

hydroAMP:

an equipment condition assessment framework

2012 Capital Investment Review Workshop April 19, 2012 Portland, OR

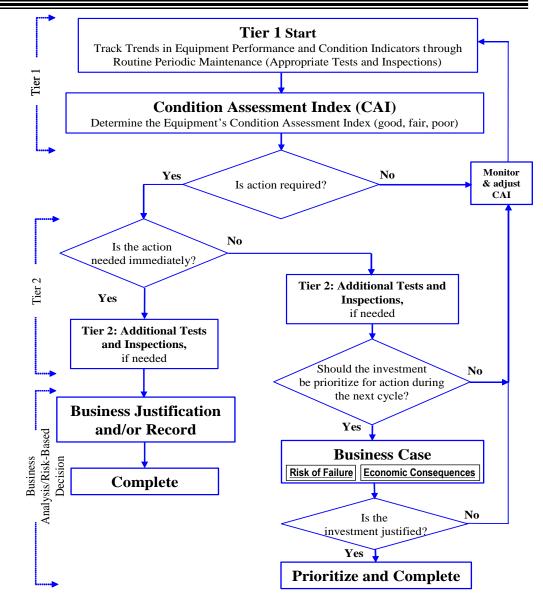
US Army Corps of Engineers.

- Equipment reliability significantly affects system generation availability and financial performance.
 - A significant amount of critical equipment in hydro facilities in North America is near or beyond its design life.
 - Substantial investment to repair, refurbish, or replace unreliable equipment is anticipated.
- The process for identifying and prioritizing investments needs strengthening capital is a limited resource.
 - Equipment condition assessment tools used in the past have been complex and costly to administer.
 - Establishing an objective, consistent and efficient assessment process is critical for informed decision making.

- In 2001, the Bureau of Reclamation (BOR), Hydro-Québec (HQ), the Army Corps of Engineers' Hydroelectric Design Center (HDC), and Bonneville Power Administration (BPA) began collaborating on a hydroelectric equipment condition assessment technique that was later named "hydroAMP", or hydro Asset Management Partnership.
- The hydroAMP Partners worked on the program for 5 years and in 2006, with the publication of a report describing the condition assessment technique, its development and its potential applications, officially rolled out hydroAMP during HydroVision.

hydroAMP Concept

US Army Corps of Engineers



- Objective results
- Developed from routine tests and inspections
- Simplified process
- Easy interpretation
- Technically sufficient (valid though not necessarily perfect)
- Consistent and repeatable results
- Start small, expand with time
- Open to improvement

- A guidebook currently outlines condition ratings for 11 equipment types.
- The guidebook was developed to facilitate asset management decisions using equipment condition assessments.
- The guidance is open and flexible to fit into the existing structure of each utility's maintenance, planning, budgeting and decision-making processes.

- Surge Arrestors
- Transformers
- Turbines
- Generators in revision 2011
- Governors
- Exciters revised 2011
- Cranes
- Batteries
- Compressed Air System
- Emergency Closure Gate and Valve

Tier 1

- The rating is based on condition indicators derived from tests, measurements, and inspections that are normally performed during routine O&M activities.
- The assessment results in a "Condition Index" with a rating scale of zero to 10; higher CI means better condition.
- Mid- to low-range values may trigger a Tier 2 evaluation.
- Assessment results are easily entered into CMMS or other databases for tracking and reporting.

Tier 2

- Includes in-depth, non-routine tests or inspections that may be invasive and/or require specialized equipment and expertise not normally found at the hydro plant.
- Results are used to adjust the Condition Index score (either up or down).
- Adds confidence to the assessment results and conclusions.

Data Quality Indicator

- Is a stand-alone indicator used to reflect the quality of information available for performing the condition assessment.
- Recognizes that data may be missing, out of date, or of questionable integrity.
- Is important because poor data could affect the accuracy of individual condition indicator scores as well as the validity of the overall Condition Index.

Turbine Example

US Army Corps of Engineers

Tier 1 condition indicators:

- Age
- Physical Condition
- Operational Limitations
- Maintenance

Condition indicators are scored and weighted, then summed to calculate the Condition Index.

The Data Quality Indicator is scored separately.

Table 1 – Turbine Age Scoring							
Age New / Full Rehabilitation	Age Partial Rehabilitation	Condition Indicator Score					
0 – 25 years	0 – 15 years	3					
26 – 35 years	16 – 25 years	2					
36 – 45 years	26 – 35 years	1					
>45 years	> 35 years	0					

	Tier 1 Tu (For instructions on indicator s	urbine Condition Sum scoring, please refer to co		actor = Total			
No.	Condition Indicator	Score X	Weighting Factor =	Total			
1	Age (Score must be 0, 1, 2, or 3)	2	1.000	2			
2	Physical Condition (Score must be 0, 1, 2, 3, or 4)	3	1.000	3			
3	Operations (Score must be 0, 0.5, 1, or 1.5)	1.5	1.000	1.5			
4	Maintenance (Score must be 0, 0.5, 1, or 1.5)	1.5	1.000	1.5			
	(Sum of indivi	e Condition Index dual Total Scores) uld be between 0 and 10))	8			

Turbine Data Quality Indicator	4
(Value must be 0, 4, 7, or 10)	-

Tier 2 Toolbox:

- Efficiency
- Capacity
- Off-Design
- Paint Film Quality
- Surface Roughness
- Cracking
- Other Specialized Tests

Tier 2 results are used to refine the Tier 1 score.

The Data Quality Indicator also may be adjusted.

- Cavitation
- Condition of Remaining Parts
- Environmental
- Operating Conditions
- Maintenance

Condition assessment guides also provide criteria for using Tier 2 test results.

Table 12 – Cavitation Damage of Runner and Cavitation Damage	nd Discharge Ring Test Scoring Adjustment to Condition Index Score
Minimal: Stainless – frosting only Carbon – frosting only	Add 0.5
Moderate:DepthAreaStainless< 1/8"	No Change
Severe:DepthAreaStainless> $1/8$ "> 5%Carbon> $3/8$ "> 5%	Subtract 0.5

hydroAMP was intended to be used in conjunction with performing annual maintenance.

- Turbines: As your filling out your performing your cavitation mapping, the hydroAMP turbine assessment should be filled in.
- If you have Tier 2 data, use it: Cavitation, Reliable On-line Efficiency Monitoring, etc.

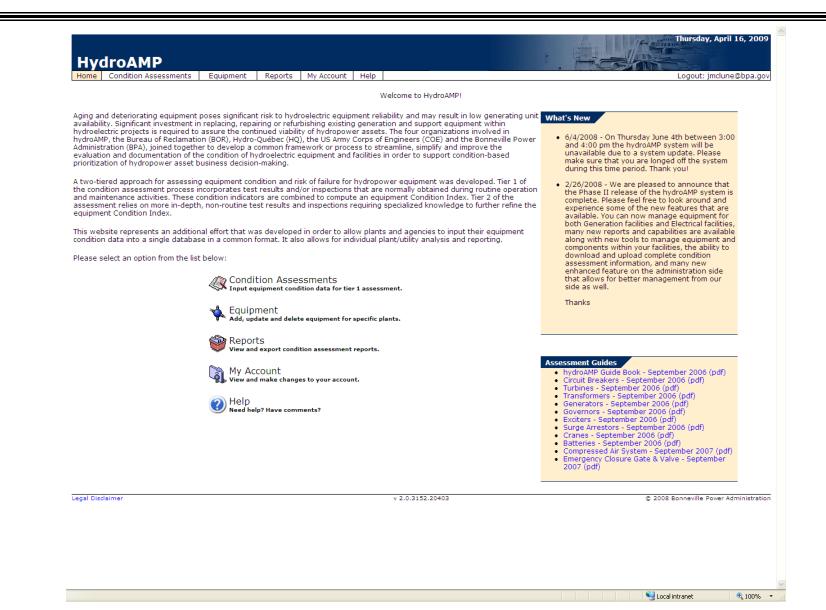
The idea was to "KEEP IT SIMPLE."

- Minimal time to perform, if you're doing it while you are performing maintenance.
- You're already thinking about the equipment and how it's performing.

How not to use it:

- Not a paperwork exercise.
- Last minute reporting of condition because of performance measures.

Make it meaningful.


Equipment guides and assessment data and are stored in a secure web-accessible database.

- The database stores and reports Tier 1 condition assessments.
- Adjustments for Tier 2 assessments have recently been added.
- It is expandable to include new plants and equipment.

www.bpa.gov/secure/hydroAMP

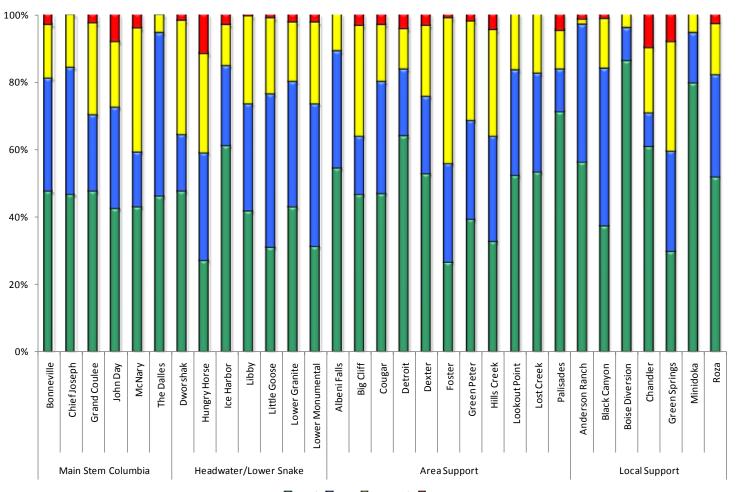
hydroAMP Database: Main Page

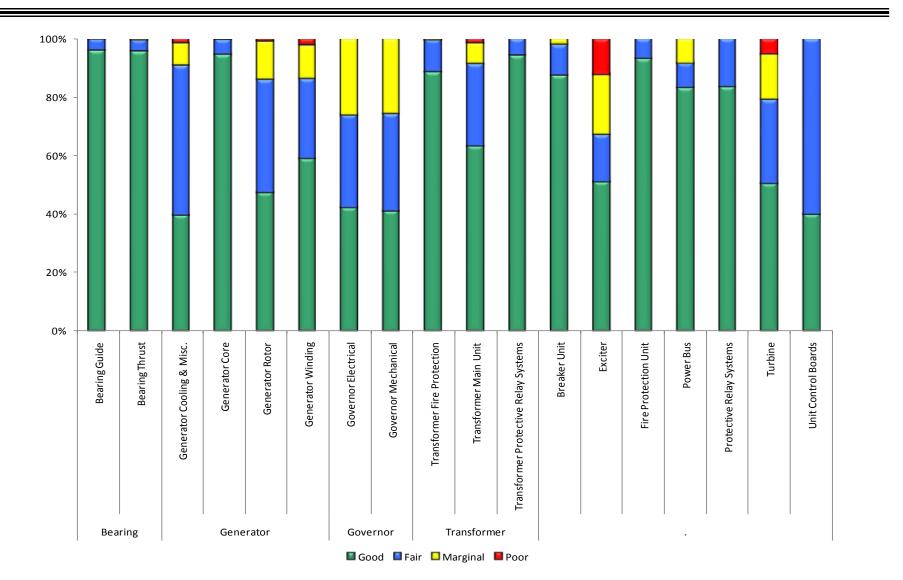
							-	out: jmclune@bp
Bac	k			Tier 1 Condition Asses	ssment			🕒 pri
	Turbine							
Plar	nt: G	rand Coulee		Unit:	G24 💌	Type:	Francis	•
Mar	nufacturer:	llis-Chalmers	-	Partial Rehab Year (non runner):	1996	Rated P	ower: 960000	 (HP)
Rat	ed Head:	285 (ft)		Discharge Diameter:	32.2 (f	t) Speed:	85.7	(RPM)
				Tier 1 Turbine Condition As				
No				(For Instructions on indicator scoring, please refer to to Condition Indicator	he condition assessment g	uide) Score x	Weighting Factor =	Total Score
110.	In-Service Year		1980					
1	Partial Rehab Year (I	runner)	, 	Age: 32 years		2	0.667	1.334
	Physical Condition C		Active Cr	acks 🔻				
2	Cavitation and Surfa			ace/ Moderate Cavitation Damage 💌		1	1.25	1.25
3	Operation Limitation	15	No Opera	ating Restraints		1.5	1	1.5
4	Corrective Maintena	ince	Moderat	e Corrective Maintenance		0.5	1	0.5
				Turbine Condition Index				4.6
								Marginal
	Data Quality In	ndicator	1 or mor	e, 6 - 24 months past normal frequency			•	7
				Tier 2 Turbine Condition As				
		(For instructions		just the Tier 1 Condition Index (CI) by conducting Tier 2 tes er 2 Adjustment:	1.0		sessment guide)	
			Total II	er z Aujustment.	1.0]		
Ir	n this comment box, pl adjustmen	lease list which o It for each that w	f the Tier 2 as used in o	tests or inspections you conducted and note the calculating the total adjustment reported above:	incremental			2
					<u>P</u>		Assessment Dat	te:
							Assessment Da	

Hydro/	MP		uinmont	Reports	My Associat	Liele				1.4	-	F		indunce	
Home Condit	ION ASSESSI	nents Equ	uipment	Reports	My Account	Help							Logout	: jmclune@b	pa.gov
Back															
Open Co	ndition Asse	ssment Page													
Repor	t Viewer														
	g: For best n	esults, export a	and print from	n Adobe Acro	bat or Microsoft	Excel									
	-														
anart Data:	4/4/2012														
eport Date:	4/4/2012														
					Co	nditio	n Inde	x Sum	imary (Powe	r Train)			
			Com			T		т.	-					11-14	D
				erator		Tran	sformer	11	ırbine	Go	vernor	E	citer	Unit	Brea
		Rot	or	S	tator										
		Condition	Condition	Condition	Condition	Condition	Condition	Condition	Condition	Condition	Condition	Condition	Condition	Condition	Co
Plant Name	Unit ID	Index	Rating	Index	Rating	Index	Rating	Index	Rating	Index	Rating	Index	Rating	Index	R
Grand Coulee	1	5.9	Marginal	7.6	Fair	3.7	Marginal	10.0	Good	6.8	Fair	3.5	Marginal	10.0	(
Grand Coulee	2	5.9	Marginal	8.0	Good	6.6	Fair	10.0	Good	6.8	Fair	3.5	Marginal	10.0	(
Grand Coulee	3	5.9	Marginal	8.0	Good	10.0	Good	10.0	Good	6.8	Fair	3.5	Marginal	10.0	(
Grand Coulee	4	5.9	Marginal	10.0	Good	10.0	Good	10.0	Good	6.8	Fair	3.5	Marginal	10.0	(
Grand Coulee	5	5.9	Marginal	5.3	Marginal	5.8	Marginal	10.0	Good	6.8	Fair	3.5	Marginal	10.0	(
Grand Coulee	6	5.9	Marginal	7.1	Fair	8.1	Good	10.0	Good	6.8	Fair	3.5	Marginal	10.0	(
	7	5.9	Marginal	5.3	Marginal	5.8	Marginal	10.0	Good	6.8	Fair	4.6	Marginal	10.0	(
Grand Coulee		5.9	Marginal	7.6	Fair	5.8	Marginal	10.0	Good	6.8	Fair	4.6	Marginal	10.0	
Grand Coulee Grand Coulee	8					10.0	Good	10.0	Good	6.8	Fair	4.6	Marginal	10.0	(
	8	5.9	Marginal	10.0	Good*	10.0									
Grand Coulee		5.9	Marginal Fair*	10.0 8.8	Good* Good*	10.0	Good	10.0	Good*	7.8	Fair*	3.0	Marginal	10.0	
Grand Coulee Grand Coulee	9		-					10.0 10.0	Good* Good*	7.8 7.8	Fair* Fair*	3.0 4.2	Marginal Marginal	10.0 10.0	(
Grand Coulee Grand Coulee Grand Coulee	9 10	6.9	Fair*	8.8	Good*	10.0	Good								(

- Access to the database and website is restricted and requires a user account.
- Accounts may be requested by e-mail to <u>hydroAMP@bpa.gov</u>, by providing the user's first and last name, company, job title, telephone number, and e-mail address. The request should also identify the hydro plants the user wishes to access.
- The hydroAMP administrator will assign a log-in and password, and send this information via e-mail to the user.

Applying hydroAMP Results in Asset Planning



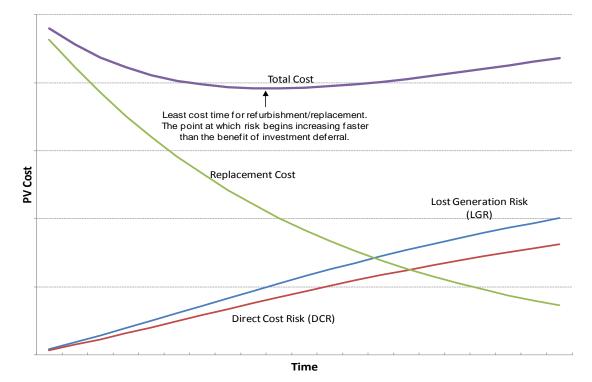

US Army Corps of Engineers

🖬 Good 🔲 Fair 🛄 Marginal 📕 Poor

The hydro program correlates a condition rating with the likelihood of equipment failing to perform as expected. An equipment component with a low condition rating has a higher likelihood of failure than one with a higher rating. The correlation is shown below.

Likelihood	Condition Index	Description
	0 to 0.9	
Almost	1 to 1.9	Poor
Certain	2 to 2.9	
	3 to 3.9	
	4 to 4.9	Marginal
	5 to 5.9	
	6 to 6.9	Fair
Rare	7 to 7.9	Fall
Rare	8 to 8.9	Good
	9 to 10	Good

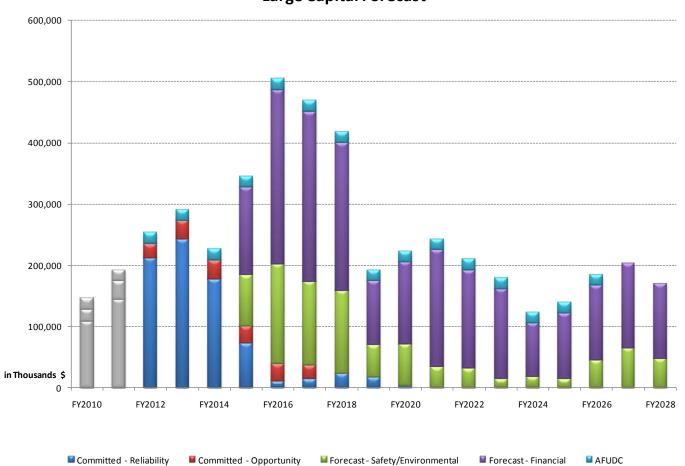
Current Financial Risk Map



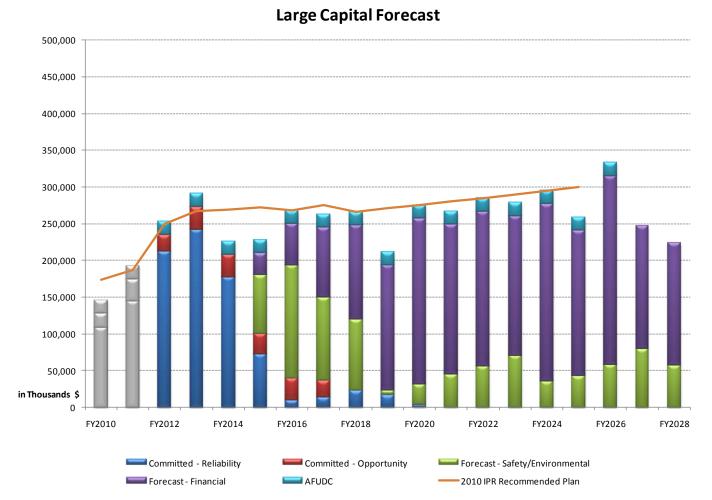
	< \$ 10K	\$ 10K to \$ 100K	\$ 100K to \$ 1 M	\$ 1 M to \$ 10 M	> \$ 10 M
	Insignificant	Minor	Moderate	Major	Extreme
	1 Infrastructure	12 Infrastructure	57 Infrastructure	5 Infrastructure	
		3 Cranes	66 Cranes	35 Cranes	1 Water control
Rare	52 operations support	2 Water Control	5 Water Control	21 Water Control	1 Water Control
	52 Operations Support	43 Operations Support	145 Station Service 69 Operations Support	62 Station Service 14 Operations Support	1 Operations Support
		73 Station Service	145 Station Service	62 Station Service	223 Onit Kenability
		299 Unit Reliability	582 Unit Reliability	1254 Unit Reliability	223 Unit Reliability
		6 Infrastructure	4 Cranes 6 Infrastructure	7 Cranes 2 Infrastructure	
5		2 Water Control	37 Water Control	14 Water Control	
Unlikely	6 Operations Support	10 Operations Support	16 Operations Support	1 Operations Support	
≥		6 Station Service	21 Station Service	17 Station Service	
		4 Unit Reliability	114 Unit Reliability	240 Unit Reliability	29 Unit Reliability
		6 Infrastructure	13 Infrastructure	4 Infrastructure	
			48 Cranes	34 Cranes	
Ba			46 Water Control	20 Water Control	2 Water Control
Possible	18 Operations Support	8 Operations Support	19 Operations Support	4 Operations Support	
		22 Station Service	33 Station Service	63 Station Service	
		44 Unit Reliability	213 Unit Reliability	330 Unit Reliability	32 Unit Reliability
		1 Infrastructure	17 Infrastructure		
			9 Cranes	11 Cranes	
5		2 Water Control	26 Water Control	22 Water Control	2 Water Control
Likely	16 Operations Support	19 Operations Support	55 Operations Support		1 Operations Support
		26 Station Service	38 Station Service	118 Station Service	
		53 Unit Reliability	92 Unit Reliability	182 Unit Reliability	11 Unit Reliability
			25 Infrastructure	1 Infrastructure	
Alm					
ost		1 Water Control	13 Water Control	5 Water Control	3 Water Control
Almost Certain	1 Operations Support	8 Operations Support	40 Operations Support	4 Operations Support	2 Operations Support
Ē		2 Station Service	9 Station Service	10 Station Service	
5		1 Unit Reliability	21 Unit Reliability	26 Unit Reliability	4 Unit Reliability

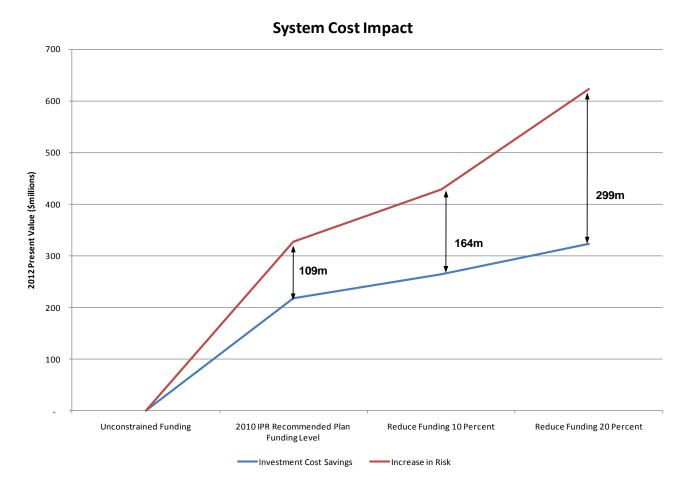
Risk Level Low Medium High

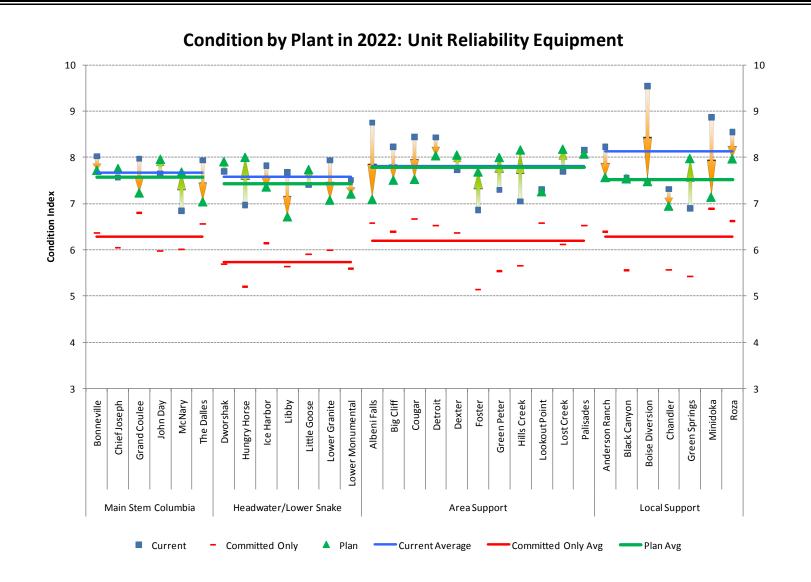
Without intervention, condition degrades over time and the risk of equipment failing to perform as expected increases. Three factors influence the prioritization of investments:


Replacement Cost, Lost Generation Risk, and Direct Cost Risk

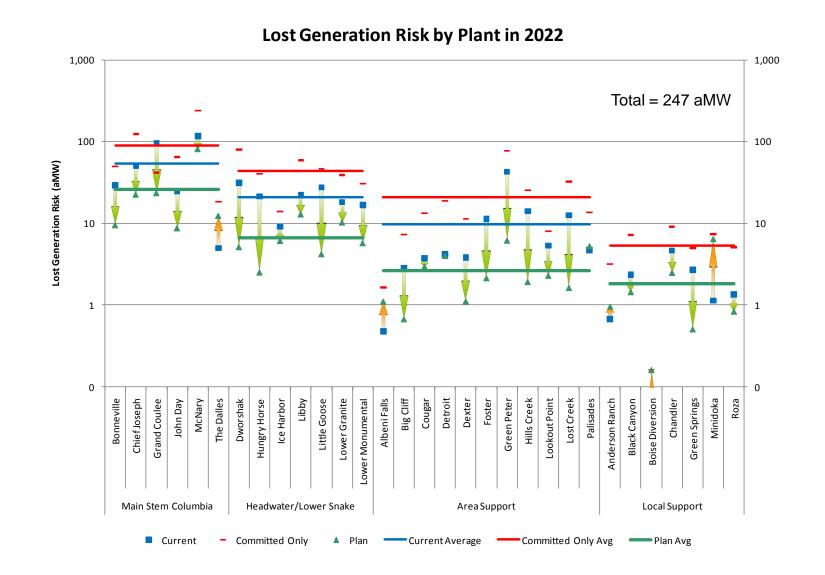
The **Total Cost** is the present value sum of replacement and risk costs. The cost minimum of this curve is the point at which cost risk is forecasted to begin growing faster than the benefit of investment deferral. This represents the optimum timing for equipment replacement.


• The least cost case represents all equipment being replaced at the cost minima.


Large Capital Forecast



When funding constraints are applied, Total Cost for the system (system cost) increases because new investments are deferred past their cost minima.



• System costs increase as funding is further constrained because more investments are deferred past the cost minimum.

Thank you

Jim Clune, P.E. Hydro Asset Planning Bonneville Power Administration jmclune@bpa.gov

US Army Corps of Engineers

