Hydro 101 The Subtleties of River Operations May 9, 2012

Charlie Meeker, BPA / NJCD

Critical Business Systems Development Bonneville Power Administration U.S. Department of Energy

Adapted for the BP-14 Generation Inputs Workshop from material prepared to explain the Slice Water Routing Simulator

- Hydro 101 (the subtleties of river operation)
 - Key points (juggling multiple uses)

• Model variables (flows, elevations & generation)

- Operational constraints ('fencing in' the hydro system)
- Operational objectives
 (immediate & longer-range targets)

• Putting it all together (iterating over projects & hours)

May 9, 2012 - Rate Case Workshop

Multiple Power Uses

- The FCRPS is a large interconnected system
 - Plant operations: Army Corps of Engineers, Bureau of Reclamation
 - System planning & power marketing: Bonneville Power
- Firm capacity
 - Sold to preference customers on long-term contracts
 - Must be set aside on ongoing basis for operating & balancing reserves
- With variable water supply, surplus capacity is available most years
 - Selling this additional capacity on short-term contracts keeps rates low
- BPA plans capacity use on many time horizons
 - Longer-horizon plans inform shorter-horizon capability
 - Long-term commitments restrict shorter-term capability

May 9, 2012 - Rate Case Workshop

OWER ADMINISTRATION

Simplified Water Routing

Calculations

- Single-project models
- Hydraulic time lags
 Mid Columbia Operations

External inputs

- Measured discharges
 - Lagged flows into GCL/MCN
- Incremental side-flows (6)
- Operating Constraints
- Desired operations

May 9, 2012 - Rate Case Workshop

СНЛ

MCN

BON TDA JDA

Single Project Hydraulics

May 9, 2012 - Rate Case Workshop

All Model Variables

May 9, 2012 - Rate Case Workshop

B

0

N

B \mathbf{O} N

Single Project Hydraulics

Each project / hour model has:

- *Multiple Input Values*
- •2 Degrees of Freedom
- Computed Outputs

Adjust the two degrees of freedom to: ---- (1) pass inflow (unchanged storage) or (2) increase or (3) decrease storage or ↔ (4) increase **or** (5) decrease generation

May 9, 2012 - Rate Case Workshop

Two degrees of freedom

May 9, 2012 - Rate Case Workshop

Graphing Model Variables

On this graph ...

 Rising diagonals represent Fixed Spill Flow (kcfs)

Graphing Model Variables

Operating Constraints

Powerhouse constraints

Max generation

- Unit outages & de-ratings (kcfs or MW)
- Line outages & de-ratings (MW)

 \downarrow Min generation (MW, transmission reliability)

Spillway constraints

↓ Min spill (to promote fish passage)

- Absolute (kcfs)
- Percent (of total flow)

Max spill (kcfs, to reduce dissolved nitrogen)

Operating Constraints

Constraints Equivalences

Many constraints depend on history:

- Key Hour-to-hour change
 - Tailwater change
 - Discharge change

24-Hour fluctuation

- FB fill / draft
- TW fluctuation

Averages

 \mathbf{O}

- Min daily discharge
- Min weekly discharge

If prior operation is known,

can convert to simple min/max

Additional conversions are possible

- FB/TW to discharge limits
- Generation to Turbine Flow limits

- In this way, any constraint can be converted to one of these eight:
 - Min/Max discharge (kcfs)
 - Min/Max turbine flow (kcfs)
 - Min/Max spill (kcfs)
 - Min/Max spill % (% of discharge)
- Constraint conversions
 - depend on current configuration (that is, on prior operation history)
 - must be recomputed for each hour simulated.
- These eight limits constrain the two degrees of freedom
 - for each project
 - for each hour

N

В 0 O N Ν Ν Ο W D Μ

Constraint Equivalences

May 9, 2012 - Rate Case Workshop

Constraint Application

₩ ₩ ₩

Constraints & Targets

Constraint Conflicts

Without careful planning, it may be impossible to satisfy all constraints

- In a drafted reservoir, min FB may require small max discharge (any greater discharge → FB drafted below min)
- With low inflow, min discharge may require large FB draft (low FB max) (any higher FB → discharge below min)

1. Min FB 2. Max FB (per min discharge)

If both occur,

this will result in a 'min' FB higher than the 'max' FB

- FB max (Discharge min) is normally on the top
- FB min (Discharge max) is normally on the bottom
- If they are reversed, cannot satisfy both

One-Project Model Iterated

20

Summary

- The FCRPS is a complex, interconnected system
 - Many competing uses

0

- N

- Power production is the lowest priority
- Actions at one project affect other interconnected projects
- Actions at one time have long-term system impacts
 - Future commitments and contingencies restrict current use
 - Immediate actions can have a long-lasting impact
 - As real-time approaches, very little flexibility remains in the system
- BPA manages operational uncertainty and price risk by selling a variety of products and services over a variety of time frames.
- Flexibility may appear "physically available" at any given time, but unpredictable use of flexibility ...
 - ... affects BPA's ability to meet power and non-power obligations
 - ... affects multiple time horizons, not just the immediate moment

May 9, 2012 - Rate Case Workshop