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1. Introduction

Compositional security is a well-recognized scienti�c 
challenge [1]. Contemporary systems are built up 
from smaller components, but even if each compo-
nent is secure in isolation, a system composed of 
secure components may not meet its security require-
ments—an adversary may exploit complex interac-
tions between components to compromise security. 
Attacks using properties of one component to subvert 
another have shown up in practice in many di�erent 
settings, including network protocols and infrastruc-
ture [2, 3, 4, 5, 1], web browsers and infrastructure 
[6, 7, 8, 9, 10], and application and systems so
ware 
and hardware [11, 12, 13]. 

A theory of compositional security should iden-
tify relationships among systems, adversaries, and 
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ivide-and-conquer is an important paradigm in computer 
science that allows complex software systems to be 
built from interdependent components. However, 

there are widely recognized di�culties associated with 
developing divide-and-conquer paradigms for computer 
security; we do not have principles of compositional security 
that allow us to put secure components together to produce 
secure systems. The following article illustrates some of the 
problems and solutions we have explored in recent research on 
compositional security, compares them to other approaches 
explored in the research community, and describes important 
remaining challenges.

properties, such that pre-
cisely de�ned operations 
over systems and adversaries 
preserve security properties. It 
should explain known attacks, 
predict previously unknown attacks, 
and inform design of new systems. 
	e theory should be general—it should 
apply to a wide range of systems, adver-
saries, and properties. Guided by these 
desiderata, we initiated an investigation of 
compositional security in the domain of security 
protocols with the Protocol Composition Logic (PCL) 
project [14, 15, 16]. Building on these results, we then 
developed general secure composition principles 
that transcend speci�c application domains (for ex-
ample, security protocols, access control systems, web 
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platform) in the Logic of Secure Systems (LS2) proj-
ect [17]. 	ese theories have been applied to explain 
known attacks, predict previously unknown attacks, 
and inform the design of practical protocols and 

so
ware systems [12, 4, 18, 3, 19, 20, 21].

In both projects, we addressed two basic 
problems in compositional security: non-

destructive and additive composition.

Nondestructive composition 
ensures that if two system compo-

nents are combined, then neither 
degrades the security properties 

of the other. 	is is particular-
ly complicated when system 

components share state. 
For example, if an alter-
native mode of operation 
is added to a protocol, 
then some party may 
initiate a session in 
one mode and simul-
taneously respond to 
another session in 
another mode, using 
the same public key 
(an example of shared 
state) in both. Unless 
the modes are de-
signed not to interfere, 
there may be an attack 
on the multimode 
protocol that would not 
arise if only one mode 
were possible. In a simi-

lar example, new attacks 
became possible when 

trusted computing systems 
were augmented with a new 

hardware instruction that 
could operate on protected reg-

isters (an example of shared state) 
previously accessible only through a 

prescribed protocol [12].

Additive composition supports a combina-
tion of system components in a way that accumulates 
security properties. Combining a basic key exchange 
protocol with an authentication mechanism to 
produce a protocol for authenticated key exchange 

provides one example of additive composition [15]. 
Systematically adding cryptographic operations to 
basic authentication protocols to provide additional 
properties such as identity protection provides anoth-
er example of additive composition [22].

Both additive and nondestructive compositions are 
important in practice. If we want a system with the 
positive security features of two components, A and B, 
we need nondestructive composition conditions to be 
sure that we do not lose security features we want, and 
we need additive composition conditions to make sure 
we get the advantages of A and B combined.

Before turning to a high-level presentation of tech-
nical aspects of nondestructive and additive composi-
tion in PCL and LS2, we present two concrete ex-
amples that illustrate how security properties fail to be 
preserved under composition (that is, both examples 
are about the failure of nondestructive composition). 
We also compare our composition methods to three 
related approaches—compositional reasoning for cor-
rectness properties of systems [23, 24], the universal 
composability framework [25, 26], and a re�nement 
type system for compositional type-checking of secu-
rity protocols [27]. Finally, we describe directions for 
future work.

2. Two examples

While these protocol examples are contrived, the 
phenomena they illustrate are not: It is possible for 
one component of a system to expose an interface to 
the adversary that does not a�ect its own security but 
compromises the security of other components. Later, 
we will describe two general principles of composi-
tional security that could be used to design security 
protocols and other kinds of secure so
ware systems 
while avoiding the kind of insecure interaction illus-
trated by these examples.

Example 1: Authentication failure. 	e following two 
protocols use digital signatures. 	e �rst protocol 
provides one-way authentication when used in isola-
tion; however, this property is not preserved when the 
second protocol is run concurrently.

 Protocol 1.1. Alice generates a fresh random 
number r and sends it to Bob. Upon receiving 
such a message, Bob replies to the sender of the 
message (as recorded in the message) with his 
signature over the fresh random number and 
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the sender’s name—that is, if Bob receives the 
message with the random number r from sender 
A, then Bob replies with his signature over r and 
A. 	is protocol guarantees a form of one-way 
authentication: A
er sending the �rst message 
to Bob and then receiving Bob’s second message, 
Alice is guaranteed that Bob received the �rst 
message that she sent to him and then sent the 
second message and intended it for her.

 Protocol 1.2. Upon receiving any message m, Bob 
signs it with his private signing key and sends it 
out on the network. 

When the two protocols are run concurrently, 
protocol 1.1 no longer provides one-way authentica-
tion: Alice cannot be certain that Bob received her 
�rst message and intended the signed message for her 
as part of the execution of this protocol; it could very 
well be that Bob produced the signature as part of 
protocol 1.2 in response to an adversary M who inter-
cepted Alice’s message and used it to start a session of 
protocol 1.2 with Bob.

Example 2: Secrecy failure. Using network protocols 
as an illustration, here are two secure, unidirectional 
protocols for communication between Alice and Bob. 
Both involve public key cryptography, in which two 
di�erent keys are used for encryption and decryption, 
and the encryption key may be distributed publicly.

 Protocol 2.1. In this protocol, for communication 
from Alice to Bob, Alice sends a message to Bob 
by encrypting it with Bob’s public encryption 
key. As part of each message, in order to make 
our example illustrate the general point, Alice 
also reveals her secret decryption key, making 
public-key encryption to Alice insecure.

 Protocol 2.2. 	is protocol is the same as the pre-
vious one (that is, protocol 2.1), but in reverse: 
Bob communicates to Alice by encrypting mes-
sages using Alice’s public key and revealing his 
own private decryption key.

Both protocol 2.1 and 2.2 are secure when used by 
themselves: If Bob sends Alice a message encrypted 
with Alice’s public key, then only Alice can decrypt 
and read the message. However, it should be clear that 
composing these two protocols to communicate be-
tween Alice and Bob in both directions is completely 
insecure because when Alice sends Bob a message, 

she leaks her private key, and when Bob communi-
cates to Alice, he leaks his private key. A
er at least 
one message in each direction, both public keys have 
been leaked and any eavesdropper on the network can 
decrypt and read all the messages.

3. Two principles of secure composition

In the following, we describe two principles of se-
cure composition, and we use these principles to 
explain the examples of insecure composition in the 
previous section.

3. 1. Principle 1: Preserving invariants of 

system components 

	e central idea behind this principle is that the 
security property of a system component is preserved 
under composition if every other component respects 
invariants used in the proof of security of the com-
ponent in the face of attack. In example 1, the only 
relevant invariant for the authentication property of 
protocol 1.1 is of the following form: “If an honesta 
principal signs a message of the form < r, A >, then he 
must have previously received r in a message with A as 
the identi�er for the sender.” 	is invariant is not pre-
served by protocol 1.2, as demonstrated by the attack 
described in the previous section, leading to a failure 
of nondestructive composition.

To illustrate the generality of this principle, we 
brie�y discuss a published analysis of the widely de-
ployed Trusted Computing Group (TCG) technology 
using this principle [12], and we discuss the conse-
quent discovery of a real incompatibility between an 
existing standard protocol for attesting the integrity 
of the so
ware stack to a remote party and a newly 
added hardware instruction. Machines with trusted 
computing abilities include a special, tamper-proof 
hardware called the Trusted Platform Module or 
TPM, which contains protected append-only registers 
to store measurements (that is, hashes) of programs 
loaded into memory and a dedicated coprocessor 
to sign the contents of the registers with a unique 
hardware-protected key. 	e protocol in question, 
called Static Root of Trust Measurement (SRTM), 
uses this hardware to establish the integrity of the 
so
ware stack on a machine to a trusted remote third 

a. A principal is honest if he does not deviate from the steps of the protocol.
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party. 	e protocol works by requiring each program 
to store, in the protected registers, the hash of any 
program it loads. 	e hash of the �rst program loaded 
into memory, usually the boot loader, is stored in the 
protected registers by the booting �rmware, usually 
the basic input/output system (BIOS). 	e integrity of 
the so
ware stack of a machine following this protocol 
can be proved to a third party by asking the coproces-
sor to sign the contents of the protected registers with 
the hardware-protected key, and sending the signed 
hashes of loaded programs to the third party. 	e 
third party can compare the hashes to known ones, 
thus validating the integrity of the so
ware stack.

Note that the SRTM protocol is correct only if so
-
ware that has not already been measured cannot ap-
pend to the protected registers. Indeed, this invariant 
was true in the hardware prescribed by the initial TCG 
standard and, hence, this protocol was secure then. 
However, a new instruction, called latelaunch, 
added to the standard in a later extension allows an 
unmeasured program to be started with full access to 
the TPM. 	is violates the necessary invariant- and 
results in an actual attack on the SRTM protocol: 
A program invoked with latelaunch may add 
hashes of arbitrary programs to the protected registers 
without actually loading them. Since the program is 
not measured, the remote third party obtaining the 
signed measurements will never detect its presence. 
An analysis of the protocol using the method outlined 
here discovered this incompatibility between the 
SRTM protocol and the latelaunch instruction. 
In the analysis, the TPM instruction set, including 
latelaunch, were modeled as interfaces available 
to programs. 	e invariant can be established for all 
interfaces except latelaunch, thus leading to failure 

of a proof of correctness of SRTM with latelaunch 
and leading to discovery of the actual attack.

	is composition principle is related to the form 
of assume-guarantee reasoning initially proposed 
by Jones for reasoning about correctness properties 
of concurrent programs [23]. However, one di�er-
ence is that, in contrast to Jones’ work, we consider 
preservation of properties of system components 
under composition in the presence of an active ad-
versary whose exact program (or invariants) is not 
known. A
er sketching the technical approach in the 
next sections, we will explain how we address this 
additional complexity.

3.2. Principle 2: Secure rely-guarantee 

reasoning 

Inductive security properties (that is, properties which 
hold at a point of time if and only if they have held 
at all prior points of time) require a di�erent form of 
compositional reasoning that builds on prior work on 
rely-guarantee reasoning for correctness properties 
of programs [23, 24].

Suppose we wish to prove that property φ holds 
at all times. First, we identify a set S = {T

1
,…, T

n
} of 

trusted components relevant to the property and local 
properties Ψ

T1
,…,Ψ

Tn
 of these components, satisfying 

the following conditions:

(1)    If φ holds at all time points strictly before any 
given time point, then each of Ψ

T1
,…,Ψ

Tn
 holds 

at the given time point.

(2)    If φ does not hold at any time, then at least one 
of Ψ

T1
,…,Ψ

Tn
 must have been violated strictly 

before that time.
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	e rely-guarantee principle states that under these 
conditions, if φ holds initially, then φ holds forever.

We return to example 2 to illustrate the application 
of this principle. In order to prove the secrecy of the 
encrypted message, it is necessary to prove that the 
private decryption key is known only to the associated 
party. If protocol 2.1 (or protocol 2.2) were to run in 
isolation, the relevant decryption key would indeed 
be known only to the associated party (Alice or Bob). 
	is can be proved using the rely-guarantee reasoning 
technique described above and noting that the recipi-
ent of the encrypted message never sends out his or 
her private decryption key and that the other party 
cannot send it out (assuming that it has not already 
been sent out). However, when the two protocols are 
composed in parallel, the proof no longer works be-
cause the sender in one protocol is the recipient in the 
other; thus, we can no longer prove that the recipient’s 
private decryption key is not sent out on the network. 
Indeed, the composition attack arises precisely be-
cause the recipient’s private decryption key is sent out 
on the network.

Another application of the rely-guarantee technique 
is in proofs of secrecy of symmetric keys generated in 
network protocols. We explain one instance here—
proving that the so called authentication key (AKey) 
generated during the Kerberos V protocol (a widely 
used industry standard) becomes known only to three 
protocol participants [17, 18]: the client authenticated 
by the key, the Kerberos authentication server (KAS) 
that generates the key, and the ticket granting server 
(TGS) to whom the key authenticates the client. At 
the center of this proof is the property that whenever 
any of these three participants send out the AKey onto 
the (unprotected) network, it is encrypted with other 
secure keys. Proving this property requires induction 
because, as part of the protocol, the client blindly for-
wards an incoming message to the TGS. Consequently, 
the client’s outgoing message does not contain the un-
encrypted AKey because the incoming message does 
not contain the unencrypted AKey in it. 	e latter fol-
lows from the inductive hypothesis that any network 
adversary could not have had the unencrypted AKey 
to send to the client.

Formally, the rely-guarantee framework is instanti-
ated by choosing φ to be the property that any mes-
sage sent out on the network does not contain the un-
encrypted AKey. 	e properties Ψ

T 
, for components 

T of the client, KAS, and the TGS model the require-
ment that the respective components do not send out 
the AKey unencrypted. 	en, the proof of condition 
(2) of the rely-guarantee framework is trivial, and 
condition (1) follows from an analysis of the programs 
of the client, the KAS, and the TGS. 	e �rst of these, 
as mentioned earlier, uses the assumption that φ holds 
at all points in the past. Note that the three programs 
are analyzed individually, even though the secrecy 
property relies on the interactions between them, that 
is, the proof is compositional.

4. Protocol Composition Logic

Protocol Composition Logic (PCL) [14, 15, 16] is a 
formal logic for proving security properties of network 
protocols that use public and symmetric key cryptog-
raphy. 	e system has several parts:

 A simple programming language for de�ning 
protocols by writing programs for each role 

of the protocol. For example, the secure sock-
ets layer (SSL) protocol can be modeled in this 
language by writing two programs—one for the 
client role and one for the server role of SSL. 
Each program is a sequence of actions, such as 
sending and receiving messages, decryption, and 
digital signature veri�cation. 	e operational 
semantics of the programming language de-
�ne how protocols execute concurrently with a 
symbolic adversary (sometimes referred to as the 
Dolev-Yao adversary) that controls the network 
but cannot break the cryptographic primitives.

 A pre/postcondition logic for describing the 
starting and ending security conditions for 

protocol. For example, a precondition might 
state that a symmetric key is shared by two 
agents, and a postcondition might state that 
a new key exchanged using the symmetric 
key for encryption is only known to the same 
two agents.

 Modal formulas, denoted θ[P]
X 

 

, for stating 
that if a precondition θ holds initially, and a 
protocol thread X completes the steps P, then 
the postcondition  will be true afterwards irre-
spective of concurrent actions by other agents 

and the adversary. Typically, security proper-
ties of protocols are speci�ed in PCL using such 
modal formulas.
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A formal proof system for deriving true modal 

formulas about protocols. 	e proof system 
consists of axioms about individual protocol 
actions and inference rules that yield assertions 
about protocols composed of multiple steps.

One of the important ideas in PCL is that although 
assertions are written only using the steps of the 
protocol, the logic is sound in a strong sense: Each 
provable assertion involving a sequence of actions 
holds in any protocol run containing the given actions 
and arbitrary additional actions by a malicious adver-
sary. 	is approach lets us prove security properties 
of protocols under attack while reasoning only about 
the actions of honest parties in the protocol, thus 
signi�cantly reducing the size of protocol proofs in 
comparison to other proof methods, such as Paulson’s 
Inductive Method [28].

Intuitively, additive combination is achieved using 
modal formulas of the form θ[P]

A
. For example, the 

precondition θ might assert that A knows B’s public 
key, the actions P allow A to receive a signed message 
and verify B’s signature, and the postcondition  may 
say that B sent the signed message that A received. 
	e importance of modal formulas with before-a
er 
assertions is that we can combine assertions about 
individual protocol steps to derive properties of a se-
quence of steps: If [P]

A
Ψ and Ψ[P']

A
θ, then [PP']

A
θ. 

For example, an assertion assuming that keys have 
been successfully distributed can be combined with 
steps that do key distribution to prove properties of a 
protocol that distributes keys and uses them.

We ensure one form of nondestructive combination 
using invariance assertions, capturing the �rst compo-
sition principle described in Section 3. 	e central as-
sertion in our reasoning system, Γ [P]

A
Ψ, says that 

in any protocol satisfying the invariant Γ, the before-
a
er assertion [P]

A
Ψ holds in any run (regardless of 

any actions by any dishonest attacker). Typically, our 
invariants are statements about principals that follow 
the rules of a protocol, as are the �nal conclusions. 
For example, an invariant may state that every honest 
principal maintains secrecy of its keys, where honest 
means simply that the principal only performs actions 
that are given by the protocol. A conclusion in such a 
protocol may be that if Bob is honest (so no one else 
knows his key), then a
er Alice sends and receives 
certain messages, Alice knows that she has communi-
cated with Bob. Nondestructive combination occurs 

when two protocols are combined and neither violates 
the invariants of the other.

PCL also supports a specialized form of secure 
rely-guarantee reasoning about secrecy properties, 
capturing the second composition principle in Section 
3. In order to prove that the network is safe (that is, all 
occurrences of the secret on the network appear under 
encryption with a set of keys κ not known to the 
adversary), the proof system requires us to prove that 
assuming that the network is safe, all honest agents 
only send out “safe” messages, that is, messages from 
which the secret cannot be extracted without knowing 
the keys in the set κ [18].

	ese composition principles have been applied to 
prove properties of a number of industry standards 
including SSL/TLS, IEEE 802.11i, and Kerberos V5.

5. Logic of Secure Systems

	e Logic of Secure Systems (LS2) (initially presented 
in [12]) builds on PCL to develop related composition 
principles for secure systems that perform network 
communication and operations on local shared 
memory as well as on associated adversary models. 
	ese principles have been applied to study industrial 
trusted computing system designs. 	e study uncov-
ered an attack that arises from insecure composition 
between two remote attestation protocols (see [12] 
for details). A natural scienti�c question to ask is 
whether one could build on these results to develop 
general secure composition principles that transcend 
speci�c application domains, such as network proto-
cols and trusted computing systems. Subsequent work 
on LS2 [17], which we turn to next, answers exactly 
this question.

Two goals drove the development of LS2. First, we 
posit that a general theory of secure composition must 
enable one to �exibly model and parametrically reason 
about di�erent classes of adversaries. To develop such 
a theory, we view a trusted system in terms of the in-
terfaces its various components expose: Larger trusted 
components are built by connecting interfaces in the 
usual ways (client-server, call-return, message-passing, 
etc.). 	e adversary is con�ned to some subset of the 
interfaces, but its program is unspeci�ed and can call 
those interfaces in ways that are not known a priori. 
Our focus on interface-con�ned adversaries thus 
provides a generic way to model di�erent classes of 
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adversaries in a compositional setting. For example, 
in virtual machine monitor-based secure systems, 
we model an adversarial guest operating system by 
con�ning it to the interface exposed by the virtual 
machine monitor. Similarly, adversary models for web 
browsers, such as the gadget adversary (an attractive 
vector for malware today that leverages properties 
of Web 2.0 sites), can be modeled by con�ning the 
adversary to the read and write interfaces for frames 
guarded by the same-origin policy as well as by frame 
navigation policies [7]. 	e network adversary model 
considered in prior work on PCL and the adversary 
against trusted computing systems considered in the 
initial development of LS2 are also special cases of this 
interface-con�ned adversary model. At a technical 
level, interfaces are modeled as recursive functions in 
an expressive programming language. Trusted com-
ponents and adversaries are also represented using 
programs in the same programming language. Typi-
cally, we assume that the programs for the trusted 
components (or their properties) are known. However, 
an adversary is modeled by considering all possible 
programs that can be constructed by combining calls 
to the interfaces to which the adversary is con�ned.

Our second goal was to develop compositional rea-
soning principles for a wide range of classes of inter-
connected systems and associated interface-con�ned 
adversaries that are described using a rich logic. 	e 
approach taken by LS2 uses a logic of program speci�-
cations, employing temporal operators to express not 
only the states and actions at the beginning and end of 
a program, but also at points in between. 	is expres-
siveness is crucial because many security properties of 
interest, such as integrity properties, are safety prop-
erties [29]. LS2 supports the two principles of secure 
composition discussed in the previous section in the 
presence of such interface-con�ned adversaries. 	e 
�rst principle follows from a proof rule in the logic, 
and the second principle follows from �rst-order rea-
soning in the logic. We refer the interested reader to 
our technical paper for details [17].

6. Related work

We compare our approach to three related approach-
es—compositional reasoning for correctness proper-
ties of systems [23, 24], the Universal Composability 

(UC) framework [25, 26], and a re�nement type 
system for compositional type-checking of security 
protocols [27].

	e secure composition principles we developed are 
related to prior work on rely-guarantee reasoning for 
correctness properties of programs [23, 24]. However, 
the prior work was developed for a setting in which 
all programs are known. In computer security, how-
ever, it is unreasonable to assume that the adversary’s 
program is known a priori; rather, we model adversar-
ies as arbitrary programs that are con�ned to certain 
system interfaces as explained earlier. We prove invari-
ants about trusted programs and system interfaces 
that hold irrespective of concurrent actions by other 
trusted programs and the adversary. 	is additional 
generality, which is crucial for the secure composition 
principles, is achieved at a technical level using novel 
invariant rules. 	ese rules allow us to conclude that 
such invariants hold by proving assertions of the form 
θ[P]

x
 over trusted programs or system interfaces; 

note that because of the way the semantics of the 
modal formula is de�ned, the invariants hold irrespec-
tive of concurrent actions by other trusted programs 
and the adversary, although the assertion only refers 
to actions of one thread X.

Recently, Bhargavan et al. developed a type system 
to modularly check interfaces of security protocols, 
implemented the system, and applied it to analysis of 
secrecy properties of cryptographic protocols [27]. 
	eir approach is based on re�nement types (that is, 
ordinary types quali�ed with logical assertions), which 
can be used to specify program invariants and pre- 
and postconditions. Programmers annotate various 
points in the model with assumed and asserted facts. 
	e main safety theorem states that all programmer 
de�ned assertions are implied by programmer as-
sumed facts in a well-typed program. 

However, a semantic connection between the 
program state and the logical formulas representing 
assumed and asserted facts is missing. In contrast, 
we prove that the inference systems of our logics of 
programs (PCL and LS2) are sound with respect to 
trace semantics of the programming language. Our 
logic of programs may provide a semantic founda-
tion for the work of Bhargavan et al. and, dually, the 
implementation in that work may provide a basis for 
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mechanizing the formal system in our logics of pro-
grams. Bhargavan et al.’s programming model is more 
expressive than ours because it allows higher-order 
functions. We intend to add higher-order functions to 
our framework in the near future.

While all the approaches previously discussed 
involve proving safety properties of protocols and 
systems modeled as programs, an alternative approach 
to secure composition involves comparing the real 
protocol (or system) whose security we are trying 
to evaluate to an ideal functionality that is secure by 
construction and prove that the two are equivalent 
in a precise sense. Once the equivalence between the 
real protocol and the ideal functionality is established, 
the composition theorem guarantees that any larger 
system that uses the real protocol is equivalent to the 
system where the real protocol is replaced by the ideal 
functionality. 

	is approach has been taken in the UC framework 
for cryptographic protocols [25, 26] and is also related 
to the notion of observational equivalence and simula-
tion relations studied in the programming languages 
and veri�cation literature [30, 31]. When possible, 
this form of composition result is indeed very strong: 
Composition is guaranteed under no assumptions 
about the environment in which a component is used. 
However, components that share state and rely on one 
another to satisfy certain assumptions about how that 
state is manipulated cannot be compositionally ana-
lyzed using this approach; the secure rely-guarantee 
principle we develop is better suited for such analyses. 
One example is the compositional security analysis of 
the Kerberos protocol that proceeds from proofs of its 
constituent programs [18].

7. Future work

	ere are several directions for further work on this 
topic. First, automating the compositional reason-
ing principles we presented is an open problem. 
Rely-guarantee reasoning principles have already 
been automated for functional veri�cation of realistic 
systems. We expect that progress can be made on this 
problem by building on these prior results. Second, 
while sequential composition of secure systems is 

an important step forward, a general treatment of 
additive composition that considers other forms of 
composition is still missing. 	ird, it is important to 
extend the compositional reasoning principles pre-
sented here to support analysis of more re�ned models 
that consider, for example, features of implementation 
languages such as C. Finally, a quantitative theory 
of compositional security that supports analysis of 
systems built from components that are not perfectly 
secure would be a signi�cant result. 
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