NIH Workshop – Genomic Opportunities for Studying Sickle Cell Disease

"Phenotyping in SCD"

December 8th, 2011 James F. Casella MD

Disclosures

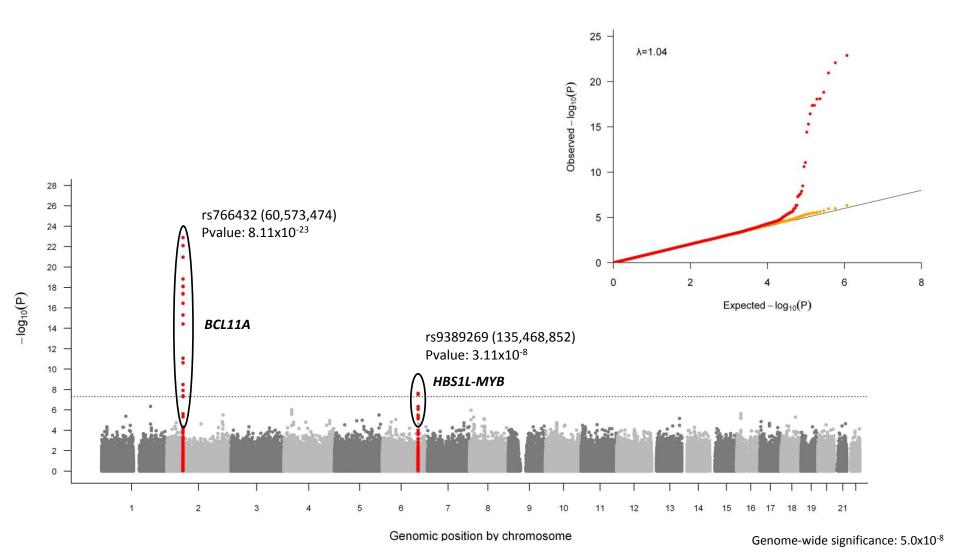
 Adventrx – Honorarium and travel for advice related to a possible clinical trial

Major points

- Robust phenotypes can (must) be developed in SCD
- Lessons from other disease states may help guide the approach to phenotypes
- Endophenotypes and quantitative traits can be key
- Problems with phenotyping in SCD and possible solutions
- Stroke and possibly pain are good targets for further genetic analyses

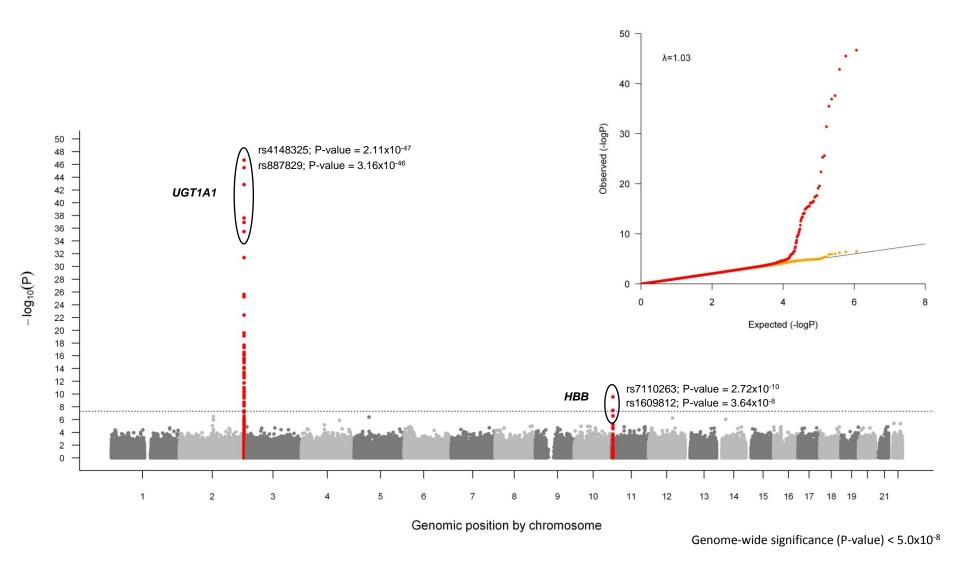
Characteristics of a Good Phenotype for Genetic Exploration

- Common traits of importance, or uncommon traits of great importance
- Homogenous disease etiology
- Prior evidence of heritability
- Large sample sizes available
- Quantitative traits, when possible
- Definable variations in treatment responses to drugs or other therapies


Where have we been successful in establishing strong genotypephenotype correlation?

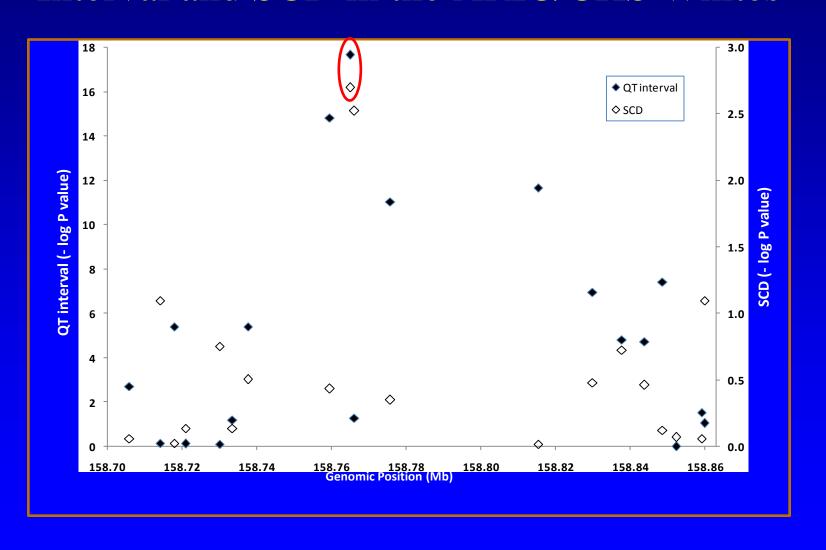
- Variations in the beta globin gene
- Haplotypes
- Alpha thal
- Hb F
- Bilirubin

SITT GWAS - Illumina HumanHap650Y + Omni1m_Quad


Genome-wide significance of % fetal hemoglobin (cube root transformed)

Linear regression adjusted for age (age_regis), sex (patientgender) and top 10 Eigenvectors 1,160,145 SNPs and 547 samples (Males: 282; Females: 265)

Genome-wide Significance of Total Bilirubin (totbilirubin) in SITT Cohort

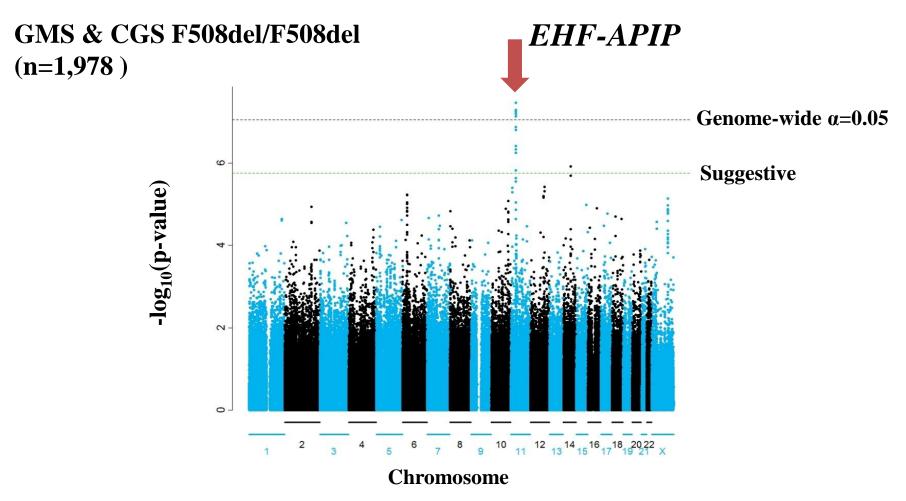

Linear regression with age (age_regis), sex (patientgender) and first 10 PCs adjusted model 1,160,145 SNPs and 905 samples (Male: 480; Females: 425)

Where have others been successful?

- Target Sudden Cardiac Death (SCD)
- Initial Study Prolonged QT
 - Identification of NOS1AP as the major QT interval associated gene using a small GWAS
- Subsequent association studies of large cohorts
 - NOS1AP is also associated with both prolonged
 QT and risk for sudden cardiac death

Association of *NOS1AP* SNPS with QT Interval and SCD in the ARIC/CHS Whites

Where have others been successful?


- Cystic Fibrosis (CF)
 - Severity of lung disease not explained by allelic variation or candidate gene studies
 - Small samples sizes similar to SCD
 - FEV1 chosen as a quantitative marker of severity − known to be >50% heritable
 - Design included GWAS (using extremes of phenotype) followed by linkage studies

	Genetic Modifier Study (GMS)		Canadian Consortium for Genetic Studies (CGS)	Twins & Sibs Study (TSS)
Lead Institution(s)	Univ. of North Carolina/Case Western		Hosp. Sick Children	Johns Hopkins
Design	Extremes-of- Phenotype Unrelated		Population-Based Unrelated	Family-Based
Type of Evidence	Association		Association	Linkage and association
Number of patients	1,1 Severe (n = 406)	Mild (n = 731)	1,357	973 a (486 sibling pairs)

Genome-wide association results for the lung function phenotype

Replication in F508del homozygotes (TSS) $P=6X10^{-3}$ Joint analysis (GMS,CGS and TSS) in F508del homozygotes: $P=1.49X10^{-9}$

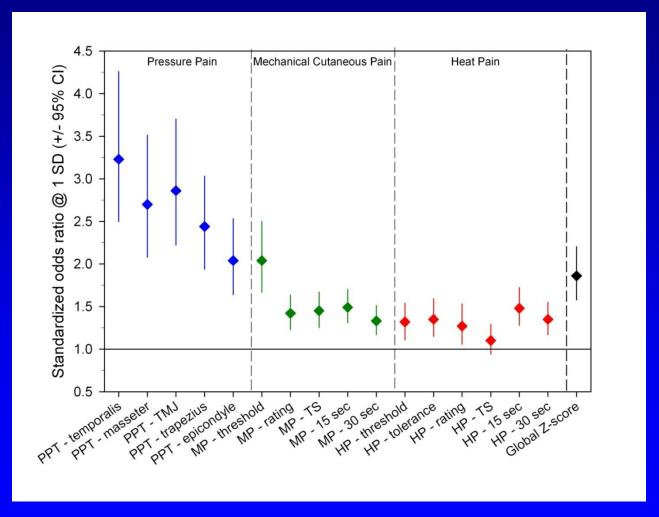
Where have others been successful?

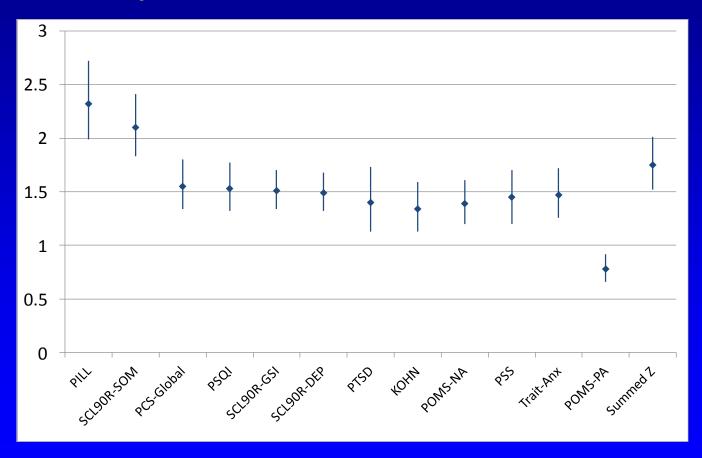
- Pain Phenotyping orofacial pain (Oppera)
 - Established and followed prospective cohort of 3263 patients without orofacial pain (204 cases expected)
 - Case control of 185 patients with oral pain
 - Measure predictors of risk
 - non-causal and etiologic factors
 - Analyze individual and joint effects
 - Correlate with models and genetic factors

Oppera Study

- Intermediate Phenotypes
 - High psychological distress
 - High state of pain amplification
- Measure predictors
 - Clinical and sociodemographic characteristics
 - Heightened responsiveness to noxious stimuli
 - Pre-existing psychosocial profiles
 - Autonomic risk factors
 - Genetic variations that influence intermediate phenotypes

Oppera


- Quantitative measures:
 - Pain sensitivity
 - Pressure Pain Thresholds (PPT):
 - <u>Cutaneous Mechanical Pain Threshold and Suprathreshold</u> <u>Ratings</u>
 - Heat Pain Threshold, Tolerance, and Suprathreshold Ratings:



Odds Ratios for Pain Sensitivity Measures - TMJD

N.B.: For threshold and tolerance measures, the original metric was reverse-coded, so the odds ratio represents the relative increase in odds of having TMJD with greater pain sensitivity for all measures.

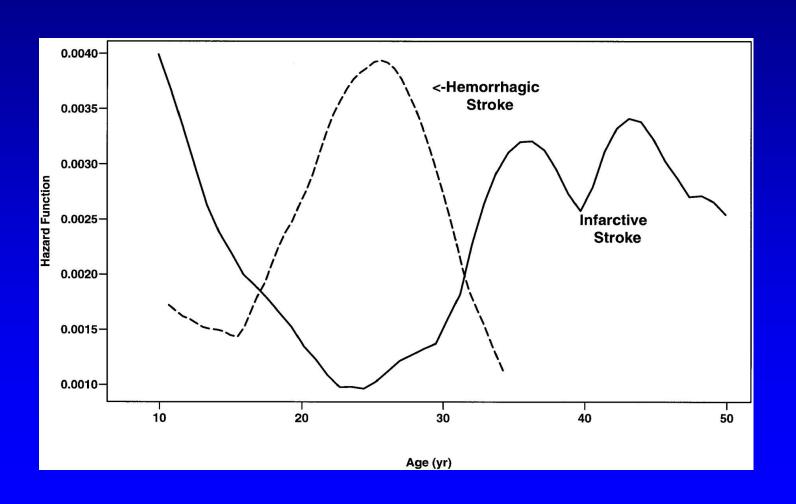
Odd ratios (adjusted) for Psychosocial Variables

Approaches to Variable Reduction

- Aggregation (summed Z-score)
- Factor analytic approaches and principal component analysis
 - Identify underlying dimensions based on association among the variables, reducing to a smaller set of factors
- Clustering

Genetics of TMD

- Results provide evidence supporting previous association of COMT high pain phenotype and HTR2A (serotonin 2A receptor)
- Suggestive evidence for:
 - OPRD1 and GRIN2A genes (involved in pain regulatory pathways)
 - IL10 (anti-inflammatory)
 - Glucocorticoid receptors


What Phenotypes Should We Study?

Stroke

- Common phenotype
 - 11% of children, 24% overall
- Heritable
 - Driscoll et al., 2003
- Endophenotypes available
 - Silent cerebral infarction (heritable)
 - Volumetric analysis
 - Neuropsychology measurements
 - TCD velocities

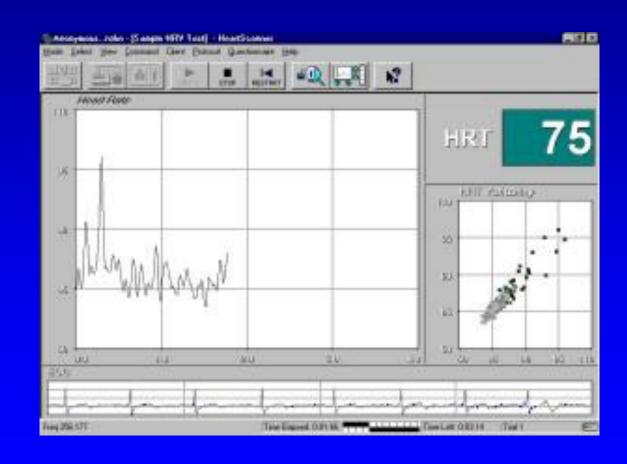
Epidemiology of Overt Strokes

Ohene-Frempong 1998

Challenges for Genetic Studies in Sickle Cell Disease

- Adequate sample sizes are often difficult to obtain
- Phenotypes of interest are not always stable
 - Stroke, priapism, ACS
- Restricted ethnicity
 - Replication in different ethnic groups difficult
- Family studies often difficult due to family structure

Challenges for Genetic Studies in Sickle Cell Disease


- Adequate sample sizes are often difficult to obtain
 - Consortium studies
 - Endophenotypes
 - Leverage clinical trials
 - Designed cohorts for phenotyping (ala Oppera)
- Phenotypes of interest are not always stable
 - Stroke, priapism, ACS
 - Explore epidemiology of events
 - Appropriate statistical models

Challenges for Genetic Studies in Sickle Cell Disease

- Restricted ethnicity
 - Replication in different ethnic groups challenging
 - Same genetic functional variant
 - Same gene, but different functional variants (gene-based tests)
- Family studies often difficult due to family structure
 - Pursue sib/twin studies

Blood Pressure Monitoring Heart Rate Monitoring

Genetics of TMJ

- Heritability for fibromyalgia (51%) headache and neck pain (34-58%)
- Based on candidate gene studies:
 - 23 genes studied in the catecholamine, serotonin, opioid and cytokine pathways
 - Discovery panel of 350 pain related genes
 - Genotyped using 3295 SNP Affimetrix Pain Research Panel, including domains of:
 - 1) Pain perception
 - 2) Inflammatory markers
 - 3) Mood and affective states associate with pain
 - 4) Pharmacokinetics of analgesia