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SUMMARY

Techniques used in a project to map forest densityover the conterminous United

States are described. The process was based on coregistration of Advanced Very
I-hob Resolution Radiometer {AVHRR) data and Landsat Thematic Mnnnpr {TM)
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data and on regression analysis of statistical relationships between the two data
types. A forest density value is the percentage of forested TM cells within one
AVHRR cell. The process can be used in other remote sensing projects that involve
a primary, inexpensive, data set for total enumeration and a secondary, more
accurate data sample. However, this process is ideally suited to AVHRR data whose
characteristics (low cost and large area coverage) make the process more meaning-
ful for large area forest mapping applications. Benefits of the forest density mapping
procedure, as demonstrated by the project, include providing additional forest land
information derived from subpixel measurements, aiding forest type classification,

and allowing the study of density distributions of different forest types.
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Forest Density Mapping in the Lower 48 States:
A Regression Procedure

Zhiliang Zhu

INTRODUCTION

The United States Department of Agriculture, Forest
Service, Southern Forest Experiment Station’s Forest In-
ventory and Analysis (SO-FIA) research unit conducted a
project to map the distribution of forest lands for the entire
United States. Forest types and forest densities were
mapped, and a new forest type group map for the country
was produced (Powell and others, in press; Zhu and Evans
1992). This project supported the 1993 Forest and Ran-
geland Renewable Resources Planning Act (RPA) Assess-
ment Update program, by which the Forest Service was
required to provide statistics on current forest land and
rangeland conditions.

The duration of the RPA mapping project, conducted
in two phases, was from April 1991 through December
1992. In the first phase, seven Midsouth States (Alabama,
Arkansas, Louisiana, Mississippi, Oklahoma, Tennessee,
and Texas) were used as the test area for methodology.

Narrin th o
uuuug the second phase, Lhnuu5u a wupcram'c effort

between the SO-FIA and the FIA unit in Alaska, all 50
States were mapped. Results of this project include maps,
digital image files, derived data, and scientific publications.

The significance of the project may be summarized in
the following four ways: (1) there is a new United States
forest map, which visually depicts spatial patterns of the
current distribution of forest types in the country; (2) the
map provides the scientific community with much needed
information on current forest resources over a large area;
(3) the project produced valuable experience and identi-
fied useful methods through the applied research; and (4)
the project is a key connection to other large area forest
studies {e.g., those invoiving Mexico and boreal forests)
currently being conducted at SO-FIA (Eggen-Mclntosh
and Zhu 1992, Evans and others 1993).

An important part of this project was a forest density

map of the conterminous United States. Forest density,
defined in the project as the proportion of cells (each cell
was 28.5 by 28.5 meters in size) per square kilometer that
was forested, was for the first time derived for the entire
lower 48 States using a statistical modeling procedure. The
methodology developed for constructing and using the for-

est density values was veryimportant in achieving the main
objective of classifying forest type groups.

Primary procedures and findings from this project have
been I'Epﬁl‘u:u ifn an earlier yuu}iCatiGﬁ {Zhu and Evans
1992). The research associated with creating and using the
forest density map is emphasized here, specifically, the
relationships between the forest density mapping and
other procedures used in the project, techniques used in
creating forest density values, and analysis of some further

results.

BACKGROUND

Because data from the Advanced Very High Resolution
Radiometer (AVHRR) offered many advantages for large-
scale land cover studies (Zhu and Evans 1992), these data
were a logical choice for the RPA mapping project, How-
ever, not only was the project performed on a continental
scale in terms of the extended areas to be mapped, but it
also required a classification of the RPA forest type groups
(table 1)—an unprecedented level of detail for AVHRR
data. Precisely because of the data’s characteristics, simple
use of AVHRR spectral classification was considered in-
sufficient to attain the RPA requirements; a combined

Table 1.—Forest ype groups of the conterminous United States used in
assessments under the Forest and Rangeland Renewable
Resources Planning Act (RPA)

Eastern United States Western United States

Douglas fir
Hemlock-Sitka spruce
Redwood

Ponderosa pine

White-red-jack pine
Spruce-fir
Longieaf-slash pine
Loblolly-shertleaf pine

Oak-pine Western white pine
Qak-hickory Lodgepole pine
Oak-gum--cypress Larch
Elm-ash-cottonweod Fir-spruce
Mapie-beech--birch Western hardwoods
Aspen—birch Chaparral
Pinyon—juniper
Aspen-birch

Zhili'arilg Zhu is a research forester at the Forest Inventory and Analysis Unit, U.S. Department of Agriculture, Forest Service, Southern Forest

Experiment Station, Starkville, MS 39759.



approach of well-defined procedures was deemed neces-
sary. As a result of this necessity, this project relied on a
combination of the following procedures to achieve the
predefined classification goal (fig.1).

Physiographic Stratification

There have been many studies that divided a very large
land area into relatively homogeneous regions based on a
set of criteria. These studies included classifications of
ecoregions, land surface forms, soils, potentiai vegetation,
and land physiography. Depending on project applica-
tions, these regional divisions offer mechanisms to subset,
or stratify, a large-scale data set in favor of certain vari-
ables. The purpose of geographic data stratification used in
this project was to reduce spectral variations between dif-
ferent regional physiographic conditions and to emphasize

spectral variations by local vegetation types.

When applied to a large area, such as the conterminous
United States, the regional physiographic stratification
was closely related to the forest density mapping objec-
tives. Iverson and others (1989) suggested that a particular
density model was valid only within a limited area. There-
fore, multiple models were needed for a large region with
different physiographic settings. Because of this need, the
utility of regional divisions was essential to the project.

Use of Multitemporal Data

One important advantage of AVHRR data over other
satellite remote sensing data is the sensor’s frequent data
coverage of a large area of the Earth. Multiple dates of data
from a common area (multitemporal data) contain phe-
nological information about vegetation, such as the green-
wp profiles (Loveland and others 1991), which can be
valuable for separating different types of vegetation in a
large area. Multitemporal AVHRR data were used in the
RPA project, based on this premise.

To construct a multitemporal, remotely sensed data set
for a large area, one encounters the problems of an in-
creased number of spectral channels (bands) and an in-
creased volume of data. Too many spectral channels not
only add to computational difficulty but also possibly com-
promise classification accuracy (Coggeshall and Hoffer
1973). The normalized difference vegetation index (NDVTI)
channel created for each date of AVHRR data provides a
good means of reducing data volume. Many large area land
studies based on multitemporal AVHRR data use exclu-
sively the NDVI channel for each date that data were
collected (Loveland and others 1991). Depending on the
applications, this approach may not be desirable for spe-
cies discrimination because it omits two important spectral
channels (the midinfrared, which is sensitive to vegetation
water content, and the thermal, which measures surface

Physiographic
regions

Multtemporal
AVHRAR data

i

TM classifications

Regression analyses

!

Muititemporal image file in
each physiographic region

!
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Conterminous U.5. Conterminous U.S.
forest density map forest type group map

Figure 1.—Procedures used in the Forest and Rangeland Renewable
Resources Planning Act (RPA) mapping project.

temperature) from the sensor’s already limited spectral
range.

The RPA mapping project used AVHRR composites
from nine dates in 1991 (table 2), seiected to represent
vegetation seasons in 1991 (spring, summer, and autumn).
Five channels were entered for each date (regular channels

1 thamal A ihiln mace infrasad tAin frnen
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mal; and the NDVI chanel); AVHRR channel 5 was closely
correlated to channel 4 and was not used. Because a total
of 45 spectral channels was used, it was necessary to reduce
the data volume but still maintain a multitemporal data set
to characterize vegetation phenology. The data reduction
was guided by studying statistical relationships among
dates, spectral channels, and forest cover during the forest
density modeling process.

Forest Density Modeling

Modeling forest density over a large area is developed
from research on resolving mixed-sateltite data pixels for
component terrain types. It is also related to the concept of
double sampling in statistical methods. For individual pix-

Table 2.—Periods in 1991 from which Advanced Very High Resolution
Radiometer (AVHRR) biweekly composite data sets were used
in the Forest and Rangleand Renewable Resources Planning
Act (RPA) mapping project

Data Set Composite period
1 March 1-March 14
2 March 29-April 11
3 April 26-May 9
4 May 24-June 6
5 July 19-August 1
6 September 13-September 26
7 September 27-October 10
8 Qctober 11-October 24
9 November 8-November 21




els, the level of detail and the limit of accuracy are func-
tions of the sensor’s spatial, spectral, and radiometric reso-
lutions. When spatial resolution is coarse, such as that of
AVHRR, pixels covering small objects or edges of large
objects become mixed. In this respect, if the objects under
consideration are forest and nonforest lands, the measure
of the amount of forest per unit area (i.e., forest density) is
the same as the solution for mixed-pixel components.
Solutions for pixel mixture are often derived by cali-
brating the coarse resolution satellite data with reference
data that are based on accurate subpixel measurements.
This approach assumes that the magnitude of the spectral
response from a particular pixel location is correlated to

tha nattarn nf al ivtnira Tha salihratinn nda
ine panein Oi yjl\ul mixture. The calibration models

adopted can be applied to a large area containing the
coarse resolution satellite data. This procedure is consis-
tent with the double-sampling concept in which a popula-
tion is sampled using an inexpensive, easy-to-get variable,
and the results are adjusted using a subset of a more expen-
sive and more dependable variable.

This modeling approach has been used for varicus sen-
sor types, including both Landsat Multispectral Scanner
(MSS) and Thematic Mapper (TM) data in the early 1970’s
and 1980's (Gilmer and others 1980, March and others

1980). The interest in resolving pixel mixture and measus-
ing subpixel content recently has been more focused on
AVHRR data because the sensor has become widely used
in large area, land cover studies. Such interest is supported
by the coarse, 1-kilometer, spatial resolution and by the
recognition that large area mapping at subpixel levels has
great potential due to low data cost and low volume.

A number of studies describe applications of the multi-
source approach involving AVHRR and Landsat data
(Cross and others 1991, Iverson and others 1989, Nelson
and Hoiben i986). These siudies were conducied on lim-
ited areas and based on single calibrations. The RPA pro-
ject’s effort to map forest density for the entire

uuutermlﬂﬂus 'Tnﬂpr' qutpn nn-ng mult:nln nallbrnhgn

models was the first time this modeling approach was used
on such a large scale.

METHODS

Construction of Forest Density Images

With the primaryreference to Hammond's land-surface
form map (1964), plus consideration of Fenneman and
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1 = Pacific Northwest mountains
2 = Pacific Southwest mountains

4 = Northern Rocky Mountains

5 = Southern Rocky Mountains and plateaus
6 = Colorado plateaus and Arizona highlands
7 = Plateaus and basins

8 = Northern plains

3 = Intermountain plateaus pa S, ]

10 = Ozark and Ouachita highlands

11 = Southern plains

12 = Appalachian highlands

13 = Northeastern highlands

14 = Piedmont and plains

15 = Mississippi River and coastal flood plains

Figure 2.—Physiographic regions and locations of the Thematic Mapper (TM) scenes. Locations of the TM
scenes are identified by the abbreviations of the States in which the scenes are located. Note that the
bold line outlines the seven Midsouth States used as the test areas for methodology in the first phase

of the project.



ecoregions map (1987), the conterminous United States
was divided into 15 regions (fig. 2). Subsequent data proc-
essing steps were conducted within each region; results
were combined to form the final images.

Landsat Thematic Mapper (TM) classified data sets
(scenes and subscenes) were used as the secondary refer-
ence data to calibrate AVHRR data enumerations. At least
one TM data set was acquired and classified per region; two
were used in a few regions that covered extended areas or
the test areas (the seven Midsouth States) used in the first

phase of the project (fig. 2). The regional data partitions

ensured that the calibrations were applied only to limited
areas to maintain validity of each calibration. In all, 19 TM
scenes or subscenes were used for this study. _

The TM data used in this project had a pixel size of 28.5
by 28.5 meters. At this size, 1 AVHRR pixel (1 by 1 kilome-
ter) corresponded to about 1,225 TM pixels. The AVHRR
and TM data were coregistered to the Lambert azimuthal
equal area map projection (fig. 3). A rectangular calibra-
tion window was then identified for each AVHRR/TM
pair; data within this window were prepared for statistical
analysis. Both size and location of the window were consid-
ered while identifying its corner coordinates on AVHRR
and TM images. Window size determined the number of
observations for each regression model and also affected
computation time. The location of the windowrepresented
regional land cover patterns; large water bodies and clouds
were avoided.

The following steps were used when preparing each TM
reference data set. (1) An unsupervised classification proc-
ess was used to classify the TM scenes into the local RPA
forest type groups. The process usually included several
iterations of a guided clustering routine and a maximum
likelihood classifier. (2) Ground control points were iden-

tified and digitized from the 1:100,000 topographic maps
and the spectral images. (3) The classified scene was recti-
fied first to Universal Transverse Mercator, then repro-
jected to Lambert azimuthal equal area projection. (4) The
subset area outlined by the calibration window was recoded
so that value 1 represented all forest classes and value 0
represented all nonforest classes. (5) Pixel values of the
above recoded raster subset were converted to an ASCII
file. (6) Data values from every 35 lines and 35 columns
(corresponding to 1 AVHRR pixel) were summarized to

Aariva n narsantaoa val At an Aautnnt fil
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The AVHRR spectral data were prepared for statistical
analysis using the following steps: (1) each data set from a
particular date was visually examined for quality problems,
such as residunal clouds or compositing seams, and these
problem areas were noted for exclusion from subsequent
analyses for each physiographic region; (2) spectral data
within the window area were extracted for each date and
were combined with data from other dates in a time series;
and (3) pixel values were converted to an ASCII file in
which spectral channels and dates were listed as columns.

Next, correlation and regression procedures were ap-
plied with the TM-determined forest percentages (the de-
pendent variables) and corresponding AVHRR spectral
values (independent variables). A simple linear model us-
ing all variables was tested. If it was found significant, i.e.,
p-value (model significance probability value) was less
than 0.01 and model correlation coefficient ( R2) was high,
AVHRR spectral bands were noted for individual perform-
ances.

The process of evaluating individual AVHRR bands
included a simple correlation analysis with the forest per-
centage variable, a test of colinearity among the AVHRR
bands, and linear models for all possible combinations of

(a) AVHRAR muitichannel calibration data set
uL

LR
r

|  One AVHRR pixel

(b) TM calibration data set

U

=

Figure 3.—lllustration of Advanced Very High Resolution Radiometer (AVHRR)

calibration. Note that the two data sets have the same upper left (UL) a-zd !s-‘e righ

ic Mapper (TM) (b)
)

coordinates. In
nj coardnl nagies.

this illustration, 1 AVHRR pixel contains 25 TM pizels.



the AVHRR bands. Combination models were tested using
a statistical procedure that always chose the highest R2
among different levels of independent variable combina-
tions. Other procedures, such as step-wise regression, were
available but were not used.

Although it is true that more variables added to a model
would always bring a higher R2, it was evident in this
project that the increase in R2 was marginal after the first
five to eight independent variables were chosen (fig. 4).
Based on this observation, five to eight “best” AVHRR
spectral bands were CﬂOSEﬁ iob Dllll(l a Ilﬂal lIl’leaf mDGCl IOl'
each of the calibration windows (table A1). The increase in
R? and dates of the AVHRR bands were examined collec-
tively, with the correlations, colinearities, and other statis-
tics once again considered.

If at first the simple linear regression was not signifi-
cant, i.e., it had a low R?and a p-value higher than 0.05,
second order polynomial models were tested. Normally, a
curve-fitting procedure would benefit the process. How-
ever, a large number of records were usually involved in
each calibration, making examination of the curve pattern
difficult. The process used in this project for testing second
order polynomial models was an interactive and expiora-
tory approach in which subsets of the AVHRR bands were
selectively tested. Effectiveness of polynomial models was
most noticeable in sparsely forested regions, such as west-
ern Texas and much of the Great Plains prairie lands (tabie
Al).

100
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R2(PERCENT)
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1 2 3 4 5 6 7 8 9 10
NUMBER OF AVHRR CHANNELS

Figure 4.—Increase in R* versus increase in number of Advanced
Very High Resolution Radiometer (AVHRR) channels
in each of the six selected Thematic Mapper
(TM)/AVHRR regression models. Curves are indi-
cated by the abbreviations of the States in which the
models are located.

Using the above steps, the optimal regression models
were selected, and the best AVHRR bands were identified.
These bands were then extracted from original dates of the
AVHRR spectral data partitions and stacked together to
form a multitemporal image file for each of the physiog-
raphic regions. These AVHRR multitemporal image files,
identified through the regression process, were the basis
for both regional forest densityimages and RPA forest type
group classifications.

Regression parameters derived from each calibration
model were applied to the AVHRR multitemporal image
file to compute a predicted value, or forest percentage
value, for each of the AVHRR spectral data records (pixel
locations). These forest percentage values, ranging in mag-
nitude from 0 to 100 percent, formed a forest density dis-
tribution in each physiographic region. A forest density
map covering the entire lower 48 States was obtained by
combining all regional density maps (fig. 5).

Use of Density Values in Forest Type Classification

The RPA forest type group classifications were con-
ducted separately for each physiographic region based on
the multitemporal image files. Due to the large areas in-
volved, ground reference data to support class identifica-
tions were never adequate, and the forest density images
provided excellent guidance for labeling the spectral
classes after the unsupervised classification process. Pri-
marily, the density values were used: (1) to mask out most
of unforested land cover classes immediately after each
classification; (2) to serve as one layer of ancillary informa-
tion in inferring different forest type groups, particularly
woodland types; and (3) to refine forest/nonforest land use
patierns in individuai areas during iater phases of the pro-
ject.

While forest type groups were identified in the spectral
classifications, the extent of forest lands in the lower 48
States reflected the use of forest density modeling. In a
verification process, forest lands, in terms of a percentage
of all ]and area, in each of the 50 States were compared to
1993 RPA data. Results are listed in table A2.

Preliminary analysis of the relationships between the
forest density values and individual forest type groupsindi-
cated that forest density was a useful tool to help define the
extent of a forested area identified in AVHRR classifica-
tions. Because it was a tool that was used in an integrative
fashion in the RPA project, no attempt was made to apply
one particular density value as a threshold to all forest type
groups.

Differing from the forest type group classification, the
forest density map was the result of statistical models
rather than classification algorithms in which human deci-
sions were involved in deciding pixel identities. Density
pixel labels were scaled values (percentages) rather than
named spectral classes. Because of the differences, com-
mon classification accuracy methods uqmc ormlnd refer-

ence data were not sultable for assessing the forest density



mapping process, Instead, the effectiveness of a density
model may be indicated by a set of statistical model indica-
tors, such as B? and residual scatter plots.

An example of scatter plots is shown for residual and
predicted values from two selected models (g 6). Ploted
data points were 1 small random sample from each of the
large data files used in models. Plots a and ¢ in the figure
draw predicted forest percentage values (y axis) against
actual, TM-determined lorest percentage values. The plot
for a perfectly fit model would display distribution between
the two variables in a straight diagonal line, whereas a less
effective model would have more points deviating from the
line. Plots b and d are distributions of studentized residuals
iresiduals divided by standard errors) for which dala points
should fall mostly between + 2-percent intervals and
should be randomly distributed around the central axis.

DISCUSSION

A basic assumption for using the forest density map
ping approach is that the spectral response received by the
AVHRR sensor is proportional 1o the amount of forest
covered by the sensor's instantaneous field of view, Fur-
ther, this radiometric sensitivity to the presence of forest

Density Level
[ 1 0- 25 percam
L1 28 - 50 percent
Bl 51 - 75 parcsm
B 76 - 100 porcem

Figure 5,— Forest density map of the conterm inous United Stares.
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vegetation is nol weakened during the subsequent data
conversion processes (e.g., analog to digital conversion,
radiometric calibration, 10 bit to 8 bil data conversion,
ele.).

Thus, this approach should conceivably work best in
areas where forests predominate in vegetation spectral
characteristics and where interference in the unique forest
spectrum by other nonforest vegetation types is minimal.
For example, dense conifer forests in the Black Hills, South
Dakota, should have high speciral contrast against sur-
rounding unforested land surfaces, mostly low croplands
and rangelands. Presumably, the contrast should provide a
consistent difference in spectral responzes from the infra-
red and thermal AYHRR bands. Similar results may also
be found in areas that have been clearcul versus mature
slands or in arcas that have a mixed pattern of forest and
agricultural land use.

The choice of a calibration area in a primary data enu-
meration (e.g, AYHRR) can affect the model in several
ways, For instance, some nonforest tall vegetation cover
types, such as orchard trees or tall grassfmeadow shrub
lands during certain seasons, may have inconsistent spec
tral retlectance, which will contribute Lo noisy data in re-
gression, On the other hand, models developed from
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Figure 6.—Scatter plots of two forest density regression models. Models are indicated by the abbreviations of the States in which
the models are located. (See figure 2 for model iocations.) For model AR, piots a and b are predicted versus actuai
and residual versus actual, respectively. For model SD, plots ¢ and d are predicted versus actual and residual versus
actual, respectively. Note residual values are studentized, that is, residuals divided by standard errors.

mostly forest or mostly nonforest land covers will not be
very effective due to the lack of representative samples of
percentage of forest cover. To overcome these problems,
one may consider using different seasonal data or other
types of spectral data with improved spectral separability.

During the process of building a forest density model
using the regression techniques, a number of parameters
were considered in evaluating the model’s effectiveness,
including correlation coefficients of selected variables,
p-value and RZ; RZ is the proportion of the dependent
variable’s total variance that can be explained by the
model. Often, there were questions of how to judge the

value of R? and how to use it in choosing models. In this
project, it was recognized that the magnitude of R? was
affected by the different types of data involved and by many
other variations (haze, change in viewing angles, etc.) in-
herent to a project of lJand observations. Given these natu-
ral variations, it would be normal to expect R2’s in this
context to reach a reasonable height but not a near perfect
value (i.e., close to 1), as illustrated by the range of R2
values obtained from this project (fig. 4). Thus a minimum
value of 0.50, above which a model was acceptable, was
optionallyset in the project. The R? values lower than 0.50
were considered an indication of potential systematic er-



rors (e.g.,, AVHRR/TM misregistration) during the model-
building process. Solutions to this problem included devel-
opment and testing of polynomial models, a careful study
of the calibration area to adopt a new window, and reex-
amination of the georectification process to make sure that
no error was due to a mismatched pair of AVHRR/TM
images.

Another problem that required special attention in the
density mapping process was the treatment of water bodies
of various sizes. Most large water bodies had consistent
spectral properties (e.g., low reflectance in the near-infra-
red and low temperature in the thermal band), which nec-
essarily led to forest density values around zero. However,
a great deal of spectral variation existed in medium-to-
small water bodies, which could result in high density val-
ues for these small (compared to AVHRR pixel size) lakes
or reservoirs. Although this problem may be related to the
water bodies’ physical characteristics, such as sediment
content, it was beyond the scope of this project. A com-
plete water layer was created by using a water mask to
overlay the forest density pixels.

Forest percentage values ranged from 0 to 100 percent
as determined by classified TM pizxels. Often, a regression
model could cause the resulting predicted forest density
values to fall out of the range limit. That is, a forest density
value could be less than O or greater than 100 percent when
a regular model was directly applied. This problem can be
seen in figure 6, plot ¢, where negative values were pre-
dicted. If necessary, such a tendency may be prevented by
using a constrained model in which specifications on the
intercept and model coefficients would restrict predicted
values from exceeding the a priori known value range. In
this project, however, all models were unconstrained. Pre-
dicted values less than 0 were automatically converted to 0
by the digital image processing software package; pre-
dicted values greater than 100 were truncated to 100.

In future studies, the forest density mapping approach
as described in this paper may be used to estimate forest
acreage data. Presently, forest area estimates from
AVHRR spectral classifications often yield mixed results
in sparsely forested regions (e.g., the Plain States) or over
small areas (e.g., a county). Because forest density is a
measurementi of the amounti of forest at the subpizxei ieveli,
it will be desirable to see how well forest density mapping
can improve at this level.

CONCLUSIONS

The forest density mapping procedure described in this
paper was an integral part of the RPA mapping project,
which was interrelated with other processes and considera-
tions (e.g., regional stratification, multitemporal data sets,
and spectral band selection). The procedure provided a
different and complementary type of information on the
forest land distributions in the lower 48 States. Forest
density was used as an ancillary data layer to assist in forest

type group classification. It was the first time that a forest
densitymapping procedure was applied to such a large area
and that a conterminous United States forest density map
was created.

The regression analysis of AVHRR and TM data was
just one approach to the mapping of forest canopy densi-
ties. The effective role it played in the RPA forest mapping
project was associated with the characteristics of the two
data types that were suitable for vegetation mapping of
large areas. There are other methods that may be more
useful for other sensor types or in other applications. It is
important to realize the basic assumptions and limitations
associated with each method.

There may be many other uses for the forest density
map in addition to the roles played in the RPA forest type
group classification. For example, one may attempt to un-
derstand differences in spatial distribution patterns of for-
est type groups at the landscape level by studying spatial
statistics of forest density values that correspond to these
forest type groups. The forest density mapping approach is
also a useful tool for defining the extent of forest lands in
different regions or countries, which can be important for
a global change study coordinated among countries that
have varying forest land definitions. Entomologists may be
able to devise a contiguous canopy model based on the
density map for their studies forecasting the spread of
forest insects.
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Appendix

Table Al.—Selected regression models ised in the foresi densiiy mapping process
Region T™* R? Model '
2 CA 0.71 —489.1966 + 3.9649(AV61) — 3.7289(AV62) + 4.4256(AV65) - 1.1576(AVT1) + 0.7616(AVES)
4 1D 0.79 -~ 60.9285 - 0.9014 (AV61) — 0.7761 (AV64) + 1.9747(AVT1) - 1.5588(AV72) + 1.6517(AV7S)
+ 0.8073(AVSS)
5 co 0.50 - 111.3565 - 0.0662 AV32) + 0.6567(AV41)- 0.6581(AV42) + 1.7625(AV45) - 0.4679(AV53)

- 0.5078(AV74) + 1.0402(AV75)

7 SD 0.85 - 551.5842 - 0.0768(AV23) - 0.2513(AV33) + 0.7059(AV35) — 0.1232(AV52) - 0.1266(AV72)
+3.5067(AVS1) - 2.5331(AVS2) + 4.8239(AV85)

9 KS 0.65 - 134,115 - 0.0202(AV 1 1)(AV11) + 0.0212(AV12)(AV12) + 0.0425(AV1S)(AV1D)
~0.04B1(AV15)(AV12) + 0.0206(AV15)(AV15) - 0.0025(AV82)(AV44) — 0.006(AVS4)(AVSEI)
+0.0101(AV85)(AVS4)

9 TX 0.55 - 139.7329 + 0.0187(AV81)(AV55) — 0.0301(AV82)(AV15) + 0.0599(AV82)(AVS51)

-0 leﬂlA\lﬂ‘fanvsl.\ + 0, ﬂlQ(AVRﬁ\{ AVIQ\

10 AR 0.75 ~17.9352 - 0.5415(AV22) + 1.1951(AV55) - 1.2245(AV81) - 0.2842(AV8E3) - 0.8441(AV92)
- 0.9099(AV94) + 1.8732(AV9S)

11 Ms 0.63 184.454 — 0.2563(AV 12) — 0.3874(AV72) + 0.9961(AV75) - 0.7288(AVE2)

- 1.2555(AV83) + 0.6008(AVS5)

12 TN 0.65 ~94.0381 + 1.9229(AV11) - 1.9712 (AV12) + 2.3352(AV15) - 0.2695(AV22) + 0.8202(AV55)
- 1.0309(AV82) - 0.7322(AV83)

15 LA 0.63 - 547.0699 — 0.3704(AV23) + 1.4606(AVT1) — 0.9514(AV72) + 1.4108(AVTS) + 3.5221(AVS1)

- 2.8542(AV82) — 0.4498(AVE3) + 4.8253(AVES)

*Thematic Mapper (TM) scenes are indicated by the abbreviations of the States in which these TM Scenes are located.

t Advanced Very High Resolution Radiometer (AVHRR) channels in the equations are designated by their data set number (see table 2) and
spectral channel number (channeis 1 through 4 are regular AVHRR spectral channels, channel 5 is the normalized difference vegetation index
channel). For example, AV6] represents AVHRR data set 6, channel 1.
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Table A2.—Comparison of estimaies of forest area percentages derived from 1993 Forest and Rangeland Renewable
Resources Planning Act (RPA ) Forest Inventory and A nalysis surveydata (FIAPF) and from the Advanced Very
High Resolution Radiometer (AVHRR) forest type group map (AVPF), by State (ST)

ST* FIAPF AVPF Bias t ST* FIAPF AVPF Bias?t

AL 67.65 67.86 0.21 MT 24.17 24.75 0.58
AK 35.35 28.05 -7.32 NE 1.47 i.i5 -0.32
AZ 26.94 25.41 -1.53 NV 12.72 12.94 0.22
AR 53.60 51.07 -2.53 NH 86.78 88.75 1.97
CA 37.33 39.63 2.30 NJ 42.27 43.38 1.11
Cco 32.14 327 0.57 NM 19.69 25.18 5.49
CT 58.66 58.19 -0.47 NY 61.92 64.08 2.16
DE 31.10 34.38 3.28 NC 61.83 64.20 2.37
FL 7.89 44 .41 -3.48 ND 1.05 0.98 -0.07
GA 65.12 69.27 4.15 OH 30.00 31.91 1.91
HI 42.52 39.88 -2.64 OK 12.04 15.35 3.31

1D 40.82 43.94 312 OR 45.57 46.61 1.04

IL 11.99 12.30 0.31 PA 59.16 60.60 1.44

IN 19.34 21.16 1.82 RI 59.94 59.15 -0.79

1A 573 3.04 -2.69 SC 63.60 66.91 3.31

KS 2.60 1.13 -1.47 SD 3.48 3.60 0.12
KY 50.00 47.72 -2.28 TN 51.60 50.11 -1.49
LA 49.72 47.95 -1.77 TX 11.45 11.73 0.28
ME 88.76 90.04 1.28 UT 30.87 29.57 -1.30
MD 42.89 43.38 0.49 vT 76.66 74.78 -1.88
MA 63.86 64.14 0.28 VA 62.57 61.50 -1.07
MI 50.20 55.00 4.80 WA 48.07 48.90 0.83
MN 32.81 35.93 312 wV 78.68 75.99 -~2.69
MS 56.62 59.18 2.56 wi 44.63 41.38 -3.25
MO 31.77 30.05 -1.72 wY 16.04 18.22 2.18
Mean 41.03 41.35 1.95
Standard deviation 22.76 2292 1.47
‘Minimum 1.05 0.98 0.07
Maximum 88.76 90.04 7.32

*State names are alphabetized according to abbreviation.

t AVPF minus FIAPF.
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regression procedure. Res. Pap. SO-280. New Orleans, LA: U.S. De-
partment of Agriculture, Forest Service, Southern Forest Experiment
Station. 11 p.
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