
1

An Efficient Sensitivity Analysis Method for Large Cloud Simulations

K. Mills, J. Filliben and C. Dabrowski
Information Technology Laboratory

NIST
Gaithersburg, MD USA

{kmills, jfilliben, cdabrowski}@nist.gov

Abstract—Simulations of large distributed systems, such as
infrastructure clouds, usually entail a large space of
parameters and responses that prove impractical to explore.
To reduce the space of inputs, experimenters, guided by
domain knowledge and ad hoc methods, typically select a
subset of parameters and values to simulate. Similarly,
experimenters typically use ad hoc methods to reduce the
number of responses to analyze. Such ad hoc methods can
result in experiment designs that miss significant parameter
combinations and important responses, or that overweight
selected parameters and responses. When this occurs, the
experiment results and subsequent analyses can be misleading.
In this paper, we apply an efficient sensitivity analysis method
to demonstrate how relevant parameter combinations and
behaviors can be identified for an infrastructure Cloud
simulator that is intended to compare resource allocation
algorithms. Researchers can use the techniques we
demonstrate here to design experiments for large Cloud
simulations, leading to improved quality in derived research
results and findings.

Keywords- cloud computing;modeling; resource allocation;
sensitivity analysis; simulation

I. INTRODUCTION
Paxson and Floyd [1] describe many difficult problems

that impede simulation of large data communication
networks, which typically require hundreds of parameters
that can each take on millions of values and that can also
record hundreds of response variables, which might
represent aspects of fewer significant underlying model
behaviors. The same can be said for most simulations of
large distributed systems, such as computational grids and
clouds. In this paper, we demonstrate an efficient sensitivity
analysis method that can be used to identify the most
significant parameters influencing model behavior. This
allows experimenters to explore a reduced set of parameter
combinations by varying those parameters that contribute
most to differences in model response. Our sensitivity
analysis method also combines correlation analysis and
clustering to identify significant model behaviors. We apply
our method to Koala, an infrastructure Cloud simulator
intended to investigate a range of heuristic algorithms for
allocating virtual machines (VMs) to platforms. We
previously applied our method to a network simulator
intended to compare proposed congestion control algorithms
for the Internet [2]. Application to both Internet and Cloud

models shows that our method is generally applicable to
experiments involving simulations of large distributed
systems.

Using Koala simulations as an example, Fig. 1 locates
our sensitivity analysis method within the larger context of
parameter reduction techniques we adopt. Koala begins as a
model with 82 parameters, which, assuming each parameter
can take on 232 values, defines a parameter space larger than
atoms in the visible universe. An experimenter then groups
parameters that appear to represent different aspects of a
single input, reducing the parameter space by 59. For
example, Koala’s 21 user types can be condensed to form a
single distribution of user types, reducing the parameter
space by 20. Then, using domain knowledge, an
experimenter identifies parameters that do not appear
germane to the intended investigation, replacing 12 more
parameters with fixed values. For example, adopting
assumptions that all users are similarly persistent, allows us
to fix average values for four user parameters. Using such
model reduction techniques, an experimenter reduced the
Koala parameter space to about 10105, still too large to
compute feasibly.

Use experiment design theory to reduce
parameter combinations to 256

Use sensitivity analysis
results to identity six most
significant parameters

(232)82

211

211‐5

Fix parameters not considered germane – reduce by 12 parameters

O(10789) [1080 = atoms in visible universe]

(232)23 O(10221)

(232)11 O(10105)

2048

64

Model
Reduction

Experiment
Design Theory

26‐1 32

Group related remaining parameters– reduce by 59 parameters

Select only 2 values for each parameter

Use experiment design theory again to reduce
parameter combinations to 32

Level
Reduction

Sensitivity
Analysis

Figure 1. Sensitivity Analysis in the Context of Parameter Reduction

At this stage, our sensitivity analysis method begins.
First, an experimenter selects only two values for each of the
remaining 11 Koala parameters. Restricting parameters to
only two values has obvious limitations: only a small number
of parameter values are explored and extrapolating from the
results assumes a model behaves monotonically in the range

2

between chosen values. On the other hand, adopting a two-
level design provides some advantages [3]: (1) requires few
runs per parameter, (2) facilitates interpretation of response
data, (3) identifies promising directions for future
experiments (and may be augmented with thorough local
explorations), (4) fits naturally into a sequential strategy,
which supports the scientific method and (5) forms the basis
for further reduction in parameter combinations through use
of fractional factorial designs (as demonstrated by the last
step in Fig. 1). As we show later, an experimenter can select
a handful of different two-value settings, which increases the
range of robustness of conclusions associated with the
simulation results. In addition, stochastic repetitions of two-
value parameter combinations can be simulated efficiently.

The next step in our sensitivity analysis method applies
experiment design theory [3] to select a balanced and
orthogonal subset of the 211 parameter combinations, which
allows us to explore the search space in a principled fashion,
as opposed to the ad hoc factor-at-a-time approaches [4]
typically adopted by experimenters. Below, we explain the
benefits of using orthogonal fractional factorial experiment
designs. In the end, we identify a subset of (211-5 =) 64
parameter combinations to simulate. Below, we also
demonstrate techniques that enable us to reduce 40 model
responses, selected by experimenters, to as few as eight
behavioral dimensions. This enables us to compress 32
redundant responses.

The remainder of this paper is organized as follows. In
Sec. II, we describe our model and identify the parameters
varied in our sensitivity analysis. In Sec. III, we describe our
experiment design, aimed to identify significant model
behaviors and the parameters that influence those behaviors.
Later experiments will greatly benefit from these findings
because we will understand what parameters to vary and
what behaviors to measure when comparing a wide range of
resource allocation algorithms. In Sec. IV we present our
experiment results and related analysis methods. In Sec. V,
we discuss our findings that Koala exhibits eight significant
behaviors that are influenced mainly by six parameters. We
also outline the implications of our findings for subsequent
experiments intended to evaluate resource allocation
heuristics. In Sec. VI, we describe related work and discuss
how our methods may be applicable to other Cloud
simulators and experiments. We close in Sec. VII with our
conclusions and future work.

II. MODEL
We demonstrate our approach using Koala, a discrete-

event simulator inspired by the Amazon Elastic Compute
Cloud (EC2) [5]. Using published information describing the
EC2 application programming interface (API) [6] and
available virtual machine (VM) types [7], Koala models
essential features of the interface between users and EC2.
Since we intended to study resource allocation algorithms,
Koala needed to model only four EC2 commands:
RunInstances, DescribeInstances, Reboot Instances and
TerminateInstances. On the other hand, no public
information was available about the internal structure and
operation of EC2. Lacking such details, the internal structure

of Koala is based instead on the Eucalyptus (v1.6) open-
source Cloud software [8]. Specifically, Koala models three
Eucalyptus components: cloud controller, cluster controller
and node controller. As in Eucalyptus, Koala’s simulated
cloud, cluster and node controllers communicate using Web
Services [9], which are also simulated. In constructing Kola,
we modified the design of Eucalyptus in three ways. First,
we extended the Eucalyptus RunInstances command to allow
multiple VM types within a single request, which we
inferred is possible in EC2. Second, we avoided
centralization of node information at the cloud controller,
permitting Koala to simulate clouds up to O(105) nodes.
Third, we allowed resource allocation to proceed partially in
parallel (serializing only the commitment phase), which
prevents long queuing delays during periods of intense user
requests. In lieu of simulating details of a hypervisor and
guest VMs, we added an optional sub-model based on
analytical equations representing VM behavior with or
without tasks.

Koala is organized as five layers (see Fig. 2): (1) demand
layer, (2) supply layer, (3) resource allocation layer, (4)
Internet/Intranet layer and (5) VM behavior layer. We
describe each layer in turn, omitting the VM behavior layer,
which is not used in the experiments discussed here. We
denote experiment input parameters using designators x1 to
x11 (see Table IV) and outputs as y1 to y40 (see Table V).

 INTERNET

DEMAND LAYER

SUPPLY
LAYER

VM
BEHAVIOR

 LAYER

RESOURCE
ALLOCATION

 LAYER

User
#1

User
#2

User
#n

User
#3

User
#4

User
#5

User
#6

User
#n-3

User
#n-2

User
#n-1

CLOUD CONTROLLER

Cluster
Controller #1

Cluster
Controller #c

NODE CONTROLLER #k

NODE RESOURCESNODE CONTROLLER #k-1

NODE RESOURCES
NODE CONTROLLER #k-2

NODE RESOURCES
NODE CONTROLLER #3

NODE RESOURCESNODE CONTROLLER #2

NODE RESOURCES
NODE CONTROLLER #1

NODE RESOURCES

NODE CONTROLLER #p

NODE RESOURCESNODE CONTROLLER #p-1

NODE RESOURCES
NODE CONTROLLER #p-2

NODE RESOURCES
NODE CONTROLLER #3

NODE RESOURCESNODE CONTROLLER #2

NODE RESOURCES
NODE CONTROLLER #1

NODE RESOURCES

NODE CONTROLLER #q

NODE RESOURCESNODE CONTROLLER #q-1

NODE RESOURCES
NODE CONTROLLER #q-2

NODE RESOURCES
NODE CONTROLLER #3

NODE RESOURCESNODE CONTROLLER #2

NODE RESOURCES
NODE CONTROLLER #1

NODE RESOURCES

IN
TR

A
N

ET

IN
TR

A
N

ET

IN
TR

A
N

ET

VMs
Shown for
One Node Only

VMs
Shown for
One Node Only

VMs
Shown for
One Node Only

VM1VM1VM1VM1 VM1

VM1VM1VM1VM1 VM1

VM1VM1VM1VM1 VM1

Cluster
Controller #c-

m

(1)

(4)

(4) (3)

(2)

(4) (4)

(5)

Figure 2. Schematic of Koala organization

A. Demand Layer
The demand layer consists of a variable number (x2) of

users who, after a random startup delay, each perform
cyclically over a simulation run. During each cycle a user
requests a minimum and maximum number of instances of
one or more of the VM types shown in Table I. The VM
types and quantities a user selects depend upon the user’s
type (see Table II), which is selected on each cycle with
some probability (x3). After selecting a type, a user
randomly chooses a minimum (uniform 1 to a max-min) and
maximum (uniform max-min to a max-max) number of
instances to request for each associated VM type. The user
then issues a corresponding RunInstances request to the

3

User
Type

VM
Type(s)

Max-
Min
VMs

Max-
Max
VMs

User
Type

VM
Type(s)

Max-
Min
VMs

Max-
Max
VMs

PU1

M1 small

10 100 PS1 C1
medium

3 10
PS2 10 50

PU3 100 500 PS3 50 100

PU5 500 1000 WS1
M1 large
M2 xlarge
C1 xlarge

1 3

PU2

M1 large

10 100 WS2
M1 large
M2 xlarge
C1 xlarge

3 9

PU4 100 500 WS3
M1 large
M2 xlarge
C1 xlarge

9 12

PU6 500 1000 DS1
M4 xlarge

10 100
MS1 M1 xlarge 10 100 DS2 100 500
MS3 M1 xlarge 100 500 DS3 500 1000

cloud controller, which may respond with an allocation of
instances between the minimum and maximum for each
requested VM type or with a NERA (not enough resources
available) fault. A full grant denotes that a user was allocated
the maximum requested instances of each VM type. A
partial grant denotes that allocated VMs were below the
maximum requested. If given VM instances, the user selects
a holding time, Pareto distributed with variables specified by
parameter (x4). During the holding period, the user will first
issue DescribeInstances requests to determine when all
instances are running, and will subsequently randomly
reboot, terminate and describe running instances. At the end
of the holding period, the user will issue a
TerminateInstances request to stop any running instances.
After terminating all instances, the user will wait an
exponentially distributed time (mean 30 minutes) and then
start a new cycle.

Since we believed differences in user persistence were
not germane directly to the study of resource allocation
algorithms, we assigned fixed means for each stochastic
distribution controlling related behaviors. If a user receives a
NERA instead of being allocated instances, then the user
waits an exponentially distributed time (mean 15 minutes)
before retrying the request. A user will retry a failed request
over a random period (mean 4 hours) before resting for a
random period (mean 16 hours). If a user request cannot be
honored within a random number of rest periods (mean 4),
then the user abandons the request and starts a new cycle.

TABLE I. Description of VM types simulated in Koala

TABLE II. Description of selected simulated user types: processing users
(PU), distributed modeling and simulation (MS) users, peer-to-peer (PS)
users, Web service (WS) users, and data search (DS) users

B. Supply Layer
The supply layer consists of a variable number (x5) of

clusters that each manages a variable number (x6) of nodes.

When visiting an Amazon EC2 data center, we noticed the
supply of nodes was composed of a limited number of
platform configurations. This observation motivated us to
define a fixed set of possible platform configurations for
nodes. Upon creation, each node manifests, with some
probability (x7), one of the configurations shown in Table
III. Nodes retain their established configurations for the
duration of a simulation run. For an instance to be allocated
to a node, available resources on the node must be sufficient
for the requirements specified by the instance’s VM type.

TABLE III. Description of selected platform types simulated in Koala

C. Resource Allocation Layer
Koala patterns resource allocation after Eucalyptus

procedures, which involve two decisions: (1) on which
cluster should the requested VMs be allocated and (2) on
which nodes within the cluster should VMs be allocated.
Allocating all VMs in a single request to the same cluster
makes good sense because inter-VM communications would
be local to a single cluster. We included a few resource
allocation algorithms in our sensitivity analysis simply to
obtain an early indication of their potential influence on
cloud behavior. We chose to simulate the resource allocation
algorithms implemented by Eucalyptus.

At the cluster level, Eucalyptus allocates VMs to nodes
using one of two algorithms: (1) first-fit or (2) next-fit. First-
fit simply searches the nodes by identifier from first to last
until a node is found that can accommodate a given VM
type. Next-fit remembers which node last received a VM and
begins its search from the next node identifier. If the selected
node cannot accommodate the VM, then the node controller
reallocates the VM to the next node on the list. This process
continues until the VM is created or until all nodes have been
exhausted. If no nodes can create the VM, then the cloud
controller receives a NERA fault.

At the cloud level, Eucalyptus can accommodate a choice
of algorithms to select a cluster to which to assign all VMs in
a request, but only one algorithm is implemented. The
implemented algorithm, called least-full-first, polls the
clusters to find out which can accommodate the VMs
requested and then orders the list from the least to most full
(we ordered ties by increasing cluster identifier). Then the
cloud controller selects the first cluster from the list and asks
that the VMs be created. If the VMs are created successfully,
then the cloud controller returns the positive result to the
appropriate user; otherwise, the cloud controller reallocates
the VMs to the next cluster on the list. This process
continues until VMs are created or until all clusters have

VM Type

Virtual
Cores

Virtual Block
Devices # Virtual

Network
Interfaces

Memory
(GB)

Instruct.
Arch. # Speed

(GHz) # Size (GB)
of Each

M1 small 1 1.7 1 160 1 2 32-bit
M1 large 2 2 2 420 2 8 64-bit
M1 xlarge 4 2 4 420 2 16 64-bit
C1 medium 2 2.4 1 340 1 2 32-bit
C1 xlarge 8 2.4 4 420 2 8 64-bit
M2 xlarge 8 3 1 840 2 32 64-bit
M4 xlarge 8 3 2 850 2 64 64-bit

Platform
Type

Physical
Cores Memory

(GB)

Physical Disks by Size #
Network

Interfaces
Instruct.

Arch. # Speed
(GHz)

250
GB

500
GB

750
GB

1000
GB

C2 1 1.7 16 3 0 0 0 1 32-bit
C4 1 2 16 3 0 0 0 1 32-bit
C6 2 2.4 16 0 3 0 0 1 32-bit
C8 2 2.4 32 0 3 0 0 1 64-bit
C10 4 2.4 32 0 4 0 3 1 64-bit
C12 4 2 64 0 4 0 3 2 64-bit
C14 4 3 64 0 4 0 3 2 64-bit
C16 8 3 64 0 0 4 3 2 64-bit
C18 8 3 128 0 0 4 3 4 64-bit
C20 16 3 128 0 0 0 7 4 64-bit
C22 16 3 256 0 0 0 7 4 64-bit

4

Category ID Response Name (Definition)

User-Level
Responses

y1 User Request Rate (Requests by All Users / # User Cycles)
y2 NERA Rate (NERAs / Requests by All Users)
y3 Full Grant Rate (Full Grants / (Full Grants + Partial Grants))
y4 User Arrival Rate (# User Cycles / Simulated Hours)
y5 User Give-up Rate (# Users that Gave Up / # User Cycles)
y6 Grant Latency (Weighted Avg. Delay in Granting VMs to Users that Got VMs)

Cloud-
Level

Responses

y7 Reallocation Rate (# Times Alternate Cluster Chosen / Requests Granted)
y8 Full Grant Proportion (Avg. Fraction Clusters Offering Full Grants)
y9 NERA Proportion (Avg. Fraction Clusters Reporting NERA)
y10 vCore Utilization (Avg. Fraction of Virtual Cores Used in Cloud)
y11 Memory Utilization (Avg. Fraction of Memory in Use in Cloud)
y12 Disk Space Utilization (Avg. Fraction of Disk Space in Use in Cloud)
y13 pCore Load (Avg. Virtual Cores Allocated / Physical Cores in Cloud)
y14 Disk Count Load (Avg. Virtual Disks Allocated / Physical Disks in Cloud)
y15 NIC Count Load (Avg. Virtual NICs Allocated / Physical NICs in Cloud)

Cluster-
Level

Responses

y16 vCore Util. Var. (Avg. Variance in vCore Utilization across Clusters)
y17 Memory Util. Var. (Avg. Variance in Memory Utilization across Clusters)
y18 Disk Space Util. Var. (Avg. Variance in Disk Space Utilization across Clusters)
y19 pCore Load Var. (Avg. Variance in pCore Load across Clusters)
y20 Disk Count Var. (Avg. Variance in Disk Count Load across Clusters)
y21 NIC Count Var. (Avg. Variance in NIC Count Load across Clusters)
y22 Node Reallocation Rate (# Times Alternate Node Chosen / VMs Allocated)
y23 Cluster NERA Rate (# NERAs / # Responses Avg. across Clusters)
y24 Cluster Full-Grant Rate (# Full Grants / # Responses Avg. across Clusters)
y25 Allocation Rate (Times Cluster chosen / Cluster offered Avg. across Clusters)
y26 SD-NERA (Stand. Dev. in Avg. NERA Rate across Clusters)
y27 SD-Full-Grant (Stand. Dev. in Avg. Full-Grant Rate across Clusters)
y28 SD-Allocation-Rate (Stand. Dev. in Allocation Rate across Clusters)

VM-Level
Responses

y29 Current Instances (Avg. # VM Instances Extant in Cloud)
y30 M1small Instances (Fraction of Current Instances that are M1 small VMs)
y31 M1large Instances (Fraction of Current Instances that are M1 large VMs)
y32 M1xlarge Instances (Fraction of Current Instances that are M1 xlarge VMs)
y33 C1medium Instances (Fraction of Current Instances that are C1 medium VMs)
y34 C1xlarge Instances (Fraction of Current Instances that are C1 xlarge VMs)
y35 M2xlarge Instances (Fraction of Current Instances that are M2 xlarge VMs)
y36 M4xlarge Instances (Fraction of Current Instances that are M4 xlarge VMs)

Message-
Level

Responses

y37 WS Message Rate (Avg. # WS Messages Send Per Simulated Hour)
y38 Intra-Site Messages (# WS Messages Sent with Sites / # WS Messages Sent)
y39 Inter-Site Loss Rate (Avg. Fraction of Inter-Site WS Messages Undelivered)
y40 Intra-Site Loss Rate (Avg. Fraction of Intra-Site WS Messages Undelivered)

been exhausted. If no clusters can create the VMs, then the
user receives a NERA fault. In order to have a second cloud-
level resource allocation algorithm to use in our sensitivity
analysis, we implemented an alternate ordering of clusters
based on percent allocated, i.e., the cloud orders clusters by
decreasing proportion of the requested VMs that can be
allocated (we still order ties by increasing cluster identifier).
For a given simulation, one parameter (x8) specifies a cloud-
level allocation algorithm to use and another parameter (x9)
specifies a cluster-level algorithm.

D. Internet/Intranet Layer
Koala assigns the cloud controller, cluster controllers and

users to sites (1000 here) randomly located at x,y coordinates
on a grid (8000x8000 miles here, which spans a distance
consistent with the globe). (While unrealistic, random
geographic layout makes a reasonable starting point.) Before
a simulation commences, cloud and cluster controllers are
randomly placed on some number (x10) of sites. Node
controllers are placed on the same site as the related cluster
controller. At the beginning of each user cycle, a user is
assigned randomly to one of the sites not occupied by cloud
components. This arrangement divides message
communications into two categories: (1) inter-site (Internet)
and (2) intra-site (Intranet). Koala components communicate
through simulated Web Services (WS) messages, which each
comprise a uniformly distributed number (1 to 10 here,
which covers a reasonable range) of packets. Individual
packets are subjected to transmission delay (1 Gigabits per
second rate here, which is reasonable for intra-site
communications and is somewhat optimistic for inter-site
communications) and propagation delay. For inter-site
messages, propagation delay depends on distance and
simulated router hops, while propagation delay within sites
varies randomly (mean 250 nanoseconds here, which is
reasonable within a site). Individual packets are also
subjected to a loss rate (10-12 here for intra-site packets,
which are rarely lost in practice). To simulate Internet
congestion, the loss rate for inter-site packets varies
uniformly within a range (x11). Lost packets are
retransmitted, but only for a maximum number (3 here,
which seems to be a reasonable threshold) of attempts, after
which the related WS message is declared undeliverable.

III. EXPERIMENT DESIGN
We designed a series of sensitivity analysis experiments

to identify the most significant parameters driving the
behavior of Koala. Our experiments covered (see Table IV)
the ten parameters (x2 to x11) discussed above and one
additional parameter (x1) specifying the number of simulated
hours. This additional parameter allowed us to investigate
the influence of beginning simulations in an empty state. We
assessed the effect of these 11 parameters on 40 responses
(see Table V), which were selected to obtain a wide view of
system dynamics, and which were thought not to be
redundant. As explained below in Sec. IV, our analysis
methods enabled us to distinguish a lower dimensional
response space embedded within these 40 responses.

We adopted a 2-level experiment design for our
sensitivity analysis. This means we selected two values for
each of the 11 parameters. Because we could not afford to
run a full factorial design (i.e., 211 = 2048 simulations), we
chose to adopt a 2IV

11-5 orthogonal fractional factorial (OFF)
experiment design [3]. An orthogonal fractional factorial
design entails running a subset (n) of the 2048 experiments,
while maintaining a balanced (n/2 runs at each level) and
orthogonal (n/4 runs at each possible pair of levels)
distribution of parameter configurations. Design resolution
defines the degree of confounding that may occur from
running a subset of experiments; higher resolution means
less confounding. Resolution IV designs eliminate
confounding among single parameters or between single
parameters and 2-parameter interactions.

TABLE IV. Koala input parameters selected for sensitivity analysis

Category ID Parameter Name
Duration x1 Simulation duration in hours

Demand Layer
x2 Number of users
x3 Probability of user’s type
x4 Average (and shape of) user holding time

Supply
Layer

x5 Number of clusters
x6 Number of nodes per cluster
x7 Probability of platform configuration type

Resource
Control Layer

x8 Algorithm for selecting cluster
x9 Algorithm for selecting node

Internet/
Intranet Layer

x10 Number of sites for cloud components
x11 Probability range of packet losses

Table V. Koala responses selected for sensitivity analysis

The 2IV

11-5 design required us to run only 64 simulations
(n = 211-5). Since a 2-level design considers only two values
for each parameter, we chose to increase the robustness of
our conclusions by creating two designs, which we designate
SA1-small and SA2-small (see Table VI). Where possible,
SA2-small increases the distance between the parameter

5

values used in SA1-small. Since SA1-small and SA2-small
simulate relatively small Cloud configurations (250 to
12,000 nodes), we were able to run six repetitions of each of
the 64 parameter combinations for each of the two designs,
giving a total of (2 x 64 x 6 =) 768 simulations. Running
repetitions with different random number seeds increased our
confidence in the results.

We also constructed two designs, which we designate
SA1-large and SA2-large, to expand the size of the simulated
Cloud (2500 to 60,000 nodes) and to multiply tenfold the
simulated user population. We took this step to investigate
whether any conclusions changed with increasing Cloud
size. Due to the time required, we were able to simulate only
64 parameter combinations each for SA1-large and SA2-
large (raising the total number of simulations to 896). Table
VI defines the parameter values chosen for all four
experiment designs.

Table VI. Parameter settings for sensitivity analysis experiments SA1-small,
SA1-large, SA2-small and SA2-large

 SA1-small and SA1-large SA2-small and SA2-large
Parameter Plus Level Minus Level Plus Level Minus Level

x1 1200 hours 600 hours 1600 hours 200 hours

x2 500 (SA1-small)
5000 (SA1-large)

250 (SA1-small)
2500 (SA1-large)

750 (SA2-small)
7500 (SA2-large)

125 (SA2-small)
1250 (SA2-large)

x3

PU1 = 0.2
PU2 = 0.2
PU3 = 0.1
PU4 = 0.1

WS1 = 0.15
WS2 = 0.07
WS3 = 0.03
PS1 = 0.1

PS2 = 0.01
MS1 = 0.1
MS3 =0.01
DS1 = 0.10
DS2 = 0.01

PU1 = 1/6
PU2 = 1/6,
WS1 = 1/6
MS1 = 1/6
PS1 = 1/6
DS1 = 1/6

PU1 = 0.4
PU2 = 0.4
PU3 = 0.1
PU4 = 0.05

PU5 = 0.025
PU6 = 0.025

WS1 = 0.25
WS2 = 0.15
WS3 = 0.1
PS1 = 0.35
PS2 = 0.04
PS3 = 0.01
DS1 = 0.08
DS2 = 0.015
DS3 = 0.005

x4 8 hours (= 1.2) 4 hours (= 1.2) 12 hours (= 1.2) 2 hours (= 1.2)

x5 20 (SA1-small)
40 (SA1-large)

10 (SA1-small)
20 (SA1-large)

30 (SA2-small)
40 (SA2-large)

5 (SA2-small)
10 (SA2-large)

x6 200 (SA1-small)
1000 (SA1-large)

100 (SA1-small)
500 (SA1-large)

400 (SA2-small)
1500 (SA2-large)

50 (SA2-small)
250 (SA2-large)

x7 C22 = 1.0

C8 = 0.25
C14 = 0.25
C18 = 0.25
C22 = 0.25

C14 = 0.2
C16 = 0.2
C18 = 0.2
C20 = 0.2
C22 = 0.2

C2 = 0.1
C4 = 0.1
C6 = 0.1
C8 = 0.1

C10 = 0.1
C12 = 0.1
C16 = 0.1
C22 = 0.3

x8 Percent
Allocated

Least-Full First Percent
Allocated

Least-Full First

x9 Next-Fit First-Fit Next-Fit First-Fit
x10 4 1 8 1
x11 10-3 to 10-8 10-4 to 10-9 10-2 to 10-7 10-5 to 10-10

IV. RESULTS
Each repetition of each experiment generated a

multivariate dataset consisting of 64 rows (one per parameter
combination) by 40 columns (one per response). We applied
two types of analysis to each dataset: (1) correlation and
clustering analysis (CCA) to identify salient response
dimensions and (2) main-effects analysis to determine which
parameters had statistically significant influence on relevant
responses. CCA [10] allowed us to remove redundancy from
the 40 responses, creating a lower dimensional response
space and identifying the main behaviors intrinsic to Koala.
CCA begins with computation of correlation coefficients (r)
between each pair of responses. Analysis of a histogram of
the resulting r values enabled us to identify a threshold (|r| >
0.65 here) above which to retain correlation pairs. We then

clustered the retained pairs into mutually correlated groups
that represent the main response dimensions.

We conducted CCA separately for the dataset from each
experiment. We report the results in Table VII, which reveals
eight response dimensions common to all experiments. (Note
that some responses cluster into multiple groups.) In four
cases, which appear as split cells in Table VII, responses that
clustered together in some experiments did not cluster
together in others. A response uncorrelated with any others
appears as a singleton group (as shown in 12 cases in Table
VII). In general, CCA found similar clustering among all
experiments.

TABLE VII. Response dimensions identified with correlation analysis and
clustering in each experiment (response selected to represent dimension is
highlighted in red and shown in enlarged font)

Response
Dimension

SA1-small
(9 dimensions)

SA1-large
(8 dimensions)

SA2-small
(10 dimensions)

SA2-large
(9 dimensions)

Cloud-wide
Demand/Supply
Ratio

y1, y2, y3, y5,
y6, y8, y9, y10,
y13, y23, y24,
y25, y29, y30,
y32, y34, y36,

y38

y1, y2, y3, y5,
y6, y7, y8, y9,
y10, y13, y23,
y34, y25, y29,
y30, y32, y33,
y34, y36, y38

y1, y2, y3, y5,
y6, y8, y9, y10,
y11, y13, y14,
y15, y23, y24,

y25, y38

y1, y2, y3, y5,
y6, y8, y9,

y23, y24,
y25, y38

Cloud-wide
Resource
Usage

y10, y11, y12,

y13, y14, y15

y10, y11, y12,

y13, y14, y15
y10, y11, y12,

y13, y14, y15

y10, y11,
y12, y13, y14,

y15

Variance in
Cluster Load

y16, y17, y18,
y19,y20, y21,

y26, y27

y16, y17, y18,
y19,y20, y21,

y26, y27

y16, y18, y19,
y20, y21, y26,

y27
y16, y17, y18,

y19,y20, y21,
y26, y27 y17 (Mem.

Util)

Mix of VM
Types

y34, y35 (WS) y31 (MS)

y12, y14, y15,
y30, y31, y33,

y34, y35, y36

y14, y15, y30,

y31, y33,
y34, y35

y31 (MS) y15, y36 (DS)
Number of VMs y29, y37 y37 y29, y37 y29
User Arrival
Rate y4 y4 y4 y4, y37

Reallocation
Rate y7, y22 y7, y22

y7 (cluster)
y7, y22 y22 (node)

Variance in
Choice of
Cluster

y28 y28 y28 y28

As a next step, we identified one response (highlighted in

red, enlarged font in Table VII) to represent each dimension.
We selected the response in a cluster that exhibited highest
average correlation with other responses and that did not
belong to any other clusters. (Note that this was not possible
for the cluster “Cloud-wide resource usage” in SA2-small, so
we selected y10, which exhibited highest average
correlation.)

By considering whether correlations are positive or
negative, CCA can also be used to determine if Koala yields
reasonably correct behaviors. Table VIII gives a half-matrix
showing whether significant (|r| > 0.65) response correlations
were positive (green P) or negative (red N). Here we use
correlations from experiment SA1-small, which gave the
largest number (126) of correlated pairs. As should be
expected, clusters with positive correlations appear: for
cloud-wide resource usage (as indicated by the utilization of
virtual cores, y10, memory, y11, and disk space, y12, and by
the load on physical cores, y13, physical disks, y14, and
network interfaces, y15); for variance among clusters in
these utilizations (y16-y18) and loads (y19-y21); for the

6

number of VMs (y29 and y37); and for the reallocation rate,
reflecting cases where the cloud controller’s choice of cluster
cannot accept a set of VMs (y7) and where a cluster
controller’s choice of node cannot accept a VM (y22).

TABLE VIII. Correlation half-matrix for 38 responses taken from
experiment SA1-small – diagonal (black cells) r = 1.0; cells above diagonal
omitted (mirror of cells below diagonal); colored cells (|r| > 0.65) indicate
either positive (P – green) or negative (N – red) correlation

The largest cluster, representing cloud-wide
demand/supply ratio shows both positive and negative
correlations. For example, full-grant rate (y3) is inversely
correlated with user request rate (y1), i.e., fewer requests
mean more can be fully granted; with NERA rate (y2), i.e.,
more NERA faults imply lower resource availability, leading
to fewer full grants; with grant latency (y6), i.e., longer
waiting for VMs coincides with lower resource availability,
leading to fewer full grants; and so on. Upon inspection these
inverse correlations appear sensible. Similarly, inverse
correlations appear among responses (y30-y36) representing
the mix of VM types. Of note, the proportion of M1small
instances (y30) is inversely correlated with the proportion of
M1xlarge (y32) and M4xlarge (y36) instances. And y32 and
y36 are positively correlated. This makes sense because
M1xlarge and M4xlarge VMs (recalls Table I) require more
virtual cores, memory and disk space than M1small
instances. More resources taken up by large VMs, means that
fewer small VMs that can be accommodated.

Next we applied main-effects analysis (MEA) [11]
separately to each selected response (from Table VII) in each
experiment dataset, including the repetitions of SA1-small
and SA2-small. MEA iterates over each selected response,
which will be represented by 64 data points, one for each
parameter combination. For each selected response, MEA
iterates over each of the 11 parameters, dividing the 64 data
points into two groups of 32: results obtained with the
parameter at the PLUS level and at the MINUS level. For
each parameter, we applied a t-test [12] to determine whether
the averages of the PLUS and MINUS level data points were
significantly different, and if so at which confidence level: p
< 0.05 or p < 0.01. For each parameter (x1 to x11), we
computed the percent of responses influenced (Ψ), weighting
p < 0.05 at ½ and p < 0.01 at 1, as shown with the following
equation.

 Ψ = (|{y | p < 0.01}| + ½ |{y | p < 0.05}| / |{y}| (1)

Table IX displays the resulting Ψ for each parameter in each
of the four experiments. The bottom row gives a weighted
(by relative proportion of experiment repetitions) average Ψ
for each parameter.

TABLE IX. Percent responses influenced (Ψ) by each parameter in each
experiment and weighted average Ψ across all experiments (<green> =
major influence; {yellow} = modest influence; (orange) = minor influence;
[gray] = no influence)

Input Parameter
Experiment Weight x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

SA1 small 6/14 [1] <57> {22} (11) <44> {29} {30} (12) [0] [1] [0]
SA1 large 1/14 [0] <69> (13) {25} <44> <56> {31} {25} [0] (13) [0]
SA2 small 6/14 [2] <73> {38} (10) <45> <62> (10) (17) [1] [0] [0]
SA2 large 1/14 [0] <56> <50> (11) {39} <56> [6] (11) [0] [0] [0]

Avg. Ψ Est. [1] <65> {30} (12) <44> <47> {20} (15) [0] [1] [0]

The data used to establish the significance of model

parameters may also provide insight into model correctness
by considering the relative effects on responses when
parameter settings move from the MINUS level to the PLUS
level. To measure the relative effect for a specific response
and selected parameter we subtracted the mean response
when the parameter was at the MINUS level from the mean
response when the parameter was at the PLUS level and then
divided that result by the mean response for both levels,
which yields the percentage change (Δ) in response due to
changing the parameter level. A positive change means that
increasing the parameter level increased the response, while
a negative change means increasing the parameter level
decreased the response. Table X gives the relative effect,
averaged over simulation repetitions, that each parameter has
on eight responses, selected to represent each of the eight
dimensions shown in Table VII.

TABLE X. Relative effect (Δ) that each parameter has on eight responses,
selected to represent each of the eight dimensions shown in Table VII.
(<green> = Δ > 50; {yellow} = Δ > 30 & Δ < 50; (orange) = Δ > 10 & Δ <
30; [gray] = Δ < 10)

Selected
Response

Input Parameter
Dimension x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

Cloud-wide
Demand/

Supply Ratio
y3 [1] {-38} (-21) [-5] {37} {40} (25) [-2] [1] [5] [-1]

Cloud-wide
Resource

Usage
y15 [1] (23) <53> [1] (-22) (-18) (19) [-1] [1] [-1] [1]

Variance in
Cluster Load y26 [0] <-101> (28) [-5] <96> <59> <66> {42} [0] <50> [0]

Mix of VM
Types y31 [-1] [-9] {43} [-3] [7] [9] [-1] [8] [2] [-4] [0]

Number of
VMs y37 [-5] {48} (11) (-23) <79> <53> [-5] [8] [-1] [4] [-2]

User Arrival
Rate y4 (-17) <87> [2] <-80> (29) {31} (15) [-4] [-1] x1 [-5]

Reallocation
Rate y7 [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0]

Variance in
Cluster
Choice

y28 [6] (-12) {-42} [7] {-35} {32} (18) <97> [2] [4] [6]

Table X indicates that the full-grant rate (y3) decreases

with an increase in the number of users (x2) and increases
with an increase in the number of clusters (x5) and nodes
(x6). This makes sense intuitively. One should expect an
inverse of these relationships for responses (e.g., y1, y2 and
y6) that correlate negatively with y3. On the other hand,
cloud-wide resource usage (e.g., y15) increases with an

7

increase in the number of users (x2) and decreases with an
increase in the number of clusters (x5) and nodes (x6). This
also makes sense intuitively. Yet another sensible
relationship appears for the number of VMs (y37), where
increasing the number of users (x2), clusters (x5) and nodes
(x6) all lead to increase in the number of VMs. The user
arrival rate (y4) increases with an increase in the number of
users (x2) and decreases with an increase in the time (x4) that
users hold VMs. These relationships make sense. The
number of M1large instances (y31) is influenced
significantly only by changing the user type probability (x3),
where changing the parameter level alters the diversity of
VM types requested. Cluster reallocations (y7) occur so
infrequently as to have no measureable relative effect for any
parameter. These relationships serve to increase confidence
in model correctness.

Response y26, representing standard deviation in the rate
at which clusters report NERA, provides a substantial
amount of information. First, increasing the number of users
(x2) decreases standard deviation; while increasing the
number of nodes (x5) and clusters (x6), and the capacity (x7)
of nodes, increases standard deviation. This means that
higher system loads increase correlation in clusters reporting
NERA, while lower system loads diminish the correlation.
Second, selecting clusters based on the percent of VMs that
can be allocated (x8) increases the variance in load among
clusters, which is reflected in increasing y26. Third,
distributing cloud elements among geographically disparate
sites (x10) also increases the variance in load among clusters,
probably due to differences in response times to queries from
the cloud controller. These relationships reveal subtleties that
could have been easily overlooked in less rigorous
experiment designs and analyses.

V. DISCUSSION
Koala behavior can be represented by about eight

dimensions (i.e., eight of the 40 responses we collected). The
largest grouping of responses reflects the cloud-wide ratio
between supply and demand. Smaller response groupings
represent cloud-wide resource usage, variance in load among
clusters in a Cloud, and the mixture of VM types within a
Cloud. The number of VMs, regardless of type, can be
discerned separately, as can the user arrival rate. Two minor
behavioral dimensions reflect the rate of reallocation
decisions and variance in choice of eligible clusters on which
to run a group of VMs.

Koala behavior is influenced by about seven of the 11
parameters we evaluated. The main influences encompass
the number of users (x2) and the number of clusters (x5) and
nodes per cluster (x6). More modest influence was exhibited
by the distribution of user (x3) and platform (x7) types.
Minor influence arose from the duration (x4) for which users
retained acquired VMs and the algorithm (x8) used to select
a cluster on which to place requested VMs. For the values
used here, little influence on Koala behavior was found for
the remaining four parameters: the duration of the simulation
(x1); algorithm (x9) for choosing a node within a cluster on
which to place a VM; number of sites (x10) over which
clusters were deployed; and range (x11) of packet loss rates.

Our findings indicate that for subsequent experiments,
comparing resource allocation algorithms, we need vary only
six parameters (x2, x3, x4, x5, x6 and x7). (Parameter x8 will
be covered by the use of varying cluster-level resource
allocation algorithms.) Further, since the two cluster-level
allocation algorithms (x8) we used here showed some
influence on Koala behavior, we might find that additional
algorithms will further influence behavior. While the node-
level allocation algorithms (x9) used here did not influence
Koala behavior, we might find that adding a variety of such
algorithms, especially in combination with cluster-level
algorithms, could influence behavior. Taken together, our
findings suggest that if we use a 2VI

6-1 (Resolution VI) OFF
design to compare, with respect to only 8 response variables,
combinations of cluster-level and node-level resource
allocation algorithms across 32 out of a possible 64
parameter combinations, then we should discern any
significant behavioral differences among the algorithms.
Since simulation duration (x1) had insignificant influence on
Koala behavior for the range of simulations we envision, we
can average responses across an entire experiment run
without biasing results due to startup transients. Including
the startup from an empty system will also allow us to
discern any differences in the way that various algorithms fill
the nodes in a Cloud.

As with most large distributed systems that we have
modeled, changing combinations of fundamental parameters
(such as x2, x3, x4, x5, x6 and x7 in this study) stimulates
large differences in global system behavior. In studying
Internet congestion control algorithms [2], for example, we
found that changes in fundamental network parameters (such
as speed, propagation delay, buffer sizes, topology and user
demand) varied global network behavior much more than
adopting alternate congestion control algorithms. As
predicted by our sensitivity analysis, we expect that changing
values of fundamental parameters in our Cloud model will
drive global behavior much more than adopting alternate
resource allocation algorithms. In comparing algorithms, the
question becomes: How do the algorithms differ when
exposed to the wide range of global behaviors that are
possible within the system in which the algorithms must
operate? Now that we have a well understood system model,
we are prepared for rigorous comparison of resource
allocation algorithms – a subject for future work.

VI. RELATED WORK
Our work on methods to improve simulation modeling of

large systems was inspired by Paxson and Floyd [1], who
describe many difficult problems that impede simulation of
the Internet, and recommend two main coping strategies:
search for invariants and carefully explore the parameter
space. While providing sound advice on “what” to do,
Paxson and Floyd did not show “how” to accomplish such
search and exploration. This issue remains open over a
decade since Paxson and Floyd wrote. Recently, we
developed methods that can be used to search for invariants
and carefully explore the parameter space of large simulation
models. Previously, we demonstrated our methods in the
problem domain of Internet simulation [2], which provided

8

the original challenge identified by Paxson and Floyd. We
believe our methods can be applied generally to simulations
of large distributed systems, as we demonstrated in this paper
with respect to an infrastructure Cloud simulator. Other
Cloud simulators stand to benefit from adopting our
methods.

Andrzejak and colleagues [13] propose a model that
allows users facing constraints on cost, performance and
reliability to bid optimally for Cloud services in spot
markets, where VMs may be allocated and withdrawn based
on changing market prices. Their paper describes a typical
factor-at-a-time experiment where 11 parameters are set to
fixed values and the effects of those settings on system
behavior are determined. Then individual Monte Carlo
experiments (10,000 simulations each) are run to determine
the effects of varying task length on up to six response
variables for two different workloads. By adopting the
methods we demonstrate, Andrzejak and colleagues could
determine, with many fewer simulations, which parameters
are most influential on system behavior. Subsequently they
could design more informative experiments.

Fujiwara and colleagues [14] propose an auction model
allowing users and multiple Cloud providers to organize a
dual market that includes both spot and reservation
components. Their paper reports two sets of simulation
experiments. The first set, which includes seven fixed and
two stochastic parameters and two responses, amounts to a
factor-at-a-time experiment to verify correct operation of a
scheduling algorithm. The second set, which includes seven
fixed parameters, and three uniformly distributed random
parameters, uses two responses to measure scalability as the
number of time slots (6 values) and users (4 values) varies.
By using our methods, Fujiwara and colleagues could
determine which system behaviors are most significant and
which parameter combinations would prove most revealing.
The current reported results have a limited range of validity.

Buyya and colleagues [15] define CloudSim, a model
that application developers may use to predict performance
attributes for systems deployed on infrastructure Clouds. By
applying our methods, Buyya and colleagues could
characterize the macroscopic behavior of their model so that
application developers intending to use CloudSim will
understand precisely what parameter combinations to
simulate and what responses to examine. Their current paper
provides only information on the model’s runtime and
memory usage when varying three parameters.

VII. CONCLUSIONS AND FUTURE WORK
We described a sensitivity analysis method that can be

used to identify parameters that drive macroscopic behavior
in simulations of large distributed systems. Our method also
identifies significant behavioral dimensions in such models.
Previously, we demonstrated our methods in simulations of
communication networks. Here we demonstrated our
methods on Koala, an infrastructure Cloud simulator. We
found that Koala behavior can be measured with as few as
eight of the 40 responses we collected. The sensitivity
analysis also found that only six parameters significantly
influenced Koala behavior.

We plan to use these findings to design subsequent
experiments comparing the behavioral influence of various
combinations of cluster-level and node-level resource
allocation algorithms. Findings from these later experiments
should help guide designers of resource allocation algorithms
for on-demand infrastructure clouds.

We also argued that our methods can improve the quality
of experiments that simulate large distributed systems, such
as communication networks and computation clouds. Our
methods provide a framework for experimenters to extract
that most salient information from available computational
resources. The robustness and scope of most large simulation
experiments can be improved by adopting our methods.

REFERENCES
[1] V. Paxson and S. Floyd. “Why we don’t know how to

simulate the Internet,” Proceedings of the 1997 Winter
Simulation Conference, ed. S. Andradottir, K. J. Healy, D. H.
Withers, and B. L. Nelson, pp. 1037-1044.

[2] K. Mills, J. Filliben, D. Cho, E. Schwartz and D. Genin, Study
of Proposed Internet Congestion Control Algorithms, NIST
Special Publication 500-282, May 2010, 534 pages.

[3] G. E. Box, J. S. Hunter, and W. G. Hunter, Statistics for
Experimenters, 2nd ed., Wiley, 2005, 639 pages.

[4] D. Frey, F. Engelhardt and E. Greitzer. “A role for ‘one-
factor-at-atime’ experimentation in parameter design,”
Research in Engineering Design, 14:2, 65-74, 2003.

[5] Amazon Elastic Compute Cloud (Amazon EC2)
http://aws.amazon.com/ec2/, 2010.

[6] Amazon Elastic Compute Cloud API Reference API Version
2009-08-15.

[7] Amazon EC2 Instance Types
http://aws.amazon.com/ec2/instance-types/, 2010.

[8] D. Nurmi, et al., “The Eucalyptus Open-Source Cloud-
Computing System”, Proceedings of the 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid,
May 18-21, 2009, pp. 124-131.

[9] F. Curbera, et al. “Unraveling the Web services web: an
introduction to SOAP, WSDL, and UDDI”, Internet
Computing, IEEE, March/April, 2002, pp. 86-93.

[10] K. Mills and J. Filliben, “Comparison of Two Dimension-
Reduction Methods for Network Simulation Models”, NIST
Publication #906588, presented at the Winter Simulation
Conference, Dec. 5-8, 2010.

[11] K. Mills and J. Filliben, “An Efficient Sensitivity Analysis
Method for Network Simulation Models”, NIST Publication
#904961, presented at the Winter Simulation Conference,
Dec. 5-8, 2010.

[12] J. L. Phillips, How to Think about Statistics, 6th ed., Freeman,
2000, 202 pages.

[13] A. Andrzejak, D. Kondo, and S. Yi, “Decision Model for
Cloud Computing under SLA Constraints,” INRIA Technical
Report-004/4849, Version 1, April 21, 2010.

[14] I. Fujiwara, K. Aida, and I. Ono, “Applying Double-sided
Combinational Auctions to Resource Allocation in Cloud
Computing”, Proceedings of the 10th Annual International
Symposium on Applications and the Internet, IEEE, July 19-
23, 2010, pp. 7-14.

[15] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and
Simulation of Scalable Cloud Computing Environments and
the CloudSim Toolkit: Challenges and Opportunities”,
Proceedings of the 7th High Performance Computing and
Simulation Conference, IEEE, June 21-24, 2009, pp. 1-11.

