ENHANCED NATURAL ATTENUATION OF PERCHLORATE IN SOILS USING ELECTROKINETIC INJECTION

W. Andrew Jackson, Texas Tech University, Lubbock, Texas

Department of Civil Engineering

Andrew.jackson@coe.ttu.edu

Mi-ae Jeon, Texas Tech University, Lubbock, Texas

John H. Pardue, Louisiana State University

Todd A. Anderson, Texas Tech University

Electrokinetic Processes

- Involves the application of low DC current between electrodes.
- Transport possible by
 - •electromigration
 - electroosmosis
- Side reactions
 - electrolysis
 - reactions with electrode

Electrokinetic Remediation

- Electrokinetic Extraction: Removal of charged or uncharged species.
 - metals
 - radionuclides
 - organic wastes
- Electrokinetic Injection: Addition of species to aid in electrokinetic extraction or other processes.
 - Surfactants
 - Nutrients
 - Electron acceptors
 - Electron donors

Perchlorate CIO₄-

Strong oxidant but environmentally stable (abioticaly)

■Biodegradation possible as AEA
$$CIO_4$$
 \longrightarrow CIO_3 \longrightarrow CIO_2 \longrightarrow CI

- Rapid transport through most soils
- •Ideal candidate combined EK removal and injection of organic substrates to promote NA

ANODE COO HIN - C-H + H COO HIN - C-H H COO HIN - C-H H COO H CO

Objectives

- To determine the potential for enhanced attenuation of PC using electrokinetic removal and injection.
 - Evaluate potential for physical removal of PC from saturated media
 - Evaluate potential for accelerated bioremediation of PC by injecting organic substrates using electrokinetics.

Experiments Conducted

- Microcosm Study
- Electrokinetic Injection and Removal
 - Clay (2)
 - Sand (2)
 - Soil (2)

Microcosm Study

Table 1. Experimental conditions for PC degradation studies.

Treatment	Soil	Water	PC	Lactic	Glycine
Autoclaved	50g	50ml	10mg/kg	-	-
		(DI)			
Control	50g	50ml	10mg/kg	-	-
		(DI)			
Uncontaminat	50g	50ml			-
ed		(DI)			
Lactic	50g	50ml	10mg/kg	3mM	1
		(DI)			
Glycine	50g	50ml	10mg/kg		3 mM
	O.S.	(DI)			
Lactic/Glycine	50g	50ml	10mg/kg	3 mM	3 mM
		(DI)			

Microcosm Results

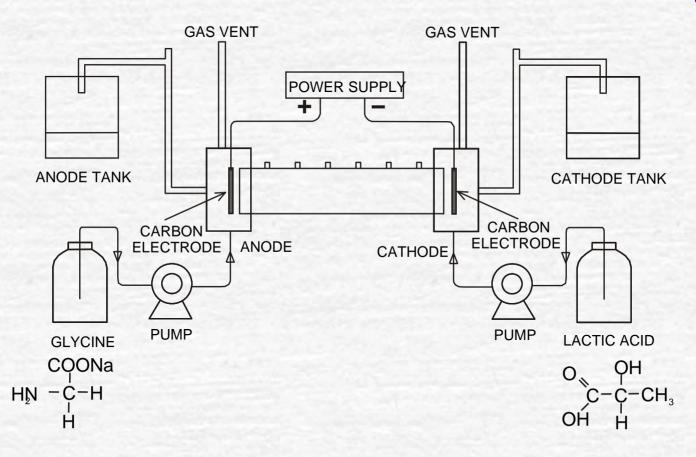
Treatment

Pseudo-first Order

Degradation Rate(day⁻¹)

Control

0.185

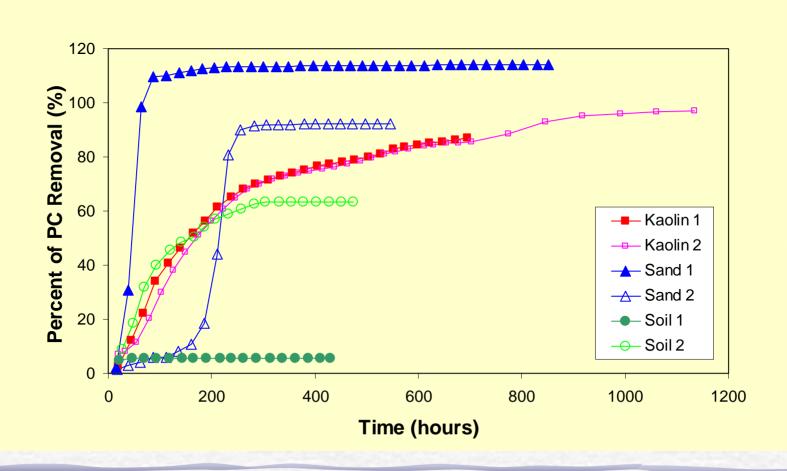

Lactate

0.748

Glycine

1.62

Schematic of electrokinetic set-up

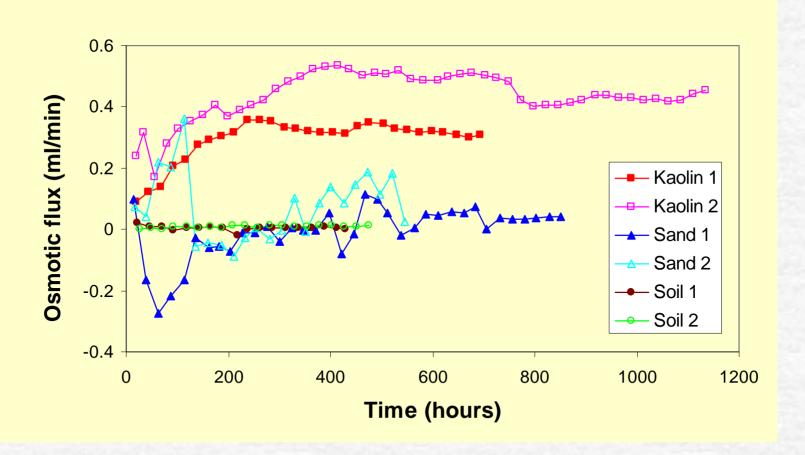


Work Plan (EK Studies)

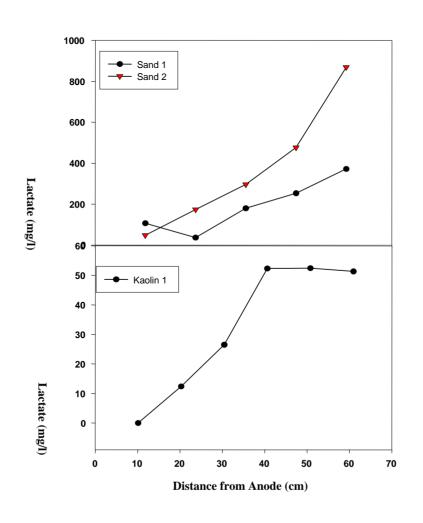
Table 2. Details of EK column studies

	Kaolin 1	Kaolin 2	Sand 1	Sand 2	Soil 1	Soil 2
Material	100 %	100 %	No.3	Grade 4	Sub-surface	Sub-surface
	kaolin	kaolin	BlastSand	BlastSand	Lean Clay Soil	Lean Clay Soil
Bulk density (g/cm ³)	1.0	1.0	1.64	1.52	1.2	1.2
Duration (hr)	694	1134	852	547	429	474
Current (mA)	17	24	3	7	5	5
Lactic conc. (mM)	20	20	5	5	5	5
Glycine conc. (mM)	20	20	5	5	5	5

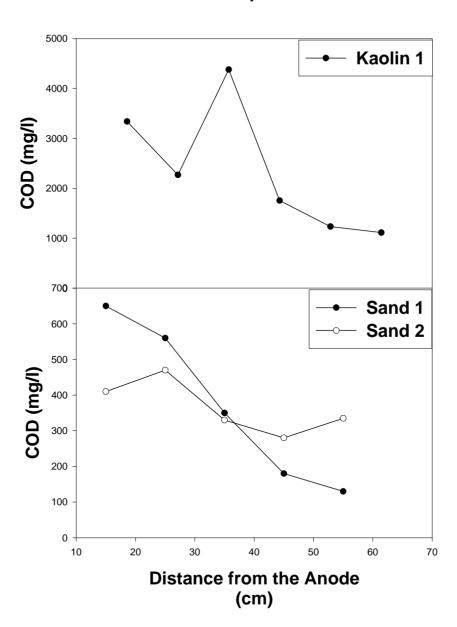
Physical PC Removal using Electrokinetics



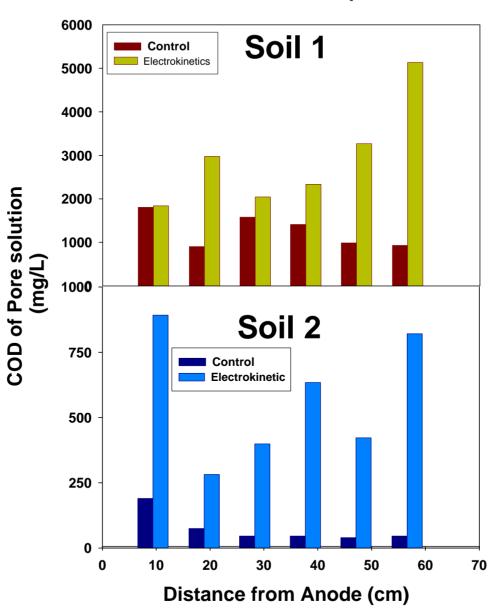
PC Removal by Electrokinetics


Table 3. PC removal from sand and kaolin by electrokinetics.

	Duration	% Removal	% Removal	% Removal	
	(hours)	(Anode)	(Cathode)	(Total)	
Kaolin 1	694	86.69	0.23	86.92	
Kaolin 2	1134	96.71	0.19	96.90	
Sand 1	852	112.48	1.64	114.12	
Sand 2	547	91.28	1.06	92.34	
Soil 1	429	0.11	5.49	6.68	
Soil 2	474	63.39	0.00	63.39	


Osmotic flux at Cathode

Transport of Lactate by Electrokinetic Injection


Chemical Oxygen Demand of Porewater at the Termination of the Experiments

Mass of PC in Soil Column at the End of Experiments

Chemical Oxygen Demand of Pore Water at Termination of the Experiment

Conclusions

- Electrokinetics promising technology to aid in the removal of PC from contaminated soil.
- Electrokinetics promising technology to introduce organic amendments to enhance natural attenuation
- Combining these technologies will provide even greater benefits