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Making experiments 
dependable  |  

R o y  M a x i o n *

A
bstract. In computer science and computer 
security we o
en do experiments to establish or 
compare the performance of one approach vs. 

another to some problem, such as intrusion detec-
tion or biometric authentication. An experiment is 
a test or an assay for determining the characteristics 
of the item under study, and hence experimentation 
involves measurements. 

Measurements are susceptible to various kinds of 
error, any one of which could make an experimental 
outcome invalid and untrustworthy or undependable. 
	is paper focuses on one kind of methodological er-
ror—confounding—that can render experimental out-
comes inconclusive, but o
en without the investigator 
knowing it. Hence, valuable time and other resources 
can be expended for naught. We show examples from 
the domain of keystroke biometrics, explaining several 
di�erent examples of methodological error, their con-
sequences, and how to avoid them. 

1. Science and experimentation 

You wouldn’t be surprised if, in a chemistry experi-
ment, you were told that using dirty test tubes and 
beakers (perhaps contaminated with chemicals from a 
past procedure) could ruin your experiment, making 
your results invalid and untrustworthy. While we don’t 
use test tubes in cyber security, the same admonition 
applies: keep your experiments clean, or the contami-
nation will render them useless. 

Keeping your glassware clean is part of the chem-

lab methodology that helps make experimental mea-

surements dependable, which is to say that the mea-

surements have minimal error and no confounding 

variables. In cyber security we also need measure-
ments that are dependable and error-free; undepend-
able measurements make for undependable values 
and analyses, and for invalid conclusions. A rigorous 
experimental methodology will help ensure that mea-
surements are valid, leading to outcomes in which we 
can have con�dence. 

A particularly insidious form of error is the con-
found—when the value of one variable or experi-
mental phenomenon is confounded or in�uenced by 
the value of another. An example, as above, would be 
measuring the pH of a liquid placed in contaminated 
glassware where the in�uence of the contaminant on 
pH varied with the temperature of the liquid being 
measured. 	is is a confound, and to make things 
worse, the experimenter would likely be unaware of its 
presence or in�uence. 	e resulting pH values might 
be attributed to the liquid, to the temperature, or to 
the contaminant; they cannot be distinguished (with-
out further experimentation). Similar measurement 
error can creep into cyber security experiments, mak-
ing their measures similarly invalid. 

	is article describes some of the issues to be con-
sidered, and the rationales for decisions that need to 
be made, to ensure that an experiment is valid—that 
is, that outcomes can be attributed to only one cause 
(no alternative explanations for causal relations), and 
that experimental results will generalize beyond the 
experimental setting. 

In the sections to follow, we �rst consider the hall-
marks of a good experiment: repeatability, reproduc-
ibility and validity. 	en we focus on what is arguably 
the most important of these—validity. We examine 
a range of threats to validity, using an experiment in 
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keystroke biometrics to provide examples. 	e experi-
ment is laid out �rst, and is then critiqued; remedies 
for the violations are suggested. We close by sug-
gesting simple ways to avoid the kinds of problems 
described here. 

2. Hallmarks of a good experiment 

	ere are clear di�erences between experiments that 
are well-designed and those that are not. While there 
may be many details that are di�erent between the 
two, the main ones usually reduce to issues of repeat-
ability (sometimes called reliability), reproducibility 
and validity. While our main focus here will be on 
validity, we will �rst look brie�y at what each of the 
other terms means, just to put them all in context. 

Repeatability refers to the variation in repeated 
measurements taken by a single person or instrument 
on the same item and under the same conditions; we 
seek high agreement, or consistency, from one mea-
sured instance to another [9]. 	at is, the experiment 
can be repeated in its entirety, and the results will be 
the same every time, within measurement error. For 
example, if you measure the length of a piece of string 
with a tape measure, you should get about the same 
result every time. If an experiment is not repeatable, 
even by the same person using the same measuring 
apparatus, then there is a risk that the measurement 
is wrong, and hence the outcome of the experiment 
may be wrong, too; but no one will realize it, and so 
erroneous values will be reported (and assumed to be 
correct by readers). 

Reproducibility relates to the agreement of experi-
mental results with independent researchers using 
similar but physically di�erent test apparatus, and 
di�erent laboratory locations, but trying to achieve 
the same outcome as was reported in a source ar-
ticle [9]. Measurements should yield the same results 
each time they are taken, irrespective of who does 
the measuring. Using the length-of-string example, if 
other people can measure that same piece of string in 
another setting using a similar measuring device, they 
should get about the same result as the �rst group did. 
If they don’t, then the procedure is not reproducible; 
it can’t be replicated. Reproduction (sometimes called 
replication) allows an assessment of the control on the 
operating conditions of the measurement procedure, 
i.e., the ability to reset the conditions to some desired 

state. Ultimately, replication re�ects how well the pro-
cedure was operationalized. 

Note that reproducibility doesn’t mean hitting 
return and analyzing the same data set again with 
the same algorithm. It means conducting the entire 
experiment again, data collection and all. If an experi-
ment is not reproducible, then it cannot be replicated 
by others in a reliable way. 	is means that no one will 
be able to verify that the experiment was done cor-
rectly in the �rst place, hence placing an air of untrust-
worthiness on the original results. Reproducibility 
hinges on operational de�nitions for the measures and 
procedures employed in the course of the experi-
ment. An operational de�nition de�nes a variable or 
a concept in terms of the procedures or operations 
used to measure it. An operational de�nition is like a 
recipe or set of detailed instructions for describing or 
measuring something. 

Validity relates to the logical well-groundedness of 
how the experiment is conducted, as well as the extent 
to which the results will generalize to circumstances 
beyond those in the laboratory. 	e next section ex-
pands on the concept of validity. 

3. Validity 

What does the term valid mean? Drawing from a stan-
dard dictionary, when some thing or some argument 
or some process is valid, it is well-grounded or justi�-
able; it is logically correct; it is sound and �awlessly 
reasoned, supported by an objective truth. 

FIGURE 1. Hallmarks of a good experiment. 
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To conduct an experiment that was anything other 
than valid, in the above sense, would be foolish, and 
yet we see such experiments all the time in the litera-
ture. Sometimes we can see the �aws (which some 
would call threats to validity) directly in the experi-
ment, and sometimes we can’t tell, because authors do 
not report the details of how their experiments were 
conducted. Generally speaking, there are two kinds of 
validity—internal and external. Conceptually, these 
are pretty simple. 

Internal validity. In most experiments we are trying to 
�nd out if A has a given e�ect on B, or if A causes B. 
To claim that A indeed causes B, the experiment must 
not o�er any alternative causes nor alternative expla-
nations for the outcome; if this is case, then the experi-
ment is internally valid [8]. An alternative explanation 
for an experimental outcome can be due, for example, 
to confounded variables that have not been controlled. 

For example, suppose we want to understand the 
cause of errors in programming. We recruit students 
in university programming classes (one class uses C, 
and the other uses Java). We ask all the students to 
write a program that calculates rocket trajectories. 
	e results indicate that C programmers make more 
programming errors, and so we conclude that the C 
programming language is a factor in so
ware errors. 
Drawing such a conclusion would be questionable, 
because there are other factors that could explain 
the results just as well. Suppose, for example, that 
the Java students were more advanced (juniors, not 
sophomores) than the C students. 	e outcome of 
the experiment could be due to the experience level 
of the students, just as much as it could be due to the 
language. Since we can’t distinguish distinctly be-
tween experience level and language, we say that the 
experiment confounds two factors—language and 
experience—and is therefore not valid. Note that it can 
sometimes be quite di�cult to ensure internal valid-
ity. Even if all the students are at the same experience 
level, if they self-selected Java vs C it would still allow 
for a confound in that a certain kind of student might 
be predisposed to select Java, and a di�erent kind of 
student might be predisposed to select C. 	e two 
di�erent kinds of students might be di�erentially good 
at one language or the other. 	e remedy for such an 
occurrence would be to assign the language-student 
pairs randomly. 

External validity. In most experiments we hope that 
the �ndings will apply to all users, or all so
ware, 
or all applications. We want the experimental �nd-
ings to generalize from a laboratory or experimental 
setting to a much broader setting. To the extent that 
a study’s �ndings generalize to a broader population 
(usually taken to be “the real world”), the experiment 
is externally valid [8]. If the �ndings are limited to the 
conditions surrounding the study (and not to broader 
settings), then the experiment lacks external validity. 
Another way to think about this is that external valid-
ity is the extent to which a causal relationship holds 
when there are variations in participants, settings 
and other variables that are di�erent from the narrow 
ranges employed in the laboratory. 

Referring back to our earlier example, suppose we 
were to claim that the experiment’s outcome (that 
the C language promotes errors) generalizes to a set 
of programmers outside the experimental environ-
ment—say, in industry. 	e generalization might not 
hold, perhaps because the kind of problem presented 
to the student groups was not representative of the 
kinds of problems typically encountered in industry. 
	is is an example of an experiment not generalizing 
beyond its experimental conditions to a set of condi-
tions more general; it’s not externally valid. 

Trade-o� between internal and external validity. It 
should be noted that not all experiments can be valid 
both internally and externally at the same time; it 
depends on the purpose of the experiment whether 
we seek high internal or high external validity. Typi-
cally there is a trade-o� in which one kind of validity 
is sacri�ced for the other. For example, laboratory 
experiments designed to answer a very focused ques-
tion are o
en more internally valid than externally 
valid. Once a research question seems to have been 
settled (e.g., that poor exception handling is a major 
cause of so
ware failure), then a move to a broader, 
more externally valid, experiment would be the right 
thing to do. 

4. Example domain—keystroke biometrics 

In this section we introduce the domain from 
which we draw concrete examples of experimental 
invalidities—keystroke biometrics. 

Keystroke biometrics, or keystroke dynamics, is 
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the term given to the procedure of measuring and 
assessing a user’s typing style, the characteristics of 
which are thought to be unique to a person’s physiol-
ogy, behavior, and habits. 	e idea has its origin in the 
observation that telegraph operators have distinctive 
patterns, called �sts, of keying messages over telegraph 
lines. One notable aspect of �sts is that they emerge 
naturally, as noted over a hundred years ago by Bryan 
& Harter, who showed that operators are distinc-
tive due to the automatic and unconscious way their 
personalities express themselves, such that they could 
be identi�ed on the basis of having telegraphed only a 
few words [1]. 

	ese measures of key presses and key releases, 
based largely on the timing latencies between key-
strokes, are compared to a user pro�le as part of a 
classi�cation procedure; a match or a non-match can 
be used to decide whether or not the user is authenti-
cated, or whether or not the user is the true author of 
a typed sequence. For a brief survey of the keystroke 
literature, see [7]. 

We use keystroke dynamics as an example here 
for two reasons. First, it’s easy to understand—much 
easier, for example, than domains like network proto-
cols. If we’re going to talk about �aws and invalidities 
in experiment design, then it’s better to talk about 
an experiment that’s easily understood; the lessons 
learned can be extended to almost any other domain 
and experiment. Second, keystroke dynamics shares 
many problems with other cyber-security disciplines, 
such as intrusion detection. Examples are classi�cation 
and detection accuracy; selection of best classi�er or 
detector; feature extraction; and concept dri
, just to 
name a few. Again, problems solved in the keystroke 
domain are very likely to transfer to other domains 
where the same type of solution will be e�ective. 

4.1. What is keystroke dynamics good for? 

Keystroke dynamics is typically thought of as an 
example of the second factor in two-factor authentica-
tion. For example, for a user to authenticate, he’d have 
to know not only his own password (the �rst factor), 
but he would also have to type the password with a 
rhythm consistent with his own rhythm. An impos-
tor, then, might know your password, but would not 
be able to replicate your rhythm, and so would not be 

allowed into the system. Another application, along a 
similar line, would be continuous re-authentication, 
in which the system continually checks to see that 
the typing rhythm matches that of the logged-in user, 
thereby preventing, say, insiders from masquerading 
as you. A third application would be what forensics 
experts call questioned-document analysis, which asks 
whether a particular user typed a particular document 
or parts of it. Finally, keystroke rhythms could be used 
to track terrorists from one cyber café to another, 
or to track a predator from one chat-room session 
to another. 

4.2. How does keystroke dynamics work? 

	e essence of keystroke dynamics is that timing data 
are collected as a typist enters a password or other 
string. Each keystroke is timestamped twice; once on 
its downstroke and once on its upstroke. From those 
timings we can compute the amount of time that a key 
was held down (hold time) and the amount of time 
it took to transition from one key to the next (transi-
tion latency). 	e hold times and the latencies are 
called features of the typed password, and for a given 
typing instance these features would be grouped into 
a feature vector. For a 10-character password there 
would be eleven hold times and ten latencies if we 
include the return key.a If a typist enters a password 
many times, then the several resulting feature vectors 
can be assembled into a template which represents the 
central tendency of the several vectors. Each typist will 
have his or her own such template. 	ese templates are 
formed during an enrollment period, during which 
legitimate users provide typing samples; these samples 
form the templates. Later, when a user wishes to log 
in, he types the password with the implicit claim that 
the legitimate user has typed the password. 	e key-
stroke dynamics system examines the feature vector of 
the presently-typed password, and classi�es it as either 
belonging to the legitimate user or not. 	e classi�er 
operates as an anomaly detector; if the rhythm of the 
typed password is a close enough match to the stored 
template, then the user is admitted to the system. 	e 
key aspect of this mechanism is the detector. In ma-
chine learning there are many such detectors, distin-
guished by the distance metrics that they use, such as 
Euclidean, Manhattan and Mahalanobis, among others 
[4]. Any of these detectors can be used in a keystroke 

a. 	ere are two kinds of latencies—keydown to keydown and keyup to keydown. Some researchers use one or the other of these, and 
some researchers use both. In our example we would have 31 features if we used both.
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dynamics system; under some circumstances, some 
detectors work better than others, but it is an open 
research question as to which classi�er is overall best. 

5. A typical keystroke experiment 

In this section we discuss several aspects of conduct-
ing a study in keystroke dynamics, we show what can 
go wrong, and we share some examples of how (in)
validity can a�ect the outcome of a real experiment. 
We will discuss some examples and experimental �aws 
that are drawn from the current literature, although 
not all of the examples are drawn from a single paper. 

Walkthrough. Let’s walk through a typical experiment 
in keystroke dynamics, and we’ll point out some errors 
that we’ve observed in the literature, why they’re er-
rors, how to correct them, and what the consequences 
might be if they’re le
 uncorrected. Note that the 
objective of the experiment is to discriminate among 
users on the basis of their typing behavior, not on the 
basis of their typing behavior plus, possibly unspeci-
�ed, other factors; the typing behavior needs to be iso-
lated from other factors to make the experiment valid. 

A typical keystroke dynamics experiment would 
test how well a particular algorithm can determine 
that a user, based on his typing rhythm, is or is not 
who he claims to be. In a keystroke biometric system, 
a user would present himself to the system with his 
login ID, thereby claiming to be the person associ-
ated with the ID. 	e system veri�es this claim by two 
means: it checks that the password typed by the user 
is in fact the user’s password; and it checks that the 
password is typed with the same rhythm with which 
the legitimate user would type it. If these two factors 
match the system’s stored templates for the user, then 
the user is admitted to the system. 

Checking that the correct password is o�ered is old 
hat; checking that its typing rhythm is correct is an-
other matter. 	is is typically done by having the user 
“enroll” in the biometric component of the system. For 
di�erent biometric systems the enrollment process is 
di�erent, depending on the biometric being used; for 
example, if a �ngerprint is used, then the user needs to 
present his �ngerprint to the system so that the system 
can encrypt and store it for later matching against 
a user claiming to be that person who enrolled. For 
keystroke biometric systems, the process is similar; 

the user types his password several times so that 
the system can form a pro�le of the typing rhythm 
for later matching. 	e biometric system’s detection 
algorithm is tested in two ways. In the �rst test, sample 
data from the enrolled user is presented to the system; 
the system should recognize that the user is legitimate. 
	e second test determines whether the detector can 
recognize that an impostor is not the claimed user. 
	is would be done by presenting the impostor’s login 
keystroke sequence to the system, posing as a legiti-
mate user. Across a group of legitimate users and im-
postors, the percentage of mistakes, or errors, serves as 
a gauge of how good the keystroke biometric system 
is. Several details concerning exactly how these tests 
are done can have enormous e�ects on the outcome. 
We turn now to those details. 

What can go wrong? 	ere are several parts of an 
experiment where things can go wrong. Most experi-
ments measure something; the measuring apparatus 
can be �awed, producing �awed measurements. If the 
measurements are �awed, then the data will be �awed, 
and any analytical results and conclusions will be 
cast into doubt. 	e way that something is measured 
can be unsound; if you measure code complexity by 
counting the number of lines, you’ll get a numeri-
cal outcome, but it may not be an accurate re�ection 
of code complexity. 	e way or method of taking 
measurements is the biggest source of error in most 
experiments. Compounding that error is the lack of 
detail with which the measurement methodology 
is reported, o
en making it di�cult to determine 
whether or not something went wrong. We turn now 
to speci�c examples of methodological problems. 

Clock resolution and timing. Keystroke timings are 
based on operating-system calls to various timers. In 
the keystroke literature we see di�erent timers being 
used by di�erent researchers, with timing accura-
cies o
en reported to several decimal places. But it’s 
not the accuracy (number of decimal places) of the 
timing that’s of overriding importance; it’s the resolu-
tion. When keystroke dynamics systems are written 
for Windows-based machines (e.g., Windows XP), 
it’s usually the tick timer, or Windows-event clock [6] 
that’s used; this has a resolution of 15.625 milliseconds 
(ms), corresponding to 64 updates per second. If done 
on a Unix system, the resolution is about 10 millisec-
onds. On some Windows systems the resolution can 

FEATURE
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be much �ner if the QPC timer is used. 	e reason 
that timing resolution matters is not because people 
type as fast as one key every 15 milliseconds (66 keys 
per second); it’s because the time between keystrokes 
can di�er by less than 15 milliseconds. If some typists 
make key-to-key transitions faster than other ones, 
but the clock resolution is unable to separate them, 
then detection accuracy could su�er. One paper has 
reported a 4.2% change in error rate due to exactly this 
sort of thing [3]. A related issue is how you know what 
your clock resolution is. It’s unwise to simply read this 
o� the label; better to perform a calibration. A related 
paper explained how this is done in a keystroke dy-
namics environment [5]. A last word on timing issues 
concerns how the timestamping mechanism actually 
works; if it’s subject to in�uence from the scheduler, 
then things like system load can change the accuracy 
of the timestamps. 

	e e�ect of clock resolution and timing is that they 
can interact with user rhythms as a confound. If dif-
ferent users type on di�erent machines whose timing 
resolutions di�er, then any distinctions made among 
users, based on timing, could be due to di�erences in 
user typing rhythms (timings) or they could be due to 
di�erences in clock resolutions. Moreover, since sys-
tem load can in�uence keystroke timing, it’s possible 
that rhythmic di�erences attributed to di�erent users 
would be due to load di�erences, not to user di�erenc-
es. Hence we would not be able to claim distinctive-
ness based on user behavior, because this cannot be 
separated from timing errors induced by clock resolu-
tion and system load. If the purpose of the experiment 
is to di�erentiate amongst users on the basis of typing 
rhythm, then the confounds of clock resolution and 
system load must be removed. 	e simplest way to 
achieve this is to ensure that the experimental systems 
use the same clock, with the same resolution (as high 
as possible), and have the same operating load. 	is is 
possible in the laboratory by using a single system on 
which to collect data from all participants. 

Keyboards. Experiments in keystroke dynamics 
require people to type, of course, and keyboards on 
which to do that typing. Most such experiments re-
ported in the literature allow subjects to use whatever 
keyboard they want; a
er all, in the real world people 
do use whatever keyboard they prefer. Consequently, 
this approach has a lot of external validity. Unfortu-
nately, the approach introduces a serious confound, 

too—a given keyboard, by its shape or character lay-
out, is likely to in�uence a user’s typing behavior. Dif-
ferent keyboards, such as standard, ergonomic, laptop, 
kinesis, natural, kinesis maxim split and so forth will 
shape typing in a way that’s peculiar to the keyboard 
itself. In addition to the shape of the keyboard, the key 
pressures required to make electrical contact di�er 
from one keyboard to another. 	e point is that not 
all keyboards are the same, with the consequence that 
users may type the same strings di�erently, depend-
ing on the keyboard and its layout. In the extreme, if 
everyone in the experiment used a di�erent keyboard, 
you wouldn’t be able to separate the e�ect of the key-
boards from the e�ect of typing rhythm; whether your 
experimental results showed good separation of typists 
or not, you wouldn’t know if the results were due to 
the typists’ di�erences or to the di�erences among the 
keyboards. Hence you would not be able to con-
clude that typing rhythms di�er among typists. 	is 
confound can be removed from the experiment by 
ensuring that all participants use the same (or perhaps 
same type of) keyboard. 	e goal of the experiment 
is to determine distinctiveness amongst typists based 
on their individual rhythms, not on the basis of the 
keyboards on which they type. 

Stimulus items—what gets typed. Participants in 
keystroke biometrics experiments need to type some-
thing—the stimulus item in the experiment. While 
there are many kinds of stimuli that could be consid-
ered (e.g., passwords, phrases, paragraphs, transcrip-
tions, free text, etc.), we focus on short, password-like 
strings. 	ere are two fundamental issues: string 
contents and string length. 

String contents. By contents we mean simply the char-
acters contained in the password being typed. Two 
contrasting examples would be a strong password, 
characterized by containing shi
 and punctuation 
characters, as opposed to a weak password, charac-
terized by a lack of the aforementioned special char-
acters. It’s easy to see that if some users type strong 
passwords, and other users type weak passwords, then 
any discrimination amongst users may not be solely 
attributable to di�erences among users; it may be at-
tributable to intrinsic di�erences between strong and 
weak passwords that cause greater rhythmic variability 
in one or the other. 	e reason may be that strong 
passwords are hard to type, and weak ones aren’t. So 
we may be discriminating not on the basis of user 
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rhythm, but on the basis of typing di�culty which, in 
turn, is in�uenced by string content. To eliminate this 
confound, the experimenter should not allow users to 
choose their own passwords; the password should be 
chosen by the experimenter, and should be the same 
for each user. 

String length. If users are le
 to their own devices to 
choose passwords, some may choose short strings, 
while others choose longer strings. If this happens, 
as it has in experiments where passwords were self-
selected, then any distinctiveness detected amongst 
users cannot be attributed solely to di�erences among 
user typing rhythms; the distinctions could have been 
caused by di�erences in string lengths that the users 
typed, or by intrinsic characteristics that cause more 
variability in one length than in another. So, we don’t 
know if the experimental results are based on user 
di�erences or on length di�erences. To remove this 
confound, the experimenter should ensure that all 
participants type same-length strings. 

Typing expertise and practice. Everyone has some 
amount of typing expertise, ranging roughly from low 
to high. Expertise comes from practice, and the more 
you practice, the better you get. 	is pertains to typ-
ing just as much as it pertains to piano playing. Two 
things happen when someone has become practiced 
at typing a password. First, the total amount of time 
to type the password decreases; second, the time 
variation with which particular letter pairs (digrams) 
are typed diminishes. It takes, on average, about 214 
repetitions of a ten-character password to attain a 
level of expertise such that typing doesn’t change by 
more than 1 millisecond on average (less than 0.1%) 
over the total time (about 3–5 seconds) taken to type 
a password. At this level of practice it can be safely 
assumed that everyone’s typing is stable; that is, it’s 
not changing signi�cantly. Due to this stability, it is 
safe to compare typists using keystroke biometrics. 
A classi�er will be able to distinguish among a group 
of practiced typists, and will have a particular success 
rate (o
en in the region of 95–99%). 

But what if, as in some studies, the level of exper-
tise among the subjects ranges from low to high, with 
some people very practiced and others hardly at all? 
If practiced typists are consistent, with low variation 
across repeated typings, but unpracticed typists are 
inconsistent with high variability, then it would be 
relatively easy for a classi�er to distinguish users in 

such groups from one another. 	is could make clas-
si�cation outcomes more optimistic than they really 
are, making them misleading at best. In one study 
25 people were asked to type a password 400 times. 
Some people in the study did this, but others typed 
the password only 150 times, putting a potentially 
large expertise gap between these subjects. No matter 
what the outcome if everyone had been at the same 
level of expertise, it’s easy to see that the classi�cation 
results would likely be quite di�erent than if there was 
a mixture of practice levels among the subjects. 	is 
is an example of a lack of internal validity, where the 
confound of di�erential expertise or practice is operat-
ing. 	ere is no way that the classi�er results can be 
attributed solely to users’ typing rhythms alone; they 
are confounded with level of practice. 

Instructions to typists. In any experiment there needs 
to be a protocol by which the experiment is carried 
out. 	is protocol should be followed assiduously, lest 
errors creep into the experiment whilst the researcher 
is unaware. Here we give two examples in which in-
structions to subjects are important. 

First, in our own experience, we had told subjects to 
type the password normally, as if they were logging in 
to their own computer. 	is should be straightforward 
and simple, but it’s not. We discovered that some sub-
jects were typing with extraordinary quickness. When 
we asked those people if that’s how they typed every 
day, they said no—they thought that the purpose of 
our experiment was to see who could type the fastest 
or the most accurately, even though we had never said 
that. 	is probably happened because we are a univer-
sity laboratory, and it’s not unusual in university ex-
periments (especially in psychology) to have their true 
intentions disguised from the participant; otherwise 
the participant may game the experiment, and hence 
ruin it. People in our experiment assumed that we had 
a hidden agenda (we didn’t), and the people respond-
ed to what they thought was the true agenda by typing 
either very quickly or very carefully or both. When 
we discovered this, we changed our instructions to tell 
subjects explicitly that there was no hidden agenda, 
and that we really meant it when we said that we were 
seeking their normal, everyday typing behavior. A
er 
the instructions were changed to include this, we no 
longer observed the fast and furious typing behavior 
that had drawn our attention in the �rst place. If we 
had not done this, then we would have le
 an internal 
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invalidity in the experiment; our results would have 
been confounded with normal typing by some and 
abnormally fast typing by others. Naturally, a classi-
�er would be able to distinguish between fast and slow 
typists, thereby skewing the outcomes unrealistically. 

Second, if there is no written protocol by which 
to conduct an experiment, and by which to instruct 
participants as to what they are being asked to do, 
there is a tendency for the experimenter to ad lib the 
instructions. While this might be �ne, what can hap-
pen in practice is that the experimenter will become 
aware of a slightly better way to word or express the 
instructions, and will slightly alter the instructions for 
the next subject. 	is might slightly improve things for 
that subject. However, for the subject a
er that, the in-
structions might change again, even if ever so slightly. 
As this process continues, there will come a point at 
which some of the later subjects are receiving instruc-
tions that are quite di�erent from those received by 
the earlier subjects. 	is means that two di�erent 
sets of instructions were issued to subjects, and these 
subjects may have responded in two di�erent ways, 
leading to a confound. Whatever the classi�cation 
outcomes might be, they cannot be attributed solely 
to di�erences in user typing rhythms; they might have 
been due to di�erences in instructions as well, and we 
can’t tease them apart. Hence it is important not only 
to have clear instructions, but also to have them in 
writing so that every subject is exposed to exactly the 
same set of instructions. 

6. What’s the solution for all 
these problems? 

All of the problems discussed so far are examples of 
threats to validity, and internal validity in particular. 
	e confounds we’ve identi�ed can render an experi-
ment useless, and in those circumstances not only 
has time and money been wasted, but any published 
results run a substantial risk of misleading the reader-
ship. For example, if a study claims 99.9% correct clas-
si�cation of users typing passwords, that’s pretty good; 
perhaps we can consider the problem solved. But if 
that 99.9% was achieved because some confound, such 
as typing expertise, arti�cially enhanced the results, 
then we would have reached an erroneous conclusion, 
perhaps remaining unaware of it. 	is is a serious 
research error; in this section we o�er some ways to 

avoid the kinds of problems caused by invalidity. 

Control. We use the term “control” to mean that 
something has been done to mitigate a potential bias 
or confound in an experiment. For example, if an 
experimental result could be explained by more than 
one causal mechanism, then we would need to control 
that mechanism so that only one cause could be attrib-
uted to the experimental outcome. As an example, the 
length of the password should be controlled so that ev-
eryone types a password of the same length; that way, 
length will not be a factor in classifying typing vectors. 
A second example would be to control the content of 
the password, most simply by having every partici-
pant type the same password. In doing this, we would 
be more certain that the outcome of the experiment 
would be in�uenced only by di�erences in people’s 
typing rhythms, and not by password length or 
content. Of course while e�ecting control in this way 
makes the experiment internally valid, it doesn’t re�ect 
how users in the real world choose their passwords; 
certainly they don’t all have the same password. But 
the goal of this experiment is to determine the extent 
to which individuals have unique typing rhythms, and 
in that case tight experimental control is needed to 
isolate all the extraneous factors that might confound 
the outcome. Once it’s determined that people really 
do have unique typing rhythms that are discriminable, 
then we can move to the real world with con�dence. 

Repeatability and reproducibility (again). We earlier 
mentioned two important concepts: repeatability—the 
extent to which an experimenter can obtain the same 
measurements or outcomes when he repeats the ex-
periment in his own laboratory—and reproducibility, 
which strives for the same thing, but when di�erent 
experimenters in other laboratories, using similar but 
physically di�erent apparatus, obtain the same results 
as the original experimenters did. If we strive to make 
an experiment repeatable, it means that we try hard to 
make the same measures each time. To do this suc-
cessfully requires that all procedures are well de�ned 
so that they can be repeated exactly time a
er time. 
Such de�nitions are sometimes called operational 
de�nitions, because they specify a measurement in 
terms of the speci�c operations used to obtain it. For 
example, when measuring people’s height, it’s im-
portant that everyone do it the same way. An opera-
tional de�nition for someone’s height would specify 
exactly the procedure and apparatus for taking such 
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measurements. 	e procedure should be written so 
that it can be followed exactly every time. Repeatabil-
ity can be ensured if the experiment’s measurements 
and procedures are operationally de�ned and fol-
lowed assiduously. Reproducibility can be ensured by 
providing those operational details when reporting the 
experiment in the literature, thereby enabling others 
to follow the original procedures. 

Discovering confounds. 	ere is no easy way to 
discover the confounds lurking in an experimental 
procedure. It requires deep knowledge of the domain 
and the experiment being conducted, and it requires 
extensive thought as to how various aspects of the 
experiment may interact. One approach is to trace the 
signal of interest (in our case, the keystroke timings 
and the user behaviors) from their source to the point 
at which they are measured or manifested. For key-
stroke timings, the signal begins at the scan matrix in 
the keyboard, traveling through the keyboard encoder, 
the keyboard-host interface (e.g., PS2, USB, wireless, 
etc.), the keyboard controller in the operating sys-
tem (which is in turn in�uenced by the scheduler), 
and �nally to the timestamping mechanism, which is 
in�uenced by the particular clock being used. At each 
point along the way, it is important to ask if there are 
any possible interactions between these waypoints and 
the integrity of the signal. If there are, then these are 
candidates for control. For example, keyboard signals 
travel di�erently through the PS2 interface than they 
do through the USB interface. 	is di�erence suggests 
that only one type of keyboard interface be used—ei-
ther PS2 or USB, but not both. Otherwise, part of the 
classi�cation accuracy would have to be attributed to 
the di�erent keyboard interfaces. A similar mapping 
procedure would ask about aspects of the experi-
ment that would in�uence user typing behavior. We 
have already given the example of di�erent types of 
keyboards causing people to type di�erently. Counter-
ing this would be done simply by using only one type 
of keyboard. 

Method section. A method section in a paper is the 
section in which the details are provided regarding 
how the experiment was designed and conducted. 
Including a method section in an experimental 
paper has bene�ts that extend to both reader and 
researcher. 	e bene�t to the reader is that he can see 
exactly what was done in the experiment, and not 
be le
 to wonder about details that could a�ect the 

outcome. For example, saying how a set of experi-
ment participants was recruited can be important; if 
some were recruited outside the big-and-tall shop, it 
could constitute a bias in that these people are likely 
to have large hands, and large-handed people might 
have typing characteristics that make classi�cation 
arti�cially e�ective or ine�ective. If this were revealed 
in the method section of a paper, then a reader would 
be aware of the potential confound, and could moder-
ate his expectations on that basis. If the reader were a 
reviewer, the confound might provoke him to ask the 
author to make adjustments in the experiment. 

For the experimenter the method section has two 
bene�ts. First, the mere act of writing the method sec-
tion can reveal things to the experimenter that were 
not previously obvious. If, in the course of writing 
the section, the experimenter discovers an egregious 
bias or �aw in the experiment, he can choose another 
approach, he can relax the claims made by the paper, 
or he can abandon the undertaking to conduct the 
experiment again under revised and more favor-
able circumstances. If the method section is written 
before the experiment is done—as a sort of planning 
exercise—the �aws will become apparent in time for 
the experimental design to be modi�ed in a way that 
eliminates the �aw or confound. 	is will result in a 
much better experiment, whose outcome will stand 
the test of time. 

Pilot studies. Perhaps the best way to check your work 
is to conduct a pilot study—a small-scale preliminary 
test of procedures and measurement operations—to 
shake any unanticipated bugs out of an experiment, 
and to check for methodological problems such as 
confounded variables. Pilot studies can be very e�ec-
tive in revealing problems that, at scale, would ruin 
an experiment. It was through a pilot study that we 
�rst understood the impact of instructions to sub-
jects, and subsequently adjusted our method to avoid 
the problems encountered (previously discussed). If 
there had been no pilot, we would have discovered 
the problem with instructions anyway, but we could 
not have changed the instructions in the middle of 
the experiment, because then we’d have introduced 
the confound of some subjects having heard one set 
of instructions, and other subjects having heard a dif-
ferent set; the classi�cation outcome could have been 
attributed to the di�erences in instructions as well as 
to di�erences amongst typists. 
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7. Conclusion 

We have shown how several very simple oversights in 
the design and conduct of an experiment can result 
in confounds and biases that may invalidate experi-
mental outcomes. If the details of an experiment are 
not fully described in a method section of the paper, 
there is a risk that the �aws will never be discovered, 
with the consequence that we come away thinking that 
we’ve learned a truth (that isn’t true) or we’ve solved 
a problem (that isn’t really solved). Other researchers 
may base their studies on �awed results, not know-
ing about the �aws because there was no information 
provided that would lead to a deep understanding of 
how the experiment was designed and carried out. 
Writing a method section can help experimenters 
avoid invalidities in experimental design, and can 
help readers and reviewers determine the quality of 
the undertaking. 

Of course there are still other things that can go 
wrong. For example, even if you have ensured that 
your methods and measurements are completely 
valid, the chosen analysis procedure could be inap-
propriate for the undertaking. At least, however, you’ll 
have con�dence that you won’t be starting out with 
invalid data. 

While the confounding issues discussed here apply 
to an easily-understood domain like keystroke bio-
metrics, they were nevertheless subtle, and have gone 
virtually unnoticed in the literature for decades. Your 
own experiments, whether in this domain or another, 
are likely to be just as susceptible to confounding and 
methodological errors, and their consequences just 
as damaging. We hope that this paper has raised the 
collective consciousness so that other researchers will 
be vigilant for the presence and e�ects of method-
ological �aws, and will do their best to identify and 
mitigate them. 

Richard Feynman, the 1965 Nobel Laureate in 
physics, said, “	e principle of science, the de�nition 
almost, is the following: 	e test of all knowledge is 
experiment. Experiment is the sole judge of scienti�c 
‘truth’” [2]. Truth is separated from �ction by dem-
onstration—by experiment. In doing experiments, 
we want to make claims about the results. For those 
claims to be credible, the experiments supporting 
them need �rst to be free of the kinds of methodologi-
cal errors and confounds presented here. 
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