text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page


Press Release 12-157
Engineers Pursue Flexible Electronics, Self-folding Structures and Controlled Photosynthesis on a Grand Scale

Collaborative engineering awards will explore new frontiers to advance health care, manufacturing and energy

Photo of tiny, engineered origami structures.

Intelligent origami systems will form a range of shapes to meet design and engineering goals.
Credit and Larger Version

August 23, 2012

View a video showing what happens to self-folding polymers when heat is absorbed.

The National Science Foundation (NSF) has announced 15 Emerging Frontiers in Research and Innovation (EFRI) grants for fiscal year 2012, awarding nearly $30 million to 68 investigators at 26 institutions.

During the next four years, teams of researchers will pursue transformative, fundamental research in three emerging areas: flexible electronic systems that can better interface with the body; design of self-folding materials and structures; and optimizing large-scale chemical production from photosynthesis. Results from this research promise to improve human health, engineering design and manufacturing, and energy sustainability.

Flexible bioelectronics systems

Four EFRI research teams will pursue biocompatible electronic systems that offer new capabilities for health care. Integrating microelectronics with conformable substrates, these flexible bioelectronics systems will interact seamlessly with the body to advance medical monitoring, detection and/or treatment in a patient-friendly form.

EFRI BioFlex researchers will investigate novel devices and flexible materials, interfaces between devices and biological materials, and approaches to systems integration. Successful new concepts will also meet the challenges of biocompatability, weight, power consumption, scalability and cost. The projects aim to transform cancer screening, wound healing and emergency identification of toxins and bacteria.

"These four projects could lead to significant improvements in patient care," said Usha Varshney, the coordinating EFRI program officer for BioFlex. "The teams will also contribute advanced scalability techniques so that, in the future, flexible bioelectronics systems can be widely available at low cost."

Origami design for self-assembling systems

A second set of EFRI research teams will explore the folding and unfolding of materials and structures to create self-assembling and multifunctional systems. The eight projects funded will build on principles and patterns from the art of origami in order to design structures that can transition between two and three dimensions. In the process, the researchers will also address challenges in modeling complex designs and behaviors, in shifting from small to large scales and in working with active, or "smart," materials.

Active materials can change their shape, size and/or physical properties with changes in temperature, pressure, electro-magnetic fields or other aspects of their environment. With such materials, the EFRI researchers plan to create entire structures and systems out of single pieces that are flexible, elastic and resilient. With new theory and understanding, the researchers aim to predict and even program the behavior and capabilities of the origami designs.

"Engineers, scientists, artists and mathematicians will pursue profound collaboration to discover how to design single structures that can collapse and deploy and even change functions as desired," said Clark Cooper, who coordinated the origami design awards with fellow program officer Christina Bloebaum. "These eight awards could initiate a transformation in design and manufacturing, impacting technologies as diverse as information storage, space structures and medical devices."

Photosynthetic biorefineries

A third set of EFRI research teams will investigate the large-scale use of micro-organisms that harness solar energy to produce chemicals and fuels from carbon dioxide. Some single-celled algae, for example, use photosynthesis to convert atmospheric carbon dioxide and water into lipids and hydrocarbons. However, the realization of photosynthetic "biorefineries" that could accomplish this process on an industrial scale must first overcome significant challenges, including low productivity, large-scale feasibility and environmental sustainability.

The researchers will investigate the optimization of micro-organisms themselves and their growing conditions to produce easily processed hydrocarbon chemicals in large quantities. The researchers also will explore ways to obtain a variety of value-added compounds, whether by using an array of micro-organisms or by combining biological processes with chemical catalysis. Each project will pursue efficiency and sustainability in a number of ways, for example, through the use of wastewater as a low-cost nutrient source for the micro-organisms. All three of the teams funded will be studying the photosynthetic biorefineries as large and complex systems.

"Having robust scaling and control principles using a systems approach is critical to making photosynthetic biorefineries of the future productive and efficient," said George Antos, the coordinating program officer for these EFRI projects. "Using photosynthetic biorefineries as a significant source of chemicals and fuels would not only reduce greenhouse gases, but it would enhance the nation's energy security, as these products are currently made mainly from petroleum. Oil from algae is a reality, however there is much fundamental science that needs to be done before a true industry is founded, and these EFRI researchers will help make that happen."

The fiscal 2012 EFRI topics were developed with strong input from the research community and in close collaboration between the NSF Directorate for Engineering and the NSF Directorates for Biological Sciences and Mathematical and Physical Sciences. NSF also coordinated closely with the Air Force Office of Scientific Research (AFOSR) and the Department of Energy. AFOSR contributed to the funding of all origami design projects.

"Through their collaborations, the EFRI research teams will initiate new lines of inquiry and provide creative and exciting educational opportunities for young students," said Sohi Rastegar, director of the EFRI program. Beginning with the fiscal year 2012 awards, EFRI projects must provide more specific plans that enhance participation of underrepresented groups in the field of engineering and in engineering research.

Rastegar continued, "If we want to have a competitive edge for achieving innovative outcomes, it is imperative to bring to the table ideas from creative individuals from all segments of society. EFRI teams are committed to working with undergraduate and high school students and with new partners, such as teachers and museums, to help more people engage in and appreciate the exciting possibilities from research."

EFRI, established by the NSF Directorate for Engineering in 2007, seeks high-risk, interdisciplinary research that has the potential to transform engineering and other fields. The grants demonstrate the EFRI goal to inspire and enable researchers to expand the limits of our knowledge

Project summaries

Summaries of the four EFRI projects on Flexible Bioelectronics (BioFlex) Systems are found on the EFRI BioFlex Awards page.

Summaries of the eight EFRI projects on Origami Design for Integration of Self-assembling Systems for Engineering Innovation (ODISSEI) are found on the EFRI ODISSEI Awards page.

Summaries of the three EFRI projects on Photosynthetic Biorefineries (PSBR) are found on the EFRI PSBR Awards page.

-NSF-

Media Contacts
Joshua A. Chamot, NSF (703) 292-7730 jchamot@nsf.gov

Program Contacts
Sohi Rastegar, NSF (703) 292-8305 srastega@nsf.gov
Cecile J. Gonzalez, NSF (703) 292-8538 cjgonzal@nsf.gov

Related Websites
Office of Emerging Frontiers in Research and Innovation (EFRI): http://www.nsf.gov/div/index.jsp?div=EFRI
EFRI BioFlex Program Contacts: http://www.nsf.gov/staff/staff_list.jsp?orgId=5258&subDiv=y&org=EFRI&from_org=EFRI
EFRI ODISSEI Program Contacts: http://www.nsf.gov/staff/staff_list.jsp?orgId=5259&subDiv=y&org=EFRI&from_org=EFRI
EFRI PSBR Program Contacts: http://www.nsf.gov/staff/staff_list.jsp?orgId=5260&subDiv=y&org=EFRI&from_org=EFRI

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget is $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives over 50,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards nearly $420 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Image of a polymer sheet folding on its own when heat is applied.
View Video
A video of engineered polymer sheets folding on their own when heat is applied.
Credit and Larger Version

Light photomicrograph of a centeric diatom showing green chloroplasts and silica pore structure.
Diatoms have a unique biosynthetic capacity to make chemicals, fuels, medicines and other products.
Credit and Larger Version

Photo of researchers examining a flask of cyanobacteria.
Andrew Markley (left) and Daniel Mendez-Perez examine cyanobacteria.
Credit and Larger Version

Photo of a microfluidic lab-on-a-chip platform used to analyze microalgae growth and behavior.
A microfluidic "lab-on-a-chip" is shown here.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page