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Prediction from genomes is still hard
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HbF/SCD as poster child for biological insight from GWAS

A QTL influencing F cell
production maps to a gene
encoding a zinc-finger protein
on chromosome 2p15
Stephan Menzel1, Chad Garner2, Ivo Gut3, Fumihiko Matsuda3,
Masao Yamaguchi3, Simon Heath3, Mario Foglio3,
Diana Zelenika3, Anne Boland3, Helen Rooks1, Steve Best1,
Tim D Spector4, Martin Farrall5, Mark Lathrop3 &
Swee Lay Thein1,6

F cells measure the presence of fetal hemoglobin, a heritable
quantitative trait in adults that accounts for substantial
phenotypic diversity of sickle cell disease and b thalassemia.
We applied a genome-wide association mapping strategy to
individuals with contrasting extreme trait values and mapped
a new F cell quantitative trait locus to BCL11A, which
encodes a zinc-finger protein, on chromosome 2p15. The
2p15 BCL11A quantitative trait locus accounts for 15.1%
of the trait variance.

Genome-wide association methodology has recently identified sus-
ceptibility loci for several diseases, but it has a relatively high per-
sample cost and requires large samples to detect modest risk effects.
Strategies to increase power include selecting subjects with increased
genetic load through early onset or identifying familial clustering of
disease. Here, we apply a powerful alternative approach that uses a
comparatively small number of study subjects taken from the extremes
of a quantitative distribution.

In healthy adults, fetal hemoglobin (HbF; also known as a2g2) is
present at residual levels (o0.6% of total hemoglobin) with over
twenty-fold variation. Ten to fifteen percent of adults in the upper tail
of the distribution have HbF levels between 0.8% and 5.0%, a
condition referred to as heterocellular hereditary persistence of fetal
hemoglobin (hHPFH)1. Although these HbF levels are modest in
otherwise healthy individuals, interaction of hHPFH with b thalasse-
mia or sickle cell disease (SCD) can increase HbF output in these
individuals to levels that are clinically beneficial2. The ameliorating
effect of HbF on SCD and b thalassemia has prompted numerous
genetic and pharmacological approaches to reactivation of HbF
synthesis3, but the molecular mechanisms are not fully understood.
Current pharmacological agents, such as hydroxycarbamide and
butyrate analogs, show that it is possible to augment HbF production

therapeutically, but these agents are limited by toxic effects and
variable patient response.

HbF in the normal range (including hHPFH) is most sensitively
measured by the proportion of F cells (that is, the proportion of
erythrocytes containing measurable amounts of HbF1). The majority
of the quantitative variation is highly heritable (h2 ¼ 0.89)4, but the
genetic etiology is complex, with several contributing quantitative trait
loci (QTLs). To date, major QTLs have been identified with strong and
reproducible statistical support at XmnI-Gg in the b globin locus on
chromosome 11p15 (ref. 5) and in the HBS1L-MYB intergenic region
on chromosome 6q23 (ref. 6).

To map additional QTLs, we selected a panel of 179 unrelated
individuals from the extreme upper and lower tails (above the 95th or
below the 5th percentile points (that is, 4P95 or oP5)) of the F cell
distribution, drawn from a database of 5,184 phenotyped indivi-
duals from the St. Thomas Adult Twin Registry (http://www.
twinsuk.ac.uk7), and genotyped them using the Illumina Sentrix
HumanHap300 BeadChip (Supplementary Methods online). The
study was approved by the local ethics committee of St. Thomas’
and King’s College Hospitals, London (LREC number 00-245), and all
participants gave informed written consent. For the 308,015 markers
retained after quality control, we assessed association using a Fisher
exact w2 statistic for the allele counts in the high or low trait categories
along with a linear regression analysis of the continuous trait against
genotype (additive effects), with age and sex included as covariates.
The two analyses gave similar results, and P values from the allele
count test are presented in the text. Tests of non-additivity in the
linear regression led to identical conclusions. Although extreme
discordant sampling designs violate the usual normality assumption
of linear regression, it does not inflate the type 1 error rate8, which we
confirmed by simulations and inspection of the Q-Q plot (Supple-
mentary Fig. 1 online). The genomic control parameter was 1.01,
indicating that there was minimal admixture or cryptic relatedness in
this sample9. Principal components analysis10 confirmed this.

We identified major QTLs on chromosomes 2p15 (P ¼ 4.0 "
10–16), 6q23 (P ¼ 8.8 " 10–25) and 11p15 (P ¼ 1.7 " 10–26) (Fig. 1a).
The 6q23 QTL was first localized through linkage analysis in a large
Asian-Indian family with beta thalassemia11, then validated and fine-
mapped in northern Europeans6. The association signal on 11p15
maps to the beta globin cluster, where the functional variant is
thought to be the XmnI-Gg variant at position –158 upstream of the
Gg globin gene5.

Markers within a 126-kb segment on chromosome 2p15 (nucleo-
tides 60456396 to 60582798) identified a third, previously unreported
QTL close to the oncogene BCL11A12. We genotyped an additional
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Correction of Sickle Cell Disease in
Adult Mice by Interference with
Fetal Hemoglobin Silencing
Jian Xu,1,2 Cong Peng,1* Vijay G. Sankaran,1,5* Zhen Shao,1 Erica B. Esrick,1,3 Bryan G. Chong,1

Gregory C. Ippolito,4 Yuko Fujiwara,1,2 Benjamin L. Ebert,3 Philip W. Tucker,4 Stuart H. Orkin1,2†

Persistence of human fetal hemoglobin (HbF, a2g2) in adults lessens the severity of sickle cell
disease (SCD) and the b-thalassemias. Here, we show that the repressor BCL11A is required in vivo
for silencing of g-globin expression in adult animals, yet dispensable for red cell production.
BCL11A serves as a barrier to HbF reactivation by known HbF inducing agents. In a proof-of-principle
test of BCL11A as a potential therapeutic target, we demonstrate that inactivation of BCL11A in
SCD transgenic mice corrects the hematologic and pathologic defects associated with SCD through
high-level pancellular HbF induction. Thus, interference with HbF silencing by manipulation of a
single target protein is sufficient to reverse SCD.

The switch from fetal (HbF, a2g2) to adult
hemoglobin (HbA, a2b2), a paradigm for
transcriptional control in development, is

critical to the pathogenesis of sickle cell disease
(SCD) and the b-thalassemias. As increased HbF
lessens the severity of these conditions (1, 2), elu-

cidation of mechanisms to relieve HbF silencing
in adult erythroid cells has been a long-sought
goal. Here, we demonstrate that inactivation of
one component involved in HbF regulation, the
transcription factor BCL11A, provides phenotypic
correction of mice that model SCD. Our findings
provide a crucial proof of principle for targeted
reactivation of HbF.

SCD, the first “molecular disease,” is caused
by substitution of valine for b-6 glutamic acid in
the b-globin chain of adult hemoglobin (3). The

1Division of Hematology/Oncology, Children’s Hospital Boston
and Department of Pediatric Oncology, Dana-Farber Cancer
Institute, Harvard Stem Cell Institute, Harvard Medical School,
Boston, MA 02115, USA. 2Howard Hughes Medical Institute,
Boston, MA 02115, USA. 3Dana-Farber Cancer Institute, Brigham
and Women’s Hospital, Harvard Stem Cell Institute, Harvard
Medical School, Boston, MA 02115, USA. 4Institute for Cellular
and Molecular Biology, The University of Texas at Austin, Austin,
TX 78712, USA. 5Broad Institute and Whitehead Institute for
Biomedical Research, Cambridge, MA 02142, USA.

*These authors contributed equally to this work.
†To whom correspondence should be addressed. E-mail:
stuart_orkin@dfci.harvard.edu

Fig. 1. BCL11A loss in adult mice reverses g-
silencing. (A) Expression of BCL11A protein in
CD71+Ter119+ fetal liver (FL) and bone marrow
(BM) cells of control (EpoR-Cre-) and BCL11A
knockout (EpoR-Cre+) b-YAC mice. Glyceraldehyde
phosphate dehydrogenase (GAPDH) was analyzed
as a loading control. (B) Expression of human fe-
tal (g) globin genes wasmonitored by quantitative
reverse transcription polymerase chain reaction
(qRT-PCR) in FL cells (E12.5 to E18.5) or periph-
eral blood of postnatal animals (1 to 30 weeks
old). Data are plotted as percentage of g-globin
over total b-like human globin gene levels in con-
trol (EpoR-Cre-) and BCL11A knockout (EpoR-Cre+)
b-YAC mice (N ≥ 4 per genotype at each time
point). Results are means T SD. All g-globin levels
for the different genotypes are significantly differ-
ent (P < 1 × 10−5, two-tailed t test). (C) Immuno-
histochemistry for HbF was performed on E16.5 FLs
from EpoR-Cre- and EpoR-Cre+ animals. (D) Tran-
scriptional profiling of control (Bcl11a+/+) and
Bcl11a–/– (EpoR-Cre+) CD71+Ter119+ erythroid cells
(N = 3 per genotype). Probes corresponding to
mouse a- and b-globin genes are indicated by ar-
rows.Hba-x, z-globin;Hba-a1/a2, a-globin;Hbb-y,
ey-globin;Hbb-bh1, bh1-globin;Hbb-b1/b2, b-globin.
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ing their consideration as targets for therapeutic
manipulation.

To address in vivo roles of BCL11A, we em-
ployed stringent genetic tests in mice carrying the
human b-globin gene cluster as a yeast artificial
chromosome transgene (b-YACmice). Knockout
of BCL11A interrupts silencing of endogenous
b-like embryonic genes and human g-globin genes
in mouse fetal liver (9). Because BCL11A-null
mice are postnatally lethal, we examined the con-
tribution of BCL11A to g-silencing in adults
through conditional inactivation of BCL11Awith
erythroid-selective EpoR-GFP Cre alleles (13)
(Fig. 1A). Mice harboring erythroid-specific in-
activation of BCL11A developed normally. Eryth-
ropoiesis in fetal liver and adult bone marrow
appeared normal in the absence of BCL11A
(fig. S1). As in the conventional knockout, he-
moglobin switching failed to occur in fetal liver,
such that g constituted >80% of the b-like human
globins (Fig. 1B and fig. S2). HbF was robustly
expressed in definitive erythroid cells of E16.5
(embryonic day 16.5) fetal liver (Fig. 1C and
fig. S3). After birth, the level of g-globin declined
progressively to a residual level of ~11% in
30-week and older adults (Fig. 1B and fig. S2).
Mouse embryonic b-like globin genes (ey and
bh1) were also up-regulated in BCL11A-null
erythroid cells throughout development (fig. S4).

We further examined several experimental fea-
tures (YAC copy number and time of Cre-mediated
gene inactivation) that might contribute to the
observed silencing and showed that they were
noncontributory (see SOM text and fig. S5).

Transcriptional profiling of BCL11A-null
erythroid cells purified from adult bone marrow
was used to assess the quality of erythroid mat-
uration. BCL11A-null and wild-type erythroid
cells exhibited highly similar patterns of gene
expression, characterized by a Pearson correla-
tion coefficient (r2) of 0.9736 for the log2 nor-
malized intensities (Fig. 1D). The expression of
known erythroid transcriptional regulators, in-
cluding GATA1, FOG1, NF-E2, KLF1, SOX6,
and MYB, was comparable between the groups.
The most differentially expressed genes were
mouse embryonic b-like and a-like globin genes
(Fig. 1D, fig. S6, and tables S2 and S3). Thus,
BCL11A is highly selective in controlling targets
in erythroid cells, and only expression of the glo-
bin genes is substantially affected in its absence.

These findings establish roles for BCL11A
in HbF silencing but fail to demonstrate whether
g-globin genes that are fully silenced during nor-
mal development can be reactivated upon loss
of BCL11A. Thus, we introduced the interferon-
inducible Mx1-Cre allele into BCL11A floxed
b-YACmice (fig. S7). Efficient excision of floxed

BCL11A alleles in adult mice was not associated
with significant changes in blood counts (fig. S8)
except for a decline in total B cells, consistent
with a role in lymphopoiesis (14). Developmen-
tally silenced g-globins were reexpressed to
13.8% of total b-like human globins 1 week after
inactivation of BCL11A and sustained thereafter
(Fig. 1E). As this level of g-derepression closely
approximates that in EpoR-Cre BCL11A condi-
tional mice, the substantial component of HbF
silencing dependent on BCL11A is reversible.
Similarly, the mouse embryonic ey- and bh1-
globin genes were derepressed on BCL11A loss
(fig. S9).

Partial silencing of g-globin expression in
BCL11A-null erythroid cells points to addition-
al silencing pathways that act independently of
BCL11A.Two epigenetic pathways,DNAmethyl-
ation and histone deacetylation, have been im-
plicated in HbF control (15–17). DNAmethylation
of the g-globin promoters progressively increased
in BCL11A-null erythroid cells in correlation with
the gradual, but partial, silencing of g-globin ex-
pression (Fig. 2A). Administration of the DNA
methylation inhibitor 5-aza-2′-deoxycytidine
(5-azaD) to normal b-YAC mice led to a very
small increment in g-globin mRNA (Fig. 2B).
In contrast, 5-azaD treatment was synergistic to
BCL11A loss, leading to 37.9% g-globin mRNA.

Fig. 3. Inactivation of BCL11A rescues sickle cell
defects in humanized SCDmice. (A) Representative
blood smears of control, SCD, and SCD/Bcl11a–/–

mice are shown at 1000x magnification. (B) RBC
life span is significantly extended in SCD/Bcl11a–/–

mice at every time point compared with SCD mice
(N ≥ 4; P < 0.01). Results are means T SEM. (C)
Correction of splenomegaly in SCD/Bcl11a–/– mice
(N≥ 3 per genotype). Results are means T SEM. (D)
Expression of fetal (g) and sickle adult (bs) globin
genes was monitored by qRT-PCR in the peripheral
blood of control, SCD, and SCD/Bcl11a–/– animals
(8 to 10 weeks old; N = 5, 6, and 4, respectively).
Results are means T SEM. (E) Distribution of HbF in
red cells. Representative graphs for control, SCD,
and SCD/Bcl11a–/– animals are shown. The same
scale is used in all three graphs, and the mean
percentage of F cells (HbF/HbA double-positive) is
shown (N = 5, 6, and 4, respectively).
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Matching biological questions to technologies

In my disease. . .

I What role does common variation in Europeans play? GWAS

I What role does low frequency variation play? Sequencing, Targeted
Sequencing, GWAS 2.0

I What role does rare or private variation play? Sequencing, Targeted
Sequencing

I What is the genetic architecture of disease in non-European
populations? GWAS 2.0
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GWAS of severe malaria in Kenyan children

Kilifi population: 34,000
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The HbS locus in Kenya: causal allele
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The HbS locus in Kenya: Omni1M
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The HbS locus in Kenya: Omni2.5M
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The HbS locus and malaria

HbS mutation (rs334) in HBB, which causes sickle cell disease when
homozygous, confers protection (het OR < 0.2) from malaria.

Nature Reviews | Genetics

HbS haplotypeHbS haplotype HbS haplotypes
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Figure 2 | Meta-analysis at a site with different associated haplotypes in two populations. The ‘sickle cell’ variant 

of the haemoglobin-β (HBB) gene — encoding haemoglobin S (HbS) — is known to confer resistance to severe malaria. 

It is also known to exist on different haplotypes in different African populations. Here, we consider the major HbS 

haplotypes (green and blue horizontal bars) found in Gambia and in the Yoruba people of Nigeria: the HbS-encoding 

variant (orange strip) is in linkage disequilibrium with different SNPs (cyan strips) in the two populations. The graphs 

represent fictitious case–control studies of severe malaria in the Gambian (a) and Yoruban (b) populations, showing 

the strength of association signal expected from the causal variant (orange star) and other SNPs (red circles). Part c 

shows the results expected if data from a and b were combined in a standard meta-analysis: the association signal of 

the causal variant is boosted, but that of other SNPs is reduced.

Figure 3 | Imputation and the choice of haplotype 

reference panel. Imputation is a process of statistical 

inference that estimates the most likely genotype of an 

individual at a given position in the genome, based on what 

is known about the genotype of that individual at nearby 

positions and on a reference data set of genome variation 

in the general population. The accuracy of imputation 

depends on the appropriateness of the reference data set. 

The figure shows signals of association with severe malaria 

from SNPs distributed across a ~2.5-Mb region of 

chromosome 11 (REF. 19). The vertical dashed line 

represents the position of rs334: this SNP is known  

to encode the haemoglobin S (HbS) variant of the 

haemoglobin-β (HBB) gene, which confers resistance to 

malaria. a | SNPs typed using the Affymetrix 500K 

genotyping platform (black circles). b | SNPs imputed using 

the HapMap Yoruba people in Ibadan, Nigeria (YRI) data  

as the reference (grey circles). The rs334 SNP is shown as  

a yellow diamond. c | SNPs imputed from regional 

sequencing data on 62 Gambian individuals (orange 

circles), including rs334 (yellow diamond). If we did not 

know that rs334 was the causal variant, imputation based 

on Gambian sequencing data would have been extremely 

useful, whereas imputation based on the HapMap YRI data 

would have been misleading. Parts a and c are modified, 

with permission, from Nature Genetics REF. 19  (2009) 

Macmillan Publishers Ltd. All rights reserved.

▶

Allelic heterogeneity
When multiple variants in the 
same gene affect the same 
disease. This should be 
contrasted with genetic or 
locus heterogeneity, when 
variation in different genes 
affects the same phenotype.

LD between populations will become an advantage,  
as they will help to distinguish causal variants. 

GWA by sequencing will greatly enhance our ability 
to detect associations with variants that are population-
specific, and to dissect the problem of allelic heterogeneity. 
For example, there are two distinct variants of the HBB 
gene that confer resistance to malaria in West Africa: 
one encodes HbS (a valine substitution at codon 6)  
and the other encodes HbC (a lysine substitution, also 
at codon 6). HbS is relatively widespread, whereas HbC 
has a more localized distribution — for example, among 
the Dogon people of Mali, who have a low frequency of 
HbS95–97. This example is well understood because hae-
moglobin has been intensively studied by geneticists for 
many years, but allelic heterogeneity of this sort might 
be extremely difficult to dissect by GWA analysis, unless 
it is based on genome sequencing.

The 1000 Genomes Project will improve imputation 
accuracy. It will be some years before GWA analysis by 
sequencing becomes a practical proposition, and this 
raises the question of how to perform effective GWA 
studies in Africa using current genotyping resources. 
Within the next 2 years, the 1000 Genomes Project 
proposes to generate whole-genome sequence data on 
at least 60 individuals from each of 5 different African 
populations: data are currently being generated on two 
HapMap groups, the Yoruba of Nigeria and the Luhya of 
Kenya, and plans are under way to include groups from 
The Gambia, Ghana and Malawi. As well as enabling the 
optimization of new SNP-genotyping platforms, these 
data will increase the value of existing SNP-genotyping 
platforms by increasing the accuracy of multipoint impu-
tation. Imputation is a method of statistically inferring 

an individual’s genotype at a variable position in the 
genome, based on that individual’s known genotypes at 
nearby variable positions combined with reference data 
on genome variation in the general population98–101. The 
HapMap Project has provided an important reference 
panel for imputation in European populations, and it 
is now common for GWA studies to report association 

REVIEWS

156 | FEBRUARY 2010 | VOLUME 11  www.nature.com/reviews/genetics

© 20  Macmillan Publishers Limited. All rights reserved10

Teo, Small, Kwiatkowski. Nat Rev Genet. 2010

Genome-wide analysis challenges for SCD NIH SCD Workshop, December 9, 2011 11 / 22



Structure & admixture within Kenya dataset

Ethnicity N
Giriama 1838
Chonyi 1102
Kauma 313
Kambe 71

Digo 59
Jibana 32

Duruma 25
15 others 90
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Population structure within Kilifi is complex

Assessing imputation performance in a multi-ethnic African
population using high-density reference sets

Luke Jostins, Jeffrey C. Barrett and the MalariaGEN Consortium

Wellcome Trust Sanger Institute, United Kingdom

DESIGN
Genotype imputation is widely used in genome-wide association studies (GWAS)
to infer genotypes at untyped sites. It is hoped that new reference sets from
resequencing such as the 1000 Genomes Project (1KG) allow imputation of low
frequency variation into diverse populations.

To assess this possibility, we made test sets from the latest 1KG Illumina
Omni2.5 chip haplotype release. These sets mimic resequencing data produced
by the 1KG pilot and by the larger Phase I release.

We assessed imputation in a multi-ethnic Kenyan dataset of 2502 individuals
genotyped on the Omni2.5 chip. This chip contains variants both from the 1KG
pilot and from previous Illumina GWAS chips; we used the latter for imputation,
and checked the results against the former. Imputation was performed only on
Chromosome 1, using Impute2.

Reference Set N. haplotypes CPU use Memory use
Pilot Yoruba 120 143hrs 20.5 Gb
Pilot (all samples) 360 163hrs 20.9 Gb
Phase I Yoruba+Luhya 400 165hrs 21.1 Gb
Phase I (all samples) 2420 220hrs 25.4 Gb

Table 1: Reference sets used, with resources required for imputation.

Figure 1: A PCA of the 2502 Kenyan samples, coloured by ethnicity.

RESULTS
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Figure 2: The relationship between imputation accuracy and call rate using the
various reference sets

!

!
!

!

!

!!!

!

!

!

!!
!

!

!

!!
!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!!

!

!

!

!

!

!
!

!

!

!

Ethnicity (ordered by PC1)

Im
pu

ta
tio

n 
ac

cu
ra

cy
 (h

et
 c

er
ta

in
ty

)

JIBANA CHONYI GIRIAMA KAMBE KAMBA LUO

KAUMA DURUMA RABAI DIGO LUHYA

0.
82

0.
84

0.
86

0.
88

0.
90

Figure 3: The variantion in imputation accuracy with ethnic group, ordered by
distance from YRI

We assessed the overall correlation between imputed and actual genotypes for
all the reference sets (Figure 1). We have not filtered SNPs by quality; in
reality, the correlation between quality scores and accuracy increases with
larger reference sizes, and the number of called variants increases.

For the Luhya+Yoruba reference set, we also investigated variation in
individual-level imputation accuracy (measured by the certainty, or mean
posterior, for truly heterozygous sites) with ethnicity (Figure 2) and distance
from reference populations (Figure 3). Surpisingly, imputation accuracy
decreased with closeness to the Luhya reference cluster.
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Figure 4: Individual variation in imputation accuracy with YRI/LWK principal
component. The coloured bars represent the location of reference individuals.
A few outlier ethnicities are circled.

CONCLUSIONS

� New 1KG reference sets will grant significant improvements in imputation for African populations
� Low-frequency imputation benefits from extreme diversity, illustrating the need for world-wide call sets
� Imputation accuracy in Kenya varies significantly by ethnic group
� The relationship between accuracy and target/reference match can be complex and counter-intuitive
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MalariaGEN African meta-analysis

I 3600 samples from Kenya

I 4000 samples from Malawi

I 3000 samples from Gambia

I 600 samples from Ghana

Mix of platforms, using targeted 2.5M genotyping and imputation for
meta-analysis
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“Genotyping arrays: they’re
just good genetic hygiene!”



GWAS of SCD clinical outcome in Tanzania

I Collaboration with Julie Makani, Muhimbili, Dar es
Salaam

I 2,000 SCD patients with HbF/Hb measurements;
records of heamolysis, stroke

I Genotyped on Illumina Omni2.5M chip (data
generation nearly complete)
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Mark Depristo, 1000 Genomes

The experiment–analysis cost balance of WGS and GWAS

Consider approximately 800 Phase I samples from 1000 Genomes

Finished storage Raw storage Processing
(Gb) (Gb) (CPU-days)

GWAS
WGS
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Mark Depristo, 1000 Genomes

The experiment–analysis cost balance of WGS and GWAS

Consider approximately 800 Phase I samples from 1000 Genomes

Finished storage Raw storage Processing
(Gb) (Gb) (CPU-days)

GWAS 50
WGS 50
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Mark Depristo, 1000 Genomes

The experiment–analysis cost balance of WGS and GWAS

Consider approximately 800 Phase I samples from 1000 Genomes

Finished storage Raw storage Processing
(Gb) (Gb) (CPU-days)

GWAS 50 4
WGS 50
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Mark Depristo, 1000 Genomes

The experiment–analysis cost balance of WGS and GWAS

Consider approximately 800 Phase I samples from 1000 Genomes

Finished storage Raw storage Processing
(Gb) (Gb) (CPU-days)

GWAS 50 4
WGS 50 50,000
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Mark Depristo, 1000 Genomes

The experiment–analysis cost balance of WGS and GWAS

Consider approximately 800 Phase I samples from 1000 Genomes

Finished storage Raw storage Processing
(Gb) (Gb) (CPU-days)

GWAS 50 4 715
WGS 50 50,000
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Mark Depristo, 1000 Genomes

The experiment–analysis cost balance of WGS and GWAS

Consider approximately 800 Phase I samples from 1000 Genomes

Finished storage Raw storage Processing
(Gb) (Gb) (CPU-days)

GWAS 50 4 715
WGS 50 50,000 20,000
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Mark Depristo, 1000 Genomes

The experiment–analysis cost balance of WGS and GWAS

Consider approximately 800 Phase I samples from 1000 Genomes

Finished storage Raw storage Processing
(Gb) (Gb) (CPU-days)

GWAS 50 4 715
WGS 50 50,000 20,000

Computational bottleneck almost entirely upstream of analysis
(Moore’s law since 1st GWAS: 8x)
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Mark Depristo, 1000 Genomes

Success needed large sample sizes via collaboration
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Adapted from Li et al. Genome Research, 2011

Whole genome sequence association. . .
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Adapted from Li et al. Genome Research, 2011

Whole genome sequence association. . . needs big samples
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Sequencing in African populations

I 1000 Genomes (100 samples each): 2 collections sequenced, 1
being collected, 3 going through IRB

I Sanger (100 samples each): 10 collections currently being
sequenced

Assessing imputation performance in a multi-ethnic African
population using high-density reference sets

Luke Jostins, Jeffrey C. Barrett and the MalariaGEN Consortium

Wellcome Trust Sanger Institute, United Kingdom

DESIGN
Genotype imputation is widely used in genome-wide association studies (GWAS)
to infer genotypes at untyped sites. It is hoped that new reference sets from
resequencing such as the 1000 Genomes Project (1KG) allow imputation of low
frequency variation into diverse populations.

To assess this possibility, we made test sets from the latest 1KG Illumina
Omni2.5 chip haplotype release. These sets mimic resequencing data produced
by the 1KG pilot and by the larger Phase I release.

We assessed imputation in a multi-ethnic Kenyan dataset of 2502 individuals
genotyped on the Omni2.5 chip. This chip contains variants both from the 1KG
pilot and from previous Illumina GWAS chips; we used the latter for imputation,
and checked the results against the former. Imputation was performed only on
Chromosome 1, using Impute2.

Reference Set N. haplotypes CPU use Memory use
Pilot Yoruba 120 143hrs 20.5 Gb
Pilot (all samples) 360 163hrs 20.9 Gb
Phase I Yoruba+Luhya 400 165hrs 21.1 Gb
Phase I (all samples) 2420 220hrs 25.4 Gb

Table 1: Reference sets used, with resources required for imputation.

Figure 1: A PCA of the 2502 Kenyan samples, coloured by ethnicity.
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Figure 2: The relationship between imputation accuracy and call rate using the
various reference sets
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Figure 3: The variantion in imputation accuracy with ethnic group, ordered by
distance from YRI

We assessed the overall correlation between imputed and actual genotypes for
all the reference sets (Figure 1). We have not filtered SNPs by quality; in
reality, the correlation between quality scores and accuracy increases with
larger reference sizes, and the number of called variants increases.

For the Luhya+Yoruba reference set, we also investigated variation in
individual-level imputation accuracy (measured by the certainty, or mean
posterior, for truly heterozygous sites) with ethnicity (Figure 2) and distance
from reference populations (Figure 3). Surpisingly, imputation accuracy
decreased with closeness to the Luhya reference cluster.
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Figure 4: Individual variation in imputation accuracy with YRI/LWK principal
component. The coloured bars represent the location of reference individuals.
A few outlier ethnicities are circled.

CONCLUSIONS

� New 1KG reference sets will grant significant improvements in imputation for African populations
� Low-frequency imputation benefits from extreme diversity, illustrating the need for world-wide call sets
� Imputation accuracy in Kenya varies significantly by ethnic group
� The relationship between accuracy and target/reference match can be complex and counter-intuitive
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