U

A Hybrid (Membrane/Biological) System to Remove Perchlorate From Drinking Waters

Jian Liu and Dr. Jacimaria Batista

This Research is Funded by American Water Works Association Research Foundation (AWWARF)

BACKGROUND

- Perchlorate is readily biodegradable.
- Perchlorate can diffuse through membranes.
- Perchlorate degrading biofilms can attach to membranes.
- Reactor design separates microbes from treated drinking water.
- Studies on the suitability of different reactor designs to biologically remove perchlorate from waters is needed.

Potential Process Flowsheet for Perchlorate Removal using a Membrane-Immobilized Biofilm

MEMBRANE-IMMOBILIZED BIOFILM REACTOR SET-UP

EXPERIMENTAL INVESTIGATION

- Enrichment of perchlorate biodegrading culture.
- Diffusion coefficient of perchlorate and other anions (nitrate and sulfate).
- Perchlorate biodegradation rates.
- Carbon source limitation.
- Factors affecting ClO₄ biodegradation.

ENRICHMENT CULTURE FROM WWTP, LV ("BALI")

CARBON LIMITATION TESTING

KINETICS EVALUATION

Perchlorate Limited Testing

KINETICS EVALUATION

Lactate Limited Testing

Kinetics study of "BALI" indicates that a lactate to perchlorate ratio of at least 3:1 is needed for perchlorate biodegradation to occur, and acclimation time varies with the concentrations of perchlorate.

Perchlorate Diffusion Coefficient Testing (1)

Perchlorate Diffusion Coefficient Testing (1)

$$V_{BR}(dC_{BR}/dt) = -(D_MA_M)/(\Delta L_M)(C_{DR}-C_{BR})$$

$$Ln[(C_{DR0}-2C_{BR})/(C_{DR0}-2C_{BR0})] = -(2A_MD_Mt)/(V_{BR}\Delta L_M)$$

$$K=-0.0007 = -2A_MD_M/(V_{BR} \Delta L_M)$$

Perchlorate diffusion coefficient through 3 different types of membrane

Membrane Type	BTS-55	PVDF	FGLP
Pore Size, µm	0.2	0.45	0.2
Thickness, µm	125	99	220
Pore Fraction, %	70	70	70
Diffusion coeff.	6.64×10^{-6}	3.75×10^{-6}	6.67×10^{-6}
cm ² /sec.			

Diffusion coefficient calculated by Wilk-Chang method: 1.53 x 10⁻⁵ cm²/sec.

Nitrate Diffusion Coefficient Testing

Sulfate Diffusion Coefficient Testing

Table: The Diffusion Coefficients of Perchlorate, Nitrate and Sulfate in Water and Through Memcor BTS-55 Membrane

	Perchlorate	Nitrate	Sulfate
With BTS-55, cm ² /sec (Testing Data)	6.64 x 10 ⁻⁶	4.74 x 10 ⁻⁶	3.79 x 10 ⁻⁶
Without BTS-55, cm²/sec	1.53 x 10 ⁻⁵	2.12 x 10 ⁻⁵	1.47 x 10 ⁻⁵
(Calculated by Wilke-			
Chang's Method)			

- ClO₄-, NO₃-, and SO₄²- easily migrate through a semipermeable membrane by diffusion, eliminating the need of energy input.
- The diffusivity in water follows:

$$NO_3^- > ClO_4^- > SO_4^{2-}$$

While diffusivity through the BTS-55 Membrane follows:

$$ClO_4^- > NO_3^- > SO_4^{2-}$$

Membrane - Immobilized Biofilm

RESULTS---BTS-55 (1st Cycle)

DR Reactor

BR Reactor

 ClO_4^- / $Cl^- = 0.82$ ClO_4^- biodegradation rate = 1.95 moles/day

Table: Perchlorate Biodegradation by a Biofilm Immobilized on a BTS-55 Membrane (2nd cycle)

	DR	Reactor			BR Reactor	
	(CIO	O ₄ - only)		(Lact., Nut	tri./Minerals,	and Buffer)
Day	CIO ₄ -	Lactate	CI-	CIO ₄ -	Lactate	CI- (1)
	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
1	246.96	0.94	49.89	0.19	1058.9	44.71
2	187.08	12.73	61.6	0.35	266.54	64.86
3	134.21	0	93.22	0.055	204.93	72.14
4	117.74	0	93.25	0.024	172.05	78.91
5	105.58	0	86.69	0.003	99.22	80
6	96.42	0	95.37	0	33.66	84.65
7	89.24	0	89.58	0	0	88.47
8	79.82	0	80.99	3.09	0	69.02
9	67.6	0	80.3	1.43	5.44	74.7
10	57.88	0	80.81	2.26	7.06	75.16
11	50.07	0	82.73	3.25	9.28	79.12

RESULTS---BTS-55 (2nd Cycle)

DR Reactor

BR Reactor

 ClO_4 - / Cl- = 1.03 ClO_4 - biodegradation rate = 0.90 moles/day

Perchlorate Biodegradation By Membrane (FGLP) Immobilized Biofilm

DR Reactor

BR Reactor

Table: Parameters Calculated for the Biofilms
Immobilized on the BTS-55 and PVDF Membrane

BTS-55 1st Cycle ClO_4^-/Cl^- : 0.82 Moles ClO_4^-/day : 1.95

2nd Cycle ClO_4^-/Cl^- : 1.03 Moles ClO_4^-/day : 0.90

3rd Cycle ClO_4^-/Cl^- : 0.86 Moles ClO_4^-/day : 1.75

PVDF 1st Cycle ClO₄⁻/Cl⁻: 0.99 Moles ClO₄⁻/day: 0.5

- •The reactor set-up separates the perchlorate contaminated water from the microbes, greatly minimizing the presence of microbes in the finished water -An important feature, when removing perchlorate from drinking waters.
- •The presence of the membrane allows for controlled diffusion and biodegradation of ClO_4 , so that perchlorate levels in the treated water can be kept at desired levels without fluctuations and sporadic spikes.

Batch Experiments on the Interference of Nitrate on Perchlorate Biodegradation

Interference of Nitrate on Perchlorate Biodegradation by BTS-55 Membrane (1)

DR Reactor

BR Reactor

Interference of Nitrate on Perchlorate Biodegradation by BTS-55 Membrane (2)

DR Reactor

Interference of Nitrate on Perchlorate Biodegradation by BTS-55 Membrane

Testing 1

Testing 2

Nitrate has a negative impact on perchlorate biodegradation.

At first, microbes prefer nitrate to perchlorate as an electron acceptor, however, perchlorate reduction is not totally eliminated in the presence of nitrate.

Interference of Salinity on Perchlorate Biodegradation by "BALI Culture"

Interference of Salinity on Perchlorate Biodegradation by "BALI Culture"

Summary of Grwoth Coeff. For "BALI" Culture at Different Salt Levels

Salinity Conc.	μ , day -1	\mathbb{R}^2	Fraction of 0%
			Salinity
0 %	0.26	0.93	100 %
0.5 %	0.19	0.78	73 %
1.0 %	0.096	0.61	37 %
1.5 %	0.072	0.544	28 %
2.0 %	0.096	0.69	37 %
2.5 %	0.096	0.70	37 %
3.0 %	0.072	0.72	28 %
3.5%	0.048	0.67	18 %
4.0 %	No growth		
> 5 %	No growth		

- Salinity negatively affects the perchlorate biodegradation.
- No microbial growth was observed at salinity $\geq 4\%$.

- •Hybrid (membrane / biological) system proven feasible for perchlorate removal.
- •System allows for high quality effluent as compared to fixed/fluidized bed systems.
- High nitrate and TDS levels have negative impact on perchlorate biodegradation.
- •Scale-up configuration for the reactor will involve long sandwiched channels.