

IN SITU BIOREMEDIATION OF PERCHLORATE IN GROUNDWATER

Paul B. Hatzinger, Ph.D. ENVIROGEN, INC.

AUGUST 24, 2000

PERSONNEL

Paul B. Hatzinger, Ph.D., Co-PI

Envirogen, Inc.

Expertise in Environmental Microbiology.

Robert J. Steffan, Ph.D., Co-PI

Envirogen, Inc.

Expertise in Molecular Biology and Bioremediation.

Joseph A. Quinnan, P.E., P.G.

Envirogen, Inc.

Expertise in Hydrogeology, Modeling and In Situ Remediation.

Carey A. Yates, B.S.

Indian Head Division, Naval Surface Warfare Center.

Expertise in Engineering and Water Treatment.

Kenneth E. Basom, B.S.

Indian Head Division, Naval Surface Warfare Center.

Expertise in Analytical Chemistry.

Randall Cramer, Ph.D.

Indian Head Division, Naval Surface Warfare Center.

Program Management and Coordination.

TECHNICAL OBJECTIVES

• Provide a fundamental understanding of perchlorate biodegradation in subsurface environments.

• Develop a biological treatment technology for in situ remediation of perchlorate in groundwater.

In Situ Perchlorate Bioremediation

Key Question for Technology Development: Why does perchlorate persist in groundwater?

Hypotheses:

- Absence of suitable electron donor (substrate)?
- Inhibition by alternate electron acceptors?
- Lack of indigenous bacteria capable of perchlorate reduction?
- Unfavorable environmental conditions?

TECHNICAL BACKGROUND

Biological Perchlorate Degradation

TECHNICAL BACKGROUND

Electron Acceptors

TECHNICAL BACKGROUND

Perchlorate - Degrading Bacteria

Few Strains Studied to Date:

Strain CBK (Bruce et al., 1999); Strain Perc1ace (Herman et al., 1999); Strain GR-1 (Rikken et al., 1996); Wolinella succinogenes HAP-1 (Wallace et al., 1996) Ideonella dechloratans (Malvquist et al., 1994) Vibrio dechloraticans (Korenkov et al., 1976)

Natural Occurrence Unknown:

Most strains isolated from anaerobic sludge or wastewater. Occurrence in aquifers unknown?

Differing Respiration:

Most are facultative anaerobes (i.e., can use O_2); All use ClO_3^- , many use NO_3^- , one Mn (IV), one SO_4^-

Variable Substrate Requirements:

Some use simple carbon (acetate), some require complex carbon (yeast extract), a few use inorganic substrates $(H_2, Fe(II))$, one has trace mineral requirements.

TECHNICAL BACKGROUND

Environmental Variables

- 1. Salinity
- 2. pH
- 3. Co-Contaminants
 - Chlorinated Solvents (TCE, PCE)
 - -BTEX

Research Approach

- Collect Aquifer Solids and Groundwater
- Enumerate and Isolate Perchlorate -Degraders
- Conduct Aquifer Microcosm Studies
- Conduct Studies with Flow-Through Model Aquifers
- Apply Functional Models
- Evaluate Methods for Field Implementation
- Conduct Field Demonstration
- Commercial Application

TECHNICAL APPROACH ENVIROGEN

Collect Aquifer Samples

Current Site List

- (1) JET PROPULSION LABS (CA).*
- (2) INDIAN HEAD NSWC (MD).*
- (3) LONGHORNE ARMY AMMN. DEPOT (TX).
- (4) OYSTER VIRGINIA (Pristine Site).*
- (5) COMMERCIAL SITES.

* Studies Underway or Complete

Enumerate and Isolate Perchlorate -Degrading Bacteria

Collaborative with Dr. John Coates, SIU

Enumeration of Perchlorate -Degrading Bacteria

Temperature Gradient Gel Electrophoresis

Microbial Enrichment and Isolation

Identify and Group Isolates Using rRNA Analysis

(John Coates, SIU)

Aquifer Microcosms

Serum Bottles:

Site Sediments

Site Groundwater

Perchlorate

Tests:

- 1. Electron Donors
- 2. Alternate Electron Acceptors
- 3. Environmental Variables
- 4. Biostimulation and Bioaugmentation

JET PROPULSION LABORATORY - MICROCOSM STUDIES

STUDIES

- Electron Donors
- Bioaugmentation
- Alternate Electron Acceptors
- pH
- Salinity

Perchlorate Degradation in JPL Sediment/Groundwater Microcosms Amended with Various Electron Donors or Perchlorate-Degrading Bacteria.

Treatment	Perchlorate Concentration		
	(μg/L)		
Electron Donors	Day 0	Day 10	Day 21
Killed Control	310 <u>+</u> 0	293 <u>+</u> 6	320 <u>+</u> 0
Benzoate	310 <u>+</u> 0	297 <u>+</u> 6	150 <u>+</u> 135
Methanol	310 <u>+</u> 0	77 <u>+</u> 57	< 5
Hydrogen	310 <u>+</u> 0	177 <u>+</u> 61	< 5
Propane	310 <u>+</u> 0	283 <u>+</u> 6	< 5
No Addition	310 <u>+</u> 0	14 <u>+</u> 19	< 5
Sucrose	310 <u>+</u> 0	92 <u>+</u> 67	< 5
Ethanol	310 <u>+</u> 0	< 5	NS
Lactate	310 <u>+</u> 0	< 5	NS
Molasses	310 <u>+</u> 0	< 5	NS
Yeast Extract/Ethanol	310 <u>+</u> 0	< 5	NS
Acetate	310 <u>+</u> 0	< 5	NS
Bacteria Added			
Killed + Inoculum FBR2	310 <u>+</u> 0	385 <u>+</u> 7	415 <u>+</u> 7
Inoculum FBR2+ YE/Etoh	310 <u>+</u> 0	< 5	NS
Inoculum FBR2+ Acetate	310 <u>+</u> 0	< 5	NS
Inoculum PC1+ YE/Etoh	310 <u>+</u> 0	< 5	NS
Inoculum PC1+ Acetate	310 <u>+</u> 0	< 5	NS

Figure 2. Perchlorate Degradation in Groundwater Microcosms
Amended with Various Electron Donors.

Figure 3. Degradation of Perchlorate (100 mg/L) and Nitrate (100 mg/L) in Aquifer Microcosms from JPL with Ethanol as a Substrate

Figure 4. Influence of Nitrate (100 mg/L) on Perchlorate Biodegradation in Aquifer Microcosms from JPL

Figure 5. Biodegradation of Perchlorate (100 mg/L) and Nitrate (100 mg/L) in JPL Microcosms with No Substrate Added.

Figure 6. Influence of Oxygen on Perchlorate Degradation in Aquifer Microcosms from JPL

Flow-Through Aquifers

Tests: Based on Microcosms:

- 1. Biostimulation
- 2. Bioaugmentation
- 3. Environmental Variables

Results:

Degradation Rates and Extents
Substrate Requirements
Inoculum Activity/ Transport
Modeling Parameters

Modeling

Apply existing functional flow and reactive transport models

- "MODFLOW-MT3D-RT3D"
- "hydrobiogeochem"

Modeling results

- validate laboratory studies
- evaluate field implementation strategies
- identify hydrogeological settings where the technology is applicable

Environmental Research

TECHNICAL APPROACH

Field Demonstration Reactive Barrier Technology

TECHNICAL APPROACH ENVIROGEN

REACTIVE BARRIER TECHNOLOGY - DOVER LANDFILL

In Situ vs Ex Situ Treatment Both!

Factors

- Depth to Groundwater
- Plume Characteristics
- Hydraulic Control
- Economics
- Waste Generation
- Water Use and Reuse
- Aquifer Geochemistry
- Co-Contaminants
- Political Considerations
- Social Acceptance
- Regulatory Issues

