NIH Worshop: Genomic opportunities for studying sickle cell"disease
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Molecular basis of the disease:
functional and genetic validation of
targets for therapeutic manipulation

Stuart H. Orkin, MD

y ’
HHMI a
SCHOOL B ROA D HOW ARD HUGHES m;\ﬁsgm!
=DV \INUEREEE= | N S T I T UTE

INSTITUTE

5 DANA-FARBER Children’s Hospital Boston Bieid HARVARD MEDICAL ,
DANA-FARBER/CHILDREN’ .‘*

[ 'S HOSPITAL CANCER CARE



Human Globin Switching
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SS disease survival and HbF
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Need: > 300,000 SS babies/year in Africa alone; similar numbers for B-thalassemia

A major and increasing problem in underdeveloped regions




Sickle Cell Anemia: the First “Molecular Disease”

Arch. Int. Med. 5:517, 1910. SCIENCE April 29, 1949, Vol. 109

. . . .
Peculiar Elongated and Sickle-shaped Red Sickle Cell Anemla, 2 Molecular Discase

Blood Corpuscles in a Case of Severe Linus Pauling, Harvey A. Itano,? S. J. Singer,? and Ibert C. Wells®

Anemia? Gates and Crellin Laboratories of Chemistry,
California Institute of T echnology, Pasadena, Californiat

James B. Herrick, M.D.
1013 State Street, Chicago, lllinois A SPECIFIC CHEMICAL DIFFERENCE BETWEEN THE GLOBINS OF

NORMAL HUMAN AND SICKLE-CELL ANAMIA HAMOGLOBIN
By Dr. V. M. INGRAM

Medical Research Council Unit for the Study of the Molecular Structure of Biological Systems, Cavendish Laboratory,
University of Cambridge

Qctober 13, 1956 NATURE

HbA vél-HTs-Leu—Thr-Pro-@-g_‘l_g_—Eyst....

HbS  Val-His- L_eu—Thr~Pro~\_/g_|-c’3|u-C9s'

-~Direction of chromatography

Hb 4 Hb S Hbh 4 Hb S
(@) (a} (b) (6]



Single goal

Replace defective adult 3>-globin chain
with fetal y-globin chain



Rationale for studying hemoglobin switching

1.Premise that underlying mechanisms of Hb
switching and y-gene silencing will identify
targets for reactivation of HbF

2.Supposition that manipulation of a single
target of the switching apparatus will lead to
sufficient HbF reactivation for clinical benefit

3.The hypothesis has been untested



Timeline of “switching” research
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Genome-wide association of HbF levels
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Chromosome number

> GWAS peaks = ~ 50% genetic variation in HbF levels

(Menzel et al, Nat. Genet. 2007; Uda et al, PNAS, 2008)



BCL11A: background and findings

Zinc-finger repressor protein, required for B-lymphoid cells in
development (Liu et al, Nat. Immunol. 2003)

SNPs in BCL11A intron-2 associated with HbF levels by GWAS
(Menzel et al, Nat. Genet. 2007; Uda et al, PNAS, 2008)

Required to maintain y-globin silencing in primary human erythroid

precursors generated from CD34+ progenitors (Sankaran et al, Science,
2008)

Required for developmental switching from embryonic to adult
globin in mouse, and for developmental silencing of human y -gene
In transgenic mice (Sankaran et al, Nature 2009; Xu et al, Genes Dev. 2010)



BCL11A: background and findings

5. Required for complete silencing of human y -globin gene in
adult mice (Xu et al, Science 2011)

6. Dispensable for red blood cell maturation and production (Xu et
al, Science 2011)

7. Interacts with several corepressor protein complexes (that

Include enzymatic components, e.g. HDACs, Dnmt1l) (Sankaran et
al, Science 2008; Xu et al, unpublished data)

8. Effects of known HbF inducing agents (azaD and HDAC

Inhibitor) greatly augmented by loss of BCL11A (Xu et al, Science
2011)

9. Erythroid-restricted knockout of BCL11A rescues phenotype of
SCD disease mouse models (Xu et al, Science 2011)



Alternate approches to SCD

Primary defect in hemoglobin

/

HbS — directed

AN

HbF — directed

Impair HbS polymerization by small
molecule strategies

Repair S-gene through iPS cells, gene
correction, and in vitro production of
HSCs for transplantation

Interfere with y-gene silencing through
Inhibitory RNAs to critical components
of silencing apparatus

Interfere with y -gene silencing through
impairment of silencing protein(s) or
interactions with small molecules

Identify additional pathways, as yet
unknown, regulating silencing




Stage-specific expression of BCL11A
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Down-regulation of BCL11A Reactivates HbF Expression
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Ex vivo maturation of adult
human CD34+ progenitors
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BCL11A maintains silencing of y-globin expression in adult
human erythroid cells



Testing Role of BCL11A in Developmental Switching
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BCL11A Controls Human Globin Switching in
Dose-Sensitive Fashion
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silencing in adult mice lacking BCL11A
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Adult stage: 1000x derepression and partial
epigenetic silencing
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BCL11A Occupies the Human -Globin Locus

Chromatin immunoprecipitation (ChIP)-on-chip analysis
In adult human erythroid cells

Chr.11 5 4 3 2 1 o Gy Ay O B
LCR Embryonic Fetal Adult

5

s B SO T R N
N Lol

Corfu L
5pThal  J
HPFH s




In vivo reactivation of silenced genes?

1. Can it be accomplished?

2. What are effects of drugs in combination
with BCL11A loss?



Reinduction of previously silenced y-genes upon
inactivation of BCL11A
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Cooperative induction of HbF by Bcl11A loss and
known HbF inducers

DNA methylation inhibition
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Any target for future therapy?

Validation of possible targets for therapeutic
manipulation

Criteria: both function and genetic




Potential HbF regulators
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Rationale for studying hemoglobin switching

Can manipulation of a single target of the
switching apparatus lead to sufficient HbF
reactivation for clinical benefit?

Alternatively, each component only contributes
guantitatively for a small portion of switching
and silencing in vivo.



“Proof of principle” testing in preclinical model
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Bcllla cKO Sickle cell
Ippolito GC et al. mouse
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“Berkeley mouse”

Monitor phenotype: hematology, pathology, HbF



“"Berkeley” SCD mouse
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Rescue of SCD by inactivation of BCL11A
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Improvement in RBC survival in
rescued SCD mice
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HbF expression and distribution in
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Rescue of "Townes” SCD mice
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Conclusions

. Recent genetic approaches have transformed the current
understanding of HbF regulation.

. BCL11Ais a central mediator of developmental globin
switching and silencing.

. BCL11A s a major brake on HbF expression, and
elimination (or reduction) of BCL11A facilitates derepression
by other agents.

. Inactivation of BCL11A alone is sufficient to rescue

phenotype of mouse model of sickle cell disease.

. These studies are the first validation of the underlying
premise that addressing a single target may achieve
phenotypic correction of sickle cell disease (or f3-
thalassemias).



Targeted therapy for Hb reactivation
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“Drugging the undruggable”

Transcription factors: considered poor drug targets

. RNA inhibition: shRNA by gene transfer; systemic modified RNAI

. High-throughput screens for small molecules that bind BCL11A and
disrupt function

. High-throughput screens for small molecules that disrupt interaction
BCL11A with associated proteins

. Screens for additional pathways regulating BCL11A expression or

function



Some unknowns

. What level of knockdown of BCL11A function/activity is needed to
achieve adequate HbF reactivation in humans (as opposed to
mice)? How do we assess? What is the quantitative relevance of
data in CD34 derived cells or mice?

. Are there other cell/organ systems that require BCL11A (beyond
B-cells)? And how might this affect dosing/therapy?

. Are there BCL11A-associated proteins that are more accessible
targets (e.g. enzymes) and also contribute major portion of in vivo
activity?

. What are the prospects for identification of unknown silencing
components through searches for rare variants (by DNA
sequencing)?



Future goals

. Understand in detall molecular biology/dynamics of
the globin switch and y-globin silencing

. Pursue BCL11A as therapeutic target--
simultaneously explore genetic and chemical
approaches

. Intensify efforts to drug the undruggable (a new
frontier ?)

. Ultimately bring molecular biology/genetics to bear
on the management of B-hemoglobin disorders
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