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Abstract—Simulations of large distributed systems, such as 
infrastructure clouds, usually entail a large space of 
parameters and responses that prove impractical to explore. 
To reduce the space of inputs, experimenters, guided by 
domain knowledge and ad hoc methods, typically select a 
subset of parameters and values to simulate. Similarly, 
experimenters typically use ad hoc methods to reduce the 
number of responses to analyze. Such ad hoc methods can 
result in experiment designs that miss significant parameter 
combinations and important responses, or that overweight 
selected parameters and responses. When this occurs, the 
experiment results and subsequent analyses can be misleading. 
In this paper, we apply an efficient sensitivity analysis method 
to demonstrate how relevant parameter combinations and 
behaviors can be identified for an infrastructure Cloud 
simulator that is intended to compare resource allocation 
algorithms. Researchers can use the techniques we 
demonstrate here to design experiments for large Cloud 
simulations, leading to improved quality in derived research 
results and findings.   

Keywords- cloud computing;modeling; resource allocation; 
sensitivity analysis; simulation 

I.  INTRODUCTION 
Paxson and Floyd [1] describe many difficult problems 

that impede simulation of large data communication 
networks, which typically require hundreds of parameters 
that can each take on millions of values and that can also 
record hundreds of response variables, which might 
represent aspects of fewer significant underlying model 
behaviors. The same can be said for most simulations of 
large distributed systems, such as computational grids and 
clouds. In this paper, we demonstrate an efficient sensitivity 
analysis method that can be used to identify the most 
significant parameters influencing model behavior. This 
allows experimenters to explore a reduced set of parameter 
combinations by varying those parameters that contribute 
most to differences in model response. Our sensitivity 
analysis method also combines correlation analysis and 
clustering to identify significant model behaviors. We apply 
our method to Koala, an infrastructure Cloud simulator 
intended to investigate a range of heuristic algorithms for 
allocating virtual machines (VMs) to platforms. We 
previously applied our method to a network simulator 
intended to compare proposed congestion control algorithms 
for the Internet [2]. Application to both Internet and Cloud 

models shows that our method is generally applicable to 
experiments involving simulations of large distributed 
systems. 

Using Koala simulations as an example, Fig. 1 locates 
our sensitivity analysis method within the larger context of 
parameter reduction techniques we adopt. Koala begins as a 
model with 82 parameters, which, assuming each parameter 
can take on 232 values, defines a parameter space larger than 
atoms in the visible universe. An experimenter then groups 
parameters that appear to represent different aspects of a 
single input, reducing the parameter space by 59. For 
example, Koala’s 21 user types can be condensed to form a 
single distribution of user types, reducing the parameter 
space by 20. Then, using domain knowledge, an 
experimenter identifies parameters that do not appear 
germane to the intended investigation, replacing 12 more 
parameters with fixed values. For example, adopting 
assumptions that all users are similarly persistent, allows us 
to fix average values for four user parameters. Using such 
model reduction techniques, an experimenter reduced the 
Koala parameter space to about 10105, still too large to 
compute feasibly. 
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Figure 1. Sensitivity Analysis in the Context of Parameter Reduction 
 

At this stage, our sensitivity analysis method begins. 
First, an experimenter selects only two values for each of the 
remaining 11 Koala parameters. Restricting parameters to 
only two values has obvious limitations: only a small number 
of parameter values are explored and extrapolating from the 
results assumes a model behaves monotonically in the range 
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between chosen values. On the other hand, adopting a two-
level design provides some advantages [3]: (1) requires few 
runs per parameter, (2) facilitates interpretation of response 
data, (3) identifies promising directions for future 
experiments (and may be augmented with thorough local 
explorations), (4) fits naturally into a sequential strategy, 
which supports the scientific method and (5) forms the basis 
for further reduction in parameter combinations through use 
of fractional factorial designs (as demonstrated by the last 
step in Fig. 1). As we show later, an experimenter can select 
a handful of different two-value settings, which increases the 
range of robustness of conclusions associated with the 
simulation results. In addition, stochastic repetitions of two-
value parameter combinations can be simulated efficiently.  

The next step in our sensitivity analysis method applies 
experiment design theory [3] to select a balanced and 
orthogonal subset of the 211 parameter combinations, which 
allows us to explore the search space in a principled fashion, 
as opposed to the ad hoc factor-at-a-time approaches [4] 
typically adopted by experimenters. Below, we explain the 
benefits of using orthogonal fractional factorial experiment 
designs. In the end, we identify a subset of (211-5 =) 64 
parameter combinations to simulate. Below, we also 
demonstrate techniques that enable us to reduce 40 model 
responses, selected by experimenters, to as few as eight 
behavioral dimensions. This enables us to compress 32 
redundant responses.  

The remainder of this paper is organized as follows. In 
Sec. II, we describe our model and identify the parameters 
varied in our sensitivity analysis. In Sec. III, we describe our 
experiment design, aimed to identify significant model 
behaviors and the parameters that influence those behaviors. 
Later experiments will greatly benefit from these findings 
because we will understand what parameters to vary and 
what behaviors to measure when comparing a wide range of 
resource allocation algorithms. In Sec. IV we present our 
experiment results and related analysis methods. In Sec. V, 
we discuss our findings that Koala exhibits eight significant 
behaviors that are influenced mainly by six parameters. We 
also outline the implications of our findings for subsequent 
experiments intended to evaluate resource allocation 
heuristics. In Sec. VI, we describe related work and discuss 
how our methods may be applicable to other Cloud 
simulators and experiments. We close in Sec. VII with our 
conclusions and future work. 

II. MODEL 
We demonstrate our approach using Koala, a discrete-

event simulator inspired by the Amazon Elastic Compute 
Cloud (EC2) [5]. Using published information describing the 
EC2 application programming interface (API) [6] and 
available virtual machine (VM) types [7], Koala models 
essential features of the interface between users and EC2. 
Since we intended to study resource allocation algorithms, 
Koala needed to model only four EC2 commands: 
RunInstances, DescribeInstances, Reboot Instances and 
TerminateInstances. On the other hand, no public 
information was available about the internal structure and 
operation of EC2. Lacking such details, the internal structure 

of Koala is based instead on the Eucalyptus (v1.6) open-
source Cloud software [8]. Specifically, Koala models three 
Eucalyptus components: cloud controller, cluster controller 
and node controller. As in Eucalyptus, Koala’s simulated 
cloud, cluster and node controllers communicate using Web 
Services [9], which are also simulated. In constructing Kola, 
we modified the design of Eucalyptus in three ways. First, 
we extended the Eucalyptus RunInstances command to allow 
multiple VM types within a single request, which we 
inferred is possible in EC2. Second, we avoided 
centralization of node information at the cloud controller, 
permitting Koala to simulate clouds up to O(105) nodes. 
Third, we allowed resource allocation to proceed partially in 
parallel (serializing only the commitment phase), which 
prevents long queuing delays during periods of intense user 
requests. In lieu of simulating details of a hypervisor and 
guest VMs, we added an optional sub-model based on 
analytical equations representing VM behavior with or 
without tasks. 

Koala is organized as five layers (see Fig. 2): (1) demand 
layer, (2) supply layer, (3) resource allocation layer, (4) 
Internet/Intranet layer and (5) VM behavior layer. We 
describe each layer in turn, omitting the VM behavior layer, 
which is not used in the experiments discussed here. We 
denote experiment input parameters using designators x1 to 
x11 (see Table IV) and outputs as y1 to y40 (see Table V). 
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Figure 2. Schematic of Koala organization 

A. Demand Layer 
The demand layer consists of a variable number (x2) of 

users who, after a random startup delay, each perform 
cyclically over a simulation run. During each cycle a user 
requests a minimum and maximum number of instances of 
one or more of the VM types shown in Table I. The VM 
types and quantities a user selects depend upon the user’s 
type (see Table II), which is selected on each cycle with 
some probability (x3). After selecting a type, a user 
randomly chooses a minimum (uniform 1 to a max-min) and 
maximum (uniform max-min to a max-max) number of 
instances to request for each associated VM type. The user 
then issues a corresponding RunInstances request to the 
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User 
Type 

VM 
Type(s) 

Max-
Min 
VMs 

Max-
Max 
VMs 

User 
Type 

VM 
Type(s) 

Max-
Min 
VMs 

Max-
Max 
VMs 

PU1 

M1 small 

10 100 PS1 C1 
medium 

3 10
PS2 10 50 

PU3 100 500 PS3 50 100 

PU5 500 1000 WS1 
M1 large 
M2 xlarge 
C1 xlarge 

1 3 

PU2 

M1 large 

10 100 WS2 
M1 large 
M2 xlarge 
C1 xlarge 

3 9 

PU4 100 500 WS3 
M1 large 
M2 xlarge 
C1 xlarge 

9 12 

PU6 500 1000 DS1 
M4 xlarge 

10 100 
MS1 M1 xlarge 10 100 DS2 100 500 
MS3 M1 xlarge 100 500 DS3 500 1000 

 

cloud controller, which may respond with an allocation of 
instances between the minimum and maximum for each 
requested VM type or with a NERA (not enough resources 
available) fault. A full grant denotes that a user was allocated 
the maximum requested instances of each VM type. A 
partial grant denotes that allocated VMs were below the 
maximum requested. If given VM instances, the user selects 
a holding time, Pareto distributed with variables specified by 
parameter (x4). During the holding period, the user will first 
issue DescribeInstances requests to determine when all 
instances are running, and will subsequently randomly 
reboot, terminate and describe running instances. At the end 
of the holding period, the user will issue a 
TerminateInstances request to stop any running instances. 
After terminating all instances, the user will wait an 
exponentially distributed time (mean 30 minutes) and then 
start a new cycle. 

Since we believed differences in user persistence were 
not germane directly to the study of resource allocation 
algorithms, we assigned fixed means for each stochastic 
distribution controlling related behaviors. If a user receives a 
NERA instead of being allocated instances, then the user 
waits an exponentially distributed time (mean 15 minutes) 
before retrying the request. A user will retry a failed request 
over a random period (mean 4 hours) before resting for a 
random period (mean 16 hours). If a user request cannot be 
honored within a random number of rest periods (mean 4), 
then the user abandons the request and starts a new cycle.  

 
TABLE I. Description of VM types simulated in Koala 

 
 
 

 
 
 
 
 
 
 
TABLE II. Description of selected simulated user types: processing users 
(PU), distributed modeling and simulation (MS) users, peer-to-peer (PS) 
users, Web service (WS) users, and data search (DS) users 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. Supply Layer 
The supply layer consists of a variable number (x5) of 

clusters that each manages a variable number (x6) of nodes. 

When visiting an Amazon EC2 data center, we noticed the 
supply of nodes was composed of a limited number of 
platform configurations. This observation motivated us to 
define a fixed set of possible platform configurations for 
nodes. Upon creation, each node manifests, with some 
probability (x7), one of the configurations shown in Table 
III. Nodes retain their established configurations for the 
duration of a simulation run. For an instance to be allocated 
to a node, available resources on the node must be sufficient 
for the requirements specified by the instance’s VM type. 
 
TABLE III. Description of selected platform types simulated in Koala 
 
 
 
 
 
 
 
 
 
 
 
 
 

C. Resource Allocation Layer 
Koala patterns resource allocation after Eucalyptus 

procedures, which involve two decisions: (1) on which 
cluster should the requested VMs be allocated and (2) on 
which nodes within the cluster should VMs be allocated. 
Allocating all VMs in a single request to the same cluster 
makes good sense because inter-VM communications would 
be local to a single cluster. We included a few resource 
allocation algorithms in our sensitivity analysis simply to 
obtain an early indication of their potential influence on 
cloud behavior. We chose to simulate the resource allocation 
algorithms implemented by Eucalyptus.  

At the cluster level, Eucalyptus allocates VMs to nodes 
using one of two algorithms: (1) first-fit or (2) next-fit. First-
fit simply searches the nodes by identifier from first to last 
until a node is found that can accommodate a given VM 
type. Next-fit remembers which node last received a VM and 
begins its search from the next node identifier. If the selected 
node cannot accommodate the VM, then the node controller 
reallocates the VM to the next node on the list. This process 
continues until the VM is created or until all nodes have been 
exhausted. If no nodes can create the VM, then the cloud 
controller receives a NERA fault. 

At the cloud level, Eucalyptus can accommodate a choice 
of algorithms to select a cluster to which to assign all VMs in 
a request, but only one algorithm is implemented. The 
implemented algorithm, called least-full-first, polls the 
clusters to find out which can accommodate the VMs 
requested and then orders the list from the least to most full 
(we ordered ties by increasing cluster identifier). Then the 
cloud controller selects the first cluster from the list and asks 
that the VMs be created. If the VMs are created successfully, 
then the cloud controller returns the positive result to the 
appropriate user; otherwise, the cloud controller reallocates 
the VMs to the next cluster on the list. This process 
continues until VMs are created or until all clusters have 

 

VM Type 

Virtual 
Cores 

Virtual Block 
Devices # Virtual 

Network 
Interfaces 

Memory 
(GB) 

Instruct. 
Arch. # Speed 

(GHz) # Size (GB) 
of Each 

M1 small 1 1.7 1 160 1 2 32-bit 
M1 large 2 2 2 420 2 8 64-bit 
M1 xlarge 4 2 4 420 2 16 64-bit 
C1 medium 2 2.4 1 340 1 2 32-bit 
C1 xlarge 8 2.4 4 420 2 8 64-bit 
M2 xlarge 8 3 1 840 2 32 64-bit 
M4 xlarge 8 3 2 850 2 64 64-bit 

Platform
Type 

Physical 
Cores Memory

(GB) 

# Physical Disks by Size # 
Network 

Interfaces
Instruct.

Arch. # Speed
(GHz) 

250 
GB 

500 
GB 

750 
GB 

1000 
GB 

C2 1 1.7 16 3 0 0 0 1 32-bit 
C4 1 2 16 3 0 0 0 1 32-bit 
C6 2 2.4 16 0 3 0 0 1 32-bit 
C8 2 2.4 32 0 3 0 0 1 64-bit 
C10 4 2.4 32 0 4 0 3 1 64-bit 
C12 4 2 64 0 4 0 3 2 64-bit 
C14 4 3 64 0 4 0 3 2 64-bit 
C16 8 3 64 0 0 4 3 2 64-bit 
C18 8 3 128 0 0 4 3 4 64-bit 
C20 16 3 128 0 0 0 7 4 64-bit 
C22 16 3 256 0 0 0 7 4 64-bit 
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Category ID Response Name (Definition) 

User-Level 
Responses

y1 User Request Rate (Requests by All Users / # User Cycles)
y2 NERA Rate (NERAs / Requests by All Users) 
y3 Full Grant Rate (Full Grants / (Full Grants + Partial Grants))
y4 User Arrival Rate (# User Cycles / Simulated Hours) 
y5 User Give-up Rate (# Users that Gave Up / # User Cycles)
y6 Grant Latency (Weighted Avg. Delay in Granting VMs to Users that Got VMs)

Cloud-
Level 

Responses

y7 Reallocation Rate (# Times Alternate Cluster Chosen / Requests Granted)
y8 Full Grant Proportion (Avg. Fraction Clusters Offering Full Grants)
y9 NERA Proportion (Avg. Fraction Clusters Reporting NERA)
y10 vCore Utilization (Avg. Fraction of Virtual Cores Used in Cloud) 
y11 Memory Utilization (Avg. Fraction of Memory in Use in Cloud)
y12 Disk Space Utilization (Avg. Fraction of Disk Space in Use in Cloud)
y13 pCore Load (Avg. Virtual Cores Allocated / Physical Cores in Cloud)
y14 Disk Count Load (Avg. Virtual Disks Allocated / Physical Disks in Cloud) 
y15 NIC Count Load (Avg. Virtual NICs Allocated / Physical NICs in Cloud)

Cluster-
Level 

Responses

y16 vCore Util. Var. (Avg. Variance in vCore Utilization across Clusters)
y17 Memory Util. Var. (Avg. Variance in Memory Utilization across Clusters)
y18 Disk Space Util. Var. (Avg. Variance in Disk Space Utilization across Clusters) 
y19 pCore Load Var. (Avg. Variance in pCore Load across Clusters)
y20 Disk Count Var. (Avg. Variance in Disk Count Load across Clusters) 
y21 NIC Count Var. (Avg. Variance in NIC Count Load across Clusters)
y22 Node Reallocation Rate (# Times Alternate Node Chosen / VMs Allocated)
y23 Cluster NERA Rate (# NERAs / # Responses Avg. across Clusters)
y24 Cluster Full-Grant Rate (# Full Grants / # Responses Avg. across Clusters)
y25 Allocation Rate (Times Cluster chosen / Cluster offered Avg. across Clusters)
y26 SD-NERA (Stand. Dev. in Avg. NERA Rate across Clusters)
y27 SD-Full-Grant (Stand. Dev. in Avg. Full-Grant Rate across Clusters) 
y28 SD-Allocation-Rate (Stand. Dev. in Allocation Rate across Clusters)

VM-Level 
Responses

y29 Current Instances (Avg. # VM Instances Extant in Cloud)
y30 M1small Instances (Fraction of Current Instances that are M1 small VMs)
y31 M1large Instances (Fraction of Current Instances that are M1 large VMs)
y32 M1xlarge Instances (Fraction of Current Instances that are M1 xlarge VMs) 
y33 C1medium Instances (Fraction of Current Instances that are C1 medium VMs)
y34 C1xlarge Instances (Fraction of Current Instances that are C1 xlarge VMs)
y35 M2xlarge Instances (Fraction of Current Instances that are M2 xlarge VMs) 
y36 M4xlarge Instances (Fraction of Current Instances that are M4 xlarge VMs)

Message-
Level 

Responses

y37 WS Message Rate (Avg. # WS Messages Send Per Simulated Hour)
y38 Intra-Site Messages (# WS Messages Sent with Sites / # WS Messages Sent)  
y39 Inter-Site Loss Rate (Avg. Fraction of Inter-Site WS Messages Undelivered)
y40 Intra-Site Loss Rate (Avg. Fraction of Intra-Site WS Messages Undelivered)

 

been exhausted. If no clusters can create the VMs, then the 
user receives a NERA fault. In order to have a second cloud-
level resource allocation algorithm to use in our sensitivity 
analysis, we implemented an alternate ordering of clusters 
based on percent allocated, i.e., the cloud orders clusters by 
decreasing proportion of the requested VMs that can be 
allocated (we still order ties by increasing cluster identifier). 
For a given simulation, one parameter (x8) specifies a cloud-
level allocation algorithm to use and another parameter (x9) 
specifies a cluster-level algorithm. 

D. Internet/Intranet Layer 
Koala assigns the cloud controller, cluster controllers and 

users to sites (1000 here) randomly located at x,y coordinates 
on a grid (8000x8000 miles here, which spans a distance 
consistent with the globe). (While unrealistic, random 
geographic layout makes a reasonable starting point.) Before 
a simulation commences, cloud and cluster controllers are 
randomly placed on some number (x10) of sites. Node 
controllers are placed on the same site as the related cluster 
controller. At the beginning of each user cycle, a user is 
assigned randomly to one of the sites not occupied by cloud 
components. This arrangement divides message 
communications into two categories: (1) inter-site (Internet) 
and (2) intra-site (Intranet). Koala components communicate 
through simulated Web Services (WS) messages, which each 
comprise a uniformly distributed number (1 to 10 here, 
which covers a reasonable range) of packets. Individual 
packets are subjected to transmission delay (1 Gigabits per 
second rate here, which is reasonable for intra-site 
communications and is somewhat optimistic for inter-site 
communications) and propagation delay. For inter-site 
messages, propagation delay depends on distance and 
simulated router hops, while propagation delay within sites 
varies randomly (mean 250 nanoseconds here, which is 
reasonable within a site). Individual packets are also 
subjected to a loss rate (10-12 here for intra-site packets, 
which are rarely lost in practice). To simulate Internet 
congestion, the loss rate for inter-site packets varies 
uniformly within a range (x11). Lost packets are 
retransmitted, but only for a maximum number (3 here, 
which seems to be a reasonable threshold) of attempts, after 
which the related WS message is declared undeliverable. 

III. EXPERIMENT DESIGN 
We designed a series of sensitivity analysis experiments 

to identify the most significant parameters driving the 
behavior of Koala. Our experiments covered (see Table IV) 
the ten parameters (x2 to x11) discussed above and one 
additional parameter (x1) specifying the number of simulated 
hours. This additional parameter allowed us to investigate 
the influence of beginning simulations in an empty state. We 
assessed the effect of these 11 parameters on 40 responses 
(see Table V), which were selected to obtain a wide view of 
system dynamics, and which were thought not to be 
redundant. As explained below in Sec. IV, our analysis 
methods enabled us to distinguish a lower dimensional 
response space embedded within these 40 responses. 

We adopted a 2-level experiment design for our 
sensitivity analysis. This means we selected two values for 
each of the 11 parameters. Because we could not afford to 
run a full factorial design (i.e., 211 = 2048 simulations), we 
chose to adopt a 2IV

11-5 orthogonal fractional factorial (OFF) 
experiment design [3]. An orthogonal fractional factorial 
design entails running a subset (n) of the 2048 experiments, 
while maintaining a balanced (n/2 runs at each level) and 
orthogonal (n/4 runs at each possible pair of levels) 
distribution of parameter configurations. Design resolution 
defines the degree of confounding that may occur from 
running a subset of experiments; higher resolution means 
less confounding. Resolution IV designs eliminate 
confounding among single parameters or between single 
parameters and 2-parameter interactions. 

 
TABLE IV. Koala input parameters selected for sensitivity analysis 

 
Category ID Parameter Name 
Duration x1 Simulation duration in hours 

Demand Layer
x2 Number of users 
x3 Probability of user’s type 
x4 Average (and shape of) user holding time

Supply 
Layer 

x5 Number of clusters 
x6 Number of nodes per cluster 
x7 Probability of platform configuration type

Resource 
Control Layer 

x8 Algorithm for selecting cluster 
x9 Algorithm for selecting node 

Internet/ 
Intranet Layer 

x10 Number of sites for cloud components 
x11 Probability range of packet losses 

 
 

Table V. Koala responses selected for sensitivity analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The 2IV

11-5 design required us to run only 64 simulations 
(n = 211-5). Since a 2-level design considers only two values 
for each parameter, we chose to increase the robustness of 
our conclusions by creating two designs, which we designate 
SA1-small and SA2-small (see Table VI). Where possible, 
SA2-small increases the distance between the parameter 
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values used in SA1-small. Since SA1-small and SA2-small 
simulate relatively small Cloud configurations (250 to 
12,000 nodes), we were able to run six repetitions of each of 
the 64 parameter combinations for each of the two designs, 
giving a total of (2 x 64 x 6 =) 768 simulations. Running 
repetitions with different random number seeds increased our 
confidence in the results.  

We also constructed two designs, which we designate 
SA1-large and SA2-large, to expand the size of the simulated 
Cloud (2500 to 60,000 nodes) and to multiply tenfold the 
simulated user population. We took this step to investigate 
whether any conclusions changed with increasing Cloud 
size. Due to the time required, we were able to simulate only 
64 parameter combinations each for SA1-large and SA2-
large (raising the total number of simulations to 896). Table 
VI defines the parameter values chosen for all four 
experiment designs. 
 
Table VI. Parameter settings for sensitivity analysis experiments SA1-small, 
SA1-large, SA2-small and SA2-large 
 

 SA1-small and SA1-large SA2-small and SA2-large 
Parameter Plus Level Minus Level Plus Level Minus Level

x1 1200 hours 600 hours 1600 hours 200 hours

x2 500 (SA1-small) 
5000 (SA1-large) 

250 (SA1-small) 
2500 (SA1-large) 

750 (SA2-small) 
7500 (SA2-large) 

125 (SA2-small) 
1250 (SA2-large) 

x3 

PU1 = 0.2 
PU2 = 0.2 
PU3 = 0.1 
PU4 = 0.1 

WS1 = 0.15 
WS2 = 0.07 
WS3 = 0.03 
PS1 = 0.1 

PS2 = 0.01 
MS1 = 0.1 
MS3 =0.01 
DS1 = 0.10 
DS2 = 0.01 

PU1 = 1/6 
PU2 = 1/6, 
WS1 = 1/6 
MS1 = 1/6 
PS1 = 1/6 
DS1 = 1/6 

PU1 = 0.4 
PU2 = 0.4 
PU3 = 0.1 
PU4 = 0.05 

PU5 = 0.025 
PU6 = 0.025 

WS1 = 0.25 
WS2 = 0.15 
WS3 = 0.1 
PS1 = 0.35 
PS2 = 0.04 
PS3 = 0.01 
DS1 = 0.08 
DS2 = 0.015 
DS3 = 0.005 

x4 8 hours (  = 1.2) 4 hours (  = 1.2) 12 hours (  = 1.2) 2 hours (  = 1.2) 

x5 20 (SA1-small) 
40 (SA1-large) 

10 (SA1-small) 
20 (SA1-large)

30 (SA2-small) 
40 (SA2-large) 

5 (SA2-small) 
10 (SA2-large)

x6 200 (SA1-small) 
1000 (SA1-large) 

100 (SA1-small) 
500 (SA1-large) 

400 (SA2-small) 
1500 (SA2-large) 

50 (SA2-small) 
250 (SA2-large)

x7 C22 = 1.0 

C8 = 0.25 
C14 = 0.25 
C18 = 0.25 
C22 = 0.25 

C14 = 0.2 
C16 = 0.2 
C18 = 0.2 
C20 = 0.2 
C22 = 0.2 

C2 = 0.1 
C4 = 0.1 
C6 = 0.1 
C8 = 0.1 

C10 = 0.1 
C12 = 0.1 
C16 = 0.1 
C22 = 0.3

x8 Percent 
Allocated 

Least-Full First Percent 
Allocated 

Least-Full First 

x9 Next-Fit First-Fit Next-Fit First-Fit
x10 4 1 8 1 
x11 10-3 to 10-8 10-4 to 10-9 10-2 to 10-7 10-5 to 10-10 

 
 

IV. RESULTS 
Each repetition of each experiment generated a 

multivariate dataset consisting of 64 rows (one per parameter 
combination) by 40 columns (one per response). We applied 
two types of analysis to each dataset: (1) correlation and 
clustering analysis (CCA) to identify salient response 
dimensions and (2) main-effects analysis to determine which 
parameters had statistically significant influence on relevant 
responses. CCA [10] allowed us to remove redundancy from 
the 40 responses, creating a lower dimensional response 
space and identifying the main behaviors intrinsic to Koala. 
CCA begins with computation of correlation coefficients (r) 
between each pair of responses. Analysis of a histogram of 
the resulting r values enabled us to identify a threshold (|r| > 
0.65 here) above which to retain correlation pairs. We then 

clustered the retained pairs into mutually correlated groups 
that represent the main response dimensions.  

We conducted CCA separately for the dataset from each 
experiment. We report the results in Table VII, which reveals 
eight response dimensions common to all experiments. (Note 
that some responses cluster into multiple groups.) In four 
cases, which appear as split cells in Table VII, responses that 
clustered together in some experiments did not cluster 
together in others. A response uncorrelated with any others 
appears as a singleton group (as shown in 12 cases in Table 
VII). In general, CCA found similar clustering among all 
experiments.  
 
TABLE VII. Response dimensions identified with correlation analysis and 
clustering in each experiment (response selected to represent dimension is 
highlighted in red and shown in enlarged font) 
 
Response 
Dimension

SA1-small 
(9 dimensions)

SA1-large 
(8 dimensions) 

SA2-small 
(10 dimensions)

SA2-large 
(9 dimensions)

Cloud-wide 
Demand/Supply 
Ratio 

y1, y2, y3, y5, 
y6, y8, y9, y10, 
y13, y23, y24, 
y25, y29, y30, 
y32, y34, y36, 

y38

y1, y2, y3, y5, 
y6, y7, y8, y9, 
y10, y13, y23, 
y34, y25, y29, 
y30, y32, y33, 
y34, y36, y38 

y1, y2, y3, y5, 
y6, y8, y9, y10, 
y11, y13, y14, 
y15, y23, y24, 

y25, y38 

y1, y2, y3, y5, 
y6, y8, y9, 

y23, y24, 
y25, y38 

Cloud-wide 
Resource 
Usage 

y10, y11, y12, 

y13, y14, y15 

y10, y11, y12, 

y13, y14, y15 
y10, y11, y12, 

y13, y14, y15 

y10, y11, 
y12, y13, y14, 

y15 

Variance in 
Cluster Load 

y16, y17, y18, 
y19,y20, y21, 

y26, y27 

y16, y17, y18, 
y19,y20, y21, 

y26, y27 

y16,  y18, y19, 
y20, y21, y26, 

y27 
y16, y17, y18, 

y19,y20, y21, 
y26, y27 y17 (Mem. 

Util)

Mix of VM 
Types 

y34, y35 (WS) y31 (MS) 

y12, y14, y15, 
y30, y31, y33, 

y34, y35, y36 

y14, y15, y30, 

y31, y33, 
y34, y35 

y31 (MS) y15, y36 (DS)
Number of VMs y29, y37 y37 y29, y37 y29
User Arrival 
Rate y4 y4 y4 y4, y37 

Reallocation 
Rate y7, y22 y7, y22 

y7 (cluster) 
y7, y22 y22 (node) 

Variance in 
Choice of 
Cluster 

y28 y28 y28 y28 
 

 
As a next step, we identified one response (highlighted in 

red, enlarged font in Table VII) to represent each dimension. 
We selected the response in a cluster that exhibited highest 
average correlation with other responses and that did not 
belong to any other clusters. (Note that this was not possible 
for the cluster “Cloud-wide resource usage” in SA2-small, so 
we selected y10, which exhibited highest average 
correlation.) 

By considering whether correlations are positive or 
negative, CCA can also be used to determine if Koala yields 
reasonably correct behaviors. Table VIII gives a half-matrix 
showing whether significant (|r| > 0.65) response correlations 
were positive (green P) or negative (red N). Here we use 
correlations from experiment SA1-small, which gave the 
largest number (126) of correlated pairs. As should be 
expected, clusters with positive correlations appear: for 
cloud-wide resource usage (as indicated by the utilization of 
virtual cores, y10, memory, y11, and disk space, y12, and by 
the load on physical cores, y13, physical disks, y14, and 
network interfaces, y15); for variance among clusters in 
these utilizations (y16-y18) and loads (y19-y21); for the 
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number of VMs (y29 and y37); and for the reallocation rate, 
reflecting cases where the cloud controller’s choice of cluster 
cannot accept a set of VMs  (y7) and where a cluster 
controller’s choice of node cannot accept a VM (y22). 
 
TABLE VIII. Correlation half-matrix for 38 responses taken from 
experiment SA1-small – diagonal (black cells) r = 1.0; cells above diagonal 
omitted (mirror of cells below diagonal); colored cells (|r| > 0.65) indicate 
either positive (P – green) or negative (N – red) correlation 
 

 
 

The largest cluster, representing cloud-wide 
demand/supply ratio shows both positive and negative 
correlations. For example, full-grant rate (y3) is inversely 
correlated with user request rate (y1), i.e., fewer requests 
mean more can be fully granted; with NERA rate (y2), i.e., 
more NERA faults imply lower resource availability, leading 
to fewer full grants; with grant latency (y6), i.e., longer 
waiting for VMs coincides with lower resource availability, 
leading to fewer full grants; and so on. Upon inspection these 
inverse correlations appear sensible. Similarly, inverse 
correlations appear among responses (y30-y36) representing 
the mix of VM types. Of note, the proportion of M1small 
instances (y30) is inversely correlated with the proportion of 
M1xlarge (y32) and M4xlarge (y36) instances. And y32 and 
y36 are positively correlated. This makes sense because 
M1xlarge and M4xlarge VMs (recalls Table I) require more 
virtual cores, memory and disk space than M1small 
instances. More resources taken up by large VMs, means that 
fewer small VMs that can be accommodated. 

Next we applied main-effects analysis (MEA) [11] 
separately to each selected response (from Table VII) in each 
experiment dataset, including the repetitions of SA1-small 
and SA2-small. MEA iterates over each selected response, 
which will be represented by 64 data points, one for each 
parameter combination. For each selected response, MEA 
iterates over each of the 11 parameters, dividing the 64 data 
points into two groups of 32: results obtained with the 
parameter at the PLUS level and at the MINUS level. For 
each parameter, we applied a t-test [12] to determine whether 
the averages of the PLUS and MINUS level data points were 
significantly different, and if so at which confidence level: p 
< 0.05 or p < 0.01. For each parameter (x1 to x11), we 
computed the percent of responses influenced (Ψ), weighting 
p < 0.05 at ½ and p < 0.01 at 1, as shown with the following 
equation. 

        Ψ = (|{y | p < 0.01}| + ½ |{y | p < 0.05}| / |{y}|        (1) 
 
Table IX displays the resulting Ψ for each parameter in each 
of the four experiments. The bottom row gives a weighted 
(by relative proportion of experiment repetitions) average Ψ 
for each parameter. 
 
TABLE IX. Percent responses influenced (Ψ) by each parameter in each 
experiment and weighted average Ψ across all experiments (<green> = 
major influence; {yellow} = modest influence; (orange) = minor influence; 
[gray] = no influence) 

Input Parameter
Experiment Weight x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

SA1 small 6/14 [1] <57> {22} (11) <44> {29} {30} (12) [0] [1] [0]
SA1 large 1/14 [0] <69> (13) {25} <44> <56> {31} {25} [0] (13) [0]
SA2 small 6/14 [2] <73> {38} (10) <45> <62> (10) (17) [1] [0] [0]
SA2 large 1/14 [0] <56> <50> (11) {39} <56> [6] (11) [0] [0] [0]

Avg. Ψ Est. [1] <65> {30} (12) <44> <47> {20} (15) [0] [1] [0]  
 
The data used to establish the significance of model 

parameters may also provide insight into model correctness 
by considering the relative effects on responses when 
parameter settings move from the MINUS level to the PLUS 
level. To measure the relative effect for a specific response 
and selected parameter we subtracted the mean response 
when the parameter was at the MINUS level from the mean 
response when the parameter was at the PLUS level and then 
divided that result by the mean response for both levels, 
which yields the percentage change (Δ) in response due to 
changing the parameter level. A positive change means that 
increasing the parameter level increased the response, while 
a negative change means increasing the parameter level 
decreased the response. Table X gives the relative effect, 
averaged over simulation repetitions, that each parameter has 
on eight responses, selected to represent each of the eight 
dimensions shown in Table VII. 

 
TABLE X. Relative effect (Δ) that each parameter  has on eight responses, 
selected to represent each of the eight dimensions shown in Table VII. 
(<green> = Δ > 50; {yellow} = Δ > 30 & Δ < 50; (orange) = Δ > 10 & Δ < 
30; [gray] = Δ < 10) 

Selected
Response

Input Parameter
Dimension x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

Cloud-wide 
Demand/

Supply Ratio
y3 [1] {-38} (-21) [-5] {37} {40} (25) [-2] [1] [5] [-1]

Cloud-wide
Resource 

Usage
y15 [1] (23) <53> [1] (-22) (-18) (19) [-1] [1] [-1] [1]

Variance in 
Cluster Load y26 [0] <-101> (28) [-5] <96> <59> <66> {42} [0] <50> [0]

Mix of VM 
Types y31 [-1] [-9] {43} [-3] [7] [9] [-1] [8] [2] [-4] [0]

Number of 
VMs y37 [-5] {48} (11) (-23) <79> <53> [-5] [8] [-1] [4] [-2]

User Arrival 
Rate y4 (-17) <87> [2] <-80> (29) {31} (15) [-4] [-1] x1 [-5]

Reallocation 
Rate y7 [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0]

Variance in 
Cluster 
Choice

y28 [6] (-12) {-42} [7] {-35} {32} (18) <97> [2] [4] [6]

 
 
Table X indicates that the full-grant rate (y3) decreases 

with an increase in the number of users (x2) and increases 
with an increase in the number of clusters (x5) and nodes 
(x6). This makes sense intuitively. One should expect an 
inverse of these relationships for responses (e.g., y1, y2 and 
y6) that correlate negatively with y3. On the other hand, 
cloud-wide resource usage (e.g., y15) increases with an 
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increase in the number of users (x2) and decreases with an 
increase in the number of clusters (x5) and nodes (x6). This 
also makes sense intuitively. Yet another sensible 
relationship appears for the number of VMs (y37), where 
increasing the number of users (x2), clusters (x5) and nodes 
(x6) all lead to increase in the number of VMs. The user 
arrival rate (y4) increases with an increase in the number of 
users (x2) and decreases with an increase in the time (x4) that 
users hold VMs. These relationships make sense. The 
number of M1large instances (y31) is influenced 
significantly only by changing the user type probability (x3), 
where changing the parameter level alters the diversity of 
VM types requested. Cluster reallocations (y7) occur so 
infrequently as to have no measureable relative effect for any 
parameter. These relationships serve to increase confidence 
in model correctness. 

Response y26, representing standard deviation in the rate 
at which clusters report NERA, provides a substantial 
amount of information. First, increasing the number of users 
(x2) decreases standard deviation; while increasing the 
number of nodes (x5) and clusters (x6), and the capacity (x7) 
of nodes, increases standard deviation. This means that 
higher system loads increase correlation in clusters reporting 
NERA, while lower system loads diminish the correlation. 
Second, selecting clusters based on the percent of VMs that 
can be allocated (x8) increases the variance in load among 
clusters, which is reflected in increasing y26. Third, 
distributing cloud elements among geographically disparate 
sites (x10) also increases the variance in load among clusters, 
probably due to differences in response times to queries from 
the cloud controller. These relationships reveal subtleties that 
could have been easily overlooked in less rigorous 
experiment designs and analyses.     

V. DISCUSSION 
Koala behavior can be represented by about eight 

dimensions (i.e., eight of the 40 responses we collected). The 
largest grouping of responses reflects the cloud-wide ratio 
between supply and demand. Smaller response groupings 
represent cloud-wide resource usage, variance in load among 
clusters in a Cloud, and the mixture of VM types within a 
Cloud. The number of VMs, regardless of type, can be 
discerned separately, as can the user arrival rate. Two minor 
behavioral dimensions reflect the rate of reallocation 
decisions and variance in choice of eligible clusters on which 
to run a group of VMs. 

Koala behavior is influenced by about seven of the 11 
parameters we evaluated. The main influences encompass 
the number of users (x2) and the number of clusters (x5) and 
nodes per cluster (x6). More modest influence was exhibited 
by the distribution of user (x3) and platform (x7) types. 
Minor influence arose from the duration (x4) for which users 
retained acquired VMs and the algorithm (x8) used to select 
a cluster on which to place requested VMs. For the values 
used here, little influence on Koala behavior was found for 
the remaining four parameters: the duration of the simulation 
(x1); algorithm (x9) for choosing a node within a cluster on 
which to place a VM; number of sites (x10) over which 
clusters were deployed; and range (x11) of packet loss rates. 

Our findings indicate that for subsequent experiments, 
comparing resource allocation algorithms, we need vary only 
six parameters (x2, x3, x4, x5, x6 and x7). (Parameter x8 will 
be covered by the use of varying cluster-level resource 
allocation algorithms.) Further, since the two cluster-level 
allocation algorithms (x8) we used here showed some 
influence on Koala behavior, we might find that additional 
algorithms will further influence behavior. While the node-
level allocation algorithms (x9) used here did not influence 
Koala behavior, we might find that adding a variety of such 
algorithms, especially in combination with cluster-level 
algorithms, could influence behavior. Taken together, our 
findings suggest that if we use a 2VI

6-1 (Resolution VI) OFF 
design to compare, with respect to only 8 response variables, 
combinations of cluster-level and node-level resource 
allocation algorithms across 32 out of a possible 64 
parameter combinations, then we should discern any 
significant behavioral differences among the algorithms. 
Since simulation duration (x1) had insignificant influence on 
Koala behavior for the range of simulations we envision, we 
can average responses across an entire experiment run 
without biasing results due to startup transients. Including 
the startup from an empty system will also allow us to 
discern any differences in the way that various algorithms fill 
the nodes in a Cloud. 

As with most large distributed systems that we have 
modeled, changing combinations of fundamental parameters 
(such as x2, x3, x4, x5, x6 and x7 in this study) stimulates 
large differences in global system behavior. In studying 
Internet congestion control algorithms [2], for example, we 
found that changes in fundamental network parameters (such 
as speed, propagation delay, buffer sizes, topology and user 
demand) varied global network behavior much more than 
adopting alternate congestion control algorithms. As 
predicted by our sensitivity analysis, we expect that changing 
values of fundamental parameters in our Cloud model will 
drive global behavior much more than adopting alternate 
resource allocation algorithms. In comparing algorithms, the 
question becomes: How do the algorithms differ when 
exposed to the wide range of global behaviors that are 
possible within the system in which the algorithms must 
operate? Now that we have a well understood system model, 
we are prepared for rigorous comparison of resource 
allocation algorithms – a subject for future work. 

VI. RELATED WORK 
Our work on methods to improve simulation modeling of 

large systems was inspired by Paxson and Floyd [1], who 
describe many difficult problems that impede simulation of 
the Internet, and recommend two main coping strategies: 
search for invariants and carefully explore the parameter 
space. While providing sound advice on “what” to do, 
Paxson and Floyd did not show “how” to accomplish such 
search and exploration. This issue remains open over a 
decade since Paxson and Floyd wrote. Recently, we 
developed methods that can be used to search for invariants 
and carefully explore the parameter space of large simulation 
models. Previously, we demonstrated our methods in the 
problem domain of Internet simulation [2], which provided 
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the original challenge identified by Paxson and Floyd. We 
believe our methods can be applied generally to simulations 
of large distributed systems, as we demonstrated in this paper 
with respect to an infrastructure Cloud simulator. Other 
Cloud simulators stand to benefit from adopting our 
methods. 

Andrzejak and colleagues [13] propose a model that 
allows users facing constraints on cost, performance and 
reliability to bid optimally for Cloud services in spot 
markets, where VMs may be allocated and withdrawn based 
on changing market prices. Their paper describes a typical 
factor-at-a-time experiment where 11 parameters are set to 
fixed values and the effects of those settings on system 
behavior are determined. Then individual Monte Carlo 
experiments (10,000 simulations each) are run to determine 
the effects of varying task length on up to six response 
variables for two different workloads. By adopting the 
methods we demonstrate, Andrzejak and colleagues could 
determine, with many fewer simulations, which parameters 
are most influential on system behavior. Subsequently they 
could design more informative experiments. 

Fujiwara and colleagues [14] propose an auction model 
allowing users and multiple Cloud providers to organize a 
dual market that includes both spot and reservation 
components. Their paper reports two sets of simulation 
experiments. The first set, which includes seven fixed and 
two stochastic parameters and two responses, amounts to a 
factor-at-a-time experiment to verify correct operation of a 
scheduling algorithm. The second set, which includes seven 
fixed parameters, and three uniformly distributed random 
parameters, uses two responses to measure scalability as the 
number of time slots (6 values)  and users (4 values) varies. 
By using our methods, Fujiwara and colleagues could 
determine which system behaviors are most significant and 
which parameter combinations would prove most revealing. 
The current reported results have a limited range of validity. 

Buyya and colleagues [15] define CloudSim, a model 
that application developers may use to predict performance 
attributes for systems deployed on infrastructure Clouds. By 
applying our methods, Buyya and colleagues could 
characterize the macroscopic behavior of their model so that 
application developers intending to use CloudSim will 
understand precisely what parameter combinations to 
simulate and what responses to examine. Their current paper 
provides only information on the model’s runtime and 
memory usage when varying three parameters. 

VII. CONCLUSIONS AND FUTURE WORK 
We described a sensitivity analysis method that can be 

used to identify parameters that drive macroscopic behavior 
in simulations of large distributed systems. Our method also 
identifies significant behavioral dimensions in such models. 
Previously, we demonstrated our methods in simulations of 
communication networks. Here we demonstrated our 
methods on Koala, an infrastructure Cloud simulator. We 
found that Koala behavior can be measured with as few as 
eight of the 40 responses we collected. The sensitivity 
analysis also found that only six parameters significantly 
influenced Koala behavior.  

We plan to use these findings to design subsequent 
experiments comparing the behavioral influence of various 
combinations of cluster-level and node-level resource 
allocation algorithms. Findings from these later experiments 
should help guide designers of resource allocation algorithms 
for on-demand infrastructure clouds. 

We also argued that our methods can improve the quality 
of experiments that simulate large distributed systems, such 
as communication networks and computation clouds. Our 
methods provide a framework for experimenters to extract 
that most salient information from available computational 
resources. The robustness and scope of most large simulation 
experiments can be improved by adopting our methods. 
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