Perchlorate Treatment Technologies:

Biodegradation Prototype Thermal Decomposition

Edward N. Coppola

215 Harrison Avenue Panama City, FL 23401 (850) 914-3188 ecoppola@ara.com

5th Annual Pollution Prevention & Hazardous Waste Management Conference & Exhibition

An Employee-Owned Company

Overview

- optimization of the Thiokol Prototype Biodegradation Process
 - Conversion to Low-Cost Nutrient
 - Cost and Performance Impact
 - Co-Contaminant Studies
- Full-Scale Groundwater Treatment Plant for Henderson, Nevada
- **The EPA Thermal Treatment Project**

ARA Process

- optimized for High Concentration Effluents
 - 1to >5,000 mg/liter perchlorate
- **q** Robust in High TDS, Highly Contaminated Effluents
- Suspended-Growth Process
- Continuous-Stirred Tank-Reactors (CSTR)
 - Simple control and operation
 - Adaptable to a wide range of flow/residence times
 - Bio-accumulation of potential inhibitors is mitigated
- Perchlorate Reduced with Many Different Nutrients

Thiokol Prototype

Operational Since Dec 1997

- Thiokol Operated Under CRDA with AFRL
- Never Re-inoculated

q Effluent Properties

- High Salt (KCl) ~2%
- High Nitrate & Nitrite
- Other Co-Contaminants
- Ammonium Perchlorate

Performance in 1999

- 15,400 lbs CIO₄- Reduced
- 300-4600 mg/L ClO₄- feed

Nutrient Evaluation

Prototype Design Basis

- Brewer's Yeast and Cheese Whey Blend (~30:70)
- Nutrient Operations Were Problematic
 - Tre-mix dry nutrient in batch mode
 - **TOTAL STATE OF STATE**
 - To Difficult to prevent fungal and microbial growth
 - **t** Cost \$0.50 to \$1.00 per pound

Alternate Nutrients

- Low-Cost, Stable, Liquid, Pumpable, High Nutrient Value
- Food Industry Byproducts

Nutrient Evaluation

Laboratory Bottle Test

- Batch inoculation
- Conduct in 125 ml bottles
- Evaluate single variables
- Indicator of CSTR performance

Many Nutrients Work

 Acetate, alcohols, sugars, starches, proteins, carbohydrates

Two Candidates Evaluated

- Fruit Juice Waste
- Carbohydrate Byproduct (CBP)

Nutrient Evaluation

Fruit Juice Waste

- Sugar-Based Effluent
- Relatively Low Nutrient Value (~4%)
- Low Cost: Available for Transportation Cost
- Potential for Fermentation

Carbohydrate Byproduct (CBP)

- Multi-Component (Proteins, Sugars, Organic Acids, Etc.)
- High Nutrient Value (~50%)
 - To Nutrient value based on biodegradable organic content
- Low Cost (~\$25 per Ton) and Commercially Available
- Stable, Storable, Pumpable Liquid

Prototype Demonstration

- carbohydrate Byproduct (CBP) Selected
 - CSTR Testing Confirmed Performance
- Incremental Conversion Accomplished May 1999

 - No Equipment Modifications Were Performed
 - CBP was Diluted for Operational Considerations
- Prototype Performance Was Unaffected
 - Achieved Near Complete Perchlorate Reduction
 - Mitigated Contamination of Nutrient Feed
 - Nutrient & Chemical Costs Decreased by >90%

Prototype Performance for 1999

Fluctuations in Perchlorate Feed Concentration

Summary of Nutrient and Chemical Cost

Alternate Effluents Evaluated

q Objectives of Alternate Effluent Studies

- Can Alternate Effluents be Co-processed with ClO₄-?
 - **TOTAL PROOF OF THE PROOF OF TH**
 - Determine Threshold Concentration
- Determine Nutritional Contribution

Bottle Tests were Performed

- Ethylene Glycol Effluent
- Isopropyl Alcohol (IPA) From HMX Drying
- Brulin Solution Contaminated Aqueous Degreaser

Glycol Bottle Test Results

Glycol Bottle Test without CBP Nutrient

Isopropyl Alcohol Bottle Test Results

Brulin Bottle Tests Results

Co-Contaminant Evaluation

g Boron

- From Corrosion Inhibitors
- Can Bio-accumulate
- g Cadmium
 - From System Components
- Aluminum Hydroxide: Al(OH)₄-
 - From Base Hydrolysis of Aluminized Compositions

Boron Bottle Test Results

Cadmium Bottle Test Results

Aluminum Hydroxide Bottle Test Results

Prototype Modifications

- Project approved to increase capacity
 - Production programs will increase effluent quantity
 - Ammonium and potassium perchlorate effluents
 - Initiate early Fall 2000
- Modifications will increase capacity 2 to 4-fold:
 - Multiple effluent feed systems
 - Higher capacity flow control valves
 - Optimize configuration for series operation
 - Upgrade nutrient feed systems and software
 - Upgrade effluent handling

Full-Scale Treatment Plant

- **g** BMI Industrial Complex, Henderson, Nevada
- q Design Basis
 - 825 GPM (1.2 MGD) Highly Contaminated Groundwater
 - Nominal 400 mg/L Perchlorate Influent
 - **†** 4000 lb/day perchlorate removal and destruction
 - 12,000 mg/L Total Dissolved Solids
 - Simultaneous Reduction of Nitrate and Chlorate
 - < 8-Hour Hydraulic Residence Time (HRT)
 - Meet NPDES Permit Requirements
- g Engineering Design Nearly Complete
 - Teamed with Biothane Corporation for design/engineering

Biodegradation of Perchlorate in Groundwater

Process Flow Diagram for Kerr-McGee Chemical LLC, Henderson, NV Applied Research Associates, Inc., Biothane Corporation, Smith & Loveless, Inc.

Groundwater Treatment Process Henderson, Nevada

Thermal Treatment

- **EPA** project to regenerate ion exchange brine
 - Thermal and hydrothermal approaches evaluated
- Surrogate brine was prepared for testing

Components

Water Softener Salt

- Sodium Nitrate
- Sodium Sulfate
- Sodium Bicarbonate
- Sodium Perchlorate

Concentration, mg/L

7 wt%

800 (as NO₃-)

3000 (as $SO_4=$)

200 (as $CO_3=$)

50 (as CIO_4 -)

Hydrothermal Treatment

- q High temperature, high pressure approach
- Non-catalytic process
 - With and without promoting/reducing agents
- Complete perchlorate reduction obtained
 - 340°C process temperature
 - High ferric chloride concentration required
- Partial perchlorate reduction obtained without promoting or reducing agents

Thermal Treatment Process

Thermal Treatment Process

- Complete perchlorate reduction demonstrated
 - At 170°C with reducing/promoting agents
 - Below 600°C without reducing/promoting agents
- Sulfate removal demonstrated
- Preliminary process design developed
 - Commercial off-the-shelf equipment
- g Economic evaluation showed 20-30% ROI possible
 - Based on \$100/Kgal of brine disposal & replenishment

Summary

- **Thiokol Prototype Optimization Results**
 - 90% Reduction in Nutrient and Chemical Cost
 - Potential to Co-Process Many Contaminants/Effluents
 - 2-4 Fold Improvement in Performance Possible
- q ARA Completed Designs for Largest Perchlorate Groundwater Treatment Process
- ARA Issued a New Patent, "Biodegradation of Ammonium Perchlorate, Nitrate, Hydrolysates and Other Energetic Materials"
- ARA Developed Economical Thermal Treatment Processes for Ion Exchange Brines

