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Abstract: We report new closed-form expressions for Maker fringes of 
anisotropic and absorbing poled polymer thin films in multilayer structures 
that include back reflections of both fundamental and second-harmonic 
waves. The expressions, based on boundary conditions at each interface, 
can be applied to multilayer structures containing a buffer and a transparent 
conducting oxide layer, which might enhance multiple reflections of 
fundamental and second-harmonic waves inside a nonlinear thin film layer. 
This formulation facilitates Maker fringe analysis for a sample containing 
additional multilayer structures on either side of a poled polymer thin film. 
Experimental data and numerical simulations are given to indicate the 
importance of inclusion of such a reflective layer in analyses for reliable 
characterization of second-harmonic tensor elements. 
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1. Introduction 

Nonlinear optical polymers (NLOP) based on second-order nonlinearity have been widely 
studied because they are a class of photonic material that could substitute for inorganic 
nonlinear crystals in high speed optical communication and signal processing [1,2]. 
Techniques commonly used to obtain a macroscopic second-order nonlinear optical (NLO) 
response include corona and electrode contact poling methods [1–3]. The setup for electrode 
contact poling is somewhat simpler than for corona poling, but requires two electrodes on 
both sides of the NLOP to apply voltage. Various methods for characterization of second-
order electro-optic (EO) effects [4–6] and second-harmonic generation (SHG) [7–17] have 
been investigated. The Maker fringe technique [7] is one of the most popular techniques used 

in determining the tensorial second-harmonic (SH) NLO coefficients 
j

d�  (� = 1-3, j = 1-6) 

associated with SHG. This technique, as further described in detail by Jerphagnon and Kurtz 
[8] and Okamoto et al. [9], has been applied to inorganic and organic crystals as well as 
organic polymers for many years. However, these early formulations neglected the anisotropy 

or absorption of the NLO material, resulting in possible errors in the estimation of 
j

d� for 

birefringent and absorbing materials. Of those that account for material anisotropy and/or 
absorption, most methods make an assumption of no back reflections. In 1995, Herman and 
Hayden (HH) [10] presented a Maker fringe formulation that takes into account either the 
anisotropy or the absorption of the constituent NLO materials as well as back reflection of SH 
waves causing multiple reflections, which correctly predicted experimental results [11]. Other 
formulations that account for back reflections of both fundamental and SH assume the slowly-
varying amplitude approximation or partially overlapping beams by using coupled wave 
equations or Green’s function analysis [12–14]. Matrix techniques were used to numerically 
solve the SH signals from an arbitrarily oriented biaxial medium [15,16] or a multilayered 
structure with multiple nonlinear layers [17]. Most analyses thus far have considered only a 
three layer structure such as air/nonlinear material/substrate or generated somewhat 
complicated numerical results for multilayer structures without closed-form analytical 
expressions. The three layer model is suitable for second-order nonlinear materials such as 
thick LiNbO3 or a thin NLOP film on a thick substrate prepared by corona poling or other 
poling methods where electrodes are not necessary. However, NLOP films prepared by 
electrode contact poling require two additional electrode layers for application of voltage, and 
the transparent conducting oxide (TCO) electrode between the NLO film layer and a substrate 
were neglected in previous analyses [18] of such structures. 
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In this paper, we extend the transmission HH Maker fringe formulation 1) to account for 
simultaneous anisotropy and absorption of the NLO polymer, 2) a multilayer structure that 
includes dielectric or non-dielectric materials, and 3) back reflections of both SH and 
fundamental waves. Back reflections are considered because some absorbing layers, such as a 
TCO layer, may appreciably enhance multiple reflections. These closed-form mathematical 
expressions based on boundary conditions are intuitively applicable to a multilayer structure 
containing a single nonlinear layer with additional absorbing and/or anisotropic linear media. 

We also provide a Maker fringe formulation for reflection. This is useful when a highly 
reflecting NLO sample is used or when a metal layer used as a poling electrode is not 
removed after poling. Such a formulation is expected to be useful for comparing SHG and EO 
measurements on the same film. We present experimental results and simulations in order to 
validate the proposed formulation and indicate the importance of inclusion of full layer 

structures with multiple reflections for reliable estimation of 
j

d�  coefficients. 

 

Fig. 1. (a) Multilayer structure geometry containing buffer and TCO layers. Black solid arrows 
represent fundamental waves and red arrows SH waves. First and second subscripts on n and � 
are used to represent dependence of wavelength and layer symbols, respectively. For NLO 
film, o and e represent ordinary and extraordinary refractive indices, respectively. (b) 
Equivalent three layer structure using virtual layers (dashed lines). The numeral 
subscript/superscript i represents a wavelength (i = 1: fundamental and i = 2: second-

harmonic). For example, 
(1 )p

a S
t �  means a p-polarization transmission coefficient from air to 

substrate at the fundamental (i = 1) wavelength. 

2. Theory 

As much as possible, we have attempted to follow the notation used in Ref. [10]. A poled 

organic thin film prepared by spin coating belongs to the �mm point-group symmetry (space 

group C�v) and has complex ordinary and extraordinary indices of refraction, no and ne, 
respectively [19]. The SH d-coefficient tensor contains three independent complex elements 
and is given by [10] 

 

15

15

31 31 33

0 0 0 0 0

0 0 0 0 0 .

0 0 0

d

d

d d d

� �
� �� � �
� �
	 


d
�

 (1) 

Because a contact-poled thin film usually requires a substrate for support and two 
electrodes such as gold and TCO for both contact poling and subsequent reflective EO 
measurement [4–6], we consider a five-layer structure (air/buffer/NLO film/TCO/substrate) as 
shown in Fig. 1(a). Later we discuss generalization to more than five layers. For transmission 
type Maker fringe experiments, the top electrode layer on a NLO film, typically gold for 

#157751 - $15.00 USD Received 7 Nov 2011; revised 9 Dec 2011; accepted 12 Dec 2011; published 19 Dec 2011
(C) 2012 OSA 2 January 2012 / Vol. 20,  No. 1 / OPTICS EXPRESS  175



contact poling and reflective EO measurement, should be removed after the poling process 
using an appropriate etchant. The buffer layer might be a protection layer for efficient poling 
[20] or residual metal owing to imperfect etching. In the following analysis, SHG from 
interfaces or metal is assumed to be negligible compared with that from the poled polymer 
thin film. We assume that a p-polarized plane wave of angular frequency � (fundamental 
wave) is incident from the left at an angle of incidence �. Derivation of the incident s-
polarized case is similar and straightforward. The SH electric (E) and magnetic (H) fields in 
each region are given as 
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where ( )p p

a S
r

�
�  and ( )p p

a S
t

�
� represent SH p-wave reflection and transmission coefficients, 

respectively (p�p: fundamental p-wave input to SH p-wave output, s�p: fundamental s-
wave input to SH p-wave output) and A, B, C, D, E, and F are constants. In case of isotropic 

layers, 
2 2 2

ˆ (cos ,0, sin )
l l l

� �� �e   and 
2 2 2

( cos ,0, si )ˆ nr

l l l
� �� � �e    are the polarization unit 

vectors for the electric fields of the transmitted and reflected SH waves, respectively, at layer 

, , , ,l a B f T S�  representing air, buffer, NLO film, TCO, and substrate, respectively, and 

ˆ (0,1,0)�y    is the unit vector for the magnetic field H. In the anisotropic layers, the unit 

vectors along the SH electric field directions are � � � �� �2 22 22cos ,0, sˆ inl l l ll� � � �� � � �e    and 

� � � �� �2 22 2 2
ˆ cos ,0, sinl l l

r

l l� � � �� � � � �e   , where the walk-off angles �il at the fundamental (i 

= 1) and SH (i = 2) wavelengths are included because of birefringence of the anisotropic 

layers [10]. Similarly, 
2 2 2 20

2 (sin ,0, cos )
l l l l

k n � ��k    and 
02 2 2 2

2 (sin ,0, cos )r

l l l l
k n � �� �k    are 

wave vectors for the forward and backward SH waves, respectively. Here, 
0

2k c� � �� �  

is the wave vector of the fundamental in free space. 
1l

n  and 
2l

n  are indices of refraction of 

the layer l at the fundamental and SH wavelengths, respectively. For birefringent NLO films, 
we have for p-polarization 
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where 1, 2i �   [21,22]. We have omitted the subscript for layer information in the anisotropic 

indices, nio and nie, to prevent the notation from becoming unduly cumbersome, but Eq. (3) 

also can be applied to other anisotropic layers. The bound waves [8,9]
b

e , r

b
e ,

b
h , and r

b
h in 
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region III are inhomogeneous solutions that satisfy Maxwell’s equation given in Eq. (A1). A 
detailed description for these bound waves is given in Appendix A. 

Continuity of tangential E and H components at each interface gives the boundary 
conditions. The matrix method employing multiple interface boundary conditions [22] is used 

to calculate ( )p p

a S
t

�
�  and ( )p p

a S
r

�
� , which are the p-wave SH transmission and reflection 

coefficients, respectively for the case of a fundamental p-wave input. From Eq. (B3), we find 
that the SH transmission coefficient from the multilayer structure containing an absorptive 
and birefringent NLO film is given as 
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where 
2 2cos fc� �� , ,s p� � , and 

1a
E  is the electric field of the incident fundamental wave. 

( )� ���  and ( )� ���  are defined as 
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where ,s p� �  and the phase terms are � �( )

1 0 1 1 1( ) cos
p

f f fk n L� � �� , � �( ) ( )

1 0 1 1cos
s s

o fk n L� �� , 

and � �( )

2 0 2 2 22 ( ) cos
p

f f fk n L� � �� . Equation (4) can be rewritten using the identity 

� �
2

(2 ) (2 )

2 2 2 2

p p

f a a fBa aBfn c c n c t t� �� � . Note that in comparison with the HH theory [10], Eq. (4) 

reduces to the HH equation when the Fresnel reflection coefficient of the fundamental wave 
(1 )

fTS
r

�
 is zero and the buffer and TCO layers do not exist. The detailed derivations are given in 

Appendix B. Finally, the transmitted SH power is given by 
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where (2 )p

Sa
t  is the p-polarized transmission coefficient of the SH wave at the substrate/air 

interface and Across is the cross-sectional area of the fundamental wave. 

We notice that the SH transmission coefficient is proportional to 
(2 ) (2 )p p

a S aBf
t t�  and to 

� �2
(1 ) (1 )

a S fTSt t
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� . Thus, the SH transmission can be maximized by increasing (2 )p
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� while 
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aBf
t  and 

(1 )

fTS
t

�
 are decreased. As seen from Eqs. (B1)-(B4), the mathematical 

expression can easily be modified to apply to a multilayered structure containing additional 
layers on either side of the NLO film by simply substituting the appropriate transmission and 
reflection coefficients at virtual layers [23] and adding a phase term introduced by the 
additional layers. Then, we have 
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where 
( )i

j k
r

�
�  represents an �-polarization Fresnel reflection coefficient from j layer to k layer as 

described in Eqs. (B5)-(B8). 
AD

l  is the thickness of an additional layer located between the 

NLO film and the substrate, but the phase factor resulting from the additional layer doesn’t 
affect the magnitude of SH transmittance. Again, each side of the multilayer structure on a 
NLOP film can be treated as a single virtual interface as shown in Fig. 1(b). We note again 
that these equations do not apply to a sample containing multiple nonlinear film layers. 

As briefly mentioned in Section 1, a metal electrode layer such as gold is usually removed 
after poling for the transmission type of Maker fringe experiment. It can however be used as a 
reflector without a metal removal process, which allows us to re-pole the sample or to use it 
for another reflection type of measurement. A formula for the SH reflection coefficient can be 
obtained from Eq. (B3) and is given by 
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where 
(2 ) (2 ) (2 ) (2 )p p p p

aBf fBa aBf fBa
r r t t�  becomes �1 in the case of no buffer layer, that is, a single 

interface. 

3. Results 

We have derived mathematical expressions for Maker fringe patterns in both transmission and 
reflection in the previous section. Closed-form expressions offer the advantage of easier 
physical interpretation and can be extended for samples containing an additional absorbing 
and/or anisotropic linear medium. 

For the first experimental example, we measured a Maker fringe pattern (p�p) for X-cut 
quartz (rotation is about z-axis), which is commonly used for reference. The focused incident 
laser spot size used in the experiment is a few tens of microns, which is much smaller than the 
thickness of the X-cut quartz (533 �m). Therefore, multiply reflected beams at the quartz/air 
interface are spatially localized, so they don’t interfere. On the other hand, Eq. (4) is derived 

based on the plane wave analysis. One can simply make reflections 
(2 )p

fBa
r  and 

(1 )

fTS
r

�
 in Eq. (4) 

null in order to get a formulation that does not contain a back reflection effect. As shown in 
Fig. 2(a), a simulation (blue curve) using Eq. (4) shows large rapid SH intensity fluctuations 
as expected from multiple reflections in such a thick slab structure, but the measured SHG 
data (red dots) doesn’t show these fluctuations and is well described by the modified Eq. (4) 

(cyan curve), where 
(2 )p

fBa
r  and 

(1 )

fTS
r

�
are set equal to zero. In order to verify our formula for a 

multilayer structure (number of layers ' 4), ~5 nm thick gold was deposited on quartz 
(air/quartz/Au/air) using a sputtering system and the SH intensity was measured as a function 
of angle. Subsequently, another thin gold layer was deposited on the other side of quartz 
(air/Au/quartz/Au/air) and SH data again collected. The SH transmitted intensity decreases as 
a gold metal layer is added because of the transmission loss and the reflection caused by the 
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Fig. 2. Second harmonic intensities of X-cut quartz at varying angles of incidence in three 
cases (Rotation is about the z axis): (a) Quartz only, (b) Quartz/Au, and (c) Au/Quartz/Au. 
Experimental results (red dots) are plotted with two different simulated Maker fringe patterns 
(blue: multiple reflections, cyan: no multiple reflections). 

gold layer. We note that the experimental Maker fringes showed a good agreement with 
simulations taking into account multilayer structures as shown in Figs. 2(b) and (c). 
Experimental curves in Figs. 2(b) and (c) show large difference in both SHG magnitude and 
fringe shape with that in Fig. 1(a) where no additional gold layers are present. This indicates 
that it is important to include multilayer structures in analysis. The same simulation result as 
the cyan curve in Fig. 1(a) is obtained from the HH method that is based on three layer 
structure. The SH multiple reflections included in the HH method also cannot contribute to 
the SHG because the beam size is small compared with the quartz thickness and multiply 
reflected SH beams cannot interfere with each other. Note that the experimental data deviate 
slightly from the theoretical estimation at large angles because, for a thick sample, the laser 
beam translates on the back surface during rotation and this introduces sensitivity to both 
surface and thickness variations. 
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A nonlinear polymer thin film was fabricated by doping 30 wt.% of AJL49, provided by 
the University of Washington, with an amorphous polycarbonate (APC) host. The nonlinear 
polymer solution was spin-coated on a 180 nm thick indium tin oxide (ITO)/glass substrate 
manufactured by Delta Technologies (Product #: CB-40IN-0111), to give a 1.2 �m thick film. 
Then 100 nm thick gold was deposited on the film using a thermal evaporator. After contact 
poling at the glass transition temperature of 135 °C using a poling voltage of ~100 V/�m, the 
gold poling electrode was etched off using a gold etchant KI + I2 + H2O (4:1:40) for a 
transmission type Maker fringe experiment. The optical properties of ITO and the NLOP film 
were measured using a spectroscopic ellipsometer (VASE

®
, J. A. Woollam Co., Inc.) as 

shown in Figs. 3(a) and (b). Note that the large linear absorption of ITO in the infrared region 
can lead to considerable back reflections of fundamental waves. 

Multiply reflected beams inside a few micron thick NLOP film interfere because of the 
larger ratio of beam size to NLO film thickness. Therefore, back reflections of both 
fundamental and SH waves should be included in the analysis when back reflections at the 
interface of NLOP/TCO/substrate are not negligible. As shown in Figs. 3(c) and (d), our 
derived formulas in Eqs. (4) and (6) (cyan curve) agree very well with experimental results 

(red circles) in both p�p and s�p cases. Noteworthy is that one can see a slight dip around 
50° angle of incidence caused by back reflections in both the experimental and simulation 
data. However, this dip is not accounted for properly when back reflections of fundamental 
waves are ignored (green dash and black curve), which demonstrates that back reflections of 
fundamental waves should be taken into account in the analysis of SH transmission. In fact,  

 
Fig. 3. (a) Complex index of refraction of ITO, (b) Complex anisotropic indices of refraction of 
NLOP measured using ellipsometer (inset figure: absorption profile of the multilayered sample 

by UV-VIS spectrophotometer), (c) p�p and (d) s�p Maker fringe profiles. Experimental 
results (red circles) were plotted with simulation results by various types of configurations. For 
line colors in (c) and (d), Cyan: multilayer structure with multiple reflections of both 
fundamental and SH. Black: multilayer structure without any multiple reflections. Green dash: 
multilayer structure with multiple reflections of SH only. Blue: three layer model 
(air/NLOP/substrate) without any multiple reflections. 
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the fundamental wave is more reflective than the SH at the ITO layer because of free carrier 
absorption of ITO in the infrared region as shown in Fig. 3(a). Depending on the thickness 
and optical properties of the NLOP film and the ITO layers, the shape and the dip position 
may change drastically. The linear absorption of the NLO film and the ITO is taken into 
account in the analysis based on the complex index of refraction in Figs. 3(a) and (b), but the 
nonparametric nonlinear absorption of the NLO film (imaginary part of d-tensor component) 
is ignored for this specific nonlinear polymer because it is expected to be small compared 
with the real part of the d-tensor component. The effect of a nonlinear absorption up to 20% 
of the real part of the d-tensor component in the analysis is negligible in the fitting results, 
whereas the linear absorption of ITO and NLO film does affect the fitting. We also see that 
the analysis by the three layer model (blue curves in Figs. 3(c) and (d)), ignoring back 
reflection terms, is not suitable for the analysis of Maker fringe data from the multilayered 
structures involving reflective layers. Therefore, inclusion of the back reflection of 
fundamental waves and multilayer structures in the analysis is crucial in order to reliably 
estimate SH d-tensor components for the poled polymer thin films. 

For the AJL49 NLOP film, we measured a SH d33 of 360 ± 5 pm/V with the ratio of 

31 33
0.31d d ( . Using the two-level model [24], the EO coefficient r33 is estimated to be 140 

± 30 pm/V and 100 ± 20 pm/V at 1300 nm and 1550 nm respectively, where the large error 
bound results from imprecise knowledge of local field effects. We were unable to directly 
measure EO coefficients of this sample, because the 1.2 �m thick film can support only one 
guided mode, which doesn’t allow use of the Attenuated Total Reflection (ATR) method for 
an accurate characterization. Direct measurement of EO coefficients of a thicker AJL49/APC 
sample with the higher weight percentage of 45 wt.% and lower poling field of 70 V/�m gave 
an EO coefficient r33 of 110 pm/V and 80 pm/V at 1300 nm and 1550 nm, respectively, which 
are comparable to our estimation from the measured SH d33. 

4. Conclusions 
We have presented new closed-form expressions for obtaining SH d-coefficients from Maker 
fringe SHG experiments on poled polymer thin films embedded in a multilayer structure with 
reflective layers, which can be dielectric or non-dielectric. The multilayer analysis including 
back reflections is necessary for second-order NLOP thin films prepared by electrode contact 
poling. We have shown that a TCO layer as a poling electrode has to be included in the 
analysis because it can enhance multiple reflections. We expect the proposed formulation to 
be useful to characterize Maker fringes of a multilayered poled polymer thin film or thick 
organic material [25] and to investigate the relation between SHG and EO properties on the 
same sample for contact poled films. Our formulations can also be applied to NLO crystals 
[26,27] by modifying, in a straightforward manner, the reflectance, transmittance, and 
effective d coefficients depending on the spatial symmetry and crystal cut. 

Appendix A: Bound waves 
We assume no pump depletion of the fundamental wave because, in the absence of phase 
matching, it is assumed to be negligible. From Maxwell’s equations, the nonlinear wave 
equation in cgs unit convention is 

 � � � �

2

2

2

2 2 2

2

2
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0 0

2 0 0 2 4 ,
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� �
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E E P  (A1) 

where the nonlinear polarization is given by 

 
1 1

: .NL �P d E E
�

 (A2) 

Because the fundamental field 
1

E  in Eq. (A2) contains both forward and backward electric 

fields resulting from multiple reflections, the SH field 
2

E  inside the NLO film has three 
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particular solutions for the bound waves, 12 fi

b
e

�k r
e , 12

r
fir

b
e

�k r
e , and 

� �1 1
r

f fi

mix
e

� �k k r
e  along with 

two homogeneous solutions 2

2
ˆ fi

f
e

�k r
e  and 2

2
ˆ

r
fir

f
e

�k r
e  for the free waves. However, we neglect 

the last term 
� �1 1

r
f fi

mix
e

� �k k r
e  because of the large phase mismatch. Two homogenous and two 

particular solutions are included in the field expressions in Eq. (2). Substituting 
2

E  for the 

bound wave 
b

e  or r

b
e  and multiplying 

2
ˆ

f
e  or 

2
ˆ r

f
e  in Eq. (A1) gives, after some algebraic 

manipulations (see Ref. [10]), the following relations: 
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and 
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where 
bx

e  and 
by

h  are x- and y-components of the forward bound electric and magnetic field, 

respectively, and the superscript r denotes the reflected bound field. The phase terms are 

� �( )

1 0 1 1 1( ) cos
p

f f fk n L� � �� , � �( ) ( )

1 0 1 1cos
s s

o fk n L� �� , and � �( )

2 0 2 2 22 ( ) cos
p

f f fk n L� � �� . The 

inner products of the unit vector nonlinear polarization in the right hand side of Eqs. (A3) and 
(A4) are given as 
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where the effective SH d-coefficients for forward and backward waves are 
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with 

 cos( ), sin( ).
i if if i if if

c s� �� � � �� �� � � �   (A7) 

For the s � p case, we have 
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31 2
.

s p r s p

eff eff
d d s d�

� �
�� �  (A8) 

Note that if Kleinman symmetry is not valid (
31 15

d d+ ), then an additional input and output 

polarization scheme, e.g. ��s (�-polarized fundamental input to s-polarized SH), should be 
considered in order to determine d15 separately. In this case, the fundamental electric field 
inside nonlinear medium can be expressed as 

 
,,

1 1 1 1

1 1 1 1 1 1 1
ˆ ˆˆ ˆ .
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i i ii r r r

f s s p p p p
E e E e E e E e

� � ��� � � �
k r k r k rk r

E y y e e  (A9) 

Then, we obtain 
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where we ignore terms such as 
� �,

1 1
p rs

f f
i

e
� �k k r

 and 
� �,

1 1
ps r

f f
i

e
� �k k r

because they don’t contribute to 

SHG. The s-polarized SH transmission coefficient for �-polarized fundamental input is given 
in Appendix C. 

Appendix B: Boundary conditions 
As the number of layers becomes larger, the analysis becomes more complicated. A matrix 
method facilitates solving complicated boundary conditions [22]. We use the 2×2 matrix 
method to obtain the equations resulting from the boundary conditions and calculate the SH 
transmission and reflection coefficients. Continuity of tangential E and H components at each 
interface provides boundary conditions, which can be expressed in the matrix form 
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where the phase terms are 
2 0 2 2
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The dynamic and propagation matrices �  and �  are given as 
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where , , ,l a B T S�  and ,m B T� . The walk-off angle should be applied to the dynamic 

matrix when the layer is anisotropic as included in the matrix 
f
�  for the nonlinear film. The 

phase terms are 
2 0 2 2

2
m m m m

k n c d� �  ( ,m B T� ) and 
2 0 2 2

2
TL T T

k n c L� � . From Eq. (B1), we can 

construct a matrix equation 
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where 
2 2cos fc� �� . The dynamic matrix for the multilayered stack is given as 
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Assuming that the incident light is a plane wave, iteration of the Airy formula [21,22] 
gives the reflection and the transmission coefficients in the multilayered structure. The 
resulting expressions for reflection and transmission coefficient have the form 
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and 
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where the s- and p- propagation constants are given by ( ) cos( )is

l o s s
i k n, �� �  and 
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( ) cos( )

ip

l o p p p
i k n, � �� �  and these can be applied at each layer with appropriate anisotropic 

indices and internal angles. 
p

n  is given in Eq. (3), 
s o

n n� , and 
s

�  and 
p

�  are the complex 

propagation angles inside the medium. The corresponding reflection and transmission 
coefficients from layer j to k are given by 
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with the s- and p- wave impedances of each anisotropic and/or absorbing layer given by [28] 
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where � is the external angle of incidence from air, and i = 1 or 2 represents fundamental and 
SH wavelengths, respectively. These can be applied to other layers with corresponding 
refractive indices and angle of incidence from air. 

Appendix C: �-polarized fundamental to s-polarized SHG 
We assume the input fundamental wave is polarized at an angle � (e.g. 0° and 90° mean s- 

and p-polarizations, respectively). Similar to the p�p calculations in Appendix B, we can 
solve boundary conditions such that Ey and Hx are continuous at each interface and obtain the 
s-polarized SH transmission coefficient in the form 
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where 
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s
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�  is the refractive angle of s-polarized light inside the film. 
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where 
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The fundamental s and p electric fields, 
1

E �  and 
1

r
E � , inside the nonlinear medium can be 

calculated from the input fundamental wave and Airy’s formula. Assuming the �-polarized 

input fundamental wave is � �1 1 1
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Substitution into Eq. (C4) gives 
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From Eqs. (C2)-(C6), we thus obtain the s-polarized SH transmission coefficient in a 
similar form to Eq. (7): 
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where ( )s.��  and ( )s.��  are defined as 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )1 1 2 1 1 2, .
2 2

s p s s p s

s s. .� � � � � �� �� � � �
� � � �    (C8) 

For the cases that � = 0° (s�s) and � = 90° (p�s) for the input polarization, Eq. (C7) gives 
the well-known result of zero SH intensity because of the sin(2�) term in Eq. (C7). 

Acknowledgments 

We would like to thank Professor Alex K.-Y. Jen and Dr. Jingdong Luo at the University of 
Washington for providing the nonlinear polymers. 

#157751 - $15.00 USD Received 7 Nov 2011; revised 9 Dec 2011; accepted 12 Dec 2011; published 19 Dec 2011
(C) 2012 OSA 2 January 2012 / Vol. 20,  No. 1 / OPTICS EXPRESS  185


