zero skill” line. At short lead times, the ensemble forecasts are much 

more skilful than the climatological probability forecast across all precipitation 

amounts. Notably, while the ROC area declines consistently with forecast lead time, 

it increases slightly with precipitation threshold at lead times of 1 and 2 days. This is 

contrary to the expectation that forecast skill declines with increasing precipitation 

amount. However, NFDC1 lies on the upslope of the Sierra Nevada mountain range, 

where significant precipitation events are often enhanced by orographic lifting and 

are, therefore, relatively predictable at short lead times. 

 

Fig. 16: Empirical ROC curves for the EPP precipitation forecasts 
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Fig. 17: Deterministic error statistics and CRPS  for the EPP precipitation forecasts 
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Fig. 17 shows the quality of the ensemble mean forecast in terms of mean error, 

RMSE and correlation with the observed amount, together with the CRPS , which 

provides a lumped measure of error in the forecast probabilities. The statistics were 

computed for all forecast-observation pairs and for subsets whose observed values 

exceeded a threshold. As indicated in Fig. 17, there is a progressive decline in 

forecast quality with increasing lead time and observed precipitation amount, both in 

terms of the ensemble mean forecast (correlation coefficient, mean error, RMSE) and 

the overall forecast probabilities (CRPS ). The mean error is similar in magnitude to 

the RMSE, which suggests that much of the forecasting error at high precipitation 

thresholds stems from a conditional bias in the ensemble mean forecast. This is 

confirmed in the “modified box plots” of ensemble forecasting errors by observed 
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precipitation amount, which are shown in Fig. 18 for lead day 1. Here, the forecasting 

errors (ensemble member – observed value) are plotted with box-and-whisker 

diagrams, where the whiskers are drawn at quantiles of the forecast error distribution 

(deciles in this case) and the middle quantiles are shaded (the middle six deciles in 

this case). The-box-and-whisker diagrams are then arranged by observed value in 

ascending order. The conditional bias in the ensemble mean forecast is readily 

apparent in Fig. 18, and shows over-forecasting of low precipitation amounts and 

under-forecasting of high amounts. 

 

Fig. 18: Box plots for the EPP precipitation forecasts on lead day 1 
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7.2 Streamflow forecasts from the NWS Ensemble Streamflow Prediction system 
 

Mean daily inflows were hindcast for a 17 year period between 1 January 1979 and 

31 December 1996 at the North Fork Dam, California (NFDC1). The hindcasts were 

produced with the NWS Hydrologic Ensemble Hindcaster, which implements part of 

the NWSRFS in an ensemble framework, known as the Ensemble Streamflow 

Prediction (ESP) system (Demargne et al., 2007). The NWSRFS was forced with 

temperature and precipitation ensembles from the GFS-EPP (as described in Section 

7.1). The streamflow hindcasts should only be considered illustrative of the EVS and 

not representative of the operational streamflow forecasts for NFDC1, which are 

forced with short-range QPF rather than the frozen GFS. These QPFs originate from 

the NWS Hydrometeorological Prediction Center and may be modified by the RFC 

forecasters to reflect the real-time streamflow conditions (a form of manual data-

assimilation, known as run-time MODs). In general, the modified QPFs are much 

more skilful than the ensemble means of the frozen GFS. The hindcasts were 

aggregated from a six-hourly timestep to daily averages for comparison with the 

observed flows, which were only available as daily averages. The observed flows are 

based on stage observations, which were converted to flows using measured stage-

discharge relations (Kennedy, 1983). 

 

Fig. 19 shows the reliability of the forecasts at selected lead times. The results are 

shown for flow thresholds corresponding to climatological non-exceedence 

probabilities of 0.5 (10 m3 s-1), 0.75 (32 m3 s-1), 0.95 (85 m3 s-1) and 0.99 (210 m3 s-1). 

As indicated in Fig. 19, the forecast probabilities are reliable across a wide range of 

flow exceedence thresholds and lead times. However, they are slightly overconfident 

at moderately high flows, as evidenced by the higher forecast probabilities than 

observed relative frequencies. The forecasts are also consistently less reliable but 

sharper on lead day 1. This is understandable because the current version of the 

ESP system ignores uncertainties in the hydrologic model, including those in its initial 

conditions, structure and parameter values (Seo et al. 2006). Noise in the sharpness 

and reliability curves for streamflows that were forecast to exceed 210 m3 s-1 with 

high probability (0.8-1.0) reflects the small sample size and correspondingly high 

sampling uncertainty for such forecast events. Fig. 20 shows the spread-bias plots 

for the ESP flow forecasts. These plots show the reliability of the forecast 

probabilities for all forecast-observation pairs and for subsets of pairs whose 

observed values exceed a probability threshold in the observed climatological 
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distribution. As indicated in Fig. 20, the forecasts are reasonably reliable across all 

flow exceedence thresholds and lead times, but tend to underpredict the observed 

streamflows at the highest flow threshold. Fig. 21 shows the mean error of the 

ensemble mean forecast, the correlation of the ensemble mean flow with the 

observed flow, the ROC score, and the mean error of probability diagram (MEPD). 

While the forecasts are marginally well-calibrated (see the MEPD in Fig. 21), there is 

a loss of conditional reliability at the highest flow threshold across all forecast lead 

times (Fig. 19). This conditional bias originates from the conditional bias in the 

ensemble mean flow (Fig 21.). Overall, the conditional biases in the ESP streamflow 

forecasts (Fig. 21) are consistent with the conditional biases in the GFS-EPP 

precipitation forecasts (Fig. 17), which comprise over-forecasting of low precipitation 

amounts and under-forecasting of high amounts (Fig. 18).  

 

Fig. 19: Reliability diagrams for the ESP forecasts 
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Fig. 20: Spread-bias plot for the ESP forecasts 
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Fig. 21: Deterministic error statistics, ROC score and MEPD for the ESP forecasts 
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Fig. 22 shows the ROC curves for mean daily flows that correspond to climatological 

non-exceedence probabilities of 0.5, 0.75, 0.95 and 0.99. In comparison to the 

precipitation hindcasts, there is more consistent decline in discrimination with 

increasing forecast lead time and event threshold. Also, the flow forecasts are 

substantially more skillful than the climatological probability forecast for all forecast 

lead times and event thresholds. The MCRDs in Fig. 23 show a rapid increase in the 

mean error of any given ensemble member over lead times of 1 and 2 days and a 

much slower decline in forecast quality over lead times of 4 to 14 days. 
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Fig. 22: Empirical ROC curves for the ESP flow forecasts 

 

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(i) Flow > 50
th 

%

Day  1

Day  2

Day  4

Day  6

Day  10

Day  14

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(ii) Flow > 75
th 

%

Day  1

Day  2

Day  4

Day  6

Day  10

Day  14

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(iii) Flow > 95
th 

%

Day  1

Day  2

Day  4

Day  6

Day  10

Day  14

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(iv) Flow > 99
th 

%

Day  1

Day  2

Day  4

Day  6

Day  10

Day  14

Probability of false detection

P
ro

b
a
b
ili

ty
 o

f 
d
e
te

c
ti
o
n

 

 

 

 

 

 

 

 

 

 

 

 

 



 74 

Fig. 23: Mean Capture Rate Diagrams for the ESP flow forecasts 
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8. THE APPLICATION PROGRAMMERS INTERFACE (API)  
 

8.1 Overview 
 

This section provides a brief overview of the API for the EVS and the procedure for 

adding a new verification metric. Detailed documentation of the code is provided in 

the hyperlinked html documentation that accompanies the software distribution. 

Developers may contact the authors for additional information about the source code 

(development support is not provided). 

 

The EVS is written in Java, which is a simple, object-oriented, programming 

language (Flanagan, 2005). The Java platform comprises the language itself, a 

library of classes, and a Virtual Machine (VM), which runs on a specific operating 

system (OS). The VM allows for the “platform-independence” of Java applications, 

such as the EVS. A popular class library and one set of VMs are implemented by 

Sun Microsystems as the Java Runtime Environment (JRE). The EVS requires the 

JRE for execution (version 1.6 or higher), which is freely available from the Sun 

website for Java (http://java.sun.com/).  

 

In object-oriented programming, the source code is separated into classes, each of 

which provides the blueprint for a particular object. For example, a class that 

computes the BS for a verification dataset, a, at an event threshold, b, provides the 

template for a BrierScore object with specific values of a and b. A class also 

contains methods, which determine the behavior of an object. For example, the 

BrierScore class contains the method getThreshold, which returns the event 

threshold associated with a particular BrierScore object. Similarities among objects 

are exploited by linking classes together. This leads to a family tree in which children 

inherit and extend the functionality of their parents. For example, the BrierScore 

class inherits the functionalities of the EnsembleMetric, ScoreMetric, and 

ThresholdMetric classes, among others. Groups of classes that have similar 

functions are stored in packages. For example, the BrierScore class is stored in 

the metrics package. The EVS comprises ~40,000 lines of code, which are separated 

into in 224 classes and stored in a hierarchy of 29 packages. Fig. 24 shows the main 

package hierarchy in the EVS using UML. The API is fully documented in hyperlinked 

HTML, and the code itself is extensively commented (~25,000 lines). 
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8.2 Procedure for adding a new metric to the EVS 
 

Due to its modular design, the procedure for adding a new metric to the EVS is tightly 

structured and requires little code development (beyond that required for the metric 

calculation). Indeed, much of the code required to implement a new metric in the 

EVS is dictated by, or already implemented in, a more general class of metric. This is 

illustrated by adding the logarithmic scoring rule or ‘Ignorance Score’ to the EVS. The 

Ignorance Score measures the quality of a probabilistic forecasting system with a 

numeric score (Good, 1952). A new metric, IgnoranceScore, is created in the 

package metrics and instructed to inherit from (at least) two general classes of which 

the IgnoranceScore is a specific case, EnsembleMetric and ScoreMetric. In 

order to satisfy the requirements of being an EnsembleMetric and a 

ScoreMetric, it is forced to implement several methods, including: 

 

- getID, returns a unique identifier for the metric [one line of code]; 

 

- getResultID, returns an identifier from the list of identifiers in the 

MetricResult class that indicates the data type of the result [one line of code]; 

 

- deepCopy, returns an independent copy of the metric object. Changes to the 

parameter values of the copied object are not reflected in the original object 

[approximately three lines of code, for which a template can be found in similar 

metrics, such as the BS].  

 

- compute, computes the metric for each forecast lead time and stores the 

result [several lines of code].  

 

In order to display the Ignorance Score in the EVS, a default plot must also be 

created. By adding a class to the evs.products.plots.defaults package (e.g. 

IgnoranceScorePlot) and associating the plot with the IgnoranceScore class, 

the Ignorance Score will be plotted in the EVS. The IgnoranceScorePlot 

extends the class DefaultXYPlotByLeadTime to plot the Ignorance Score by forecast 

lead time. A single method, getDefaultChart, is then implemented to return an 

IgnoranceScorePlot with the correct y-axis dimension for the Ignorance Score 

(0-1), and any other information specific to the plotting of this score (e.g. axis and 

chart titles) [approximately five lines of code]. The plots themselves are created with 
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the JFreeChart library (available from www.jfree.org/jfreechart/). Once the 

IgnoranceScorePlot is associated with the results from an IgnoranceScore, 

the new metric can be displayed in the Output dialog of the EVS (Section 5.5). 

Descriptive information about the Ignorance Score can also be displayed in the GUI. 

This is achieved by setting the descriptionURL parameter of the 

IgnoranceScore class (which was inherited from the Metric class via 

EnsembleMetric) to the URL of a stable resource with descriptive information. For 

example, it may point to an html file in the statsexplained package, which contains 

descriptive information for the other metrics in the EVS. 
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APPENDIX A1 VERIFICATION STATISTICS COMPUTED IN THE EVS 
 

Table 4 provides a list of the verification metrics supported by the EVS. Below is a 

short description of each metric, which is also available in the GUI. 

 

Mean error 

 

The mean error (ME) measures the average difference between a set of forecasts 

and corresponding observations. Here, it measures the average difference between 

the center of the ensemble forecast (the mean average, by default) and observation. 

 

The ME of the ensemble average forecast, Y , given the observation, x, is 

 

( )n

i ii 1

1ME x Y
n =

= −∑ .                      (A1) 

 

The ME provides a measure of first-order bias in the forecasts, and may be positive, 

zero, or negative. A positive mean error denotes overforecasting and a negative 

mean error denotes underforecasting. A mean error of zero (in the ensemble mean 

forecast) denotes an absence of bias. 

 

Relative mean error 

 

The relative mean error (RME), or relative bias, measures the mean difference 

between a set of forecasts and corresponding observations, divided by the mean of 

the observations. Here, it measures the relative mean difference between the center 

of the ensemble forecast (the mean average value, by default) and the observations. 

Given n pairs of forecasts and observations, the RME of the center of the ensemble 

forecast, Y , given the observation, x, is 

 

( )n

i ii 1

n

ii 1

x Y
RME

x

=

=

−
=
∑

∑
.                      (A2) 

 

The RME provides a measure of relative, first-order, bias in the forecasts, and may 

be positive, zero, or negative. A positive RME denotes overforecasting and a 

negative RME denotes underforecasting (assuming that the chosen measure of 



 80 

central tendency should match the observed value, on average). A RME of zero 

denotes the absence of relative bias in the center of the ensemble forecast.  

 

Mean absolute error 

 

The mean absolute error (MAE) measures the mean absolute difference between a 

set of forecasts and corresponding observations. Here, it measures the mean 

absolute difference between the center of the ensemble forecast (the mean average, 

by default) and the observation.  

 

The MAE of the ensemble mean forecast, Y , given the observation, x, is given by 

 

n

i ii 1

1MAE x Y
n =

= −∑ .                      (A3) 

 

The MAE provides a measure of error spread in the center of the forecast 

distribution. It is similar to the Root Mean Square Error (RMSE), except the RMSE 

employs square deviations, such that large errors contribution proportionally more to 

the overall score. The MAE generalizes to the Continuous Ranked Probability Score 

(CRPS) for ensemble or probability forecasts.  

 

Root mean square error 

 

The mean square error (MSE) measures the average square error of the forecasts. 

The Root Mean Square Error (RMSE) provides the square root of this value, which 

has the same units as the forecasts and observations. Here, the forecast 

corresponds to the ensemble average value (the mean, by default) and an 'error' 

represents the difference between the ensemble average, Y , and the observation, x. 

The equation for the RMSE is 

 

( )
0.5

2n

i ii 1
1RMSE x Y

n =

 = −  ∑ .                   (A4) 

 

The RMSE provides an indication of the ‘average deviation’ between the forecast 

value and an observation in real units. The RMSE is either zero, denoting a perfect 

forecast, or positive. 

 



 81 

Correlation coefficient 

 

The correlation coefficient measures the strength of linear association between two 

variables. Here, it measures the linear relationship between n pairs of ensemble 

average forecasts and corresponding observations. A correlation coefficient of 1.0 

denotes a perfect linear relationship between the forecasts and observations. A 

correlation coefficient of -1.0 denotes a perfect inverse linear relationship (i.e. the 

observed values increase when the forecasts values decline and vice versa). The 

ensemble average forecast may be perfectly correlated with the observations and still 

contain biases, because the correlation coefficient is normalized by the overall mean 

of each variable. A correlation coefficient of 0.0 denotes the absence of any linear 

association between the forecasts and observations. However, a low correlation 

coefficient may occur in the presence of a strong non-linear relationship, because the 

correlation coefficient measures linear association only. 

 

EVS computes the Pearson product-moment correlation coefficient, r, which is given 

by 

Cov(x,Y)
r

Std(x) Std(Y)
=

⋅
,                         (A5) 

 

where Cov(x, Y)  is the sample covariance between the ensemble average forecasts 

and their corresponding observations. The sample standard deviations of the 

forecasts and observations are denoted Std(Y)  and Std(x) , respectively. The 

sample covariance between the n pairs of forecasts and observations is 

 

n

i x i Yi 1

1
Cov(x, Y) (x )(Y )

n 1 =
= −µ −µ

− ∑ ,               (A6) 

 

where 
Y

µ  and xµ  are the overall sample means of the (ensemble average) forecasts 

and observations, respectively. 

 

Brier Score 

 

The Brier Score (BS) measures the average square error of a probability forecast. It 

is analogous to the mean square error of a deterministic forecast, but the forecasts, 

and hence error units, are given in probabilities. The Brier Score measures the error 
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with which a discrete event, such as ‘flooding’, is predicted. For continuous forecasts, 

such as the amount of water flowing through a river, one or more discrete events 

must be defined from the continuous forecasts. There are several ways in which an 

event may be defined, depending on the verification problem. For an event that 

involves not exceeding some threshold, t, the Brier Score is computed from the 

forecast probability, FY(t), and the corresponding observed outcome, x, whose 

cumulative probability is 1 if t is exceeded by the observation and 0 otherwise, as 

defined by the step function, {}⋅1  

 

( )
i

2n

Y ii 1

1BS(t) F (t) {t x } .
n =

= − ≥∑ 1                 (A7) 

 

A set of forecasts and observations of a binary event match exactly in terms of the 

BS if the mean square difference in the forecast probability and the corresponding 

(perfectly sharp) observed probability is zero. Optionally, the BS may be 

decomposed into contributions due to (lack of) reliability, resolution and uncertainty, 

namely  

BS reliability resolution uncerta int y.= − +               (A8) 

 

Brier Skill Score  

 

The Brier Skill Score (BSS) measures the performance of one forecasting system 

relative to another in terms of the Brier Score (BS). The BS measures the average 

square error of a probability forecast of a dichotomous event. The BSS comprises a 

ratio of the BS for the forecasting system to be evaluated (the "main forecasting 

system"), MAINBS , over the BS for the reference forecasting system, REFBS  

 

MAIN

REF

BS
BSS = 1 .

BS
−

                         (A9) 

 

As a measure of average square error in probability, values for the BS approaching 

zero are preferred. It follows that a BSS closer to 1 is preferred, as this indicates a 

low BS of the main forecasting system relative to the BS of the reference forecasting 

system. Unlike the BS, the BSS is not "strictly proper" (i.e. it can be hedged). Also, 

the BSS may behave erratically for forecasts of rare events because their errors of 

probability are necessarily small and their sampling uncertainties are likely high. 
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Mean Continuous Ranked Probability Score 

 

The Continuous Ranked Probability Score (CRPS) summarizes the quality of a 

continuous probability forecast with a single number (a score). It measures the 

integrated square difference between the cumulative distribution function (cdf) of the 

forecast variable, FY(y), and the corresponding cdf of the observed variable, {y x}≥1  

 

( )2

Y
CRPS F (y) {y x} dy,

∞

−∞
= − ≥∫ 1                   (A10) 

 

where {y x}≥1  is a step function that assumes probability 1.0 for values greater than 

or equal to the observation, and 0.0 otherwise.  

 

In practice, the CRPS is averaged across n of pairs of forecasts and observations, 

which leads to the mean CRPS 

 

n

ii 1

1CRPS CRPS .
n =

= ∑                      (A11) 

 

The numeric value of the mean CRPS will vary with application and is difficult to 

interpret in absolute terms (e.g. in terms of specific forecast errors). However, the 

CRPS has some desirable mathematical properties, including its insensitivity to 

hedging (i.e. the expected value of the score cannot be improved, a priori, by 

adopting a particular forecasting strategy). Other scores, such as the Probability 

Score of Wilson et al. (1999), may be hedged (in this case by issuing sharper 

forecasts). 

 

Optionally, the mean CRPS may be decomposed into contributions due to (lack of) 

reliability, resolution and uncertainty (Hersbach, 2000), namely 

 

CRPS reliability resolution uncerta int y.= − +               (A12) 

 

Mean Continuous Ranked Probability Skill Score 

 

The mean Continuous Ranked Probability Skill Score (CRPSS ) measures the 

performance of one forecasting system relative to another in terms of the mean 
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Continuous Ranked Probability Score (CRPS ). The CRPS  measures the average 

square error of a probability forecast across all possible event thresholds. The 

CRPSS  comprises a ratio of the CRPS  for the forecasting system to be evaluated 

(the "main forecasting system"), MAINCRPS , and the CRPS  for a reference 

forecasting system, REFCRPS  

 

REF MAIN

REF

CRPS CRPS
CRPSS .

CRPS

−
=                    (A13)       

 

As a measure of average square error in probability, values for the CRPS  

approaching zero are preferred. It follows that a CRPSS  closer to 1 is preferred, as 

this indicates a low CRPS  of the main forecasting system relative to the CRPS  of 

the reference forecasting system. Unlike the CRPS , the CRPSS  is not "strictly 

proper" (i.e. it can be hedged). Also, the CRPSS  may behave erratically for forecasts 

of rare events because their errors of probability are necessarily small and their 

sampling uncertainties are likely high. 

 

Mean Capture Rate 

 

A key aspect of forecast quality is the probability of making a given error in real 

terms. The Probability Score (PS) of Wilson et al. (1999) is useful here because it 

identifies the probability with which a given, real-valued, error is exceeded. The PS is 

defined for a symmetric window, w, around the observation, x 

 

 
x 0.5w

Y
x 0.5w

PS(w) f (y)dy.
+

−
= ∫                      (A14)                        

 

It conveys the extent to which an observation is captured by the forecast, where a 

high probability implies greater forecast performance. The disadvantages of the PS 

include its subjectivity and sensitivity to hedging, whereby the expected value of the 

PS is maximized for sharp forecasts.  

 

By averaging the PS over a set of n ensemble forecasts and repeating for all possible 

windows, w, the probability of exceeding a given acceptable error can be determined 

and is referred to as the Mean Capture Rate (MCR) 
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n

i 1

1MCR(w) 1 PS(w) w
n =

= − ∀ ∈∑ R               (A15)                

 

It should be noted that sensitivity to hedging does not apply to the MCR, as it is not a 

score. The resulting curve may be separated into errors of over-prediction and under-

prediction by computing the MCR for ensemble members that exceed the 

observation and fall below the observation, respectively.  

 

Modified box plots 

 

Box plots (or box-and-whisker diagrams) provide a discrete representation of a 

continuous empirical probability distribution (Tukey, 1977).  

 

Building on this idea, an empirical probability distribution function (pdf) may be 

summarized with an arbitrary set of percentile bins of which an arbitrary proportion 

may be shaded (e.g. the middle 60%), to convey the outer and inner probability 

densities, respectively. The modified box plots show the forecasting errors (ensemble 

member – observed value) by forecast lead time. Forecasts with common lead times 

are pooled before computing the errors and displaying them as a box. 

 

Modified box plots by observed value 

 

Constructs a set of modified boxes and organizes each box by the size of the 

corresponding observed value (from which the forecast errors were computed). If 

more than one forecast has the same observed value, the errors associated with 

those boxes are pooled and displayed in a single box (with a larger sample size). 

 

Reliability diagram 

 

The reliability diagram measures the accuracy with which a discrete event is forecast 

by an ensemble or probabilistic forecasting system. The discrete event may be 

defined in several ways. For example, flooding is a discrete event that involves the 

exceedence of a flow threshold. According to the reliability diagram, an event should 

be observed to occur with the same relative frequency as its forecast probability of 

occurrence over a large number of such forecast-observation pairs. For example, 

over a large number of cases where flooding is forecast to occur with a probability of 
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0.95, it should be observed to occur roughly 95% of the time. However, the 

calculation of the observed relative frequency is subject to sampling uncertainty. For 

example, their may be few cases in the historic record where flooding is forecast to 

occur with probability 0.95. In practice, the forecasts are binned into discrete 

probability intervals and the observed relative frequencies are plotted against the 

average forecast probability within each bin. The sampling uncertainty will decline as 

the width of the bin increases, but the precision of the diagram will also decline. 

 

The Reliability diagram plots the average forecast probability within each bin on the 

x-axis. For a forecast event defined by the non-exceedence of some threshold, t, the 

average probability of the forecasts that fall in the kth forecast bin, Bk is given by 

 

 
i

k

Y

i Ik

1
F (t),

| I | ∈
∑                          (A16)                              

 

where kI  denotes the set of all indices, k kI {i : i B }= ∈ , whose forecasts (and 

associated paired observations) fall in the kth bin and k| I |  denotes the number of 

elements in that set. The y-axis shows the corresponding fraction of observations 

that fall in the kth bin 

 

k

i

i Ik

1
{t x },

| I | ∈

≥∑1                         (A17)                             

 

where i{t x }≥1  is a step function that assumes value 1 if the ith observation, xi, 

exceeds the threshold, t, and 0 otherwise. If the forecast is perfectly reliable, the 

observed fraction within each bin will equal the average of the associated forecast 

probabilities, forming a diagonal line on the reliability diagram. Deviation from the 

diagonal line represents bias in the forecast probabilities, notwithstanding sampling 

uncertainty. The reliability diagram may be computed for several discrete events. 

Each event is represented by a separate reliability curve. 

 

Collectively, the number of forecasts that fall within each of the k bins, k| I | , denotes 

the 'sharpness' of the forecasts and is displayed as a histogram. Ideally, the forecast 

probabilities will be sharp, i.e. issued with little uncertainty, but also reliable. 
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Relative Operating Characteristic  

 

The Relative Operating Characteristic (ROC; also known as the Receiver Operating 

Characteristic) measures the quality of a forecast for the occurrence of a discrete 

event, such as rainfall or flooding. For a probability forecast, the ROC curve 

measures the quality of a binary prediction or “decision” based on the forecast 

probability. A binary prediction is generated from the forecast by defining a probability 

threshold above which the discrete event is considered to occur. For example, a 

decision maker might issue a flood warning when the forecast probability of a flood 

exceeds 0.9. The ROC curve plots the forecast quality for several probability 

thresholds. Each threshold corresponds to a different level of risk aversion. For 

example, given a decision on whether to issue a flood warning, a probability 

threshold of 0.7 corresponds to a higher level of risk aversion (i.e. a lower threshold 

for warning) than a probability of 0.9. As the threshold declines, the probability of 

correctly detecting an event (the Probability of Detection or POD) will increase, but 

the probably of “crying wolf” (the probability of False Detection or POFD) will also 

increase. The ROC curve plots the trade off between POD and POFD on two axes: 

 

- Y-axis: the POD or probability with which an event is correctly forecast to occur. 

The POD is estimated from n sample data as the total number of correct 

forecasts divided by the total number of occurrences. For an event defined by 

the exceedance of a real-valued threshold, t, which is forecast to occur when 

the forecast probability exceeds a probability threshold, pt, the POD is given by 

 

i

n

Y t ii=1
t n

ii=1

{1- F (t) > p | x > t}
POD(t, p ) = ,

{x > t}

∑
∑

1

1
             (A18)      

 

 where {}⋅1  is a step function that assumes the value 1 if the condition, {·}, is met 

and 0 otherwise.  

 

- X-axis: the POFD or probability with which an event is incorrectly forecast to not 

occur (i.e. the event occurs, but the forecast was for non-occurrence). The 

POFD is estimated from n sample data as the total number of incorrect 

forecasts divided by the total number of non-occurrences 
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i

n

Y t ii=1
t n

ii=1

{1- F (t) > p | x t}
POFD(t,p ) = .

{x t}

≤

≤

∑
∑

1

1
            (A19)           

 

These values are computed for probability thresholds that exhaust the unit interval, 

which is normally defined by a number of plotting points, q, that separate the unit 

interval, [0,1], into q thresholds at equal intervals. Additionally, the curve is forced to 

intersect (0,0), and (1,1). 

 

For an ensemble forecasting system to perform well in terms of ROC, the POD must 

be high relative to the POFD. An ensemble forecasting system that produces 

forecasts in line with climatological expectation will have as many "successful" 

predictions as the climatological probability of the event implies. A skillful forecasting 

system will always produce a ROC curve that lies above the diagonal line. 

 

Practical applications of the ROC in the medical, atmospheric, and other sciences 

frequently fit a smooth curve to the empirical POD and POFD data. A common 

approach is to fit a binormal model, which assumes that the POD and POFD are 

normally distributed, each with given mean and variance (standard deviation). 

Experience has shown that the binormal model typically provides a good fit to the 

empirical POD and POFD, even when they are "significantly" non-normal (i.e. the 

binormal approximation is robust). The binormal model is given by 

 

1

POD POFD

POD

POFD

POD

POD = (a b (POFD)), where

a = , and

b = .

−Φ + Φ

µ −µ
σ

σ
σ

               (A20) 

 

Here, Φ is the cumulative distribution function of the standard normal distribution, 

PODµ  and POFDµ  are, respectively, the means of the POD and POFD, and PODσ  and 

POFDσ  are their corresponding standard deviations. 

 

There are several approaches to estimating the parameters of the binormal model, a 

and b (or the means and standard deviations from which they are derived; for 
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example, see Cai and Moskowitz, 2004). The simplest and most direct approach 

stems from the observation that 

 

1 1(POD) = a b (POFD).− −Φ + Φ                   (A21) 

 

Hence, the parameters, a and b, are the intercept and slope, respectively, of a linear 

(regression) relationship between the POD and POFD following their transformation 

to the probit scale. The EVS estimates these parameters through ordinary least 

squares regression. While the resulting model fit is mathematically correct, the 

standard errors of the model (or confidence intervals for the associated ROC Score) 

cannot be computed in this way, and are not reported by the EVS. Since the 

parameters of the binormal model are estimated from the empirical POD and POFD, 

the model fit will depend on the number of probability thresholds used to compute the 

ROC curve. The number of thresholds cannot (usefully) exceed the number of 

ensemble members, m, (or m+1 thresholds) from which the POD and POFD are 

derived, as the ensemble forecast only contains information at these thresholds 

(members). However, the binormal curve is plotted for a large number of points in 

between these thresholds, in order to convey the smoothness of the fitted model. 

 

The ROC Score is derived from the Area Under the Curve (AUC), and is an analytical 

function of the binormal model parameters 

 

2

a
AUC = .

1 b

 
Φ 

+ 
                       (A22) 

 

Upon request, the binormal approximation to the ROC Score is also provided by the 

EVS. Since the model fit depends on the number of thresholds used to compute the 

ROC curve, the number of thresholds must be defined when computing the binormal 

approximation to the ROC Score. For an exact comparison between the binormal 

ROC curve and the binormal ROC Score (or AUC), the same number of thresholds, 

q, must be used for each metric. 

 

Relative Operating Characteristic Score 

 

The Relative Operating Characteristic (also known as the Receiver Operating 

Characteristic) measures the quality of a forecast for the occurrence of a discrete 
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event, such as rainfall or flooding. It does not consider the quality of forecasts that 

predict no occurrence of the event defined (e.g. no rainfall or no flooding). 

  

The ROC Score is based on the area underneath the ROC curve or AUC, which is 

normalized by the AUC of a reference forecast, 
refAUC (Mason and Graham, 2002). 

The AUC of the climatological probability forecast is 0.5, which corresponds to the 

diagonal line in the ROC plot. Thus, the ROC Score for the climatological probability 

forecast is 

 

ref

ref

AUC- AUC AUC-0.5
ROC Score =  = = 2 AUC-1.

1.0-AUC 1.0-0.5
×

           (A23)  

 

As discussed under the Relative Operating Characteristic, practical applications of 

ROC analysis in the medical, atmospheric, and other sciences frequently fit a smooth 

curve to the paired values of the Probability of Detection (POD) and Probability of 

False Detection (POFD) derived from the sample data. A common approach is to fit a 

binormal model, which assumes that the POD and POFD are normally distributed, 

each with given mean and variance (standard deviation). Experience has shown that 

the binormal model typically provides a good fit to the empirical POD and POFD, 

even when the sample data are "significantly" non-normal (i.e. the binormal 

approximation is robust). The binormal approximation to the AUC (and hence the 

ROC Score) is given by 

 

2

a
AUC = .

1 b

 
Φ 

+ 
                       (A24) 

 

Here, a and b are the parameters of the binormal model, and Φ  is the cumulative 

distribution function of the standard normal distribution. The parameters a and b are, 

respectively, the intercept and slope of the (assumed) linear relationship between the 

POD and POFD following their transformation to the probit scale (see the discussion 

under the Relative Operating Characteristic). Unlike the empirical AUC (Mason and 

Graham, 2002), which bypasses the calculation of the ROC curve, the binormal 

approximation to the AUC (and ROC Score) is based on the q pairs of (POD, POFD) 

data from which the empirical ROC curve is computed (where q is the number of 

probability thresholds). Thus, for an exact comparison between the binormal ROC 

curve and the binormal ROC Score, the same number of thresholds, q, must be used 
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for each metric. However, the binormal ROC Score will be closest to the empirical 

ROC Score when the ROC curve is constructed from m+1 probability thresholds, 

where m is the (fixed) number of ensemble members in each forecast. Put differently, 

the empirical AUC, described by Mason and Graham (2002), approximates the area 

under the ROC curve when constructed with as many probability thresholds as the 

(fixed) number of ensemble members in each forecast. 

 

By default, the algorithm described in Mason and Graham (2002) is used to compute 

the empirical AUC. Optionally, the AUC may be derived from the empirical ROC 

curve, which is constructed for a specified number of points. In that case, the 

empirical ROC curve is integrated using the trapezoid rule. In most cases, the 

algorithm described by Mason and Graham (2002) generates larger values of the 

empirical AUC (skill) than integrating the empirical ROC curve. 

 

Spread-bias diagram 

 

For continuous random variables, such as temperature and streamflow, the SBD 

provides a simple measure of conditional reliability. It involves counting the fraction of 

observations, SBD(I) , that fall within a probability interval of fixed width on the 

support of the ith forecast, I = [c,d | c, d [0,1]]∈  

 

i

n o

m ii=1

1SBD(I) = 1{F (x ) I}.
n

∈∑ ˆ                   (A25)  

 

An ensemble forecasting system is reliable over the interval, I, if it captures 

observations in proportion to the width of that interval 

 

{ }i

n o

m ii=1n,m

1lim 1{F (x ) I} = d - c.
n→∞

∈∑ ˆ                 (A26) 

 

By defining k windows on the unit interval, { }j j j j jI = [c ,d ] | c ,d [0,1]; j = 1,..., k∈ , the 

reliability can be determined for the entire range of forecast probabilities. In practice, 

the k windows may cover any subintervals of the unit interval. Certain windows may 

be preferred for some applications or for sampling reasons. For example, if the 

forecasts are uncertain in the tails, windows centered on the forecast median may be 

preferred. The SBD shows the observed frequency, SBD(I) , against the expected 
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frequency, d-c. Any deviation from the diagonal line represents a lack of reliability in 

the forecast probabilities. More specifically, the ensemble forecasts are unreliable if 

the observed frequency, SBD(I) , deviates from the expected frequency by more 

than the sampling uncertainty of SBD(I) . If the k windows each cover a probability 

interval of 1/k, the expected frequency has a uniform probability distribution, and the 

actual reliability can be tested for its goodness-of-fit to a uniform distribution (e.g. 

using the one-sided Cramer von Mises test; Anderson, 1962; Elmore, 2005; Bröcker, 

2008).  

 

For continuous random variables, the expected SBD(I)  is equal to the width of the 

interval, I, and is, therefore, strictly increasing as the width increases (see above). 

However, for mixed random variables, such as precipitation and wind-speed, the 

discrete portion of the probability distribution comprises an infinite number of intervals 

of different width. Although the window definition could be adapted for this case (see 

Hamill and Colucci, 1997 for a similar discussion), the reliability diagram may be 

preferred for mixed random variables.  

 

While the SBD is analogous to the cumulative rank histogram, it explicitly defines the 

width of the interval, I, into which observations fall. When these windows are based 

on non-exceedence probabilities and are uniform in width (as well as non-

overlapping and exhaustive), the SBD is also analogous to the Probability Integral 

Transform (PIT) (Casella and Berger, 1990), although the latter involves fitting a 

parametric cdf to the ensemble forecast distribution prior to evaluating the PIT 

(Gneiting et al., 2005). In that case, the SBD, the cumulative rank histogram and the 

PIT can also be summarized with the reliability component of the CRPS  (Hersbach, 

2000), which tests whether an observation falls below a threshold with a frequency 

proportional to the cumulative probability of that threshold (averaged across all 

thresholds). 

 

Mean error of probability diagram 

 

The mean error of probability diagram (MEPD) measures the reliability of an 

ensemble forecasting system in an unconditional sense. Let zij denote the jth of m 

ensemble members from the ith of n ensemble forecasts and let xi
o denote the 

observed outcome associated with the ith ensemble forecast. The forecast 
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climatology has an empirical distribution function, nmF (v)ˆ , which is computed from the 

n ensemble forecasts as      

                  

i i

n m

nm m m iji=1 j=1

1 1F (v) = F (v) where F (v) = 1{z v},
n m

≤∑ ∑ˆ ˆ ˆ       (A27) 

 

and {}⋅1  is a step function that assumes value 1 if the condition is met and 0 

otherwise. Let H = [a, b | a, b [0,1]]∈  denote an interval of fixed width on the support 

of nmF (v)ˆ . The MEPD counts the fraction of observations that fall within the interval, 

H, namely 

 

n o

nm ii=1
1MEPD(H) = 1{F (x ) H}.

n
∈∑ ˆ

                (A28) 

 

An ensemble forecasting system is unconditionally reliable or marginally calibrated 

over the interval, H, if it captures observations in proportion to the width of that 

interval 

 

{ }n o

nm ii=1n,m

1lim 1{F (x ) H} = b - a.
n→∞

∈∑ ˆ                (A28) 

 

The MEPD shows MEPD(H)  against the width of H for each of k windows that span 

the unit interval. In practice, the k windows may cover any subintervals of the unit 

interval. The MEPD is similar to the quantile-quantile (Q-Q) plot (Wilks, 2006) and the 

probability-probability (P-P) plot (Shorack and Wellner, 1986; Gneiting et al., 2007). 

The Q-Q plot compares the order statistics of two samples, or the order statistics of 

one sample against the values of a theoretical distribution at corresponding quantiles 

(Wilks, 2006). The P-P plot compares the quantiles corresponding to these order 

statistics. Indeed, the MEPD is equivalent to a P-P plot of the climatological 

distributions of X and Y when evaluated for the n intervals, 

{ }j j j

j
H = [0,b ] | b = , j =1,..., n .

n +1
 As indicated above, the MEPD assumes 

asymptotic convergence of MEPD(H)  as n→∞. In practice, this may be evaluated by 

comparing the MEPD(H)  for g subsamples of the n available data.  
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APPENDIX A2 XML OUTPUT FORMATS 
 

EVS produces three types of XML file, namely: 1) project files, which store previously 

defined VUs and AUs; 2) paired data files, which store the paired forecasts and 

observations associated with a single VU; and 3) product files containing the 

numerical results for particular verification metrics.  

 

Project files 

 

Project files store all of the parameters required to close and restart EVS without loss 

of information. A project file is produced or updated by clicking “Save” or “Save as…” 

at any point during the operation of EVS. The data are stored in XML format and are, 

therefore, human readable, and may be produced separately from EVS (e.g. for 

batch calculations in the future).  

 

The XML contains the following tags, in hierarchical order: 

 

Level 1 (top level): 

 

<verification>  //Top level tag 

<verification_unit> //Tag for a single verification unit (see Level 2) 

<aggregation_unit> //Tag for a single aggregation unit (see Level 3) 

 

Level 2 (verification unit, VU): 

 

<verification_unit>  

 <identifiers> //Identifiers for the VU (see Level 2a) 

 <input_data> //Input data, including forecasts and observations (see Level 2b) 

 <verification_window> //Verification window (see Level 2c) 

 <output_data_location> //Path to output data folder  

 <paired_data> //Paired data file [only when defined] (see Level 2d) 

 <metrics> //Verification metrics selected (see Level 2e) 

 

Level 2a (VU identifiers): 

 

<identifiers> //Identifiers for the VU 

 <location_id> //Identifier for the forecast point  

 <environmental_variable_id>  //Variable id (e.g. streamflow) 

 <additional_id> // Additional id (e.g. forecast_model_1) [only when defined] 
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Level 2b (VU input data sources): 

 

<input_data> //Identifiers for the VU 

 <forecast_data_location> //Forecast data 

  <file> //Path to first file/folder (e.g. first file in a file array or a folder) 

  <file> //Path to second file in a file array [only when defined] 

  <file> //Etc. 

   … 

 <observed_data_location>  //Path to observed data file 

 <observed_file_type>  //File type for observed data file 

 <forecast_file_type>  //File type for forecast data file 

 <forecast_time_system>  //Name of forecast time system 

 <observed_time_system>  //Observed time system] 

 <forecast_support> //Scale of forecasts 

  <statistic> //E.g. “instantaneous” 

  <period> //E.g. “1” [only when defined: blank when statistic = instantaneous] 

  <period_units> //E.g. “DAY” [only when defined: as above] 

  <existing_attribute_units> //E.g. “feet cubed/second” 

  <target_attribute_units> //E.g. “meter cubed/second” 

  <attribute_units_function> //Multiplier to arrive at stated attribute units [1.0] 

  <notes>  //Additional textual info. [only when defined]   

 <observed_support> //Scale of observations [see forecast_support] 

 <forecast_date_format>  //Date format for ASCII forecasts (e.g. MM/dd/yyyy HH) 

 <observed_date_format>  //Date format for ASCII observations 

 

Level 2c (verification window for a given VU): 

 

<verification_window> //Window parameters 

 <start_date> //Start date (in UTC) 

  <year> //Start year 

  <month> //Start month of year 

  <day> //Start day of month 

 <end_date>  //See start date 

 <first_lead_period>  //Minimum lead time considered 

 <last_lead_period>  //Maximum lead time considered 

 <forecast_lead_units>  //Units for the maximum lead time 

 <aggregation_lead_period> //Temporal aggregation window [only when defined] 

 <aggregation_lead_units>  //Aggregation window units [only when defined] 

 <aggregation_function>  //Function used to aggregate pairs [only when defined] 

 <sample_size_constraint>  //Constraint on minimum sample size per lead time 

 <date_conditions>  //Date conditions (see Level 2c_1) [only when defined] 

 <value_conditions>  //Value conditions (see Level 2c_2) [only when defined] 
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Level 2c_1 (date conditions on the verification window) [only when defined]: 

 

<date_conditions>  //Date conditions 

 <exclude_years> //Integer years to exclude from the overall range 

 <exclude_months> //Integer months to exclude from the overall range 

 <exclude_weeks> //Integer weeks to exclude from the overall range 

 <exclude_days_of_week> //Integer days to exclude from the overall range 

 <exclude_hours_of_day_UTC> //Integer [0,23] to exclude UTC hours of day 

 

Level 2c_2 (value conditions on the verification window) [only when defined]: 

 

<value_conditions>  //Value conditions. 

 <condition> //First of n possible conditions 

  <unit_id> //Identifier of the VU on which the condition is built 

  <forecast_type> //True for forecasts, false for observed values 

  <statistic> //Name of statistic, e.g. mean 

  <statistic_constant> //Constant associated with statistic [only when defined] 

  <consecutive_period> //Window size [only when defined] 

  <consecutive_period_units> //Window time units [only when defined] 

  <consecutive_period_statistic> //Window statistic [only when defined] 

  <logical_conditions> //Set of n possible logical arguments 

   <function> //First logical argument 

    <name> //Unary function name, e.g. isLessThan (<) 

    <value>  //Unary function threshold, e.g. 0.5 means “< 0.5” 

   … 

 … 

 

Level 2d (paired data for a given VU) [only when defined]: 

 

<paired_data>  //Start of paired data specification 

 <paired_data_location> //Path to paired data 

 <eliminate_duplicates> //Is true to eliminate pairs with the same valid/lead times 

 <write_conditional_pairs> //Is true to write the conditional pairs 

 <paired_write_precision> //Integer number of decimal places for writing pairs > 0 

 <strip_nulls_from_paired_file> //Is true to not write null member values 

 … 

 

Level 2e (verification metrics for a given VU): 

 

<metrics>  //Set of n possible metrics to compute 

 <metric> //First of n metrics 

  <name> //Name of metric 
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  Storage of parameters follows: varies by metric 

 … 

 

Level 3 (aggregation unit, AU) [only when defined]: 

 

<aggregation_unit>  //Aggregation unit 

 <name> //The aggregation unit name 

 <unit_id> //First of n possible VU identifiers associated with the aggregation unit 

 … 

 <weights> //Weights to assign to each of the n units identified above [sum to 1] 

 <output_data_location> //Path to where output data should be written for the AU 

 <pool_pairs> //Is true to pool pairs from the VUs rather than average metrics 

 

An example of a full EVS project file is given below: 

 

<?xml version="1.0" standalone="yes"?> 
<verification> 
<verification_unit> 
 <identifiers> 
  <location_id>NFDC1</location_id> 
  <environmental_variable_id>Streamflow</environmental_variable_id> 
  <additional_id></additional_id> 
 </identifiers> 
 <input_data> 
  <forecast_data_location>       
   <file>D:\HEP_projects\Test_data\NFDC1_flow\GFS_mean_hindcasts</file> 
  </forecast_data_location> 

<observed_data_location>D:\HEP_projects\Ensemble_verification\Test_data\NFDC1_flow\nfdc1
_cms.qme</observed_data_location> 

  <forecast_time_system>UTC - 12 hours</forecast_time_system> 
  <observed_time_system>UTC - 12 hours</observed_time_system> 
  <forecast_support> 
   <statistic>INSTANTANEOUS</statistic> 
   <existing_attribute_units>METER CUBED/SECOND</existing_attribute_units> 
   <notes></notes> 
  </forecast_support> 
  <observed_support> 
   <statistic>MEAN</statistic> 
   <period>24.0</period> 
   <period_units>HOUR</period_units> 
   <attribute_units>METER CUBED/SECOND</attribute_units> 
   <notes></notes> 
  </observed_support> 
 </input_data> 
 <verification_window> 
  <start_date> 
   <year>1976</year> 
   <month>0</month> 
   <day>1</day> 
  </start_date> 
  <end_date> 
   <year>1996</year> 
   <month>11</month> 
   <day>31</day> 
  </end_date> 
  <forecast_lead_period>14</forecast_lead_period> 
  <forecast_lead_units>DAY</forecast_lead_units> 
  <aggregation_lead_period>24</aggregation_lead_period> 
  <aggregation_lead_units>HOUR</aggregation_lead_units> 
  <aggregation_function>MEAN</aggregation_function> 
  <sample_size_constraint>0.0</sample_size_constraint> 
 </verification_window> 

<output_data_location>D:\HEP_papers\EVS_paper\EVS_projects\Results</output_data_location> 
 <paired_data>  
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<paired_data_location>D:\HEP_papers\NFDC1_Streamflow_pairs.xml</paired_data_location> 
<eliminate_duplicates>true</eliminate_duplicates> 
<write_conditional_pairs>true</write_conditional_pairs> 
<paired_write_precision>5</paired_write_precision> 
<strip_nulls_from_paired_file>true</strip_nulls_from_paired_file> 

</paired_data> 
 <metrics> 
  <metric> 
   <name>BrierScore</name> 
   <probability_array_parameter>0.9, 0.95, 0.99</probability_array_parameter> 
   <threshold_condition>isGreater</threshold_condition> 
   <decompose_parameter>false</decompose_parameter> 
   <forecast_type_parameter>regular</forecast_type_parameter> 
   <unconditional_parameter>false</unconditional_parameter> 
  </metric> 
  <metric> 
   <name>Correlation</name> 
   <probability_array_parameter>-Infinity,0.9, 0.95, 0.99</probability_array_parameter> 
   <threshold_condition>isGreater</threshold_condition> 
   <forecast_type_parameter>regular</forecast_type_parameter> 
   <unconditional_parameter>false</unconditional_parameter> 
   <vector_function_parameter>MEAN</vector_function_parameter> 
  </metric> 
  <metric> 
   <name>MeanAbsoluteError</name> 
   <probability_array_parameter>-Infinity,0.9, 0.95, 0.99</probability_array_parameter> 
   <threshold_condition>isGreater</threshold_condition> 
   <forecast_type_parameter>regular</forecast_type_parameter> 
   <unconditional_parameter>false</unconditional_parameter> 
   <vector_function_parameter>MEAN</vector_function_parameter> 
  </metric> 
  <metric> 
   <name>MeanCaptureRateDiagram</name> 
   <probability_array_parameter>-Infinity,0.9, 0.95, 0.99</probability_array_parameter> 
   <threshold_condition>isGreater</threshold_condition> 
   <mcr_points_parameter>100</mcr_points_parameter> 
   <forecast_type_parameter>regular</forecast_type_parameter> 
   <unconditional_parameter>false</unconditional_parameter> 
  </metric> 
  <metric> 
   <name>MeanContRankProbScore</name> 
   <probability_array_parameter>-Infinity,0.9, 0.95, 0.99</probability_array_parameter> 
   <threshold_condition>isGreater</threshold_condition> 
   <decompose_parameter>false</decompose_parameter> 
   <forecast_type_parameter>regular</forecast_type_parameter> 
   <unconditional_parameter>false</unconditional_parameter> 
  </metric> 
  <metric> 
   <name>MeanError</name> 
   <probability_array_parameter>-Infinity,0.9, 0.95, 0.99</probability_array_parameter> 
   <threshold_condition>isGreater</threshold_condition> 
   <forecast_type_parameter>regular</forecast_type_parameter> 
   <unconditional_parameter>false</unconditional_parameter> 
   <vector_function_parameter>MEAN</vector_function_parameter> 
  </metric> 
  <metric> 
   <name>MeanErrorOfProbabilityDiagram</name> 
   <probability_array_parameter>-Infinity</probability_array_parameter> 
   <threshold_condition>isGreater</threshold_condition> 
   <mep_points_parameter>100</mep_points_parameter> 
   <forecast_type_parameter>regular</forecast_type_parameter> 
   <unconditional_parameter>false</unconditional_parameter> 
  </metric> 
  <metric> 
   <name>ModifiedBoxPlotUnpooledByLeadObs</name> 
   <box_unpooled_obs_points_parameter>10</box_unpooled_obs_points_parameter> 
   <forecast_type_parameter>regular</forecast_type_parameter> 
   <unconditional_parameter>false</unconditional_parameter> 
  </metric> 
  <metric> 
   <name>ModifiedBoxPlotPooledByLead</name>    
   <box_pooled_lead_points_parameter>10</box_pooled_lead_points_parameter> 
   <forecast_type_parameter>regular</forecast_type_parameter> 
   <unconditional_parameter>false</unconditional_parameter> 
  </metric> 
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  <metric> 
   <name>RelativeOperatingCharacteristic</name> 
   <probability_array_parameter>0.9, 0.95, 0.99</probability_array_parameter> 
   <threshold_condition>isGreater</threshold_condition> 
   <roc_points_parameter>10</roc_points_parameter> 
   <forecast_type_parameter>regular</forecast_type_parameter> 
   <unconditional_parameter>false</unconditional_parameter> 
  </metric> 
  <metric> 
   <name>ROCScore</name> 
   <probability_array_parameter>0.9, 0.95, 0.99</probability_array_parameter> 
   <threshold_condition>isGreater</threshold_condition> 
   <roc_score_points_parameter>10</roc_score_points_parameter> 
   <forecast_type_parameter>regular</forecast_type_parameter> 
   <unconditional_parameter>false</unconditional_parameter> 
  </metric> 
  <metric> 
   <name>ReliabilityDiagram</name> 
   <probability_array_parameter>0.9, 0.95, 0.99</probability_array_parameter> 
   <threshold_condition>isGreater</threshold_condition> 
   <forecast_type_parameter>regular</forecast_type_parameter> 
   <unconditional_parameter>false</unconditional_parameter> 
   <equal_samples_parameter>false</equal_samples_parameter> 
   <reliability_points_parameter>5</reliability_points_parameter> 
  </metric> 
  <metric> 
   <name>RootMeanSquaredError</name> 
   <probability_array_parameter>-Infinity,0.9, 0.95, 0.99</probability_array_parameter> 
   <threshold_condition>isGreater</threshold_condition> 
   <forecast_type_parameter>regular</forecast_type_parameter> 
   <unconditional_parameter>false</unconditional_parameter> 
   <vector_function_parameter>MEAN</vector_function_parameter> 
  </metric> 
  <metric> 
   <name>SampleSize</name> 
   <probability_array_parameter>-Infinity,0.9, 0.95, 0.99</probability_array_parameter> 
   <threshold_condition>isGreater</threshold_condition> 
   <forecast_type_parameter>regular</forecast_type_parameter> 
   <unconditional_parameter>false</unconditional_parameter> 
  </metric> 
  <metric> 
   <name>SpreadBiasDiagram</name> 
   <probability_array_parameter>-Infinity, 0.9, 0.95, 0.99</probability_array_parameter> 
   <threshold_condition>isGreater</threshold_condition> 
   <spread_bias_points_parameter>10</spread_bias_points_parameter> 
   <forecast_type_parameter>regular</forecast_type_parameter> 
   <unconditional_parameter>false</unconditional_parameter> 
   <central_spread_bias_parameter>false</central_spread_bias_parameter> 
  </metric> 
 </metrics> 
</verification_unit> 
</verification> 

 

Paired data files 

 

A paired data file stores the pairs of forecasts and observations for a single VU in 

XML format. The file name corresponds to the VU identifier with a _pairs.xml 

extension.  

 

Each pair comprises one or more forecasts and one observation, and is stored under 

a <pr> tag. Each pair has a readable date in Coordinated Universal Time (UTC or 

GMT), a lead time in hours (<ld_h>), an observation (<ob>), one or more forecast 

values (<fc>), and an internal time in hours (<in_h>) used by EVS to read the pairs 
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(in preference to the UTC date). The internal time is incremented in hours from the 

forecast start time (represented in internal hours) to the end of the forecast time 

horizon. When multiple forecasts are present, each forecast represents an ensemble 

member, and each ensemble member is listed in trace-order, from the first trace to 

the last. An example of the first few lines of a pair within a paired file is given below: 

 

<pairs> //Denotes start of paired data 

<pair_count>448<pair_count>  //Total number of pairs on file 

<pr>  //First pair 

<dt> //Date tag 

<y>2005</y> //Year 

<m>11</m> //Month 

<d>31</d> //Day 

<h>18</h> //Hour 

</dt> //End of date tag 

<ld_h>6.0</ld_h> //Lead time in hours 

<ob>150.625</ob> //Observed value 

<fc> //Forecast values: in this case 49 ensemble members 
157.31567,157.31598,157.31627,157.3342,157.3148, 
157.31598,157.31509,157.31509,157.31572,157.31567, 
157.31538,157.31598,157.31598,157.3148,157.31627, 
157.31393,157.31567,157.31598,157.31595, 
157.31627,157.32852,157.31569,157.3148,157.34517, 
157.34586,157.34148,157.31664,157.31538, 
157.31509,157.31644,157.31509,157.31567, 
157.31639,157.31598,157.31598,157.31627, 
157.31598,157.31567,157.3161,157.31538,157.34439, 
157.3148,157.31627,157.3148,157.31598,157.31598, 
157.31657,157.3156,157.31567 

</fc> 

<in_h>315570</in_h> //Internal hour incremented from start time 

</pr>  //End of first pair tag 

… 

… 

 

</pairs> //Denotes end of paired data 

 

Product files 

 

Product files include the numerical and graphical results associated with verification 

metrics.  

 

Numerical results are written in XML format. One file is written for each metric. The 

file name comprises the unique identifier of the VU or AU, together with the metric 

name (e.g. Aggregation_unit_1.Modified_box_plot.xml). Some metrics, 

such as reliability diagrams, have results for specific thresholds (e.g. probability 
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thresholds). In that case, the results are stored by lead time and then by threshold 

value. The actual data associated with a result always appears within a 'values' tag. 

A metric result that comprises a single value will appear as a single value in this tag. 

A metric result that comprises a 1D matrix will appear as a row of values separated 

by commas in the input order. A metric result that comprises a 2D matrix will appear 

as a sequence of rows, each with a <values> tag, which are written in the input order. 

For example, a diagram metric with an x and y axis will comprise two rows of data 

(i.e. two rows within two separate <values> tags). The default input order would be 

data for the x axis followed by data for the y axis. Data that refer to cumulative 

probabilities are, by default, always defined in increasing size of probability. If 

available, sample counts are given in the last <values> tag. Sample counts are also 

printed out in a separate XML file for each threshold used in the ROC, Reliability and 

Brier Score metrics (thresholds are compulsory for these metrics). This information is 

written to a file with the VU identifier, metric name and a _metadata.xml 

extension. 

 

An example of the first few lines of a numerical result file for one metric, namely the 

‘modified box plot’, is given below: 

 

<results>   //Denotes start of the results data 

<meta_data>  //Tag for metadata on the results 

 
//Next tag indicates that results are not available for separate 
thresholds of the observed variable 
 
<thresholds_type>false</thresholds_type>  
<original_file_id>Aggregation_unit_1.Modified_box_pl

ot.xml</original_file_id > //Original file 

</meta_data> //End of metadata  

<result> //First of n possible results 

<lead_hour>6</lead_hour>  //Result applies to lead hour 6 

 <data> //Start of data 

  <values>0.0,0.1,…</values> //Probs. drawn in box diagram 

<values>-1102,-233.5,…</values> //Real values of probs. 

… 

… 
 

</data> //End of data 

</result> //End of first result 

… 

… 
 
</results>   //Denotes end of the results data 
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