
30

1. Introduction

Compositional security is a well-recognized scienti�c
challenge [1]. Contemporary systems are built up
from smaller components, but even if each compo-
nent is secure in isolation, a system composed of
secure components may not meet its security require-
ments—an adversary may exploit complex interac-
tions between components to compromise security.
Attacks using properties of one component to subvert
another have shown up in practice in many di�erent
settings, including network protocols and infrastruc-
ture [2, 3, 4, 5, 1], web browsers and infrastructure
[6, 7, 8, 9, 10], and application and systems so
ware
and hardware [11, 12, 13].

A theory of compositional security should iden-
tify relationships among systems, adversaries, and

Programming language
methods for compositional
security |

A n u p a m D a t t a a n d
J o h n C . M i t c h e l l

D
ivide-and-conquer is an important paradigm in computer
science that allows complex software systems to be
built from interdependent components. However,

there are widely recognized di�culties associated with
developing divide-and-conquer paradigms for computer
security; we do not have principles of compositional security
that allow us to put secure components together to produce
secure systems. The following article illustrates some of the
problems and solutions we have explored in recent research on
compositional security, compares them to other approaches
explored in the research community, and describes important
remaining challenges.

properties, such that pre-
cisely de�ned operations
over systems and adversaries
preserve security properties. It
should explain known attacks,
predict previously unknown attacks,
and inform design of new systems.
	e theory should be general—it should
apply to a wide range of systems, adver-
saries, and properties. Guided by these
desiderata, we initiated an investigation of
compositional security in the domain of security
protocols with the Protocol Composition Logic (PCL)
project [14, 15, 16]. Building on these results, we then
developed general secure composition principles
that transcend speci�c application domains (for ex-
ample, security protocols, access control systems, web

 The Next Wave | Vol. 19 No. 2 | 2012 | 31

FEATURE

platform) in the Logic of Secure Systems (LS2) proj-
ect [17]. 	ese theories have been applied to explain
known attacks, predict previously unknown attacks,
and inform the design of practical protocols and

so
ware systems [12, 4, 18, 3, 19, 20, 21].

In both projects, we addressed two basic
problems in compositional security: non-

destructive and additive composition.

Nondestructive composition
ensures that if two system compo-

nents are combined, then neither
degrades the security properties

of the other. 	is is particular-
ly complicated when system

components share state.
For example, if an alter-
native mode of operation
is added to a protocol,
then some party may
initiate a session in
one mode and simul-
taneously respond to
another session in
another mode, using
the same public key
(an example of shared
state) in both. Unless
the modes are de-
signed not to interfere,
there may be an attack
on the multimode
protocol that would not
arise if only one mode
were possible. In a simi-

lar example, new attacks
became possible when

trusted computing systems
were augmented with a new

hardware instruction that
could operate on protected reg-

isters (an example of shared state)
previously accessible only through a

prescribed protocol [12].

Additive composition supports a combina-
tion of system components in a way that accumulates
security properties. Combining a basic key exchange
protocol with an authentication mechanism to
produce a protocol for authenticated key exchange

provides one example of additive composition [15].
Systematically adding cryptographic operations to
basic authentication protocols to provide additional
properties such as identity protection provides anoth-
er example of additive composition [22].

Both additive and nondestructive compositions are
important in practice. If we want a system with the
positive security features of two components, A and B,
we need nondestructive composition conditions to be
sure that we do not lose security features we want, and
we need additive composition conditions to make sure
we get the advantages of A and B combined.

Before turning to a high-level presentation of tech-
nical aspects of nondestructive and additive composi-
tion in PCL and LS2, we present two concrete ex-
amples that illustrate how security properties fail to be
preserved under composition (that is, both examples
are about the failure of nondestructive composition).
We also compare our composition methods to three
related approaches—compositional reasoning for cor-
rectness properties of systems [23, 24], the universal
composability framework [25, 26], and a re�nement
type system for compositional type-checking of secu-
rity protocols [27]. Finally, we describe directions for
future work.

2. Two examples

While these protocol examples are contrived, the
phenomena they illustrate are not: It is possible for
one component of a system to expose an interface to
the adversary that does not a�ect its own security but
compromises the security of other components. Later,
we will describe two general principles of composi-
tional security that could be used to design security
protocols and other kinds of secure so
ware systems
while avoiding the kind of insecure interaction illus-
trated by these examples.

Example 1: Authentication failure. 	e following two
protocols use digital signatures. 	e �rst protocol
provides one-way authentication when used in isola-
tion; however, this property is not preserved when the
second protocol is run concurrently.

 Protocol 1.1. Alice generates a fresh random
number r and sends it to Bob. Upon receiving
such a message, Bob replies to the sender of the
message (as recorded in the message) with his
signature over the fresh random number and

32

Programming language methods for compositional security

the sender’s name—that is, if Bob receives the
message with the random number r from sender
A, then Bob replies with his signature over r and
A. 	is protocol guarantees a form of one-way
authentication: A
er sending the �rst message
to Bob and then receiving Bob’s second message,
Alice is guaranteed that Bob received the �rst
message that she sent to him and then sent the
second message and intended it for her.

 Protocol 1.2. Upon receiving any message m, Bob
signs it with his private signing key and sends it
out on the network.

When the two protocols are run concurrently,
protocol 1.1 no longer provides one-way authentica-
tion: Alice cannot be certain that Bob received her
�rst message and intended the signed message for her
as part of the execution of this protocol; it could very
well be that Bob produced the signature as part of
protocol 1.2 in response to an adversary M who inter-
cepted Alice’s message and used it to start a session of
protocol 1.2 with Bob.

Example 2: Secrecy failure. Using network protocols
as an illustration, here are two secure, unidirectional
protocols for communication between Alice and Bob.
Both involve public key cryptography, in which two
di�erent keys are used for encryption and decryption,
and the encryption key may be distributed publicly.

 Protocol 2.1. In this protocol, for communication
from Alice to Bob, Alice sends a message to Bob
by encrypting it with Bob’s public encryption
key. As part of each message, in order to make
our example illustrate the general point, Alice
also reveals her secret decryption key, making
public-key encryption to Alice insecure.

 Protocol 2.2. 	is protocol is the same as the pre-
vious one (that is, protocol 2.1), but in reverse:
Bob communicates to Alice by encrypting mes-
sages using Alice’s public key and revealing his
own private decryption key.

Both protocol 2.1 and 2.2 are secure when used by
themselves: If Bob sends Alice a message encrypted
with Alice’s public key, then only Alice can decrypt
and read the message. However, it should be clear that
composing these two protocols to communicate be-
tween Alice and Bob in both directions is completely
insecure because when Alice sends Bob a message,

she leaks her private key, and when Bob communi-
cates to Alice, he leaks his private key. A
er at least
one message in each direction, both public keys have
been leaked and any eavesdropper on the network can
decrypt and read all the messages.

3. Two principles of secure composition

In the following, we describe two principles of se-
cure composition, and we use these principles to
explain the examples of insecure composition in the
previous section.

3. 1. Principle 1: Preserving invariants of

system components

	e central idea behind this principle is that the
security property of a system component is preserved
under composition if every other component respects
invariants used in the proof of security of the com-
ponent in the face of attack. In example 1, the only
relevant invariant for the authentication property of
protocol 1.1 is of the following form: “If an honesta
principal signs a message of the form < r, A >, then he
must have previously received r in a message with A as
the identi�er for the sender.” 	is invariant is not pre-
served by protocol 1.2, as demonstrated by the attack
described in the previous section, leading to a failure
of nondestructive composition.

To illustrate the generality of this principle, we
brie�y discuss a published analysis of the widely de-
ployed Trusted Computing Group (TCG) technology
using this principle [12], and we discuss the conse-
quent discovery of a real incompatibility between an
existing standard protocol for attesting the integrity
of the so
ware stack to a remote party and a newly
added hardware instruction. Machines with trusted
computing abilities include a special, tamper-proof
hardware called the Trusted Platform Module or
TPM, which contains protected append-only registers
to store measurements (that is, hashes) of programs
loaded into memory and a dedicated coprocessor
to sign the contents of the registers with a unique
hardware-protected key. 	e protocol in question,
called Static Root of Trust Measurement (SRTM),
uses this hardware to establish the integrity of the
so
ware stack on a machine to a trusted remote third

a. A principal is honest if he does not deviate from the steps of the protocol.

 The Next Wave | Vol. 19 No. 2 | 2012 | 33

party. 	e protocol works by requiring each program
to store, in the protected registers, the hash of any
program it loads. 	e hash of the �rst program loaded
into memory, usually the boot loader, is stored in the
protected registers by the booting �rmware, usually
the basic input/output system (BIOS). 	e integrity of
the so
ware stack of a machine following this protocol
can be proved to a third party by asking the coproces-
sor to sign the contents of the protected registers with
the hardware-protected key, and sending the signed
hashes of loaded programs to the third party. 	e
third party can compare the hashes to known ones,
thus validating the integrity of the so
ware stack.

Note that the SRTM protocol is correct only if so
-
ware that has not already been measured cannot ap-
pend to the protected registers. Indeed, this invariant
was true in the hardware prescribed by the initial TCG
standard and, hence, this protocol was secure then.
However, a new instruction, called latelaunch,
added to the standard in a later extension allows an
unmeasured program to be started with full access to
the TPM. 	is violates the necessary invariant- and
results in an actual attack on the SRTM protocol:
A program invoked with latelaunch may add
hashes of arbitrary programs to the protected registers
without actually loading them. Since the program is
not measured, the remote third party obtaining the
signed measurements will never detect its presence.
An analysis of the protocol using the method outlined
here discovered this incompatibility between the
SRTM protocol and the latelaunch instruction.
In the analysis, the TPM instruction set, including
latelaunch, were modeled as interfaces available
to programs. 	e invariant can be established for all
interfaces except latelaunch, thus leading to failure

of a proof of correctness of SRTM with latelaunch
and leading to discovery of the actual attack.

	is composition principle is related to the form
of assume-guarantee reasoning initially proposed
by Jones for reasoning about correctness properties
of concurrent programs [23]. However, one di�er-
ence is that, in contrast to Jones’ work, we consider
preservation of properties of system components
under composition in the presence of an active ad-
versary whose exact program (or invariants) is not
known. A
er sketching the technical approach in the
next sections, we will explain how we address this
additional complexity.

3.2. Principle 2: Secure rely-guarantee

reasoning

Inductive security properties (that is, properties which
hold at a point of time if and only if they have held
at all prior points of time) require a di�erent form of
compositional reasoning that builds on prior work on
rely-guarantee reasoning for correctness properties
of programs [23, 24].

Suppose we wish to prove that property φ holds
at all times. First, we identify a set S = {T

1
,…, T

n
} of

trusted components relevant to the property and local
properties Ψ

T1
,…,Ψ

Tn
 of these components, satisfying

the following conditions:

(1) If φ holds at all time points strictly before any
given time point, then each of Ψ

T1
,…,Ψ

Tn
 holds

at the given time point.

(2) If φ does not hold at any time, then at least one
of Ψ

T1
,…,Ψ

Tn
 must have been violated strictly

before that time.

34

Programming language methods for compositional security

	e rely-guarantee principle states that under these
conditions, if φ holds initially, then φ holds forever.

We return to example 2 to illustrate the application
of this principle. In order to prove the secrecy of the
encrypted message, it is necessary to prove that the
private decryption key is known only to the associated
party. If protocol 2.1 (or protocol 2.2) were to run in
isolation, the relevant decryption key would indeed
be known only to the associated party (Alice or Bob).
	is can be proved using the rely-guarantee reasoning
technique described above and noting that the recipi-
ent of the encrypted message never sends out his or
her private decryption key and that the other party
cannot send it out (assuming that it has not already
been sent out). However, when the two protocols are
composed in parallel, the proof no longer works be-
cause the sender in one protocol is the recipient in the
other; thus, we can no longer prove that the recipient’s
private decryption key is not sent out on the network.
Indeed, the composition attack arises precisely be-
cause the recipient’s private decryption key is sent out
on the network.

Another application of the rely-guarantee technique
is in proofs of secrecy of symmetric keys generated in
network protocols. We explain one instance here—
proving that the so called authentication key (AKey)
generated during the Kerberos V protocol (a widely
used industry standard) becomes known only to three
protocol participants [17, 18]: the client authenticated
by the key, the Kerberos authentication server (KAS)
that generates the key, and the ticket granting server
(TGS) to whom the key authenticates the client. At
the center of this proof is the property that whenever
any of these three participants send out the AKey onto
the (unprotected) network, it is encrypted with other
secure keys. Proving this property requires induction
because, as part of the protocol, the client blindly for-
wards an incoming message to the TGS. Consequently,
the client’s outgoing message does not contain the un-
encrypted AKey because the incoming message does
not contain the unencrypted AKey in it. 	e latter fol-
lows from the inductive hypothesis that any network
adversary could not have had the unencrypted AKey
to send to the client.

Formally, the rely-guarantee framework is instanti-
ated by choosing φ to be the property that any mes-
sage sent out on the network does not contain the un-
encrypted AKey. 	e properties Ψ

T
, for components

T of the client, KAS, and the TGS model the require-
ment that the respective components do not send out
the AKey unencrypted. 	en, the proof of condition
(2) of the rely-guarantee framework is trivial, and
condition (1) follows from an analysis of the programs
of the client, the KAS, and the TGS. 	e �rst of these,
as mentioned earlier, uses the assumption that φ holds
at all points in the past. Note that the three programs
are analyzed individually, even though the secrecy
property relies on the interactions between them, that
is, the proof is compositional.

4. Protocol Composition Logic

Protocol Composition Logic (PCL) [14, 15, 16] is a
formal logic for proving security properties of network
protocols that use public and symmetric key cryptog-
raphy. 	e system has several parts:

 A simple programming language for de�ning
protocols by writing programs for each role

of the protocol. For example, the secure sock-
ets layer (SSL) protocol can be modeled in this
language by writing two programs—one for the
client role and one for the server role of SSL.
Each program is a sequence of actions, such as
sending and receiving messages, decryption, and
digital signature veri�cation. 	e operational
semantics of the programming language de-
�ne how protocols execute concurrently with a
symbolic adversary (sometimes referred to as the
Dolev-Yao adversary) that controls the network
but cannot break the cryptographic primitives.

 A pre/postcondition logic for describing the
starting and ending security conditions for

protocol. For example, a precondition might
state that a symmetric key is shared by two
agents, and a postcondition might state that
a new key exchanged using the symmetric
key for encryption is only known to the same
two agents.

 Modal formulas, denoted θ[P]
X

, for stating
that if a precondition θ holds initially, and a
protocol thread X completes the steps P, then
the postcondition will be true afterwards irre-
spective of concurrent actions by other agents

and the adversary. Typically, security proper-
ties of protocols are speci�ed in PCL using such
modal formulas.

 The Next Wave | Vol. 19 No. 2 | 2012 | 35

FEATURE

A formal proof system for deriving true modal

formulas about protocols. 	e proof system
consists of axioms about individual protocol
actions and inference rules that yield assertions
about protocols composed of multiple steps.

One of the important ideas in PCL is that although
assertions are written only using the steps of the
protocol, the logic is sound in a strong sense: Each
provable assertion involving a sequence of actions
holds in any protocol run containing the given actions
and arbitrary additional actions by a malicious adver-
sary. 	is approach lets us prove security properties
of protocols under attack while reasoning only about
the actions of honest parties in the protocol, thus
signi�cantly reducing the size of protocol proofs in
comparison to other proof methods, such as Paulson’s
Inductive Method [28].

Intuitively, additive combination is achieved using
modal formulas of the form θ[P]

A
. For example, the

precondition θ might assert that A knows B’s public
key, the actions P allow A to receive a signed message
and verify B’s signature, and the postcondition may
say that B sent the signed message that A received.
	e importance of modal formulas with before-a
er
assertions is that we can combine assertions about
individual protocol steps to derive properties of a se-
quence of steps: If [P]

A
Ψ and Ψ[P']

A
θ, then [PP']

A
θ.

For example, an assertion assuming that keys have
been successfully distributed can be combined with
steps that do key distribution to prove properties of a
protocol that distributes keys and uses them.

We ensure one form of nondestructive combination
using invariance assertions, capturing the �rst compo-
sition principle described in Section 3. 	e central as-
sertion in our reasoning system, Γ [P]

A
Ψ, says that

in any protocol satisfying the invariant Γ, the before-
a
er assertion [P]

A
Ψ holds in any run (regardless of

any actions by any dishonest attacker). Typically, our
invariants are statements about principals that follow
the rules of a protocol, as are the �nal conclusions.
For example, an invariant may state that every honest
principal maintains secrecy of its keys, where honest
means simply that the principal only performs actions
that are given by the protocol. A conclusion in such a
protocol may be that if Bob is honest (so no one else
knows his key), then a
er Alice sends and receives
certain messages, Alice knows that she has communi-
cated with Bob. Nondestructive combination occurs

when two protocols are combined and neither violates
the invariants of the other.

PCL also supports a specialized form of secure
rely-guarantee reasoning about secrecy properties,
capturing the second composition principle in Section
3. In order to prove that the network is safe (that is, all
occurrences of the secret on the network appear under
encryption with a set of keys κ not known to the
adversary), the proof system requires us to prove that
assuming that the network is safe, all honest agents
only send out “safe” messages, that is, messages from
which the secret cannot be extracted without knowing
the keys in the set κ [18].

	ese composition principles have been applied to
prove properties of a number of industry standards
including SSL/TLS, IEEE 802.11i, and Kerberos V5.

5. Logic of Secure Systems

	e Logic of Secure Systems (LS2) (initially presented
in [12]) builds on PCL to develop related composition
principles for secure systems that perform network
communication and operations on local shared
memory as well as on associated adversary models.
	ese principles have been applied to study industrial
trusted computing system designs. 	e study uncov-
ered an attack that arises from insecure composition
between two remote attestation protocols (see [12]
for details). A natural scienti�c question to ask is
whether one could build on these results to develop
general secure composition principles that transcend
speci�c application domains, such as network proto-
cols and trusted computing systems. Subsequent work
on LS2 [17], which we turn to next, answers exactly
this question.

Two goals drove the development of LS2. First, we
posit that a general theory of secure composition must
enable one to �exibly model and parametrically reason
about di�erent classes of adversaries. To develop such
a theory, we view a trusted system in terms of the in-
terfaces its various components expose: Larger trusted
components are built by connecting interfaces in the
usual ways (client-server, call-return, message-passing,
etc.). 	e adversary is con�ned to some subset of the
interfaces, but its program is unspeci�ed and can call
those interfaces in ways that are not known a priori.
Our focus on interface-con�ned adversaries thus
provides a generic way to model di�erent classes of

36

Programming language methods for compositional security

adversaries in a compositional setting. For example,
in virtual machine monitor-based secure systems,
we model an adversarial guest operating system by
con�ning it to the interface exposed by the virtual
machine monitor. Similarly, adversary models for web
browsers, such as the gadget adversary (an attractive
vector for malware today that leverages properties
of Web 2.0 sites), can be modeled by con�ning the
adversary to the read and write interfaces for frames
guarded by the same-origin policy as well as by frame
navigation policies [7]. 	e network adversary model
considered in prior work on PCL and the adversary
against trusted computing systems considered in the
initial development of LS2 are also special cases of this
interface-con�ned adversary model. At a technical
level, interfaces are modeled as recursive functions in
an expressive programming language. Trusted com-
ponents and adversaries are also represented using
programs in the same programming language. Typi-
cally, we assume that the programs for the trusted
components (or their properties) are known. However,
an adversary is modeled by considering all possible
programs that can be constructed by combining calls
to the interfaces to which the adversary is con�ned.

Our second goal was to develop compositional rea-
soning principles for a wide range of classes of inter-
connected systems and associated interface-con�ned
adversaries that are described using a rich logic. 	e
approach taken by LS2 uses a logic of program speci�-
cations, employing temporal operators to express not
only the states and actions at the beginning and end of
a program, but also at points in between. 	is expres-
siveness is crucial because many security properties of
interest, such as integrity properties, are safety prop-
erties [29]. LS2 supports the two principles of secure
composition discussed in the previous section in the
presence of such interface-con�ned adversaries. 	e
�rst principle follows from a proof rule in the logic,
and the second principle follows from �rst-order rea-
soning in the logic. We refer the interested reader to
our technical paper for details [17].

6. Related work

We compare our approach to three related approach-
es—compositional reasoning for correctness proper-
ties of systems [23, 24], the Universal Composability

(UC) framework [25, 26], and a re�nement type
system for compositional type-checking of security
protocols [27].

	e secure composition principles we developed are
related to prior work on rely-guarantee reasoning for
correctness properties of programs [23, 24]. However,
the prior work was developed for a setting in which
all programs are known. In computer security, how-
ever, it is unreasonable to assume that the adversary’s
program is known a priori; rather, we model adversar-
ies as arbitrary programs that are con�ned to certain
system interfaces as explained earlier. We prove invari-
ants about trusted programs and system interfaces
that hold irrespective of concurrent actions by other
trusted programs and the adversary. 	is additional
generality, which is crucial for the secure composition
principles, is achieved at a technical level using novel
invariant rules. 	ese rules allow us to conclude that
such invariants hold by proving assertions of the form
θ[P]

x
 over trusted programs or system interfaces;

note that because of the way the semantics of the
modal formula is de�ned, the invariants hold irrespec-
tive of concurrent actions by other trusted programs
and the adversary, although the assertion only refers
to actions of one thread X.

Recently, Bhargavan et al. developed a type system
to modularly check interfaces of security protocols,
implemented the system, and applied it to analysis of
secrecy properties of cryptographic protocols [27].
	eir approach is based on re�nement types (that is,
ordinary types quali�ed with logical assertions), which
can be used to specify program invariants and pre-
and postconditions. Programmers annotate various
points in the model with assumed and asserted facts.
	e main safety theorem states that all programmer
de�ned assertions are implied by programmer as-
sumed facts in a well-typed program.

However, a semantic connection between the
program state and the logical formulas representing
assumed and asserted facts is missing. In contrast,
we prove that the inference systems of our logics of
programs (PCL and LS2) are sound with respect to
trace semantics of the programming language. Our
logic of programs may provide a semantic founda-
tion for the work of Bhargavan et al. and, dually, the
implementation in that work may provide a basis for

 The Next Wave | Vol. 19 No. 2 | 2012 | 37

FEATURE

mechanizing the formal system in our logics of pro-
grams. Bhargavan et al.’s programming model is more
expressive than ours because it allows higher-order
functions. We intend to add higher-order functions to
our framework in the near future.

While all the approaches previously discussed
involve proving safety properties of protocols and
systems modeled as programs, an alternative approach
to secure composition involves comparing the real
protocol (or system) whose security we are trying
to evaluate to an ideal functionality that is secure by
construction and prove that the two are equivalent
in a precise sense. Once the equivalence between the
real protocol and the ideal functionality is established,
the composition theorem guarantees that any larger
system that uses the real protocol is equivalent to the
system where the real protocol is replaced by the ideal
functionality.

	is approach has been taken in the UC framework
for cryptographic protocols [25, 26] and is also related
to the notion of observational equivalence and simula-
tion relations studied in the programming languages
and veri�cation literature [30, 31]. When possible,
this form of composition result is indeed very strong:
Composition is guaranteed under no assumptions
about the environment in which a component is used.
However, components that share state and rely on one
another to satisfy certain assumptions about how that
state is manipulated cannot be compositionally ana-
lyzed using this approach; the secure rely-guarantee
principle we develop is better suited for such analyses.
One example is the compositional security analysis of
the Kerberos protocol that proceeds from proofs of its
constituent programs [18].

7. Future work

	ere are several directions for further work on this
topic. First, automating the compositional reason-
ing principles we presented is an open problem.
Rely-guarantee reasoning principles have already
been automated for functional veri�cation of realistic
systems. We expect that progress can be made on this
problem by building on these prior results. Second,
while sequential composition of secure systems is

an important step forward, a general treatment of
additive composition that considers other forms of
composition is still missing. 	ird, it is important to
extend the compositional reasoning principles pre-
sented here to support analysis of more re�ned models
that consider, for example, features of implementation
languages such as C. Finally, a quantitative theory
of compositional security that supports analysis of
systems built from components that are not perfectly
secure would be a signi�cant result.

About the authors

Anupam Datta is an assistant research professor
at Carnegie Mellon University. Dr. Datta’s research
focuses on foundations of security and privacy. He
has made contributions toward advancing the scien-
ti�c understanding of security protocols, privacy in
organizational processes, and trustworthy so
ware
systems. Dr. Datta has coauthored a book and over 30
publications in conferences and journals on these top-
ics. He serves on the Steering Committee of the IEEE
Computer Security Foundations Symposium (CSF),
and has served as general chair of CSF 2008 and as
program chair of the 2008 Formal and Computational
Cryptography Workshop and the 2009 Asian Comput-
ing Science Conference. Dr. Datta obtained MS and
PhD degrees from Stanford University and a BTech
from the Indian Institute of Technology, Kharagpur,
all in computer science.

John C. Mitchell is the Mary and Gordon Crary
Family Professor in the Stanford Computer Sci-
ence Department. His research in computer secu-
rity focuses on trust management, privacy, security
analysis of network protocols, and web security. He
has also worked on programming language analysis
and design, formal methods, and other applications
of mathematical logic to computer science. Professor
Mitchell is currently involved in the multiuniversity
Privacy, Obligations, and Rights in Technology of
Information Assessment (PORTIA) research project
to study privacy concerns in databases and informa-
tion processing systems, and the National Science
Foundation Team for Research in Ubiquitous Secure
Technology (TRUST) Center.

38

Programming language methods for compositional security

References

[1] Wing JM. A call to action: Look beyond the horizon.
IEEE Security & Privacy. 2003;1(6):62–67. DOI: 10.1109/
MSECP.2003.1253571

[2] Asokan N, Niemi V, Nyberg K. Man-in-the-middle in
tunnelled authentication protocols. In: Christianson B, Cris-
po B, Malcolm JA, Roe M, editors. Security Protocols 11th
International Workshop, Cambridge, UK, April 2-4, 2003,
Revised Selected Papers. Berlin (Germany): Springer-Verlag;
2005. p. 28–41. ISBN 13: 978-354-0-28389-8

[3] Kuhlman D, Moriarty R, Braskich T, Emeott S, Tripuni-
tara M. A correctness proof of a mesh security architecture.
In: Proceedings of the 21st IEEE Computer Security Founda-
tions Symposium; Jun 2008; Pittsburgh, MA. p. 315–330.
DOI: 10.1109/CSF.2008.23

[4] Meadows C, Pavlovic D. Deriving, attacking and
defending the GDOI protocol. In: Proceedings of the Ninth
European Symposium on Research in Computer Security;
Sep 2004; Sophia Antipolis, France. p. 53–72. Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1
12.3254&rep=rep1&type=pdf

[5] Mitchell JC, Shmatikov V, Stern U. Finite-state analysis
of SSL 3.0. In: Proceedings of the Seventh Conference on
USENIX Security Symposium; Jan 1998; San Antonio, TX. p.
16. Available at: http://www.usenix.org/publications/library/
proceedings/sec98/mitchell.html

[6] Barth A, Jackson C, Mitchell JC. Robust defenses
for cross-site request forgery. In: Proceedings of the
15th ACM Conference on Computer and Communica-
tions Security; Oct 2008; Alexandria, VA. p. 75–88. DOI:
10.1145/1455770.1455782

[7] Barth A, Jackson C, Mitchell JC. Securing frame com-
munication in browsers. In: Proceedings of the 17th USENIX
Security Symposium; Jul 2008; San Jose, CA. p. 17–30.
Available at: http://www.usenix.org/events/sec08/tech/
full_papers/barth/barth.pdf

[8] Chen S, Mao Z, Wang YM, Zhang M. Pretty-bad-proxy:
An overlooked adversary in browsers’ HTTPS deployments.
In: Proceedings of the 30th IEEE Symposium on Security
and Privacy; May 2009; Oakland, CA. p. 347–359. DOI:
10.1109/SP.2009.12

[9] Jackson C, Barth A. ForceHTTPS: Protecting high-
security web sites from network attacks. In: Proceedings
of the 17th International Conference on World Wide Web;
Apr 2008; Beijing, China. p. 525–534. Available at: http://
www2008.org/papers/pdf/p525-jacksonA.pdf

[10] Jackson C, Barth A, Bortz A, Shao W, Boneh D.
Protecting browsers from DNS rebinding attacks. In:
Proceedings of the 14th ACM Conference on Computer and

Communications Security; Oct 2007; Alexandria, VA. p.
421–431. DOI: 10.1145/1315245.1315298

[11] Cai X, Gui Y, Johnson R. Exploiting Unix �le-system
races via algorithmic complexity attacks. In: Proceedings
of the 30th IEEE Symposium on Security and Privacy; May
2009; Oakland, CA; p. 27–41. DOI: 10.1109/SP.2009.10

[12] Datta A, Franklin J, Garg D, Kaynar D. A logic of
secure systems and its application to trusted computing. In:
Proceedings of the 30th IEEE Symposium on Security and Pri-
vacy; May 2009; Oakland, CA. p. 221–236. DOI: 10.1109/
SP.2009.16

[13] Tsafrir D, Hertz T, Wagner D, Da Silva D. Portably
solving �le TOCTTOU races with hardness ampli�cation.
In: Proceedings of the Sixth USENIX Conference on File
and Storage Technologies; Feb 2008; San Jose, CA. p. 1–18.
Available at: http://www.usenix.org/events/fast08/tech/
tsafrir.html

[14] Datta A, Derek A, Mitchell JC, Pavlovic D. A deriva-
tion system and compositional logic for security protocols.
Journal of Computer Security. 2005;13(3):423–482. Available
at: http://seclab.stanford.edu/pcl/papers/ddmp-jcs05.pdf

[15] Datta A, Derek A, Mitchell JC, Roy A. Pro-
tocol composition logic (PCL). Electronic Notes in
�eoretical Computer Science. 2007;172:311–358. DOI:
10.1016/j.entcs.2007.02.012

[16] Durgin N, Mitchell JC, Pavlovic D. A compositional
logic for proving security properties of protocols. Jour-
nal of Computer Security. 2003;11(4):677–721. Available
at: http://www-cs-students.stanford.edu/~nad/papers/
comp-jcs205.pdf

[17] Garg D, Franklin J, Kaynar DK, Datta A. Compo-
sitional system security with interface-con�ned adver-
saries. Electronic Notes in �eoretical Computer Science.
2010;265:49–71. DOI: 10.1016/j.entcs.2010.08.005

[18] Roy A, Datta A, Derek A, Mitchell JC, Seifert JP.
Secrecy analysis in protocol composition logic. In: Okada
M, Satoh I, editors. Advances in Computer Science – ASIAN
2006: Secure So�ware and Related Issues, 11th Asian Com-
puting Science Conference, Tokyo, Japan, December 6-8,
2006. Berlin (Germany): Springer-Verlag; 2007. p. 197–213.

[19] Butler KRB, McLaughlin SE, McDaniel PD. Kells:
A protection framework for portable data. In: Proceed-
ings of the 26th Annual Computer Security Applications
Conference; Dec 2010; Austin, TX. p. 231–240. DOI:
10.1145/1920261.1920296

[20] Kannan J, Maniatis P, Chun B. Secure data preserv-
ers for web services. In: Proceedings of the Second USENIX
Conference on Web Application Development; Jun 2011;
Portland, OR. p. 25–36. Available at: http://www.usenix.org/
events/webapps11/tech/�nal_�les/Kannan.pdf

[21] He C, Sundararajan M, Datta A, Derek A, Mitchell JC.
A modular correctness proof of IEEE 802.11i and TLS. In:
Proceedings of the 12th ACM Conference on Computer
and Communications Security; Nov 2005; Alexandria, VA.
p. 2–15. DOI: 10.1145/1102120.1102124

[22] Datta A, Derek A, Mitchell JC, Pavlovic D. Abstrac-
tion and re�nement in protocol derivation. In: Proceedings
of 17th IEEE Computer Security Foundations Workshop;
Jun 2004; Paci�c Grove, CA. p. 30–45. DOI: 10.1109/
CSFW.2004.1310730

[23] Jones CB. Tentative steps toward a development
method for interfering programs. ACM Transactions on
Programming Languages and Systems. 1983;5(4):596–619.
DOI: 10.1145/69575.69577

[24] Misra J, Chandy KM. Proofs of networks of pro-
cesses. IEEE Transactions on So�ware Engineering.
1981;7(4):417–426. DOI: 10.1109/TSE.1981.230844

[25] Canetti R. Universally composable security: A new
paradigm for cryptographic protocols. In: Proceedings of
the 42nd IEEE Symposium on the Foundations of Computer
Science; Oct 2001; Las Vegas, NV. p. 136–145. DOI: 10.1109/
SFCS.2001.959888

[26] P�tzmann B, Waidner M. A model for asynchronous
reactive systems and its application to secure message
transmission. In: IEEE Symposium on Security and Privacy;
May 2001; Oakland, CA. p. 184–200. DOI: 10.1109/
SECPRI.2001.924298

[27] Bhargavan K, Fournet C, Gordon AD. Modular veri�-
cation of security protocol code by typing. In: Proceedings of
the 37th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages; Jan 2010; Madrid, Spain.
p. 445–456. DOI: 10.1145/1706299.1706350

[28] Paulson L. Proving properties of security protocols by
induction. In: Proceedings of 10th IEEE Computer Security
Foundations Workshop; Jun 1997; Rockport, MA. p. 70–83.
DOI: 10.1109/CSFW.1997.596788

[29] Alpern B, Schneider FB. Recognizing safety and live-
ness. Distributed Computing. 1987;2(3):117–126. DOI:
10.1007/BF01782772

[30] Canetti R, Cheung L, Kaynar DK, Liskov M, Lynch
NA, Pereira O, Segala R. Time-bounded task-PIOAs: A
framework for analyzing security protocols. In: Proceed-
ings of the 20th International Symposium on Distributed
Computing; Sep 2006; Stockholm, Sweden. p. 238–253. DOI:
10.1007/11864219_17

[31] Kϋsters R, Datta A, Mitchell JC, Ramanathan A. On the
relationships between notions of simulation-based security.
Journal of Cryptology. 2008;21(4):492–546. DOI: 10.1007/
s00145-008-9019-9

