SERDP & ESTCP

Partners in Environmental Technology Technical Symposium & Workshop

28-30 November 2000

Treatment of Perchlorate and Other Contaminates to Produce Drinking Water

Michael Girard
Aerojet Environmental Site Remediation

Treatment History Aerojet Site (Sacramento CA)

- Soil & Groundwater contamination primarily VOCs, perchlorate and n-nitrosodimethylamine (NDMA)
- Aerojet is currently operating 5 Groundwater Extraction and Treatment (GET) Facilities
 - Treatment systems utilize air strippers and air stripper / UV oxidation / Bio combinations
- GET Facilities currently treating ~ 12 million gallons per day (47 billion gallons treated to date)

Aerojet's GET E/F Treatment Plant

- Treatment plant influent is groundwater pumped from GET E/F extraction wells
- Flow rate of 4000 gpm as-built with additional 4000 gpm expansion capacity
- Includes
 - Fluidize Bed Reactor
 Perchlorate / Nitrate
 - UV/OX systemVOCs / NDMA
 - Air Stripping Towers VOCs

Aerojet's Full Scale Perchlorate Treatment Plant

- Continuous flow, granular activated carbon (GAC) fluidized bed reactor (FBR)
- Construction completed in December 1998
- Substrate Ethanol
- Nutrient Nitrogen/Phosphorus
- Sand bed filters remove biomass solids from FBR effluent stream

Aerojet's Full Scale Perchlorate Treatment Plant

- 4 Fluidized Bed Reactors available
- Each reactor has a design capacity of
 - 1800 gpm Fluidization Rate
 - 900 gpm Feed Rate
- 4 reactors currently in use with combined feed rate of ~3500 gpm (~875 gpm each)
- Treating ~ five million gallons per day

Aerojet's Full Scale Perchlorate Treatment Plant

Bed Reactor	<u>Influent</u>	<u>Effluent</u>
 Dissolved O₂ 	5.3 ppm	<0.5 ppm
- CLO4	~3500 ppb	<4.0 ppb
- TCE	1500 ppb	1500 ppb
– NDMA	110 ppt	110 ppt
Nitrate-N	1.5 ppm	<0.11 ppm
Nitrite-N	<0.076 ppm	<0.076 ppm
Sulfate-S	6.0 ppm	6.0 ppm
– Ethanol	NA	<1.0 ppm
– pH	~7.5	~7.5

Baldwin Park Operable Unit Pilot Study

- Constructed at Aerojet's Sacramento Facility adjacent to GET E/F Treatment Plant
- Conduct a technology demonstration project that produces potable drinking water
- Evaluate complete treatment train
 - Multiple contaminants
 - Various treatment technologies in series

Pilot Study Objectives

- Construct and operate a pilot treatment system that will demonstrate process performance in a size and configuration applicable to a full scale water treatment system
- Confirm destruction and removal efficiencies for nitrate, perchlorate, VOCs, NDMA, and 1,4-dioxane
- Establish operating parameters to assure optimal, reliable, and consistent treatment performance
- Determine unit process requirements to meet drinking water standards
- Obtain technology approval from DHS for use of the treatment train to produce drinking water in the San Gabriel Basin

Pilot Study Design

- GAC/FB Bioreactor (Full Scale Plant)
- Multimedia Filters
- Air Stripper
- UV/Chemical Oxidation (UV/OX)
- Liquid-Phase Granular Activated Carbon Adsorption (LP GAC)
- Disinfection

Pilot Study Design

Target Contaminants
Nitrate, Perchlorate
Suspended Solids, Ethanol, Pathogens
VOCs
NDMA, 1,4-Dioxane,
VOCs, Pathogens
VOCs, Polishing
Pathogens
Biosolids

Process Flow Diagram

- Biological GAC/FB with Multimedia Filtration
 - Bioreactor effluent classified as Surface Water by DHS
 - Does bioreactor effluent contain pathogens?
 - Process stability for regaining performance after an upset event
 - Ethanol utilization efficiency and breakdown products
 - Process consistency in day to day operations
 - Using ORP as a control parameter
 - Biomass characterization
 - Minimum nutrient requirements
 - Cell yield (biological solids production), reaction rates
 - Lowering analytical detection limit for ethanol

Multimedia Filter

- Biologically active
- Removal of ethanol breakdown products
- Pathogen removal
- Loading rate
- Influent and effluent turbidity
- Influent and effluent particle counts

Air Stripper

- Verify removal efficiencies
- Removal of VOCs, TCE and Chloroform
- Air/Water loading rate

UV/Oxidation System

- Low energy design
- Optimize peroxide dose
- Interactions of peroxide, UV absorbance, and NDMA, 1-4 dioxane, and VOC removal
- Correlation between water quality and system performance
- Formation of DBP precursors

Liquid Phase GAC

- Removal of any remaining adsorbable compounds
- Final polishing step
- Biological removal of UV/OX breakdown products

Disinfection

- Sodium Hypochlorite
- THMs and DBPs
- CT requirements
- Microbial water quality and potential for biological regrowth
- NDMA reformation

Reclamation System

- Lamella clarifier
- Type of coagulant and dose
- Loading rate
- Solids production
- Clarified water reintroduced into main treatment train upstream of filter

Pilot Study Sampling Points

Groundwater

FBR4 Influent

FBR4 @ 1 ft

FBR4 @ 3 ft

FBR4 @ 6 ft

FBR4 Effluent

AT Effluent

Filter Influent

Filter Effluent

Air Stripper Influent

Air Stripper Effluent

UV Influent

UV Effluent

GAC Influent

GAC 1/4

GAC 1/2

GAC 3/4

GAC Effluent

Chlorine 0 min

Chlorine 2.5 min

Chlorine 7 min

Chlorine 12 min

Chlorine 17 min

Chlorine 22 min

Waste Biomass

Spent Backwash

Clarifier Influent

Clarifier Effluent

Clarifier Effluent Tank

Clarifier Sludge

Pilot Study Sampling Analytes

Perchlorate

Chlorate/Chlorite

Nitrate

Nitrite

Ammonia

Phosphorus

Sulfate

Sulfite

Sulfur

Sulfide

NDMA

1,4-Dioxane

VOCs

TSS

VSS

TVS

Ethanol

Methanol

TOC

DOC

AOC

BDOC

BOD

COD

F&T Coliforms

Giardia/Crypto

Virus

Coliphage

Plate Count

Aldehydes

Halos/THMs/CP

THMFP

Acetic Acid

Hardness

Alkalinity

UV Absorbance

Bromide

Bromate

TOX

Complete Drinking

Water

Pilot Study Schedule

Construction Start
Dec 99

System Start-up Feb 00

Pilot Plant Operation
Mar-Dec 00

Reporting
Monthly

Final Report

- to EPA and CA DHS Jan 01

Conclusion

- Every site will have unique challenges associated with treatment options
- The intrinsic value of drinking water supplies will necessitate a critical evaluation of treatment options and water reuse issues
- These challenges can be met with a methodical and thorough scientific process

Acknowledgments

- Harding Lawson and Associates
- Envirogen
- Expert Peer Review Panel
 - Perry McCarty
 Stanford University
 - Rhodes Trussell Montgomery Watson
 - Robert Clark USEPA / NRMRL
 - Michael McGuire McGuire & Associates
 - Rick Sakaji and Gary Yamamoto CA DHS
 - Wayne Praskins EPA Region 9

Contact

Michael Girard

Aerojet
Environmental Site Remediation
Bldg 20001 / Dept. 0330
P.O. Box 13222
Sacramento, CA 95813-6000

916.355.2945

michael.girard@aerojet.com