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1. Introduction

This is the final report on research in the system architecture of accelerators for the high perfor-
mance execution of logic programs. It was conducted by the Electrical Engineering - Systems
Department of the University of Southern California, under award number 25879 as subcontractor
to the University of California, Berkeley. The research was sponsored by the Defense Advanced
Research Projects Agency under contract number N00014-88-K-0579.

The scope of this work included:

"* Design of an abstract machine for the execution of Prolog, the Berkeley Abstract Machine
(BAM).

"* Design, simulation, and implementation of a high-performance VLSI Prolog accelerator
chip, the VLSI-BAM.

"* A simulator for the Aquarius-Il multiprocessor.

"* Release of version 1.0 of the Berkeley Extended Prolog (BXP) compiler.

"* Design, implementation, evaluation, and release of the Advanced Silicon-Compiler in
Prolog (ASP) System.

All of the above work was completed, as reported in the following section of this report.

It was originally proposed that this work would include the design and performance evaluation of
the Aquarius-l] and Aquarius-rn multiprocessors, under options A-il and A-I1. As these options
were not funded, the research was not performed.
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2. Accomplishments

2.1 Aquarius Prolog Compiler

Our work on compilation of Prolog revealed that the language can be implemented an order of
magnitude more efficiently that the best existing systems, with the result that its speed approaches
that of imperative languages such as C for a significant class of programs. The approach used was
to encode each occurrence of a general feature of Prolog as simply as possible. The design of this
system, Aquarius Prolog, is based upon four principles:

"• Reduce instruction granularity. Use an execution model, the Berkeley Abstract Machine
(see below), that retains the good features of the Warren Abstract Machine (WAM).

" Exploit determinism. Compile deterministic programs with efficient conditional branches.
Most predicates written by human programmers are deterministic, yet previous systems
often compile them in an inefficient manner by simulating conditional branching with
backtracking.

" Specialize unification. Compile unification to the simplest possible code. Unification is a
general pattern-matching operation that can do many things in the implementation: pass
parameters, assign values to variables, allocate memory, and do conditional branching.

"• Dataflow analysis. Derive type information by global dataflow analysis to support the
above ideas.

The resulting Aquarius Prolog system (Appendix 1) is about five times faster that the high-per-
formance commercial Quintus Prolog compiler. Because of limitation of the dataflow analysis
system, Aquarius is not yet competitive with the C language for all programs. This can be
addressed in future work.

2.2 Berkeley Abstract Machine (BAM)

The design of the Beikeley Abstraci Machine (BAM) was based upon the Programmed Logic
Machine (PLM), which was a straightforward microcoded implementation of the Warren Abstract
Machine, the most widely-used'model for the execution of Prolog. Studies of the PLM found that
perforniance was limited by bus bandwidth. It also proved difficult to perform compiler optimiza-
tions on PLM code because of the complexity of the operations. These problems were addressed
in the DAM design.

The BAM began with a general-purpose RISC architecture and added a minimal set of extensions
to support high-performance Prolog execution. Exploiting these features required simultaneous
development of the architecture and an optimizing compiler. While most Prolog-specific opera-
tions can be done in software, a crucial set of features that must be supported by the hardware in
order to achieve the highest performance:

"• Tagging of data, with tags kept in the upper four bits of a 32-bit word.

"* Segmented virtual addressing.

"• Separate instruction and data buses, with the data bus being double-width.

"* Special instructions which can also be used in implementing other languages. 0

"* Instructions to test and manipulate tags.

2
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- Unification support.

The results of this study showed that the special architectural features added 10.6% to the active
area of the BAM chip, while increasing performance by 70%. This study is presented in detail in
Appendix 2, "Fast Prolog With an Extended General Purpose Architecture."

2.3 Advanced Silicon-Compiler in Prolog (ASP)

The Advanced Silicon-Compiler in Prolog (ASP) is a full-range hardware synthesis system. The
goal of ASP is to synthesize a single-chip VLSI processor from a high-level specification of the
ISA. The approach is to study a specialized vertical slice of the design space. The design of the
system proceeds hierarchically. At each level, many choices are considered for each component,
making it convenient to consider the process as a conversion of a conceptual AND-OR tree into
an AND tree, with design decisions being the choice of a particular OR branch.
Conceptually, each level of abstraction is composed of a simulator module, a compiler module, a
design program (engine) module, and a knowledge base. Each level accepts a specification in a
formal specialized language and produces a more detailed and concrete specification in a different
specialized language. To determine which design choices should be made, a benchmark program
is provided to each level to that the developing architecture can be simulated and measured rela-
tive to the design choice.
ASP is a design automation (DA), as opposed to a computer-aided design (CAD) system. In it, the
silicon compilation problem is divided into three major problem domains, behavioral, logic, and
circuit. The geometric domain is concerned with the lowest level of design, the efficient layout on
silicon of a particular logic design. The logic domain produces that logic design, given a behav-
ioral (or register transfer level -- RTL) design. At the highest level, the behavioral domain gener-
ates a behavioral description of a particular ISA.
A summary of ASP is presented in Appendix 3, "A CAD Design Environment Based Upon Pro-
log."

2.4 Aquarius-.l Simulator

As a first step toward a Prolog multiprocessor, we developed the NuSim simulator to serve as a
testbed for new ideas. Based upon the VLSI-PLM, NuSim provides a framework that permits
simulation at many levels, from the instruction set to the memory architecture (including caches
and coherency protocols). The simulator's flexibility allows extensive instrumentation and con-
tinual updates and changes.

NuSim is an event-driven simulator, with the events being memory accesses ordered by time.
This technique simulates a multiprocessor using a uniprocessor. The simulator consists of 16,000
lines of C code and two small machine-dependent routines to save and restore the coroutine
stacks. It is fairly portable, currently running under 4.3 BSD Unix on the VAX 785 and the Sun 3,
and under System V Unix on an Intel 396-based personal computer.
In Appendix 4, "The Validation of a Multiprocessor Simulator," we report on validating NuSim
with respect to the VPSim uniprocessor simulator.
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3. Summary

Under this subcontract, the University of Southern California has performed research in accelera-
tors for the high-performance execution of Prolog programs, including compilation techniques,
accelerator architecture, multiprocessor design, and application to design automation.

In particular, this project included the design and implementation for a microprocessor for the
high-performance execution of Prolog, implementation of a simulator for the Aquarius-il multi-
processor, release of the Aquarius Prolog Compiler, and design, evaluation, and release of the
ASP System.

0
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Can Logic Programming Execute as Fast as Imperative Programming?

Peter Lodewijk Vac Roy

ABSTRACT

The purpose of this dissertation is to provide constructive proof that the logic programming language

Prolog can be implemented an order of magnitude more efficiently than the best previous systems, so that

its speed approaches imperative languages such & C, for a significant class of problems. The driving force

in the design is io encode each occurrence of a general feature of Prolog as simply as possible. The result-

ing system. Aquarius Prolog. is about five times faster than Quintus Prolog. a high performance commer-

cial system, on a set ef representative programs. The design is based on the following ideas:

(1) Reduce instruction granularity. Use an execution model, the Berlhey Absuact Machine (BAM),

thatiretains the good features of the Warren Abstract Machine (WAM). a standard execution model

for Prolog, but is more easily optimized and closer to a real machine.

(2) Exploit determinism. Compile deterministic programs with efficient conditional branches. Most

predicates written by human programmers are deterministic, yet previous systems often compile

them in an inefficient manner by simulating conditional branching with backtracking.

(3) Specialize unification. Compile unification to the simplest possible code. Unification is a general

pattern-matching operation that can do many things in the implementation: pass parameter, assign

values to variables, allocate memory, and do conditional branching.

(4) Dataflow analysis. Derive type information by global dataflow analysis to support these ideas.

Because of limitations of the dataflow analysis, the system is not yet competitive with the C language for

all programs. I outline the work that is needed to close the remaining gap.

Alvin M. Despain (Committee Chairman)
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Chapter I

Introduction

"You're given the form,
but you have to write the sonnet yourself.
What you say is completely up to you."
- Madelcinc L'Englc, A Wrinkle In Time

1. Thesis statement

The purpose of this dissertation is to provide constructive proof that the logic programming language

Prolog can be implemented an order of magnitude more efficiently than the best previous systems, so that

its speed approaches imperative languages such as C for a significant class of problems.

The motivation for logic programming is to let programmers describe what they want separately

from how to get it. It is based on the insight that any algorithm consists of two parts: a logical specification

(the logic) and a description of how to execute this specification (the control). This is summarized by

Kowalski's well-known equation Algorithm = Logic + Control (40). Logic programs are statements

describing properties of the desired result, with the control supplied by the underlying system. The hope is

that much of the control can be automatically provided by the system, and that what remains is cleanly

separated from the logic. The descriptive power of this approach is high and it lends itself well to analysis.

This is a step up from programming in imperative languages (like C or Pascal) because the system takes

care of low-level details of how to execute the statements.

Many logic languages have been proposed. Of these the most popular is Prolog, which was origi-

nally created to solve problems in natural language understanding. It has successful commercial imple-

mentations and an active user community. Programming it is well understood and a consensus has

developed regarding good programming style. The semantics of Prolog strike a balance between efficient

implementation and logical completeness 142,82). It attempts to make programming in a subset of first-

order logic practical. It is a naive theorem prover but a useful programming language because of its

mathematical foundation, its simplicity, and its efficient implementation of the powerful concepts of

unification (pattern matching) and search (backtracking).
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Prolog is being applied in such diverse areas as expert systems, natural language understanding.
II

theorcm proving 1571. deductive databases. CAD tool design, and compiler writing 1221. Examplcs of suc-

cessful applications arc AUNT, a universal nctlist translator [59], Chat-80, a natural language query system

1811. and diverse in-house cxpern systems and CAD tools. Grammars based on unification have become

popular in natural language analysis (55.561. Important work in the area of languages with implicit paral-

lclism is based on variants of Prolog. Our research group has used Prolog successfully in the development

of tools for architccturc analysis 112, 16, 35),.in compilation [19.73,76]. and in silicon compilation l11).

Prolog was developed in the early 70's by Colmerauer and his associates 138). This early system

was an inierprcier. David Warren's work in the late 70's resulted in the first Prolog compiler [801. The

syntax and sema~tics of this compiler have become the de facto standard in the logic programming com-

munity, commonly known as the Edinburgh standard. Warren's later work on Prolog implementation cul-

minated in the development of the Warren Abstract Machine (WAM) in 1983 (821, an execution model that

has become a standard for Prolog implementation.

However, these implementations are an order of magnitude slower than imperative languages. As a

result, the practical application of logic programming has reached a crossroads. On the one hand, it could

degenerate into an interesting academic subculture, with little use in the real world. Or it could flourish as

a practical tool. The choice between these two directions depends crucially on improving the execution

efficiency. Theoretical and experimental work suggests that this is feasible-that it is possible for an

implementation of Prolog to use the powerful features of logic programming only where they are needed.

Therefore I propose the following thesis:

A program wTitten in Prolog can execute as efficiently as its imple-
mentation in an imperative language. This relies on the development
of four principles:

(1) An instruction set suitable for optimization.

(2) Techniques to exploit the.determinism in programs.

(3) Techniques to specialize unification.

(4) A global dataftow analysis.
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2. The Aquarius compiler

I have tested this thesis by constructing a new 9ptimizing Prolog compiler, the Aquarius compiler.

The design goals of the compiler arc (in decreasing order of importance):

(1) High performance. Compiled code should execute as fast as possible.

(2) Portability. The compiler's output instruction set should be easily retargetablc to any sequcntial

architecture.

(3) Good programming style. The compiler should be written in Prolog in a modular and declarative

style. There are few large Prolog programs that have been written in a declarative style. The com-

piler will be an addition to that set.

I justify the four principles given in the thesis statement in the light of the compiler design:

(1) Reduce instruction granularity. To generate efficient code it is necessary to use an execution

model and instruction set that allows extensive optimization. I have designed the Berkeley Abstract

Machine (BAM) which retains the good features of the Warren Abstract Machine (WAM) (82],

namely the data structures and execution model, but has an instruction set closer to a sequential

machine architecture. This makes it easy to optimize BAM code as well as port it to a sequential

architecture.

(2) Exploit determinism. The majority of predicates written by human programmers are intended to be

executed in a deterministic fashion, that is, to givc only one solution. These predicates are in effect

case statements, yet systems too often compile them inefficiently by using backtracking to simulate 0

conditional branching. It is important to replace backtracking by conditional branching.

(3) Specialize unification. Unification is the foundation of Prolog. It is a general patuern-matching

operation that can match objects of any size. Its logical semantics correspond to many possible

actions in an implementation. including passing parameters. assigning values to variables, allocating

memory, and conditional branching. Often only one of these actions is needed, and it is important to

simplify the general mechanism. For example • of the most common actions is assigning a value

to a variable, which can often be simplified to a single load or store.



(4) Dataflow analysis. A global dataflow analysis supports techniques to exploit determinism and spe-

cialize unification by deriving information about the program at compilc-timc. The BAM instruction

set is designed to express the optimizations possible by these techniques.

Simultaneously with the compiler, our research group has developed a new architecture, the VLSI-BAM,

and its implementation. The first of several target machines for the compiler is the VLSI-BAM. The

interaction between the architecture and compiler design has significantly improved both. This dissertation

describes only the Aquarius compiler. A description of the VLSI-BAM and a cost/benefit analysis of its

features is given elsewhere 134,351.

3. Structure of the dissertation

The structure of the dissertation mirrors the structure of the compiler. Figure 1.1 gives an overview

of this structure. Chapter 2 summarizes the Prolog language and previous techniques for its high perfor-

mance execution. Chapters 3 through 6 describe and justify the design of the compiler in depth. Chapter 3

discusses its two internal languages: kernel Prolog. which is close to the source program, and the BAM,

which is close to machine code. Chapter 4 gives the optimizing transformations of kernel Prolog. Chapter

5 gives the compilation of kernet! Prolog into BAM. Chapter 6 gives the optimizing transformations of

BAM code. Chapter 7 does a numerical evaluation of the compiler. It measures its performance on several

machines, does an analysis of the effectiveness of its optimizations, and briefly compares its performance

with the C language. Finally, chapter 8 gives concluding remarks and suggestions for further work.

The appendices give details about various aspects of the compiler. Appendix A is a user manual for

the compiler. Appendices B and C give a formal definition of BAM syntax and semantics. Appendix D is

an English description of BAM semantics. Appendix E describes the extended DCG notation, a tool that is

used throughout the compiler's implementation. Appendix F lists the source code of the C and Prolog

benchmarks. Appendix G lists the source code of the compilcr.
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4. Contributions

4.1. Demonstration of high performance Prolog execution

A demonstration that the combination of a new abstract machine (the BAM), new compilation tech-

niques. and a global dataflow analysis gives an average speedup of five Limes over Quintus Prolog 158), a

high performance commercial system based on the WAM. This speedup is measured with a set of

medium-sized, realistic Prolog programs. For small programs the datallow analysis does better, resuking in

an average speedup of closer to seven times. For programs that use built-in predicates in a realistic

manner. the average speedup is about four times, since built-in predicates are a fixed cost. The programs

for which dataflow analysis provides sufficient information are competitive in speed with a good C com-

piler.

On the VLSI-BAM processor, programs compiled with the Aquarius compiler execute in 1(3 the

cycles of the PLM 1281, a special-purpose architecture implementing the WAM in microcode. Static code

size is three times the PLM, which has byte-coded instructions. The WAM was implemented on SPUR, a

RISC-like architecture with extensions for Lisp [81, by macro-expansion. Programs compiled with

Aquarius execute in IF7the cycles of this implementation with 1/4 the code size (34].

4.2. Test of the thesis statement

A test of the thesis that Prolog can execute as efficiently as an imperative language. The results of

this test are only partially successful. Performance has been significantly increased over previous Prolog

implementations; however the system is competitive with imperative languages only for problems for

which datafiow analysis is able to provide sufficient information. This is due to the following factors:

* I have imposed restrictions on the dataflow analysis to make it practical. As programs become

larger, these restrictions limit the quality of the results.

' The fragility of Prolog: minor changes in program text often greatly alter the efficiency with which

the program executes. This is due to the under-specificatioa of many Prolog programs, i.e. their logi-

cal meaning rules out computations but the compiler cannot deduce all cases where this happens.
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For example, often a program is deterministic (does not do backtracking) even though the compiler

cannot figure it out. This can result in an enormous difference in performance: often the addition of

a single cut operation or type declaration reduces the time and space needed by orders of magnitude.

The creation and modification of large data objects. The compilation of single assignment semantics

into destructive assignment (instead of copying) in the implementation, also known as the copy

avoidance problem, is a special case of the gencral problem of efficiently representing time in logic.

A quick solution is to use nonlogical built-in predicates such as secarg/3 163). A better solution

based on dacaflow analysis has not yet been implemented. 0

Prolog's apparent need for architectural support. A general-purpose architecture favors the imple-

mentation'of an imperative language. To do a fair comparison between Prolog and an imperative

language, one must take the architecture into account. For the VLSI-BAM processor, our research 0

group has analyzed the costs and benefits of one carefully chosen set of architectural extensions.

With a 5% increase in chip area there is a 50% increase in Prolog performance.

4.3. Development of a new abstract machine

The development of a new abstract machine for Prolog implementation, the Berkeley Abstract

Machine (BAM). This abstract machine allows more optimization and gives a better match to general- 0

purpose architectures. Its execution flow and data structures are similar to the WAM but it contains an

instruction set that is much closer to the architecture of a real machine. It has been designed to allow

extensive low-level optimization as weU as compact encoding of operations that are common in Prolog.

The BAM includes simple instructions (register-transfer operations for a tagged architecture), complex

instructions (frequently needed complex operations), and embedded information (allows better translation

to the assembly language of the target machine). BAM code is designed to be easily ported to general- 0

purpose architectures. It has been ported to several platforms including the VLSI-BAM, the SPARC, the

MIPS, and the MC68020.
0

• , • • |0
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4.4. Development of the Aquarius compiler

The development of the Aquarius compiler, a compiler for Prolog into BAM. The compiler is

sufficiently robust that it is used routinely for large programs. The compiler has the following distinguish-

ing features:

* It is written in a modular and declarative style. Global information is only used to hold information

about compiler options and type declarations.

* It represents types as logical formulas and 'uses a simple form of deduction to propagate information

and improve the generated code. This extends the usefulness of dataflow analysis, which derives

information about predicates, by propagating this information inside of predicates.

* It is designed to exploit as much as possible the type information given in the input and extended by

the dataflow analyzer.

* It incorporates general techniques to generate efficient deterministic code and to encode each

occurrence of unification in the simplest possible form.

* It supports a class of simplified unbound variables, called uninitialized variables, which are cheaper

to create and bind than stindard variables.

The compiler development proceeded in parallel with the development of a new Prolog system. Aquarius

Prolog 1311. For portability reasons the system is writen completely in Prolog and BAM code. The Prolog

component is carefully coded to make the most of the optimizations offered by the compiler.

4.5. Development of a global dataflow analyzer

The development of a global dataflow analyzer as an integral pan of the compiler. The analyzer has

the following properties:

0 It uses abstract interpretation on a lattice. Abstract interpretation is a general technique that proceeds

by mapping the values of variables in the program to a (possibly finite) set of descriptions. Execu-

tion of the program over the descriptions complctes in finite time and gives information about the

execution of the original program.
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S hIt derives a small set of types that lets the compiler simplify common Prolog operations such as vari-

able binding and unification. These types are uninitialized variables, ground terms. nonvariable

terms, and recursively dereferenced terms. On a representative set of Pmlog programs, the analyzer

finds nontrivial types for 56% of predicate arguments: on average 23% are uninitialized (of which

one third arc passed in registers), 21% are ground, 10% are nonvariables. and 17% arc recursively

dercfcrcnced. The sum of these numbers is greater than 56% because arguments can have multiple

types.

* It provides a significant improvement in performance, reduction in static code size. and reduction in

the'Prolog-specific operations of trailing and dereferencing. On a representative set of Prolog pro-

grams, analysis reduces execution time by 18% and code size by 43%. Dereferencing is reduced

from I I% to 9% of execution time and trailing is reduced from 2.3% to 1.3% of execution time.

* It is limited in several ways to make it practical. Its type domain is small, so it is not able to derive

many useful types. It has no explicit representation for aliasing, which occurs when two terms have

variables in common. This simplifies implementation of the analysis, but sacrifices potentially useful

information.

4.6. Development of a tool for applicative programming

The development of a language extension to Prolog to simplify the implementation of large applica-

tive programs (Appendix E). The extension generalizes Prolog's Definite Clause Grammar (DCG) notation

to allow programming with multiple named accumulators. A preprocessor has been written and used

extensively in the implementation of the compiler.



Chapter 2

Prolog and Its High Performance Execution

This chapter gives an overview of the fcaturcs of the Prolog language and an idea of what it means to

program in logic. It summarizes previous work in its compilation and the possibilities of improving its exe-

cution efficiency. It concludes by giving an overview of related work in the area of high performance Pro-

log implementation.

1. The Prolog language

This section gives a brief introduction to the language. It gives an example Prolog program, and

goes on to sumrharize the data objects and control flow. The syntax of Prolog is defined in Figure 2.2 and

the semantics arc defined in Figure 2.3 (section 2.1). Sterling and Shapiro give a more detailed account of

both 162], as do Pereira and Shieber [56].

A Prolog program is a set of clauses (logical sentences) written in a subset of first-order logic called

Horn clause logic, which means that they can be interpreted as if-statements. A predicate is a set of

clauses that defines a relation, i.e. all the clauses have the same name and arity (number of arguments).

Predicates are often referred to by the pair name/arity. For example, the predicate intree/2

defines membership in a binary tree:

intree(X, tree(X,_,_)).

in tree(X, tree(VLeft,Right)) X<V, in tree(X, Left).
in-tree(X, tree(V, Left,Right)) X>Vo intree(X, Right).

(Here ":- " means if, the comma " , " means and, variables begin with a capital letter, tree (V, L, R)

is a compound object with three fields, and the underscore "-" is an anonymous variable whose value is

ignored.) In English, the definition of intree/2 can be interpreted as:. X is in a tree if it is equal to

the node value (first clause), or if it is less than the node value and it is in the left subtree (second clause).

or if it is greater than the node value and it is in the right subtroe (third clause)."

The definition of in tree/2 is directly executable by Prolog. Depending on which arguments

arc inputs and which are outputs. Prolors execution mechanism will execute the definition in different

ways. The definition can be used to verify that X is in a given tree, or to insert or look up X in a utc.

tn
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The execution of Prolog proceeds as a simple theorem prover. Given a query and a set of clauses.

Prolog attempts to construct values for the variables in the query that make the query true. Execution •

proceeds dcpth-first, i.e. clauses in the program are tried in the order they are listed and the predicates

inside each clause (called goals) are invoked from left to right. This strict order imposed on the execution

make ":rolog rather weak as a theorem prover, but useful as a programming language, especially since it 0

can be implemented very efficicntly, much more so than a more general theorem prover.

1.I. Data

0
Thedata objects and their manipulation are modeled after first order logic.

1.1.1. The logical variablet

0
A variable represents any data object. Initially the value of the variable is unknown, but it may

become known by instantiation. A variable may be instantiated only once, i.e. it is single-assignmew.

Variables may be bound to other variables. When a variable is instantiated to a value, this value is seen by

all the variables bound to it. Variables may be passed as predicate arguments or as arguments of com-

pound data objects. The latter casc is the basis of a powerful programming technique based on partial data

structures which are filled in by different predicates.

1.1.2. Dynamic typing

Compound data types are first class objects, i.e. new types can be created at run-time and variables

can hold values of any type. Common types are atoms (unique constants, e.g. foo, abcd). integers, lists

(denoted with square brackets, e.g. (HeadlTail]. (a,b,c,d]), and structures (e.g.

tree (X, L, R). quad (X, C, B, F)). Structures are similar to C sutucts or Pascal records--they have a

name (called the'functor) and a fixed number of arguments (called the arity). Atoms, integers, and lists arc

used also in Lisp.

t Not to be confused with vomables of type LOGICAL in Fonvan

"''' •lu'l l I l l ll I
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s(X, Y, a) X=Z X=a

Y =b Y=b ' Y=b

e s(Z, b, Z) a=Z Z=a

Figure 2.1 - An example of unification

1.1.3. Unification

Unification is a paucrn-matching operation that finds the most general common instance of two data

objects. A formal definition of unification is given by Lloyd 142]. Unification is able to match compound

data objects of any size in a single primitive operation. Binding of variables is done by unification. As a

part of matching, the variables in the terms are instantiated to make them equal. For example, unifying

s(XMY,a) and s(Z,bZ) (Figure 2.1) matches X with Z. Y with b, and a withZ. "Thcunifiedterm

is s(a,b,a).Yisequalto b. and both X and Z are equal to a.

1.2. Control

During execution, Prolog attempts to satisfy the clauses in the order they arc listed in the program.

When a predicate with more than one clause is invoked, the system remembers this in a choice point. If the

system cannot make a clause truc (i.e. execution fails) then it backtracks to the most recent choice point

(i.e. it undoes any work done trying to satisfy that clause) and tries the next clause. Any bindings made

during the attempted execution of the clause are undone. Executing the next clause may give variables dif-

ferent values. In a given execution path a variable may have only one value, but in different execution

paths a variable may have different values. Prolog is a singlc-assignment language: if unification attempts
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to give a variablc a different value then failure causes backtracking to occur. For example. trying to unify

s (a, b) and s ( X) will fail because the constants a and b arc notequal.

There are four feazurcs that arc used to manage the control flow. These arc the "cut" operation

(denoted by' '" in programs), the disjuncuon, the if-then-clsc construct, and ncgaton-as-failurc.

1.2.1. The cut operation 0

The cut operation is used to manage backtracking. A cut in the body of an clause effectively says:

"This clause is the correct choice. Do not try any of the following clauses in this predicate when back- 0
tracking..' Executing a cut has the same effect in forward execution as executing true, i.e. it has no

effect. But it alters the backtracking behavior. For example:

p(A) q(A), !, r(A).
p(A) s(A).

Dunng execution of p (A), if q (A) succeeds then the cut is executed, which removes the choice points

created in q (A) as well as the choice point created when p (A) was invoked. As a result, if r (A)
0

fails then the whole predicate p (A) fails. If the cut were not there, then if r (A) fails execution back-

tracks first to q (A), and if t)at fails, then it backtracks further to the second clause of p (A), and only

when s (A) in the second clause fails does the whole predicate p (A) fail.
0

1.2.2. The disjunction

A disjunction is a concise way to denote a choice between several alternatives. It is less verbose than

defining a new predicate that has each alternative as a separate clause. For example:

q(A) :- ( A-a ; A-b ; A-c ).

This predicate returns the three solutions a, b, and c on backtracking. It is equivalent to: 0

q(a) ,
q(b).
q(c).

0

0



1.2.3. If-then-else
0

Thc if-then-else construct is used to denote a selection between two alternatives in a clause when it is

known that if one alternative is chosen then the other will not be needed. For example, the predicate

1p (A) above can bc written as follows with an if-then-else:

p(A) q q(A) -> r(A) ; s(A) ).

This has identical semantics as the first definition. The arrow -> in an if-then-elsc acts as a cut that

removes choice points back to the point where the if-then-else starts.

1.2.4. Negation-as-failure

Negation in Prolog is implemented by negation-as-failure, denoted by \+ (Goal). This is not a

true negation in the logical sense so the symbol \+ is chosen instead of not. A negated goal succeeds if

the joal itself fails, and fails if the goal succeeds. For example:

r(A) :- \+ t.(A).

The predicate r (A) will succeed only if t (A) fails. This has identical semantics as:

r(A) :- t(A), !, fail.
r(A) .

In other words, if t (A) succeeds then the fail causes failure, and the cut ensures that the second

clause is not tried. If t (A) fails then the second clause is tried because the cut is not executed. Note that

negation-as-failure never binds any of the variables in the goal that is negated. This is different from a

purely logical negation, which must return all results that arm not equal to the ones that satisfy the goal.

Negation-as-failure is sound (i.e. it gives logically correct results) if the goal being negated has no unbound

variables in it.

1.3. Syntax

Figure 2.2 gives a Prolog definition of the syntax of a clause. The definition does not present the

names of the primitive goals that are part of the system (e.g. arithmetic or symbol table manipulation).

These primitive goals are called "built-in predicates.'" They are defined in the Aquarius Prolog user
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clause(H) :- head(H).
clause((H:-B)) head(H), body(B).

head(H) :- goal term(H).

body(G) :-control(G, A. 1), body(A), body(B).
body (G) goa IIG) .

goal(G) \+control(G. , ), goal term(G).

control((A;B), A, B).
control((A,•B, A, B).
control( (A->B), A, B).
control(\+(A), A, true).

term(T) :- vaz(T).
term(T) gbal-term(T).

goal term(T) :- nonvar(T), functor(T. _, A), term args(1, A, T).

term args(I, A, _) :- I>A.
tesm.args(I, A, T) :- I-<A, arg(I, T, X), term(X), 11 is 1+1, term args(II, A, T).

% Built-in predicates needed in the definition:
functor(T, F, A) .- •ermThasfunctorFandarityA).
arg(I, T, X) :- (ArgumcntlofcompoundtermTisX).
var (T) : - (Argument T is an unbound variable).

nonvar (T) :- (Argument Tis a nonvariable).

Figure 2.2 - The syntax of Prolog

manual (311. The figure defines the syntax after a clause has already been read and convered to Pr•olog's

internal form. It assumes that lexical analysis and parsing have already been done. Features of Prolog that

depend on the exact form of the input (i.e. operators and the exact format of atoms and variables) are not

defined here.

To understand this definition it is necessary to understand the four built-in predicates that it uses.

The predicates functor(T, F, A) and arg(l, T, X) ar used toexamine compound terms.

Thc predicates var (T) and nonvar (T) arc opposites of each other. Their meaning is straightfor-

ward: they check whether a term T is unbound or bound to a nonvariable lerm. For example, va r(_

succeedswhermas var(foo(_) docsnot.
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2. The principles of high performance Prolog execution

The first implementation of Prolog was dcvclopqd by Colmerauer and his associates in France as a

by-product of research into natural language understanding. This implementation was an interpreter. The

first Prolog compiler was developed by David Warren in 1977. Somewhat later Warren developed an exe-

cution model for compiled Prolog. the Warrcn Abstract Machine (WAM) 182). This was a major improve-

ment over previous models, and it has become the dc facto standard implementation technique. The WAM

defines a high-level instruction set that corresponds closely to Prolog.

This section gives an overview of the operational semantics of Prolog, the principles of the WAM, a

summary of its instruction set, and how to compile Prolog into it. For more detailed information, please

consult Maier & Warren [431 or Ait-Kaci [I). The execution model of the Aquarius compiler, the BAM

(Chapter 3), uses data structures similar to those of the WAM and has a similar control flow, although its

instruction set is different.

2.1. Operational semantics of Prolog

This section summarizes the operational semantics of Prolog. It gives a precise statement of how

Prolog executes without going into details of a particular implementation. This is useful to separate the

execution 'of Prolog from the many optimizations that are done in the WAM and BAM execution models.

This section may be skipped on first reading.

Figure 2.3 defines the semantics of Prolog as a simple resolution-baswd theorem prover. For clarity.

the definition has been limited in the following ways: It does not assume any particular repirsentation of

terms. It does not show the implementation of cut, disjunctions, if-then-else, negation-as-failure, or built-in

predicates. it assumes that variables are renamed when necessary to avoid conflicts. It assumes that failed

unifications do not bind any variables. It assumes also that the variable bindings formed in successful

unifications are accumulated until the end of the computation, so that the final bindings give the computed

answer.

Terminology: A goal G is a predicate call, which is similar to a procedure call. A resolvent R is a

list of goals I GI .G.2 . G, 1. The query Q is the goal that sta the execution. The program is a list of
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function prologexccute(Q : goal) : boolean; 0
var

B stack of pair (list of goal, integer); /0 the backtrack stack /
R list of goal; / the resolvent */
i intcgcr; /* index into program clauses /

begin
R :=IQ 1;
B := empty;
push (R,l) on B;
while true do begin

/* Control step: find nexticlause. */
if empty(B ) then return false else pop B into (R,i);
if(R = [ ) then return true;
if (i+1 <n) then push (R.i+l) on B

I* Resolution step: try to unify with the clause. 'I
I* At this point.R = I G, .... G, I and A =(Hi :- Ail.

/* Unify the first goal in R with clause A1 .
unify G 1 and Ili;
if successful unification then begin

/I In R, replace G I by the body of A, 1
/* If A, does not have a body, then R is shortened by one goal 1
R :=[Ai, ..... Aj. G2 .- G, 1;
push (R ,1) on B r* proceed to next goal 1

end 0
end

end:

Figure 2.3 - Operational definition of Prolog execution

clauses IA , A 2.... . The number of clauses in the program is denoted by a. Each clause A, has a

head /I, and an optional body given as a list of goals I AI, A.2 ..... A.. I.

Execution starts by seuing the initial resolvent R to contain the query goal Q. In a resolution-based

theorem prover, the resolvent is uansformed in successive steps until (1) it becomes empty, in which case

execution succeeds, (2) all the clause choices are exhausted, in which case execution fails, or (3) the pro-

gram goes into an infinite loop. In a single transformation step, a goal G is taken from the current resol-

vent R and unified with a clause in the program. The next rcsolvent is obtainod by replacing G by the

body of the clause.

This process is nondcterministic, and much work has been done in the area of automatic theoremr

proving to reduce the size of its search space 17). To get cffaaiency. the approach of Prolog is to restrict the

ummnuunmm mmumu m mll m l n ll~lllllmill ll I



process in two ways: by always taking the first goal from R and by trying clauses in the order they arc

listed in the program (Figure 2.3). If no successful match is found, then the program backtracks-a previ-

ous resolvent is popped off the backtrack stack and execution continues. Therefore the execution flow of

Prolog is identical to that of a procedural language. with the added ability to backtrack to earlier execution

states.

The function prolog-cxecute(Q) returns a boolean that indicates whether execution was successful

or not (Figure 2.3). If execution was successful, then there is a set of bindings for the variables in Q that

gives the result of the computation. As a definition, prolog..executc(Q) faithfully mirrors the execution of

Prolog. As an implementation, however. it is incredibly inefficient. For each clause that is tried, it pushes

and pops the complete resolvent (which can be very large) on the backtrack stack. The backtrack stack

grows with each successful resolution step. A practical implementation avoids much of this overhead.

The next section describes the WAM. an execution model that is much more efficient. In the WAM,

the resolvents are stored in a compact form on several stacks. Only the differences between successive

resolvents are stored, so that memory usage is much less. The stack discipline is used to make backtrack-

ing efficient. The WAM also defines a representation for data items that allows an efficient implementation

of unification.

2.2. Principles of the WAM

Thc WAM defines a mapping between the terminology of logic and of a sequential machine (Figure

2.4). Predicates correspond to procedures. Procedures ame always written as one large case statemCnL

Clauses correspond to the arms of this case statement- The scope of variable names is a single clause.

(Global variables exist; however their use is inefficient and is discouraged.) Goals in a clause correspond to

calls. Unification corresponds to parameter passing and assignment. Tail recursion corresponds to itera-

tion. Features that do not map directly arc the single-assignment nature and altering backtracking behavior

with the cut operation.

The WAM is based on four ideas: use tagged pointers to represent dynamically typed data, optimize

backtracking (exploit determinism by doing a conditional branch on the first argument), speciali/c
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Prolog Inperative language 0

se of clauses - . program

predicate; set of clauses -a i-- procedure
with same name and arity

clause; axiom -o if statement; one arm of a nondtezrministic

case statement; series of procedure calls

goal invocation -a o- procedure call

unification . a- parameter passing-. assignmentm
dynamic memory allocation; 0
conditional branching

backtracking -a o continuation passing;.
* execution sizae manipulation

logical variable so a,- pointer manipulation

tail recursion -o 4- iteration

Figure 2.4 - Mapping between Prolog and an imperative language (according to WAM)

unification (instead of compiling a general unification algorithm, compile instructions that unify with a

known term), and map the execution of Prolog to a real machine. The WAM defines a high-level instruc-

tion set to represent these operations.

2.2.1. Implementation of d•namic typing with tags

Data is represented by objects that fit in a register and consist of two pans: the tag field (which gives

the type) and the value field (Figure 2.5). The value field is used for different purposes in different types: it •

gives die value of integers, the address of variables and compound terms (lists and szaructes), and it

ensures that each atom has a unique value different from all other atoms. Unbound variables are imple-

mented as self-referential pointers (that is. they point to themselves) or as pointers to other unbound var- 0

ables. The semantics of unification allow variables to be unified together., so that they have identical values

from then on. In the implementation, such variables can point to other variables. Thereforc retrieving the

value of a variable requires following this pointer chain to its end, an operation called dereferencing.

0!
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heap

Atom [ati] Unique ID tam ae/Arity Main functor

First argument

Last argument
Structure tstrI

_• Head of list

Litf. tlst( Tail of list

"Variable tvar tvar

Figure 2.5 - Representaion of Prolog terms in WAM and BAM

2.2.2. Exploit determinism

It is often possible to reduce the number of clauses of a predicate that must be tried. The WAM has

instructions that hash on the value of the first argument and do a four-way branch on the tag of the first

argument. These instructions avoid the execution of clauses that could not possibly unify with the goal.

The four-way branch distinguishes between the (our data cypes--variables. constants (atoms and integers),

lists (cons cells), and structures. The hashing insouctions hash into tables of constants and tables of struc-

tures. For example:

week (monday).
week (tuesday).
week (wednesday).
week (thursday).
week (friday).
week (saturday).
week (sunday).
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This is a set of seven clauses with constant arguments. If the argument X of the call week MX) is a con-

stant, thcn at most one clause can unify successfully with it. Hashing is used to pick that clause. If X is an

unbound variable then no such optimization is possible and all clauses are tried in order.

2.2.3. Specialize unification

Most uses of unification are special cases of the general unification algorithm and can be compilcd in

a simplcr way using information known at compile-time. For example, consider the following clause

which is part of a queue-handling package:

"% queue(X.,) is true
Sif 0 is a queue containing the single element X.

quetfe(X, q(s(O),(XlC].C)).

A queue is represented here as a compound term. The complexity of this term is typical of real programs.

In fthc WAM, a unification in the source code is compiled into a sequence of high-level instructions. The

compiled code executes as if the original clause had been defined as follows, with the nested term q/3

completely unraveled:

queue(X. 0) :-Q-q(A,B,C). A-s(O), B-[XIC].

(The notation P-Q means to unify the two terms P and Q.) The compiled code is:

procedure queue/2

get_structure q/3.r(1) % Q-q( <- Start unification of q/3
unifyvariable r(2) A.

unifyvariable r(3) B,
unifyvariable r(4) C)
get_structure s/l,r(2) % A-s( <- Start unification of s/1

unifyconstant 0 0)
9et_list r(3) " B- <- Start unification of list

unify value r(O) % (X

unifyvalue r(4) % IC]

proceed <- Return to caller

(r(O) and r(l) arc registers holding the arguments X and Q. and r(2). r(3) .... arc temporary

registers.) Unification of the nested structure is expanded into a sequence of operations that do special
e

cases of the general algorithm. These operations are encapsulated in the get and unify instructions.

Unification has two modes of operation: it can take apart an existing structure or it can create a new one.
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In the WAM, the decision which mode to use is made at run-time in the get instructions by checking the

type of the object being unified. A mode flag is set which affects the actions of the following unify

instructions (up to the next get ). A more detailed overview of the WAM instruction set is given in sec-

Lion 2.3 below.

2.2.4. Map execution to a real machine

The control flow of Prolog is mapped to multiple stacks. The stack representation holds the resol-

vents in a form that makes each resolution step as efficient as a procedure call in an imperative language.

The stack-based. structure allows fast recovery of memory on backtracking. As a result, some applications

do not need a garbagce collector.

A further optimization maps Prolog variables to registers. The variables in a clause are partitioned

into three -classes (tempo.ar),, permanent, and void) depending on their lifetimes. Void variables have no

lifetime and need no storage. Temporary variables do not need to survive across procedure calls, so they

can be stored in machine registers. Permanent variables are stored in environments (i.e. stack frames) local

to a clause.

2.3. Description of the WNAM

The previous section gave an overview of the ideas in the WAM, with a simple example of generated

code. This section completes that dcscripuon by presenting the data storage, execution state, and instruc-

tion set of the WAM in full. It also gives a larger example of generaLed code and a scheme to compile Pro-

log into WAM.

2.3.1. Memory areas

Memory of the WAM is divided into six logical aras (Figure 2.6): three stacks for the data objects,

one stack to support unification, one stack to support the interaction of unification and backtracking, and

one area as code space.

(1) The global stack. This stack is also known as the heap, although it follows a stack discipline. This

stack holds terms (lists and structures, the compound data of Prolog).
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Three kinds of data objecis on stacks S

r(e) r(b) r(hW

environ- choice Prolog

r (a) meni point term

r (b) (lcal (data
frame) object)

r(h)

r (hb) Support for S
r (t ) unification and

backtracking
"r (pc)
r(cp) .
r(s) r(tr)

riO)

r(1)

r(2)

execution environment choice point global stack trail push-down
state stack stack (heap) stack stack

Figure 2.6 - Data structures of WAM and BAM

(2) The environment stack. This stack holds environments (i.e. local frames) which contain variables

local to a clause. Because of backtracking (control may return to a clause whose environment is

deep inside the stack), this area does not follow a strict stack discipline, however, convention has

kept this naming. (Thc other stacks in the WAM do follow a stack discipline.)

(3) The choice point stack. Also known as the backtrack stack, this stack holds choice points, data

objects similar to closures that encapsulate the execution state for backtracking.

(4) The trail. The trail stack is used to save locations of bound variables that have to be unbound on S

backtracking. Saving variables is called trailing, and restoring them to unbound is called detrailin$.

' " " ' l l l ! i | l I I



Not all variables that are bound have to be trailed. A variable must only be trailed if it contnues to

exist on backtracking, i.e. if its location on the heap or the environment is older than the most recent

choice point. This is called the trail condition.

(5) The push-down stack. This stack is used as a scratch-pad during the unification of nested com-

pound terms.

(6) The code space. This area holds thc compiled code of a program.

It is possible to vary the organi7ation of the memory areas somewhat without changing anything substantial

about the 'execution. For example, some Prolog systems (including the Aquarius system) combine the

environment and choice point stacks into a single memory area. This area is often called the local stack.

Since the push-down stack is only used during general unification, it can be kept on the top of the heap.

2.3.2. Execution state

The internal state of the WAM and the BAM is given in Table 2.1. The differences between WAM

and BAM are indicated in the table: The BAM adds the register r (tmpcp) for efficient interfacing of

Prolog predicates with assembly language. The WAM adds the register r (s) and the mode flag mode

for use by the unification instructions. The registers p (I) arc not machine registers, but locations in the

current environment, pointed to by r (e).

Table 2.1 - Execution state of WAM and BAM

Rcgistcr Description

"r (e) Current environment on the environment stack.
"r (a) Top of the environment stack (WAM only).
"r (bW Top-most choice point on the choice point stack.
"r (h Top of the heap.
"r (hb) Top of heap when top-most choice point was created.
"r (tr) Top of the trail stack.
"r (pc) Program counter.
"r (cp) Continuation pointer (return address).
"r (tmp_cp) Continuation pointer to interface with assembly (BAM only).
"r (sI Structure pointer (WAM only).
mode Unification mode flag (value is read or write, WAM only).
r (0), r(1).... Registers for argumcnt passing and temporary storage.
p (0), p (1) ,... Location. in the current environment (permanent variables).
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2.3.3. The instruction set

Table 2.2 contains the WAM instruction set, with a brief description of what each instruction does. 0

The get-(.. .) and unify_ (...) instructions echo the put instructions, so their listing is abbre-

viated. veN) is shorthand notation for r(N) or p(N). "Globalizing" a variable (see the

put_unsa fe_va lue instruction) moves an unbound variable from the environment to the heap to avoid 0

dangling pointers.

Table 2.2 - The WAM instruction set

Loading argument registers (just before a call) 0
put variable v (N), r (I) Create anew variable, put in v (N) and r (I).
put value v(N), r(I) Movev(N) tOr(I).
put unsafevalue v(N), r(I) Move v (N) to r (I) (and globalize).
put constant C, r (I) Move immediate value C to r (I).
put nil r(I) Movenil tor(l).
put-structure F, r(I) Create functor F, put in r (I).
put list r (I) Createa list pointer, pultin r(I1).

Onifying with registers and structure arguments (head unification)

get(. .. ), r(I) Unify (...) withr(I).
unify_ (...) Unify (...) with structure argument.

Procedural control 0
call Label, N Call a predicate.
execute Label Jump to a predicate.
proceed Return from a predicate.
allocate Create local stack frame.
deallocate Remove local stack frame.

Selecting a clause (conditional branching)

switch on term V,C,L,S Four-way branchon r(0) 'stag.
switch on constant N, Tbl Hash tablc lookup of an atomic term in r (0).
switch on structure N, Tbl Hash table lookupofa functorin r(O).

Backtracking (choice point management)

try me_else Label try Label Create a choice point.
retry meelse Label retry Label Change rtry address.
trust me else fail trust Label Remove top-most choice point.

2.3.4. An example of WAM code

Figure 2.7 gives the Prolog definition and the WAM instructions for the predicate append/3. The

mapping between Prolog and WAM instructions is straightforward: the switch instruction branches to

the right clause depending on the type of the first argumcnt, the choice point (try) instructions link the 0

clauses together, the get instructions unify with the head arguments, and thc unify instructions unify

__ ~a m mmnnummlmilli m mnummnnmnmnm• ni In n0
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with the arguments of structurcs.

The same instruction sequence is used to take apart an existing structure (read mode) or to build a

new structure (write mode). The decision which modc to use is made in the get instructions, which set a

mode flag. For example, if get_list r (0) sees an unbound variable argument, it sets the flag to

write mode. If it sces a list argument, it sets the flag to read mode. If it sees any other type, it fails, i.e. it

backtracks by restoring state from the most recent choicc point.

Choice point handling is done by ijhc try instructions. The try meelse L instruction

creates a choice point, i.e. it saves all the machine registers on a stack in memory. It is compiled before the

first clause in a predicate. It continues execution with the next instruction and backtracks to label L. (The

try L instruction is identical to try. m e 1 se, except that it continues execution at L and backtracks

to the next instruction.) The retry me else L instruction modifies a choice point that already exists

by changing the address that it jumps to on backtracking. It is compiled before all clauses after the first but

not including the last. The trust me else fail instruction removes the top-most choice point from

the stack. It is compiled before the last clause in a predicate.

2.3.5. Compiling into WAM

Compiling Prolog into WAM is straightforward because there is almost a one4o-onc mapping

between items in the Prolog source code and WAM instructions. Figure 2.8 gives a scheme for compiling

Prolog to WAM. This compilation scheme generates suboptimal code. One can optimize it by generating

switch instructions to avoid choice point creation in some cases 1731.

The clauses of predicate p/ 3 are compiled into blocks of code that are linked together with try

instructions to manage choice points. Each block consists of a sequence of get instructions to do the

unification of the head arguments, followed by a sequence of put instructions to set up the arguments for

each goal in the body, and a call instruction to execute the goal. The block is surrounded by allo-

cate and deallocate instructions to create an environment for permanent variables.

The last call optimization. or LCO (also called tail recursion opidmization. although it is applicable to

all predicates, not just recursive ones) converts a call instruction followed by a return into a jump, i.e. it
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append((], L, L).
append([XlLl], L2, [XIL3)) :-.append(Ll, L2, L3).

Prolog dcfinition of append/ 3

append/3:

switch on term VI, Cl, C2, fail ;GotoVlifr(0) is a variable.
;Go to CI if r (0) is a constant.
;Go to C2 if r (0) is a lisL
;Fail if r (0) is a structure.

VI: trymeelse V2 ;Create achoice poinL
Cl: getnil r(O) ;Unifyr(0) withnil. S

getvalue r(l),r(2) ;Unifyr(1) andr(2).
proceed ; Return to caller.

V2: t;ustmeelse fail ;Removcchoicepoint

C2: get_list r(O) ;Stanunificationofr(0) withalisL
unify_variable r(3) ;Load head oflistinto r(3J. 0
unifyvariable r(O) ;Load tail oflist into r (0).

getlist r(2) ; Start unification of r (2) with a IiSL
unif y_value r(3) ;Unify head of list with r (3).
unify variable r(2) ;Load ail oflistinto r (2).
execute append/3 ;Jump Io append/3 (last call optimization).

WAM code for append/3

Figure 2.7 - Compiling append/ 3 into WAM code

reduces memory usage on the environment stack. For recursive predicates, the LCO converts recursion

into iteration, since the jump is to the first instruction of the predicate. The WAM implements a generaliza-

tion of last call optimization called environment trimming that allows the environment to become smaller

after each call.

3. Going beyond the WAM

Prolog implementations have made great progress in execution efficiency with the development of

the WAM 182). However, these systems are still an order of magnitude slower than implementations of

popular imperative languages such as C. To improve the execution speed it is necessary to go beyond the

WAM. This section discusses the limits of the WAM and how thc four principles of the Aquarius compiler

build on the WAM to achieve higher performance.

= - • m I I I I II I Hi0
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p(EF,G) k(X,F,P), m(S,T).

* choioe p(AB,C) q(AZ,W), r(W.T,B), ... z(A,X).

point

"p(QR"S " Origina Prolog predicate

Compiled WAM code
LI: try__me_else L2

cdallocate Creaze ewironnment.
*1(get arguments) Unify with caller aguments.

(put argumentms)La rgmnsa alL2: retryme else L3 c-utallLa agms andc•l,
--_ _ -- call q/3 j

[cause [ call r/3 I] oad gulme•nds ca

S(put arguments)

deallocate Remove environment.
execute z/2 Last call is a jump.

Ln: trust me else fail

[is ]A s empd

Figurc 2.8 - Compiling Prolog into WAM

3.1. Reduce instruction granularity

The WAM is an elegant mapping of Prolog to a sequential machine. Its instructions encapsulate

parts of the general unification algorithm. Howcver, these parts are quite large, so that many optimizatons

are not possiblc. For examplc, consider dhe predicate:

p(bar).

This is compiled as:
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get_constant bar, r(O)
proceed

The get_constant instruction encapsulates a seiies of operations: dercferencc r (0) (follow the

pointer chain to its end), test is type. and do either read mode unification (check that the value of r (0) is

bar) or write mode unification (trail r (0) and store bar in its cell). All this generality is often

unnecessary. For example, if the predicate p (X) is always called with a dereferenced atom, then 0

unification reduces to a simple check that the value is correct. The other operations arc superfluous.

The Aquarius compiler's execution model, the BAM, is designed to retain the good features of the

WAM wbile allowing optimizations such as this one. It retains data structures and an execution flow simi-

lar to the WAM, but it has an instruction set of finer granularity (Chapter 3). The compiler does not use the

WAM during compilation, but directly compiles to the BAM. It is of fine enough grain to allow extensive

optimization, but it also encodes compacdy the operations common in Prolog. For example, it includes an

explicit dereferencing instruction, which makes it possible to reduce the amount of dereferencing

significantly by only doing it when it is necessary and not in every instruction.

3.2. Exploit determinism

The majority of predicates written by human programmers are intended to give only one solution, i.e.

they are deterministic. However, too often they are compiled in an inefficient manner using shallow back-

tracking (backtracking within a predicate to choose the correct clause), when they are really just case state-

ments. This is inefficient since backtracking requires saving the machine state and restoring it repeatedly.

3.2.1. Measurement of determinism

Measurements of Prolog applications support these assertions:

(1) Tick shows thai choice point references constitute about half (45-60%) of all data references 169J.

(2) Touati and Despain show that at least 40% of all choice point and fail operations can be removed

through optimization (70].

The latter result is especially interesting because it attempts to quantify how often shallow backtracking is

0
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optimizablc. It considers a choice point to be avoidable if between the access of a choice point and its

removal by a cut thee arc no calls to non-built-in predicates, no returns, and only binding of variables that

do not have to be restored on backtracking. Avoidable choice points do not have to be created because

they are removed immediately. For a set of medium -sized programs, on average the following percentages

of choice point creations arc avoidable: 57% of the ones removed by cut, 43% of the ones removed by

trust, and 48% of the ones rcstorcd by fail. The variance of these numbers is large, but the potential for

optimization when these situations do occur is significant. The Aquarius compiler is able to lake advantage

of these optimizations and more, e.g. due to the factoring transformation (Chapter 4) it is able to compile

the part it ion / 4 predicate in Warren's quicksort benchmark [30] into deterministic code. The optimi-

zations are synergistic, that is, doing them makes other improvements possible:

(1) Less stack space is needed on the environment/choice point stack. Choice points and environments

are both stored on this stack, which means that often a clausc's environment is hidden underneath a

more recently created choice point. When this happens the last call optimization is not able to

recover space. If fewer choice points are created, then last call optimization is effective more often.

(2) There are fewer memory references to the heap because binding a variable is postponed until a

clause is chosen.

(3) There is less trailing because it is only needed for bindings that cross a choice point.

(4) Garbage collection is more efficient, since the creation of fewer choice points means that there are

fewer starting points for marking.

3.2.2, Ramifications of exploiting determinism

The goal of compiling deterministic predicates into efficient conditional branches affects a large part

of the compiler. Many of the transformations done in the compiler are intended to increase the amount of

determinism that is easily accessible. This includes formula manipulation, factoring, head unraveling, the

determinism transformation (all in Chapter 4), the determinism compiler (Chapter 5), and the determinism

optimization (Chapter 6).
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Through these transformations the compiler creates a decision graph to index the arguments of a

predicate. Type information derived by dataflow analysis is exploited to simplify the graph. Tbe graph is

created in an architecture-indcpendent way through the concept of the test set (Chapter 4). Intuitively, a

test set is a set of Prolog predicates that are mutually disjoint (only one can succeed at any given time) and

that correspond to a multi-way branch in the architecture.

3.3. Specialize unification

The WAM unification instructions (get and unify) arc complex. They operate in two modes

(read mode and write mode) depending on the type of the object being unified, they dereference their argu-

ments, and theyt Fail variable bindings. It is better to compile unification directly into simpler instructions.

In the Aquarius compiler, unification is compiled into the simplest possible BAM code taking the

type information into account (Chapter 5). Often it is possible to reduce a unification to a single load or

store. The use of uninitialized variables (see below) to simplify variable binding greatly improves the gen-

crated code.

registers memory

Uninitialized _ --___--__value ignored
register

[ ] value importnt

Uninitialized 0
memory tvar

Initialized tvar a

vaiable ta

Figure 2.9 - Three categories of unbound variables

mmm mm mm mmt~lm ~ ll[ _ -- m m m B i m0
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3.3.1. Simplifying variable binding

It
A major source of inefficiency in WAM implementations is that logical variables are often created as

unbound (i.e. as self-referential pointers) and then unified soon afterwards. Creating and unifying does

much unnecessary work: it would be faster just to reserve a memory location and then write to it. The

Aquarius compiler defines such a representation. called uninitialized variables. Conceptually, uninitialized

variables arc defincd ai two levels:

I (i) At the logical level, an uninitialized lariable is an unbound variable that is not aliased, i.e. there are

no other variables bound to it. The dataflow analyzer (Chapter 4) uses this definition to derive unini-

tialized variable types.

_ (2) At the itnplementation level, an uninitialized variable is a location that is allocated to contain an

unbound variable, but the location is not given a value. The kernel Prolog compiler (Chapters 4, 5.

"and 6) uses this definition to compile uninitialized variables efficiently.

The location containing an uninihialized variable can either be a register or a memory word, resulting in

two kinds of uninitialized variables, namely uninitialized register and uninitialized memory variables. The

first are registers whose contents are ignored. The second are pointers to memory locations whose contents

are ignored. Standard unbound variables are called initialized variables; they are pointers to locations

pointing to themselves. Figure 2.9 illustrates the three categories of unbound variables.

Table 2.3 - The cost of uninitialized variables

Typc of variable Cost (VLSI-BAM cycles)
For Unification For Backuacking

Creation Binding Trailing Detrailing

Uninitialized Register 0 0 0 0
Uninitialized Memory I 1 0 0
Initialized Variable de 2 5 2 Oor4

The dataflow analyzer derives both uninitialized register and uninitialized memory types. It is often

able to determine that an argument is uninitialized; for a representative set of programs it finds that 23% of

all predicate arguments are uninitialized. Of these, two thirds have uninitialized memory type and one

third have uninitializcd register type.
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Table 2.3 gives the minimum run-time costs on the VLSI-BAM processor for the three categories of

unbound variables. Costs are given for unification support (creation and binding) and for backtracking sup-

port (trailing and detrailing). Binding an initialized variable is expensive because the variable must be

derefcrcnced before the new value can be stored in the memory cell. Binding an uninitialized memory

variable reduces to a single memory store operation. Binding an uninitialized register variable is free if it

is created in the register that needs it. The cost of detrailing (restoring a variable to an unbound state on

backtracking) is zero for uninitalized variables. For initialized variables it depends strongly on the effec-

tivcncss of the compiler in generating deterministic code. It is 0 cycles if the variable does not have to be

unbound'on backtracking, and 4 cycles otherwise.

3.4. Dataflo%ý.analysis

The Aquarius compiler implements a datallow analyzer that is based on abstract interpretation. It

translates the program to one in which predicate arguments range over a finite set of values. Each of the

values corresponds to an infinite set of values (i.e. a type) in the original program. The analyzer derives a

small set of types-uninitialized, ground (the argument contains no unbound variables), nonvariable (the

argument is not an unbound variable) and recursively dereferenced (the argument is dereferenced, i.e. it is

accessible without pointer chasing, and if it is compound, then all its arguments are recursively derefer-

enced). These types have been chosen carefully to be useful during compilation.

Dataflow analysis by itself is not enough. The rest of the system must be able to usc the information

derived by the analysis. The techniques to exploit determinism and specialize unification in the Aquarius

compiler have been developed in tandem with the analyzer for this purpose. In addition, the fine instruc-

tion granularity of the BAM is designed to support these optimizations.

4. Related work •

First a survey is given of work that is related to the four principles of the Aquarius compiler. Then

an overview is given of Prolog implementations that are interesting in some way. 0l
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4.1. Reduce instruction granularity
I

Tamura et al [39,651 have done fundamental wolk at IBM Japan in reducing the grain size of com-

piled operations for Prolog. Their compilation is done in three steps. The first step is to compile Prolog

into WAM. In the second step the intermediate code is translated into a directed graph. Each WAM

instruction becomcs a subgraph containing simple operations such as case selection on tags, jumps, assign-

ments, and derefcrencing. The graph is optimized through rewrite rules. Case selections based on a tag

b valuc, never-selected cases, redundant tests. case statements with only one branch, and unreachablc

instructions arc eliminated. Known values arc propagated. These rewrites are applied several times and

the resulting graph is then translated back into intermediate code. In the third step the intermediate code is

translated into ; PL.8 program which is sent to a high-quality PL.8 optimizing compiler [31. Performance

results are given for a few small programs and are quite good. There are several problems in their

approach. They still use the WAM as an intermediate language, and compiling is prohibitively slow

because their system is experimental. Without compile-time hints their performance drops significantly.

4.2. Exploit determinism

Significant improvements over the WAM ame possible to avoid choice point creation in deterministc

predicates. The WAM indexes on only the first argument and saves all registers in choice points. Turk

[721 describes several optimizations that reduce the time necessary to restore machine state when back-

tracking. In f74), I describe a compilation scheme that attempts to take advantage of the fact that most Pro-

log predicates are deterministic. Choice point creation and moves to and from choice points are minim-

ized. Clauses are compiled with multiple entry points and predicates are compiled as decision amees. The

techniques used in the Aquarius system are inspired by this work. Carlsson [151 measures the performance

improvement of a scheme for creating choice points in two pans, saving only a small part of the machine

state first, and postponing saving the remainder until later in the clause when it can be determined that the

head unification and any simple tests have succeeded. Implemented in the SICStus Prolog system, this

reduces execution time by 7-15% on four large programs.

Recently there have appeared several commercial Prolog-like languages (Trilogy and Turbo Prolog)



35

that generate efficient code for programs annotated with type and determinism declarations. In this regard

Trilogy [791 is noteworthy because it gives a logical semantics to programs wriuen in a Pascal-like nota-

tion. Typed predicates that arc annotated as being deterministic are compiled into efficient native code.

The achievement of Trilogy is reassuring, since many predicates in standard Prolog are intended to be exe-

cuted in a determninistic way, with some analysis it should be possible to obtain the same efficiency for

standard Prolog.

Several systems have generalized the first argument indexing of the WAM. BIM_Prolog 14] can

index on any argument when given appropriate declarations. SEPIA [29] incorporates heuristics to decide

which pr'cdicate arguments are important for deterministic selection. It uses the first "indexabl'" argu-

ment of a prediEate. If there are several possibilities it first uses the argument where it is more likely that

fewer clauses will be selected.

Several papers describe fast implementations of the cut operation. Bowen et al (91 implement cut by

adding a register that holds the address of the most recent choice point before entering the predicate. This

register is updated by each ca l, and execute instruction. Cut is implemented by moving this regis-

ter to the WAM's choice point register r (b). Mari~n and Demoen [46) implement cut in a similar

fashion. These schemes suffer from having to do an additional register move for each procedure call,

unless a different call instruction is used for predicates with and without CUL The scheme implemented in

the Aquarius compiler does not slow down procedure calls and does not need an additional register.

4.3. Specialize unification

Significant improvements over the WAM are possible for unificatton. Turk [721 describes sevcraJ

optimizations related to compilation of unification, to reduce the overhead of explicitly maintaining a

read/write mode bit and remove some superfluous dereferencing and tag checking. MariEn t44) describes a

method to compile write mode unification that uses a minimal number of memory operations and avoids all

superfluous dereferencing and tag checking. In 175), 1 build on this work by introducing a simplified nota-

tion and extending it for read mode unification, but my scheme suffers from a large code size expansion.

The Aquarius system modifies this technique to limit the code size expansion at a slight execution time
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cost. Meier (481 has developed a technique that generalizes MarhEn's idea for both read and write mode

and achieves a linear code size, also with a slight execution time COSL This technique is implemented in

the SEPIA system (291.

Beer [5) has suggested the use of a simplified representation of Prolog variables for which binding is

much faster. Hc introduces several new tags for this representation, which he calls uninitialized variables,

and keeps track of them at run-time. He shows that both dereferencing and trailing arc reduced

significantly. This idea was a strong infltrence on the Aquarius compiler. At the Prolog level, logical

semantics'arc preserved, but at the code level there is now a coherent integrated use of destructive assign-

ment for values that fit in a register. My scheme is different from Beer's--it uses the same tag for both

uninitialized and standard Prolog variables. The analyzer finds uninkialized variables at compile-time and

the compiler determines when it is safe to use destructive assignment to bind them.

4.4. Dataflow analysis

R. Warren et al 1841 have done the most comprehensive work measuring the practicality of global

dataflow analysis in logic programming. Their paper describes two datallow analyzers: (1) MA 3. the MCC

And-parallel Analyzer and Annotator, and (2) Ms, an experimental analysis scheme developed for SB-

Prolog. MA 3 derives aliasing and ground types and keeps track of the structure of compound terms, while

Ms derives ground and nonvariable types. The paper concludes that both dataflow analyzers are effective

in deriving types and do not increase compilation time by too much. My dataflow analyzer differs from

both MA 3 and Ms in three ways. First, the analyzer works over a different domain. Second, it avoids

problems with aliased variables by deriving only limited type information for them. Third, it is integrated

into a compiler which has been developed to take fulLadvantagc of the types it derives.

For correctness, it is imperative to consider the effects of variable aliasing on dataflow analysis.

Aliasing occurs when two variables are bound to.terms that have variables in common. Finding accurate

aliasing information is an important topic in current research 118,361. However, aliasing complicates the

implementation of dataflow analysis. My analyzer considers only unaliased variables as candidates for

unbound variable types. Measurements of the analyzer show that unaliased variables occur often enough
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to make the analysis worthwhilc. This conscrvauvc trcauncmnt of aliasing simplifies the implemcntation,

since it is not necessary to explicitly represent and propagate aliasing information. Of course, it also

reduces the effectiveness of thc analysis. Thus aliasing needs to be studied further.

Mari~n ct al [45) have performed an interesting experiment in which several small Prolog predic-atcs

(recursive list operations) were hand-compiled with several levels of optimization based on information

derivable from a dataflow analysis. The analysis was done by hand at four levels: The first level derives

unbound ",,ariablc and ground modes. The. second level also derives recursively defined types. The third

level alto derives lengths of dereferencc chains (pointer chains that must be followed at run-time). The

fourth level also derives livcness information for compound data structures and is used to determine when

they arc last uged so that their memory may be recovered (compile-time garbage collection). Execution

time measurements show that each analysis level improves speed over the previous level. This experiment

shows that a simple analysis can achieve good results on small programs.

4.5. Other implementations

This section gives an overview of interesting Prolog implementations that are related to this disserta-

tion in some way. Most existing implementations of Prolog, both on general-purpose and special-purpose

machines, are based on the Warren Abstract Machine (WAM) or are derived from it. The general-pu;-posc

and special-purpose approaches are presented separately. The first subsection describes some important

software implementations and their ideas. The second subsection summarizes some important architec-

tures and their innovations.
0

4.5.1. Implementing Prolog on general-purpose machines

As far as I know, the earliest WAM compiler was my PLM compiler, completed and published in

August 1984 [731.. The compiler was interesting as it was itself written in Prolog. unlike many later Prolog

compilers. The first commercial implementation of the WAM was Quintus Prolog, announced in

November 1984.

t The PLM compiler is still availabtc from us. but is now obsolete and not recommendcd fat currnt Sfsearcie wait. Our
research group cpecis to release soon a complete Nrolog syssan based on the Aquanus compiler.

0
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Among the highest performance commercial implementations available today are IBM Prolog,

Quintus Prolog 1581, BIM_Prolog 141, and ALS Prolog 121. There are three significant implementations of

Prolog available today that werc developed at research institutions: SICStus Prolog [63], SEPIA [29J, and

SB-Prolog (831. All of these systems arc bascd on extensions of the WAM (except possibly IBM Prolog.

of which I have little information) and compile to WAM-like instructions which are either emulated on the

target machine or macro-expanded to native code. Some of these systems (e.g. SB-Prolog and IBM Pro-

log) arc able to compile special cases of deterministic programs into efficient code.

4.5.1.1. Taylor's system

Independently of this research, Andrew Taylor is implementing a high performance Prolog compiler

for the MIPS processor [671. The compiler includes a dataflow analyzer that explicitly represents type,

aliasing, derefercncc chain lengths, and trailing information 166). His preliminary results indicate that it is

of comparable performance to the compiler presented in this dissertation. Running a set of small bench-

mark programs on the MIPS R2030 processor, the system is 24 times faster than compiled SICStus Prolog

version 0.6 and the code size is similar to that of the KCM.

4.5.1.2. IBM Prolog

IBM Prolog accepts mode declarations, implements more general indexing than the WAM, does a

limited global analysis (however, it does not derive any types), and generates high performancc native

code. It is able to compile some kinds of deterministic programs with conditional branches.

4.5.1.3. SICStus Prolog

SICStus Prolog was developed at the Swedish Institute of Computer Science in Stockholm. A back-

end module was written" for it by Mats Carlsson which generates native code avoiding the superfluous

memory references of a naive WAM translation 114,44). It is comparable in performance to Quintus Pro-

log when no built-in predicates arc used.
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4.5.1.4. SB-Prolog

SB-Prolog was developed at SUNY in Stony Brook. It recognizes a specia! case of ec general tech-

niqucs for extracting determinism discussed in this dismertation: it recognizes when anthmetic tests that are

each other's opposites appear, and compiles a conditional branch. It also incorporates a simple partial

evaluator which is used for macro expansion and a simple datallow analysis scheme has recently been

developed for it (84J.

4.5.2. Implementing Prolog on special-purpose machines

In the past, because the WAM was regarded as the best way to implement Prolog, the performance

gap between special-purpose architectures and general-purpose architectures was large. Much of the effort

in high performance Prolog imnplemenation was put into architecture design, and in particular in hardware

support for the WAM instructions. This dissertation shows that a better understanding of Prolog execution

narrows the performance gap. Thc implications of this development for the future of special-purpose

architectures are discussed in the VLSI-BAM paper [34] and summarized in this section. 0

4.5.2.1. PLM

The first special-purpose Prolog architecture that was built is the PLM (Programmed Logic

Machine), due to Dobry et al [26-281. Its design was inspircd by a proposal of Tick & Warren 168}. The

PLM implements the WAM in microcode with a 100 ns clock cycle. It was built on wire-wrap boards and

ran a few small programs in 1985. Spin-offs of this project included the VLSI-PLM single-chip implemen- 0

tation 1601 and the Xenologic X-1, a commercial coprocessor for Sun workstations.

Several papers have compared the number of cycles needed by the PLM to that of general-purpose

architectures. These ratios are valid mneasurements of the effect of the PLM's architectural support for

WAM implementation. Mulder & Tick 151l and Patt & Chen 154) have compared the performance of the

PLM f28), a microcoded implementation of the WAM, to a macro-expanded WAM on the MC68020 pro-

cessor. They find that the MC68020 needs 3 to 4 times the number of cycles as thc PLM to execute the

WAM. Part and Chen find that static code size on the MC68020 is about 20 times the PLM.
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4.5.2.2. SPUR

Borriello et al [8] have implemented a macro cxpanded WAM on the SPUR processor (Symbolic

Processing Using RISCs). They find that the SPUR takes about 2.0 times the number of cycles as the PLM

and that static code sizc is about 14 times the PLM. These numbers include local optimizations imple-

mcnied by Chen and Nguyen [20] thai improve the original numbers by about 10%.

4.5.2.3. PSI-ll and PI/Vp

In the context of the FGCS (Fifth Generation Computer System) project, researchers of ICOT (the

Japanese" Institute for New Generation Computer Technology) have designed and built several sequential

and parallel ar~cfitectures for logic programming [64. 71J. One of the more interesting sequential machines

is the PSI-Il (Personal Sequential Inference machine II) 1521 a microcoded implementation of the WAM

which executes at speeds similar to the PLM. The processing elements of the PIM/p (Parallel Inference

Machine) architecture are currently the highest performance sequential logic machines at ICOT. They exe-

cute at two to three times the speed of the PLM.

4.5.2.4. KCNI

Benkcr et al [6] describe a special-purpose Prolog machine, the KCM (Knowledge Crunching

Machine), which is based on an extended WAM. Its instruction set consists of two parts: a general-purpose

instruction set, and a microcoded Prolog-specific instruction set. It has a cycle time of 80 ns and executes

in about 1/3 the number of cycles of the PLM. Its code size is about three times greater. The KCM project

was done together with the development of a Prolog system and environment called SEPIA (see previous

section). About 60 KCM machines were constructed and delivered to the ECRC member companies.

4.51.5. VLSI.BAM

Holmer et al 1341 describe a single-chip microprocessor with extensions for Prolog, the VLSI-BAM

(VLSI Berkeley Abstract Machine). It is a pipelined load-storc processor with a cycle time of 33 ns. It

takes about 1/3 the number of cycles to run programs as the PLM and its code size is about three times
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greater, results similar to the KCM. However. they are achieved largely through the effort of the compiler.

The goal of the BAM project is to find the minimal extensions to a general-purpose architecture to support
: 0

a high performance Prolog implementation. The rationale for the VLSI-BAM architecture is that existing

general-purpose architectures arc designed to execute imperative languages like C and do not have ade-

quatc support for Prolog. The compiler described in this dissertation was developed simultaneously with

the architecture, and interaction between the two designs has significantly improved both.

The BAM project has determined that a small amount of architectural support (5% increase in chip

area) gives a large performance boost (50% performance increase) for programs that use Prolog-specific

features: The support does not interfere with the general-purpose architecture, so it is possible for future

gencral-purposq machines to incorporate this support for high performance symbolic computing. The sup-

port is designed specifically to support the logical variable, dynamic typing, unification, and backtracking.

A language that uses any of these features can benefit from it. -0

0

0

m • m i



Chapter 3

The Two Representation Languages

1. Introduction

This chapter defines the two languages used by the compiler to represent programs: kernel Prolog, a

simplified form of Prolog, and the Berkeley Abstract Machine (BAM). a low-level instruction set and exe-

cution model that is close to a standard sequential processor. Kernel Prolog is an internal language that is

not accessible to the user. BAM is the output linguagc of the compiler.

2. Kernel Prolog

The first representation language in the compiler is kernel Prolog, a simplified, canonical form of

Prolog. The syntax of kernel Prolog is given in Figure 3. 1. This should be compared with the definition of

fulf Prolog syntax given in Chapter 2. The control flow of kernel Prolog is simpler, a set of internal primi-

Lives is defined that are only used inside the compiler, and a case statement is defined. Kernel Prolog does

not have nested disjunctions, if-then-else, cut, negation, or arithmetic expressions. Each predicate is

represented as a single term (H: -D) containing a head H with distinct variable arguments and a body D

4 that is a single disjunction (an OR choice). Each alternative of the disjunction is a conjunction, i.e. an

AND sequence of goals. Unifications in th.- head of the original predicate are represented as explicit

unifications in the arms of the disjunction. Disjunctions, negations, and if-then-else forms in the original

predicate are converted into dummy predicates. Cut and arithmetic expressions arc convenied into simpler

internal built-in predicates.

For example, the predicate:

a (b).
a(X) ( 0 is X mood 2 -> e(X) ; f(X) ).

is represented as follows in kernel Prolog:

42



43

predicate(C(H:-D)) :-head(H). disjunction (D).

head(H) :-goal-term(H).

disjunction(fail) -

disjunctionC(C;D)) :-conjunction(C). disjunctionCD).0

conjunction (true).
conjunction( (GC)) goal(G), conjunction(C).

goal(G) :-case goal (G).
goal(G) internal goal(G).
goal(G) :-external goal(G).

caseý-goal('Scase'(Name,Ident,CB)) :-test-set(Name, Ident), caslebody(CB).

case body('S6lse'(WCD:- disjunction(D).
case_body C ($test (T,D) :CB)) :- test CT), disjunction(D), case body (CB).

external goal CG) : - goal-term(G). \+case goal (G), \+iniernal goal (G).

tervm(T) :-var(T).

term(T) :-goal-terrn(T).

goal-termCT) :-nonvar(T), functor CT. _, A), term args(l, A, T).

term-args CI. A, _) :- I>A.
term-args~l. A, T) -- I-<A, arg(I, T, X), term(X) 11 is 141. term argsi(Il. A, V).

%Predicates defined in tables:
internal goal (G) :- (Defined in Table 3.1).
test set(Name, rdent) -- (Defined in Table 4.11).
test(T) :-(Defined inTablc4.11).

IBuilt-in predicates needed in the definition:
functor(T, F, A) :- (TecrmThasfunctorFandafityA).
arg(I, T. X) :- (Argument Iof cmpounidterm Tis X).
var CT) : - (Akgumcnt T is an unbound variable).
nonvar CT) : - (ArguientT is anonvariable).

Figure 3.1 - Syntax of kernel Prolog
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a(X) X-b, true
5$d'(X). true

fail

$d'd(X) ( $cut load' (Z), "$d2"'(X, Z). true
fail

SdZ' (X, Z) ( 'Smod (X,2,0), $cut (Z), e(X), true
f(X), true
fail

I.

All predicates that stan with the character " $' arc created internally. Cut is implemented with the two

built-ins *' $cut load' MX) and '$cut, (X). The arithmetic expression 0 is X mod 2 is

replaced by a call to an explicit arithmetic built-in 'Stmod' (X, 2, 0). The if-then-else is replaced by a0
call to the dummy predicate Sd' MX). All dummy pr dicates are given unique names.

Kernel Prolog has many advantages over standard Prolog. The scope of variables is not limited to a

single clause, but is extended over the whole predicate. Many optimizations are easier to do-for example.

dataflow analysis and determinism extraction. Compilation to BAM code and register allocation are

simplified.

The following two sections describe the internal predicates of kernel Prolog and how standard Prolog

is converted to kernel Prolog.

2.1. Internal predicates of kernel Prolog

The kernel Prolog form of a program contains predicates that are not pan of standard Prolog and that are

invisible to the user. The internal p•rdicates always begin with the character ' $1. They are of three

kinds:

(1) Internal built-in predicates (Table 3.1). These arc classified into three categories depending on

their use: (1) implementation of cut. (2) type checking, and (3) arithmetic. They are expanded into

BAM instructions before being output, so the user never sees them.

(2) A case statement. This control structure is designed to express deterministic selection in Prolog.

Chapter 4 describes how the case statement is created. It is translated directly into conditional

Im•w
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Table 3.1 - Internal built-ins of kernel Prolog

Built-in Description

'$cut_load (X) Load the choicr point register r (b) into X.
'Scut' (X) Make thc choice point pointed to by X the new top of the

choice point stack.

'$name_arity' (X,Na,Ar) Test that X has functor Na and arity Ar. This only does a
check; it never binds X.

' Stest' (x, T) General typc-checking predicate that tests whether the type of
X is in thc set T, wherc T c (unbound variablc, nil, non-nil
atom, negative integer, nonnegative integer, float, cons, struc-
ture).

*Sequal' (X, Y) Test that X and Y arc identical simplc terms.

'$add' (SI,S2,D) Integer addition D -- S1+S2.
'$sub' (Sl,S2,D) Integer subtraction D +- SI-S2.
',$mul' (Si, S2,D) Integer multiplication D -- SI1S2.
Sdiv' (SI,S2,D) Integer division D *-- S I/S2.
$Smod' (1S,S2, D) Integer remainder D +-- SI mod S2.

' Sand'.(S 1, S2, D) Bitwise integer "and" D *-- SI A S2.
' $or' (S1, S2, D) Bitwise integer "'or" D +- SIv S2.
' Sxor' (SI, S2,D) Bitwise integer exclusive-or D +- SI @ S2.
' $Ss1' (S1, S2,D) Logical left shift D +- S !<<S2.
'$sra' (Si,S2,D) Arithmetic right shift D +- S1>>S2.
'Snot' (S,D) Bitwise integer negation D +- not S.

branches in the BAM code and has the following syntax:

$case' (Name, IdentCaseBody)

where:

CaseBody - ( $test'(Test.Code)

'$else' (Code)

CaseBody is a disjunction of "$test, goals, terminated with an $else' goal. Code is

any valid kernel Prolog disjunction. Name and Ident identify the test set, and Test is a Pro-

log predicate (Table 4.11). Test is the test that is valid along the branch. For example, for the

hashing function it will be the goal X-a where a is the atom or structure used in that direction.

(3) "Dummy" predicates. Kcrncl Prolog does not allow control structurcs (i.e. disjunctions, if-then-

else, and negation) in clauses, but only calls. The control structures are transformed into calls to

dummy predicates, which arc predicates that exist only insidc the original predicate. Dummy predi-

cates arc created with unique names that arc ocrived from the predicatc they are contained in.
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2.2. Converting standard Prolog to kernel Prolog

The first stage of compilation is a sequence offivc source transformations that converts raw input

clauses into kernel Prolog. An input predicate in standard Prolog is transformed into a tree that contains a

kernel Prolog form of the original predicate and a set of dummy predicates in kernel form created during

the transformation. Care is taken to put the predicatc in a form that maximizes opportunities for dctermin-

ism cxtracbon. The five transformations arc:

(I) Standard form transformation. Convwcrt the raw Prolog input to a convenient standard notation.

This does several housekeeping tasks: it properly terminates conjunctions (with t rue) and disjunc-

tions (with f a i 1), and it converts negation-as-failure into if-then-else.

(2) Head unraveling. Rewrite the head of each clause as a new head and a list of unification goals such

that all the arguments of the new head arc distinct variables and the head unifications are unification

goals.

(3) Arithmetic transformation. Compile arithmetic expressions to internal arithmetic built-ins.

(4) Cut transformation. Implement cut by converting all uses of cut and if-then-else to internal cut

built-ins.

(5) Flattening. At this point all complex control has been converted to disjunctions. Convert nested

disjunctions to dummy predicates.

2±.1. Standard form transformation

The standard form of a clause is intended to simplify its syntax so that traversing it is as simple as

possible. The standard form satisfies the rules in Table 3.2. These rules are ignored in the piesentation of

most of the examples in this dissertation because they make the examples less readable (although they arc

always satisfied in the compiler).

L.2.2. Head unraveling

Unraveling the head of a clause consists of rewriting it as a new head and putting a series of

unification goals in the clause's body so that all the head's arguments are distinct variables and all thc head
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Table 3.2 - Standard form of a clause

Rule Description
I Conjunctions and disjunctions arc right associative.
2 Conjunctions have no internal t rue and arc terminated by true.
3 Disjunctions have no intcrnal fail and are terminated by fail.
4 Single goals inside disjunctions arc considered as conjunctions (and therefore rule 2 applies).
5 There is no negation (it is convcrtcd to if-then-clse).
6 ArgumenLs of if-then-cisc are considered as conjunctions (and therefore rule 2 applies).
7 (A->B)a.3s a goal in a conjunction is convened to (A->Bfaiil).
8 The first argument of all unify goals is a variable.

unifications are unification goals in the body..

If this is not done correctly then much opportunity for later optimization is lost. From the prcdicate's

type formula, the compiler knows which head arguments are nonvariable and which head arguments are

unbound. Unificaadon goals are created that satisfy two constraints:

(1) Maximize the number of nonvariable arguments that are unified together. Put these unifications first

in the unraveled clause.

(2) Minimize the number of unification goals that contain unbound variables. Put these unifications last

in the unraveled clause.

For example, consider the clause:

.- mode((a(A.B,C) :-nonvar(A),nonvar(B),var(C))).
I

a(A,A,AI :- atomic (A).

The type declaration says that the first two arguments arc nonvariables and the third argument is an

unbound variable. The argument A appears three times in the head. Therefore there are three ways to

unravel this clause: (a(x,Y,Z) :-X-Y,X-Z), (a(XY,,Z) :-Y-X, Y-Z), and (a(X,Y,Z)

z-x, Z-Y). Considering the mode declaration, the head is transfocned into the first of the three unraveed

versions:

a(A,B.C) :-A-B, A-C. atomic(A),

The first unification A-B is of two nonvariablcs. The second unification A-C is of a nonvariable and an

unbound variable. This satisfies both constraints.
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expression((X is Expr). Code) expr(Expr, X, Code. (L).

expr(V. V) -- > (var(V)l, !.

expr(A, A) -- > finteger(A)). ,.
expr(A÷B, C) -- > expr(A, Ta), expr(B, Tb). 'Sadd'(Ta,Tb,QC).
expr(A-B. C) -- > expr(A, Ta), expr(B. Tb), [($sub'(TaTbC)1.
expr(A*B. C) -- > expr(A. Ta), expr(B, Tb), ['Smu$ '(TaTbC)).
expr(A/B, C) -- > expr(A. Ta), expr(B, Tb), ['$div"(Ta.Tb.C)j.

SFigure 3.2 - Compiling an aithmetic expression

2.23. Arithmetic transformation

The is Li predicate is translated into internal three-argument arithmetic built-ins (Table 3.1). Fig-

ure 3.2 gives a simplified but fully functional version of the algorithm used to compile expressions. It han-

dies arbiutary expressions containing the four basic arithmetic operations. For example. the call:

expression(X is 23*(Y+Z), Code)

gives the code:

Code - ['$add'(Y,Z.T), '$mul'(23.T,X)j

The full algorithm handles all the arithmetic primitives of Table 3.1 and does partial constant folding.

2.2.4. Cut transformation

The cut operation modifies control flow by removing all choice points created since entering the

predicate containing the cut, including the choice point of the predicate itself. Cut is implemented by

means of a source transformation. It requires no support from the architwure except the ability to access

and modify the register r (b). which points to the most recent choice poinL

The cut transformation is given in Figure 3.3. A call to the built-in '$cut load' (X) is put at

the entry of a predicate containing a cut. This built-in moves the r (b) register to X, which marks the top

of the choice point stack on entry to the predicate. The argument X is passed to the predicate's body. Each

occurrence of cut in dhe body is replaced by a call to the built-in ' $cut' (X). This built-in loads r (b)
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procedure cut_transformation;
var P' list of clause;

begin
for each predicate P in the program do begin

if P contains a cut then begin

/ At this point P = [ C ..... C. (list of clauses) and C, =(1f, :-B,) *1
Add the argumcnt X to all H, in P;
Rcplace each occurrence of" in P by '"cut ' (X).
p':= p;

Add thc predicatc P' to the program,
H := (new head with same functor and arity as all Hi);
H':= (if with the additional argument X);
P :=[(H :-'$cut-load' (X),H')]

end
end

end;
* Figure 3.3 - The cut transformation

from X, which restores the original top of the choice point stack. For example, consider the predicate:

p q, !, r.
p :- s.

This is transformed into:

p Scut-load'.,(X) p' (X).

p' (X) q, '$cut' (X), r.
p, (X) s.

Compilation then continues in the usual manner. This method is simple and efficient. Variations of it have

been implemented in other Prolog systems 14,13,45). This method differs from these variations in that the

compiler does not always store the value of r (b) on the environment stack, but.puts it in a predicate

argument X. It is stored in an environment only if the clause is compiled with an envirornent.

2.25. Flattening

At this point, all the complex control in a predicate (disjunctions, if-then-else, and negation-as-

failure) has been translated to disjunctions. Flattcning replaces the disjunctions by calls to dummy predi-

cates. For example, the deinition: 0
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a(X,Y) : bl(X.A) : b2(X.B),t(B) ), d(Y,A).

is transformed into:

a(XY) 'Sf1atten a/2 I'(XA), d(Y.A).

• Sflattena/2_I' (X.A) bl(X,A).
$flatten_a/2_l (X.A) b2(X.B), t(B).

Compilation then continues in the usual manner and the dummy predicate Sf lattena/2_l' (X, A)

is compiled as in-linc code. The dummy predicate is created with a unique name derived from the name of

the original predicate. The argumcnt list of the dummy predicate is the intersection of the set of variables

used inside the disjunction and the set of variables used outside it. In this example the argument list is dhe

intersection of. (X, Y,,A) and IX, A, B). which is IX, A).



3. The Berkeley Abstract Machine (BAM)

The foundation of the efficiency of the compilqr is its execution model, the BAM. The BAM has

been designed to support all compiler optimizations -and to make the system easily retargetable to the

VLSI-BAM and general-purpose machines. The design evolved by interaction with the development of the

compiler, the architecture design of the VLSI-BAM processor, and the requirement of portability to other

architectures. The BAM was developed in tandem with the VLSI-BAM processor, but the two instruction

sets are quite different. The VLSI-BAM is'constraincd by its hardware implementation; the RAM evolved

by looking at the requirements of Prolog and is designed to allow a great deal of low-level optimization.

The Aquarius compiler uses a simple output language and not an existing high-level language such

as C or an existing low-level language such as an assembly for a particular machine. There are several rea-

sons for this: 0

(1) Choosing an existing language requires choosing representations for tags and data structures, and

writing frequently used Prolog-specific operations as subroutines. This is undesirable for two rea-

sons: First, the VLSI-BAM is one of the target machines and its architecture has a more abstract

representation for tags and Prolog-specific operations than general-purpose processors. Second,

these representations are not necessarily the best for all machines.

(2) Choosing an existing high-level language is unsatisfactory for the VLSI-BAM processor since the

only compiler for it is currently the Aquarius compiler.

(3) An unpredictable factor is introduced when doing performance evaluations. The performance on dif- !

ferent machines varies depending on the sophistication of the implementation of the existing

language. It is not always easy to determine the performance of the existing language from inspec-

tion of its source code.

The syntax and semantics of the BAM is presented at several levels of detail, from a discussion of its

features in English down to a detailed formal spccification of its semantics in Prolog. The body of the

dissertation defines the data types of the BAM, gives an overview of its instruction set, and justifies the

choice of instructions. Appendices B and C give formal specifications of BAM syntax and semantics, and
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Appendix D gives a concise but complete English description of BAM semantics.

This section has four parts. The first pan presents the data types of the BAM. The second part sum-

marizcs the BAM instruction set. The instruction set.consists of four pans: simple instructions (Lagged

load-storc architccturc), compliex instructions (Prolog-specific operations), pragmas (embedded informa-

tion to allow better translation to a real machine), and user instructions (intended to allow the complete

run-timc system to be written in BAM). The third part justifics the complex instructions. The fourth part

justifies the instructions needed to implement unification by showing how they are constructed from a

unification algorithm given a few simple assumptions about the architecture.

3.1. Data types in the BAM

The data types of the BAM are classified into two groups: the types used during execution and the

types used to represent instructions (Table 3.3). The BAM has four data types that are used during execu-

tion: words, natural numbers, symbolic labels, and mappings. These are denoted as the set of all words W.

thc set of natural numbers N, the set of mappings M, and the set of symbolic labels L. A word is a pair

T-N where T is the tag and N is the value. A natural number is a nonnegative integer. A mapping (not

shown in Table 3.3) is a correspondence between a set of objects and their values (which are often words).

A symbolic label marks a position in the program.

Several definitions in Table 3.3 require some clarification. Sets are denoted by bold capital lettrs,

variables by capital letters, and constants by lower case letters. Addressing modes are defined recursively.

with a base case consisting of registers and atomic terms, and a recursive case consisting of three parts: tag

insertion (T"x), indirection ([X]).and offset ((X+N)). The BAM uses only a subsetof the infinite set of

addressing modes defined here. Of all the internal registers of the BAMK only the argument registers

r (I), the heap pointer r (h), and the backtrack pointer r (b) are visible in the instruction set. Appen-

dix B gives a precise definition of instruction syntax including the addressing modes that are actually used.

The meaning of the instructions is defined informally in section 3.2 and formally in Appendix C.

A ;erm can be of arbitrary size. A term that fits completely in a register is called simple. All other

terms are called compouid. A register cannot store all possible terms, but it can contain encoded informa-
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Tablc 3.3 - Types in the BAM

Types used during execution

Name * Definition

Word W = {T'N I TeTp, Anatural(N) I u A
Symbolic label L = ( fail ) u ( FIN, I (FIN, I) I atom(F) A natural(N) A natural(l)
Natural numbcr N
Atomic term A = ( tatm-V I atom(V) v (V=(F/N) A atom(F) A natural(N))) u

(V I integer(V) ) u [tflt'V I float(V)

Types used to represent instructions

Name Definition
Tag T = (tvar. tlst. tstr, tatm, tint. tpos, tneg, tflt) =Tp uT.
Pointer tag Tp = {tvar. tlntt, tstr)

Atomic tag T, = (tatm.tint.tpos.tnegtflt)
Condition C = (eqne.ltsles,gts,gesa
Equality condition C = (eq, ne)
Arithmetic operation E =(add, sub, mul. div. mod, and, or, xor, sll, sra)
State registe; R, = {r (.h),. r (b) , r (e) . r (hb),. r (pc),. r (cp),. r ftmp__cp),. r (t r)]

Argument register Ro = [ r (I) I natural(I) )
Permanent register R;, = p (I) I natural(I) )
Addressing mode X =A R.uR.u (r(h),r(b)) U (T-X ITETp AX X) u .

( [Xi I XEX} ) U(X+N I XEX AnatUral(N)r)

instruction I (The set of BAM instructions is defined in section 3.2 and Appendix B)

lion about a term. The tag of a term stored in a register is the information about the term that is indepen-

dent of the term's location in memory and can be obtained without doing a memory reference. The value

of a term in a register tells where to find the rest of the term. A register is partitioned into two fields which

contain the tag and the value of a term.

The encoding of information in tags is designed to simplify common operations. It is similar to the

encoding used in the WAM (Figure 2.5). Atoms are represented as immediate values with a tatrm tag.

Integers arc represented as themselves, and are considered to have tint, tneg, or tpos tags for the

conditional branches that look at tags. Unbound variables are represented as pointers with a tvar tag

that point to themselves or another unbound variable. Structures and lists are represented as pointers with

tags tatr or tist. They point to a contiguous block of their arguments on the heap. The main functor

and arity of a structure are stored there encoded in a single word. The main functor and arity of a list (cons

cell) are not stored since they arc known implicitly.

The BAM defines five mappings to represent and access all data strucwres used during execution

(Table 3.4). These mappings arc the Register ScL, the Heap, the Trail, the Code Spacc, and the Label Map. 0

An infinite number of argument and permanent registers is assumed to exist Of all registers, only the heap
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Table 3.4 - Run-time data structures of the BAM

Name Definition

Register Set (R, u R. u Rd) - W
Heap W-- W
Trail N -4 W
Code Space N-- I

* LzbelMap L -- N

pointer r (h) and the backtrack pointer r (b) are made explicit in the instruction set. The others are

implicit in its execution. Environments and choice points arc represented as register sets that are stored in

registers r (e) and r (b), respectively.'Prolog terms are stored in registers, on the heap, and on the

trail. Compound terms are stored on the heap as sequences of words in the same manner as is done in the

WAM (Figure 2.5). For all types except atoms, the value field of a word is a natural number that indexes

into the heap, and therefore points to terms on the heap. For atoms, the value field is the symbolic atom

itself. The correspondence between tags and Prolog data types is given in Table 3.5.

Table 3.5 - Correspondence of tags with Prolog data types

Tag Data type
tvar An unbound variable or a general pointer.
tstr Pointer to a structure--a compound term with a functor and fixed number of arguments.
tist Pointer to a cons cell-a compound term consisting of two pans, a head and a tail.
tatm An atom.
tpos A nonncgative integer.
tneg A negative integer.
tint An integer.
tflt A floating point number.

The following descriptions clarify the correspondence between BAM types and Prolog types:

(1) The value corresponding to a pointer tag is an index into an array of words. This is normally imple-

mented as an address.

(2) The value corresponding to a tatm tag is a symbol that uniquely identifies an atom or the main

functor of a structure. It is a Prolog atom or a Prolog structure of the form F/N where F is a Prolog

atom repr-eenting the functor and N is a nonnegative integer representing the arity. For correctns,

the assembler and run-time system must guarantee an exact correspondence between this symbol and-

the contents of the run-timc symbol table, so that the built-ins name /2. frunctorl3. arg/3,

and -. ./2 all work corrcctly.



S
55

(3) The value corresponding to a tpos or tneg tag is a nonnegative integer that represents the abso-

lute value of the integer represented by the word.

(4) The value corresponding to a tint tag is an integer that represents the value of the integer

represented by the word.

(5) The value corresponding to a tf it tag is a floating point number that represents the value of the

number represented by the word.

Nothing is assumed about how these types are represented on a real machine. When the BAM is targeted

to a real machine then the representation of types on the machine must be defined. The representation of

types changes with different target machines, different versions of the system, and even different programs.

The Implementation Manual [31] discusses how to port the BAM. Symbolic labels are pointers to code.

Since mappings can be of any size, they are pointers to data stacks in memory. The representation of a.

word depends on the encoding used to represent tags on the machine, the word size of the machine, and on

the encoding of Prolog atoms into unique bit patterns. For the VLSI-BAM processor, all four types are

mapped into 32 bits and words consist of 4 bit tags and 28 bit values.

Table 3.6 - Notation for arguments of BAM instructions

Argument Type
X, Y, Z Addressing modes, elements of X. Most insuucuons use a subset of all possible

addressing modes.
L, L1, L2, L3 Branchdestinations, elemenwsofL.
N A natural number, element of N.
A A Prolog atom, element of A.
Tag A tag value, element of T.
Eq An equality condition, element of C,. 9
Cond A condition, element of C.
Op An arithmetic operation, element of E.
RegList A list of registers used in choice point management.

RegList E ( ({to, a,...,or.] InfeN,.crE (i,no) }.

3.2. An overview of the BAM S

The BAM uses types and data structures similar to the WAM. It has registers and stacks similar to

the WAM and uses a similar execution strategy. However, the instruction set is completely different. The

BAM has a load-store instruction set that is extended with tagged addressing modes and a few primitivc

Prolog-specific insouctions. A summary of the addressing modes and instructions is given in Tables 3.6
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through 3.10. All instructions use only a subset of the addressing modes given in Table 3.3. The instruc-

tion set includes:

0 Simple instructions (Table 3.7). These are simple register-transfer level operations for a tagged

architecture. They include move, push, conditional branch, and arithmetic. These instructions are

used to implement many cases of unification and many built-in predicates.

* Complex instructions (Table 3.8). There arc five frequently-used operations defined as single

instructions: dercferencing (following a pointer chain to its end), "riling (saving a variable's address

so it can be restored on backtracking), general unification (when the compiler cannot simplify the

general case), choice point handling (saving and restoring state for backtracking), and environment

handling (creating and removing local stack frames).

* Embedded information (Table 3.9). This allows a better translation to the assembly language of the

target machine. This information is expressed in two ways: (1) with pragmas, which resemble

instructions but are not executable, and (2) by extending instructions with additional arguments. An

example of (i) is the tag pragma, which gives the tag of a load or a store. e.g.:

pragma(tag(r.(1),tvar)). % Register r(1) contains a tvar tag.
move([r(1)Mr(O)). % Load register r(O) from register r(1).

By giving the tag at compile-time, this avoids tag masking on a general-purpose processor and

allows the load to be done in a single cycle. An example of (2) is:

unify(r(Or(M},?,nonvar.fai1). % Register r(1) is nonvariable.

This gives no information about :(0) but says that r (1) is nonyariable. This allows the

unification to be done more efficiently because no check has to be done whether r (1) is unbound.

* User instructions (Table 3.10). The BAM language is extended with several instructions, registers,

and tags that arc never output by the compiler, but arc intended for use only by a BAM assembly

programmer. This allows the non-Prolog component of the run-time system to be written completely

in BAM assembly. These instructions are described in Appendix D.
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Table 3.7 - Simple instructions

Instruction Meaning

equa I (X, Y, L) Branch to L if X and Y are not equal.
move x, Y) Move X to Y.
push (X, Y, N) Push X on stack with stack pointer Y and post-increment N.
Op (X, Y, Z) Perform the arithmetic operation Op on X and Y and store the

result in Z. Trap if an operand or the result is not integer.

adda (X, Y, Z) Full-word non-trapping add of a word X and an offset Y, giving
a word Z.

pad (N) Add N to the heap pointer.

switch(Tag, X, L1, L2, L3) Three-way branch; branch to LI. 12. L3 depending on whether
jhe tag of X is tva r, Tag. or any other value.

test (Eq, Tag, X, L) Branch to L ifthe tag of X is equal or not equal to*Tag.
hash (T, X, N, L) Look up X in a hash table of length N located at L. If X is in

the table then branch to the label in the table, else fall through.
TE (atomic. structure).

pair (E, L) A hash table entry. E is either an atom or a pair functor/arity.
jump (Cond, X, Y, L) Jump to L if the arithmetic comparison of X and Y is true. Trap

if an operand is not integer.

jump (L) Jump unconditionally to L.
label (L) L is a branch destination.
procedure (Name/Arit y) Mark the beginning of a procedure.
call (Name/Arity) Call the procedure Name/Arity.
jump (Name/Arity) Jump to the procedure Name/Arity.

return Return from a procedure call.
simplecall (Name/Arity) Non-nestable call used to interface with routines written in

BAM assembly.
simplereturn Non-nestable return used for routines wriuen in BAM assembly.

3.3. Justification of the complex instructions

The execution of Prolog requires five complex operations: dereferencing, trailing, unification, back-

tracking, and environment management. These operations are represented as single instructions in the

BAM. In the WAM, dereferencing, trailing, and unification are done implicitly by many instructions even

when they are not needed. Making them explicit allows the compiler to minimize their use as much as pos- 5

sible by doing them only when they are really needed.

The complex instructions could be expanded into sequences of simple instructions; however, this

expansion is not done at the BAM level but is delayed to the machine level. There are two reasons for this: I

(1) Some machines may implement part or all of a complex instruction directly. Expanding it into sim-

ple instructions is therefore premature since it would make this harder to detect. For example, the

VLSI-BAM processor has support for some complex instructions (e.g. dereferencing. trailing, and

unification).

- ; * " ' ' , , , i a I I | I I I I III I I I a0
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6 Table 3.8 - Complex instructions
Instruction Meaning

de re f (X, Y) Dereferenac X and store result in Y.
trail (X) Push X on the trail stack if the trail condition is satisfied.

unify (X, Y, Tx, Ty, L) General unification of X and Y, branch to L if fail. Trailing is
*- done by this instruction. The extra parameters Tx, Ty c {?,

var, nonvar) give information to improve the translation.
They arm not needed for correctness.

unify_atomic (X,A, L) Unify X with the atom A and branch to L if fail. No trailing is
done by this instruction.

allocate (N) Create an environment of size N on the local stack.
deal locate (N) -Removc the top-most environment from the local stack.
choice (1 /N, RegList, LI Create a choice point containing the registers listed in

RegList and set the reUy address to L
choice (I/N,RegList, L) Restore the argument registers listed in RegList from the
(I <I<N) current choice point, and modify the retry address to L.
choice (WI/N, RegList, fail) Restore the argument registers listed in RegList from the

* current choice point, and pop the current choice point from the
choice point stack.

fail Restore the machine state (except the argument registers) from
the most recent choice point, restore to unbound all variables
on the trail that were bound and tailed since the creation of
this choice point, and transfer control to the retry address.

move (r (b) X) Move the backtrack pointer to X. This must be done at the en-
try of any predicate containing a cut.

cut(X) Make the choice point pointed to by X the new top of the
choice point stack.

Table 3.9 - Embedded information (pragmas)

Instruction Meaning

pragma (align (XN)) The contents of location X are a multiple of N.
pragma (tag (X, Tag)) The contents of location X have tag Tag.
pragma(push(term (N) A term of size N is about to be crated on the heap.
pragma (push (cons)) A cons cell is about to be created on the heap.
pragma (push (structure (N))) A structure of arity N is about to be created on the heap.
pragma (push (variable)) An unbound variable is about to be created on the heap.
pragma (hashlength (N)) A hash table of length N is about to be created.

(2) For best performance, optimizations should be done at all levels. The BAM level makes certain

optimizations easy, e.g. the determinism optimization in Chapter 6. Keeping the complex operations

as single instructions allows them to be optimized directly. For example, if a variable is dercfer-

enced twice then the second dereference can be removed. This is much harder to detect if the

dcreference instruction is expanded into a loop.

It is best to avoid assumptions about the characteristics of the target machine. In the cases where such

assumptions would be useful, the BAM uses pragmas to give the information without compromising the
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Table 3. 10 - User instructions

Insuuction Mcaning

ord (X, Y) Extract thS value of X and move it to Y.
val (T, X, Y) Create the word Y from the tag Tand the value X.
jump reg (R) Jump to address stored in register R.
jump nt (Cond, X, Y, L) Jump to L if the full word comparison of X and Y is true.

Nevcr trap.
Opnt MX, Y, Z) Perform the full word arithmetic operation Op (except multi-

ply and divide) on X and Y and store the result in Z. Never
'rap.

trail bda CX) Push address X and the value stored there on the trail stack if
the trail condition is satisfied. This is a special trail instruction
for backtrackablc destructive assignment.

machine independence. The translator is free to use or ignore this information.

3.4. Justification of the instructions needed for unification

This section constructs the BAM instructions that contain the required instructions and addressing

modes to support unification. It trns out that both simple and complex instructions are necessary to sup-

port unification. The instructions are constructed starting from an algorithm for unification and a very gen-

eral intermediate language. The algorithm is decomposed into specialized instructions depending on the

form of the data known at compile-time.

The two starting points arm (1) an algorithm for unification (a specification of a unification algorithm

is given in Appendix C), and (2) a very general instruction set. The method proceeds in a top-down

manner by decomposing the unification algorithm into specialized instructions depending on information

about the form of the data known at compile-time (Figure 3.4).

This method is inspired by Kursawe (411 and Holmer 132]. Kursawe applies partial evaluation and

specialization in a top-down manner starting from a Prolog program and obtains an instruction set resem-

bling the WAM. Holmer describes several techniques for the automatic design of instruction sets, of which

decomposition is one. To go beyond the WAM it is necessary to make assumptions about the architecture,

a step that Kursawc does not take. The design of the BAM starts with a general instrucuon set that does

make these assumptions.

The choice of what general instruction set to start with is important. It is not useful to start with an

instruction set that hast too little expressive power, for example one with a limited set of addressing modes.
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Figure 3A - Decomposition of unification

because the required addressing modes are not yet known. Prematurely decomposing complex in.Structions

into simple ones side-steps the results.

The following assumptions are made:

(I) The architecture is sequential and of Von Neumann design with multiple registers.

(2) The basic data element is a word, which is large enough to contain an address. A register holds one

word.

(3) The instructions have three parts:

An acton. Some sample actions are data movement (move. push), conditional branching

(equal). and general unification (unify). Other important actions are multi-way branching

(switch) and several Prolog-specific operations (deref, trail).

* A set of arguments. Unification acts on two operands, so typically two arguments are

sufficient.

A set of destination addresses. Depending on the outcome of the action, control continues at

one of the destinations. The size of the set and the meaning of its members depends on the

action. The address of the next instruction in the instruction stream is an implicit member of
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the set.

(4) Arguments arc referenced with multiple addressing modes. An infinite set of addressing modes are

defined in Table 3.3. The instructions derived in this section will need only finite subset For clarity.

Table 3.11 gives some abbreviations useful for this subset.

Table 3.11 - Useful abbreviations

Notation Meaning
Disp a positive heap displacement (bounded by the size of a term).
Offset a nonnegative offset into a structure (bounded by the arity).
IMM an immediate value; an atom or a numeric constant.
Var a variable local toa clause, i.e. r (I) orp(J).
Arg denotes Var or fVar+Offset].

Construction of the instruction set proceeds in the following steps. The data representation has already

been fixed (section 3.1). The existence of two forms of unification (ead mode and write mode) and the

need for dcreferencing and a three-way branch is shown. The instructions required for read mode and

write mode arc constructed. Finally, the effects of variable representation (in registers or on the environ-

ment) on the instruction set arc discussed.

3.4.1. The existence of read mode and write mode

The compilation of the unification T, = T 2 , where T, and T 2 are two arbitrary terms, is reduced to

the compilation of V = T where at compile-time V is a variable and T is any term. At run-time there are

two values of V that result in different actions of the unification aigorithm:

(I) V is an unbound variable, in which case T is constructed on the fly and bound to V (this is called

write mode). To satisfy the standard definition of unification, when T is bound to V a check needs to

be done (the occur check) that T does not contain V. Following Prolog implementation convention.

this check is ignored for efficiency reasons.

(2) V is a nonvariable term, in which case it is checked that the form of V matches T. and the algorithm

is invoked recursively for the term's arguments (this is called read mode).

IIIIlUI~l ml~liiI II I0
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3.4.2. The need for dereferencing

Unifying two unbound variables makes one point to the other. Doing this several times leads to

pointer chains, with the common value of all the variables in a single location at the end of the chain. To

get a variable's value. the pointer chain is followed to its end, an operation known as dereferencing. It can

bc provided as an addressing mode or as a separate instruction. Making it an instruction avoids repeated

dercfercncing. Therefore the following instruction is added:

deref*(arl,Vat2)

First Varl is moved to Var2. Then the tag of Var2 is checked. If it is an unbound variable (tvar)

it reads memory and a loop is entered replacing Var2 by the referenced value while its tag is tvar and

its pointer part is different from Var2. A two-argument dereference is chosen over a single-argument

dereference because it allows a more compact representation of write-once variables (Chapter 5).

It is assumed in what follows that V and T are dereferenced when necessary, in particular that both

the trail and unify instructions are always given dereferenced arguments.

3A.3. The need for a three-way branch

The code for a unification V = T consists of three pans: (I) a check whether V is an unbound vari-

able or a nonvariable for choosing between write mode and read mode unification, (2) the instructions for

read mode unification, and (3) the instructions for write mode unification.

The tag field is available directly for the check of (1). The check has three possible results: the tag of

V matches a known tag (read mode), the tag is an unbound variable tag (write mode), or the tag is neither

(failure). This implies the following three-way branch:

switch(Tag, Var, VarLbl, TagLbl. FailLbl)

If the tag of Var is tvar (an unbound variabie) then jump to VarLbl. If the tag of Var matches

Tag then jump to TagLbl. Otherwise jump to FailLbl. The failure address is explicit instead of

implicit to allow the implementation of fast incremental shallow backtracking.
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3.4.4. Constructing the read mode instructions

The general case of read mode unification is V T, where at compile-time V is a variable or an

argument of a compound term. and T is a term. The first argument of each instruction is the value of V.

Two locations arc possible for its value:

Var V is a variable
lVar+Offset) V is an argument of a compound term

The abbreviation Arg is used to denotc one of these two addressing modes (Table 3.11). The second

argument and the action are determined by the compile-time knowledge of T. The possibilities are:

(1) T is partially or wholly known at compile-time. The possible information known about T is:

0 T is an unbound variable that has not yet been initialized, e.g. because it is the first occurrence

in the clause. V is moved directly to T. 0

* T is an unbound variable. V is stored to T's location in memory.

* T is atomic. Unification reduces to a check that T and V have the same atomic value. If the

values do not match the unification fails.

0 T is compound. Unification reduces to a check that V has the correct functor and arity, fol-

lowed by a unification of its arguments with T's arguments. If V's arguments are loaded into

registers then the unification can be compiled recursively. It follows that arbitrarily deep nest-

ing of addressing modes is not necessary if one instruction is added:

move ([Var+Offset], Var)

(2) Nothing is known about T at compile-time. The unification of V and T requires a general

unification.

The following table of primitive instructions summarizes the action and both arguments:

m m mm l
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0 Action Argumcnt 1' Argument T Explanation
move Arg Var T is an unbound variable that has not yet

been initialized.
move Arg (Var] T is an unbound variable that has been

initialized.
equal. Arg Var T is atomic or compound and its main

* /unctor is noc known at compile-Lime.
equa I Arg Tag -mm T is atomic or compound and its main

functor is known at compile-time.
unify Arg Var Nothing is known about T at compile-

time.

* The instructions equa l and unify both'can fail, so they have a failure address as third argument. The

equal instruction compares its arguments and jumps to Fa ilLbl if they are not equal.

General unification (unify) is the most complex instruction. If the unification fails it jumps to

* Fa i iLbl. This instruction can be implemented using only the other instructions. However, it seems that

onc additional instruction is useful: a multi-way branch with a different destination for each possible tag

.value. If there are many possible tags this implies the existence of a jump table in memory, so that the

instruction must do a memory reference before it can branch. Instead of using this instruction, another

approach is to use a multilevel tree based on the three-way branch. Both approaches are viable since gen-

eral unification is used rarely in real programs. According to measurements done by Holmer for several

large programs [33), general unification takes about 4% of the total execution time of the VLSI-PLM [611.

More than 95% of these calls have arguments that are not compound terms of the same type and therefore

do not need the recursive algorithm.

3.4.5. Constructing the wTite mode instructions

The general case of write mode unification is V = T, where V is known to be an unbound variable at

run-time and T is a term. Assume that the er T is created on a stack (called the heap) with a minimal

number of move instructions. This assumption forces us to derive the form that a compound term has on

the heap. The following are the possible values of words of a compound term:

Var a variable (assumed initialized)
Tag-Imm a simple subterm of T
Tag"(r(h)-Disp) a pointer to a compound subterm of T

These are the source addressing modes for the move instructions. A variable Va r does not have to be

V
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dereferenced when it is stored on the heap because its value is not read. The destination of the move

instruction is a location on the heap. This location can be addressed either by a displacement addressing

mode offset from the heap pointer r (h) ,i.e. [r (h) -Disp] ,or by an auto-increment addressing mode,

i.e. a push instruction. The BAM uses the auto-increment addressing modc, for these reasons:

(1) Preliminary studies using exhaustive search (321 show that with the VLSI-BAM microarchitecture

the optimal way to create structures in write mode is by means of the idiom "load register, load

register, double-word push", i.e. two registers arc loaded and then pushed in a single instruction.

(2) Instruction encoding is compacter, i.e. a push does not need a displacement field.

(3) In the VLSI-BAM architecture the push instruction is given a displacement field anyway. This

allows.efficient implementation of uninitialized variables. For example, a cons cell whose cdr is

uninitialized can be created with a single push that has a displacement of 2. 0

(4) In the VLSI-BAM architecture the use of a push instruction allows a cache optimization: when push-

ing a dirty line it is not necessary to flush the line first 117). This optimization was first done in the

PSI-Il architecture [52]. •

To summarize, to create a term on the heap it is sufficient to choose from the following set of three instruc-

tions (where r (h) is the stack pointer and 1 is the increment):

push(Var, r(h), 1)
push(Tag-Imn, r(h), 1)
push(Tag'(r(h)-Disp). r(h), 1)

It is also necessary to bind the term to V. This requires us to consider the form an unbound variable can

take. There are two possibilities:

(1) V has not yet been initialized, e.g. because it is the first occurrence in the clause. The term is moved

directly to V.

(2) V has been initialized; it points to a location in memory. The term is stored in this location.

These two possibilities result in the following two instructions:
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move(A, Var) store directly to a variable
(variable is not initialized)

move(A. (Varn) store to variablp's location
(variable is initialized)

The addressing modc of the argument A depends on whether the term is compound or simple, and if it is

simple, whether it is an atom or a variable. This results in three possible values for A:

Var a simple term (variable)
Tag-Inn, a simple term (nonvariable)
Tag-r(h) a compound term (on the heap)

In addition to the above instructions, it is also necessary to initialize the first occurrence of a variable. One

way to do this is:

move('tvar-(r(h)-Disp), Var)
push(Var. r(h), 1)

With these instructions it is possible to create a term of size n on the heap in n pushes, a great improve-

ment over the WAM, which requires n +f1-1 stores, f -1 dereference operations, and f-1 trail checks.

where f is the number of functors in the term. This idea was first proposed by Andri Maritn [44].

3.4.6. Representation of variables

Assume that the execution model represents variables local to a clause in an environment, or stack

frame. There is a dedicated register r (e), called the environment pointer, that points to the current

environment in the environment stack. Variables local to a clause are stored either in registers or in an

environment, so the notation Var denotes one of the following two addressing modes:

r(I) a variable in a reqister
p(J) a variable on the environment stack

where p (3) is implementcd as an offset into the environment, i.e. as I r (e) +3' I for some if. This

implies that double indirection is possible: the addressing mode (Var+Offset] is Ip (3) +Offset]

when Var is an environment variable. The double indirection is avoided by including one instruction:

move(p(J), r(I))
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Table 3.12 - Data movement instructions for unification
Read mode Write mode

move(Arg, Var) pushiVar, r(h), 1)

move(Arg, (Varl) push(Tag-Imm, r(h), 1)

push(Tag-(r(h)-Displ), r(h), 1)

equal(Arg, Var, F)
equal(Arg, Tag-Imm, F) move(Varl, Var2)

move(Tag- Imm, Var) 9
unify(Arg, Var, F) move(Tag-(r(h)-Disp), Var)

move(Tagqr(h), Var)

move(Varl, (Var2])
"move(Tag-Inmn, (Var])
move(Tag-r(h), (Var])

Table 3.13 - Control flow and other instructions for unification

switch(Tag, Var, VarLbl, TagLbl, F) three-way branch
jurn1 (Lbl) join read and write mode paths
deref (Vari, Var2) dereference a pointer chain

3.4.7. Summary of the unification instructions

This section summarizes the BAM instructions necessary to support unification. Tables 3.12 and

3.13 present the instructions. They use only a small finite subset of the addressing modes of Table 3.3. 0

The following typical instructions illustrate the meaning of the notation:

move (tatm-axe,r(3)) Move the atom axe into register r (3).

move (r(3)+5],r(4)) Move the word located at address r (3) +5 into
r(4).

equal(r(2),tatm-cat,F) If r(2) is equal to the atom cat then fall
through, else jump to label F.

unify(p(2) ,p(3) ,F) Unify the term located in p(2) with the ierm locat-
ed in p (3 ). Jump to label F if the unification
fails.

switch(tatm,r(3),V,T,F) If r(3)'S tag is tvar then jump to label V. If
r (3) 's tag is tatm then jump to label T. Other-
wise, jump to label F.

0D



Chapter 4

Kernel transformations

1. Introduction

Four optimizing transformations are done on the kernel Prolog representation of programs: formula

manipulation, factoring, global dataflow analysis, and determinism extraction. The goal of the transforma-

tions is to reduce a single neu-ic: The total execution time of all unifications in the program. This metric is

approximated by the number of unifications and by the size of the terms being unified. The chapter first

describes the representation of types as logical formulas in the compiler. This is followed by a description

of each of the fqur transformations:

(1) Formula manipulation. The compiler implements a set of primitive transformations to replace Pro-

log code and types (both are represented as logical formulas) with simpler versions that have identi-

cal semantics. The simplicity of a formula is defined as the number of goals in the formula. These

transformations are done whenever there is a possibility that the code is too complex. i.e. upon read-

ing in a program and after other transformations such as the determinism transformation (see below).

(2) Factoring. This transformnation groups sets of clauses in a predicate together if they have bead

unifications in common. This reduces the number of head unifications and shallow backtracking

steps.

(3) Global dataflow analysis. This stage analyzes the program, annotates it with types, and restructures

it The analyzer uses abstract interpretation to determine the types of predicate arguments.

(4) Determinism transformation. This stage rewrites the program to make its determinism explicit, Le.

it replaces shallow backtracking by conditional branching. Many of the other transformations in this

chapter are chosen to make this transformation possible more often. The transformation converts the

predicate into a series of nested case statements. Sometimes this is only partially successful; certain

branches of the case statements may still retain disjunctions (OR choiccs) that could not be converted

into deterministic code.

68
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To improve readability. the examples in this chapter are given in standard Prolog notaaon. It is understood

that they are represented internally in kernel Prolog.

2. Types as logical formulas

Throughout the compiler, type information about variables is represented with logical formulas.

During compilation, any information learned is added to the formula, and deduction based on the formula

simplifies the generated code. It is a simple and powerful approach to avoid doing redundant operations at

run-time. For example, if a variable is dereferenced once, then it should never be dereferenced again.

Types in the compiler are defined as follows:

Definition T: Given a predicate f In with main functorf and arity n. a tMe of f In is a term
(f(A ,1 2 , A2. ,A.) :- Formula) where the A ,A 2 , ,A. are a distinct variables and
Formula is a logical formula (i.e. a Prolog term).

For example, the type (range (A, B, C) : -integer (A), var (B), ,integer (C)) says that the first

and third arguments of range/3 are integers and the second argument is an unbound variable. The com-

piler recognizes all Prolog type-checking predicates in the type formula. Appendix A gives a table of the

types recognized by the compiler. In addition to these types, several other types are recognized that do not

correspond to Prolog predicates. These types introduce distinctions between objects tha" depend on the

implementation and are indistinguishable in the language, for example, the difference between an integer

and a dereferenced integer, and the difference between an unbound variable that is not aliased to any other

and an unbound variable that may be aliased. The following types are recognized that do not exist as Pro-

log predicates: .

Internal Type Description
uninit (X) X is an uninitialized memory argument.
uninit -mem(XM X isan uninitialized memory argument-
uninit-reg (X) X is an uninitialized register argument.
unbound(X) X is of one of the types uninit mem(X),

uninit reg(X).or vat(X).

derefe x) X is dereferenced, i.e. it is accessible widtout follow-
ing any pointers.

rderef (X) X is recursively dereferenced, ie. it is dereferenced,
and if it is compound then all its arguments are recur- 0

___--_ sively dcrfcrernced.

,imm a Ie~lllll l illlll I ill llil 0
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"These types should not be given by the programmer since incorrect code or a significant loss of

efficiency may result if they are used incorrectly. For example, declaring an argument of a predicate to be

of uninitializeTd rcgistcr type, i.e. the argument is an output that is passed in a register, may cause a large

* increase in stack space used by the program if that predicate is the last goal in a clause, because last call

optimization is not possible in that instance. The safe approach is to leave the use of these types up to the

compilcr.

The usc of logical formulas to hold inforrpation during compilation can be conuasted with the use of

a symbol table in a compiler for an imperative language.t Representing types as logical formulas has two

advantages over a symbol table: (1) They are more flexible during compiler developmenL The kind of

information stered in a symbol table must be known when the compiler is designed. Formulas can contain

kinds of information that are not known during the compiler's design. (2) They lend themselves to power-

ful ,symbolic manipulation such as deduction. Improving the deductive abilities leads to better code

without having to change any other part of the compiler. The disadvantage of this representation is that its

manipulation is slow. Future versions of the compiler could use a representation that is faster in the com-

mon cases.

Type formulas arc used in the following ways in the compiler

(1) Representing type information known about a set of variables. For example, the formula

(var (X) ,atom(Y) ) means that X is an unbound variable and Y is an atom. The user manual

(Appendix A) lists the types recognized by the compiler.

(2) Using a primitive form of deduction to simplify the generated code. For example. assume the for-

mula is (list (X), va r(Y) ,dere (Z),...). To compile a run-time check that X is a non-

variable, the compiler first checks whether this formula implies nonvar (X) . This is true because

list (x) implies nonva r (x) so no run-time check is necessary.

(3) Updating the type formula when new information is learned. After compiling a goal, the formula is

updated to represent the new knowledge that is gained. For example, after executing the arithmetic

t Of €ourc. both the assemhlcr and the non -tmc system use standard symbol tables.
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expression X is A+B it is known that X is an integer, so the formula is extended with

integer(X).

In most cases, logical formulas are immutable, e.g. when a variable X is known to be a list (represented as

I i s t (x 1 ). that fact remains true forever. This is not true for all types. The types used to denote unbound

variables (e.g. var MX) and uninit (X)) become false as a result of an instantiation. This is also true

of the standard order comparisons (e.g. X@<Y. x@>Y. and so forth) and the types deref (X) and

rde ref (X). The compiler is careful to take this into account when updating the type formula.

Table 4.1 - Primitves to manipulate logical formulas and Prolog formulas
Primitive Description

F, implies F 2  Implication: Succeeds if it can determine that there
does not exist an assignment to variables in F, and
F 2 that causes both F1 and not(F 2) to succeed.

F 2 := simplify(F,) F 2 is a simplification ofF,. .

F 2 := subsume(F, F,) F 2 is a simplification of F 1, given that F is true.

F 2 := update-formula(F. F,) F 2 is the result of removing information contradicted
_ __by F from FI and adding F toF,.

3. Formula manipulation I

The compiler implements a set of primitive transformations to manipulate formulas. They are sum-

marized in Table 4. 1, where F, FI, and F 2 are logical formulas. Each of these primitives has two versions: I
a pure logical and a Prolog version. The logical version is used to manipulate types (see previous section).

It assumes the formula has a purely logical meaning, i.e. that the operational concepts of execution order of

goals, number of solutions, and backtracking behavior are not importanL The Prolog version is used to

manipulate kernel Prolog code. It assumes the formula must keep Prolog's operational semantics.

Implication is implemented to work well with most combinations of Ptolog predicates that are used

in type declarations. The following examples all return with success:

=. i I I l I I I
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Table 4.2 - Examples of simplification

Formula Simplified formula Comments
logical Prolog;

(true ; true) true (true ; true) The Prolog version is unchanged
unless the compiler option
samenumbersolutions is

* disabled.

(p, fail) fail (p, fail) The Prolog version is unchanged
unless the compiler can deduce that
p has no side effects (read / write
or assert / retract).

(!,p q) (p ; q) (',p) Cut is logically identical to true.
but it must be retained since it
modifies backtrack behavior in the

___entire clause containing iL

atom(X) implies nonvar(X)
X<Y implies integer(X)
X<5 implies X<10
uninit (X) implies deref (X)
functor(X, _, 0) implies atomic(X)
(X-=a; X==b) implies atom(X)

Simplification is done on standard Prolog. on kernel Ptolog. and on type formulas. Table 4.2 gives some

examples to illustrate the difference between logical and Prolog semantics. A single function simplify(F)

handles both logical and Prolog semantics (Figure 4.1). For conciseness, the definition of simplify(F) uses

the compound terms (A,B), (A;B). (A->B).and (\+(A)) both as selectors (to choose the branch

of the case statement) and constructors (in the calls to simp-step(F)). Tables 43 and 4.4 define part of the

definition of simp-step(F), the primitive simplification step. The complete definition contains about 50

rules. The functions subsume(F, F,) and updatejormula(F, F1) are implemented in a similar way.

function simplify(F : formula): formula;-
begin

case /0 decompose the formula 1
F = (A, B) : return simp step( (simplify(A), simplify(B))); P and '1
F = (A:B) : return simpstep( (simplify(A);simplify(B))); /* or*/
F = (A->B) : return simp.szcp( (simplify(A)->simplify(B)) ); P implies *1
F = \+ (A) : return simpstep( \+ (simplify(A)) ; P negation /
otherwise : return simpstep(F);
end

end;

Figure 4.1 - Simplification of a formula
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Table 4.3 - Simplification rules (part of simp.step's definition)

Rule Condition to apply this rule
Input formula Output formula

(t rue, A) A (none)
(A, true) A (none)
(true; A) true semantics(prolog) A no side-effects(A) A diff_sol A no.bind(A)
(t rue; A) t rue semantics(logical)
(A, fail) fail semantics(prolog) A noside_effects(A)
(A, f ail) fail semantics(logical)
(fail, A) fail (none)

(fail;Ai A (none)
(A->t rue; B) A senmantics(prolog) A succeeds(A) A deterministic(A)
(A->true;B) A semantici(Iogical) A succeeds(A)

A fail semantics(prolog) A fails(A) A nosideeffects(A)
A I fail i semantics(iogical) A fails(A)

Table 4.4 - The conditions for applying simplification rules

Condition Description

semantics(S) Simplify according to semantics S where S e (prologlogical).
no side effects(A) Formula A does not have side effects when executed.

deterministic(A) Formula A gives only one solution when executed.
nobind(A) Formula A does not bind any variables.
diff.sol Relax semantics of Prolog to allow a different number of solutions.
succeeds(A) Formula A always succeeds when executed.
fails(A) Formula A always fails when executed.

4. Factoring

Factoring is based on the operation of finding the most-specific-generalization, or MSG, of two I
terms. Factoring collects groups of clauses whose heads can be combined in nonmrivial fashion using the

MSG operation. The advantage of factoring is that it reduces the number of unifications performed during

execution. Figure 4.2 defines the MSG in terms of unification. Given two tenns T, and T2 , consider the I
set M of all terms that unify with both of them. The MSG of T, and T2 is the unique element T." of M

which unified with any other element U of M gives T,,. Intuitively, this says that T" contains the maximal

common information of T, and T2. I
The MSG (also called anti-unification) is the dual operation to unification. Given two terms,

unification finds a term that is a more instantiated case of each of the two, i.e. the most general common

instance of the two. The MSG is a term of which each of the two is a more instantiated case. For example,

consider the two compound terms s (A, x, C) and s (A, B, y). Unifying these two terms results in

s (A, x, y). The MSG of the two terms is 3 (A, B, C). Unification may fail, i.e. the most general unifier

0
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function msg(Tj, T2 : term): term;
var

M :set of term;

T,, U : term;
SbeginM := ( T I T unifies with T, and T unifies with T2 };

Find TmE•M such that V U e M : unify(U, T,,) = T,;
return 7',

end;

Figure 4.2 - The most specific generalization

is the empty set. Finding the MSG never fails. In the worst case, the generalization of the two terms is an

unbound variablc, which represents the set of all terms. For example, consider the two atomic terms x

and y. Unifying these two results in failure, whereas the MSG is an unbound variable.

Another way of viewing the MSG operation is as an approximation to the union of two sets. Every

term corresponds to a set by instantiating the variables in the term to all possible ground values. In general.

the union of two of these sets does not correspond to any term. The MSG finds the smallest superset of the

union that is represented by a term. A similar property holds of unification: it finds the largest subset of the

intersection that is represented by a term.

0 For all arguments of the predicate, the factoing transformation finds the largest contiguous set of

clauses whose MSG is a compound term. This set is used to define a dummy predicate and the definition of

the original predicate is modified to call the dummy predicatc. The algorithm is given in Figure 4.3. As an

example of factoring, consider the predicate:

h([xtl).
h([yl_]).
h(rI).

The lists in the heads of the first two clauses ae combined: the MSG of Ix I j and Iy I is 1_ IJ.

The result after factoring is:
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procedure factoring. 0
var

M : term,
C, *C', : clause;
It. P : list of clause;
a, i ,p . q : integer;

begin 0
for each predicate P in the program do begin

/* At this point P = [ CI, C 2 . ... C. ) (list ofn clauses) *
/* and C, = (Hi :- ,8) (Each clause has head Hi and body B,)/
for a := I to arity(P) do begin"

Partiton P such that each contiguous group =Y C, .C,,.. C, (:<p<q _)
satisfies exactly one of the two properties:
1. Either p = q (n contains only one clause), or

2. w is the largest group for which M = MSG (argument a of H,) is compound.

for each contiguous group x do if p <q then begin

( Create the dummy predicate P /
for i := p to q do begin

C's :=Ci;
Remove M from H'i;
Add all variables in M as arguments to Hl

end;
P.:= C ... ; 0; •

t Create the call to the dummy predicate 1
H :=(new head with same functor and arity as P and M in argument a);
H := (new head with same functor and arity as Pj);
for i =: I to arity(P) do if i *a then begin

Make argument i of H and i1t identical
end; 0
Replace xt in P by the single clause C, - (H :- H)

end
end

end
end;

Figure 4.3 -The factoring transformation

h((AIB]) h' (B, A).
h(lJ).

h' (B. x).
h, (B, y).

Factoring reduces the number of unifications done at run-time in two ways: (I) compound terms arc only

created once during predicate execution, instead of being repeated for each clause (e.g. the list [AB IBI in

the example), and (2) the arguments of compound tcnms become predicate arguments, which more often

I I I I I0
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allows the determinism transformation to convert shallow backtracking into deterministic selection (e.g. the

value of the second argument of the predicate h' determines the correct clause directly without any

superfluous unifications). The following heuristic is used:

Factoring Heuristic: For each argument in a predicate, factor the largest set of contiguous
* clauses whose MSG is a compound term. Repeat this operation until no more factoring is pos-

sible.

This heuristic needs refinement in some cases to avoid superfluous choice point creation which may slow

down execution. The savings of multiple suucture creation (how many fewer unifications are done) should

be weighed against how much deterministic selection is possible in the dummy predicates.

If the compiler option same order_solutions is enabled (the default) then the operational

semantics is that of standard Prolog. i.e. the order of solutions returned on backtracking is identical to that

of standard Prolog. Disabling the option relaxes the semantics of standard Prolog by also factoring non-

contiguous clauses whose MSG is a compound term. This may change the ordering of solutions on back-

* tracking. This option allows experimentation with variations of standard Prolog semantics.

To illustrate how factoring can reduce the amount of shallow backtracking, consider the following predi-

cate, which is part of a definition of quicksort:

partition((YILJ,X,4YIL1j.L2) Y-<X, partition(L,XL1,L2).
partition([YILJ,X,L1,[YIL2)) Y>X, partition(LX,L1,L21.
partition(l[._. [.[)).

The first argument of the first two clauses can be factored, resulting in:

parý.itior(IYIL].X,L1,L2) :- partition' (LX,L1.L2,Y).
partition(l , ,). I).

partition' (LoX, [YIL1I,L2,Y) Y-<X, partition(L,XL1,UL2).

partition' (L.XL1,IYIL210Y) Y>X. partition(LX.L1.L2).

(In the compound term (Y I LI the rightmost varablc L is kept in the same argument position and the

other variable Y ts put at the end of the goal.) Thc transformation results in only a single unification of

1 Y ILI instead of two in the original definition. In the dummy predicate the comparisons Y-<x and

Y>X use arguments of the predicate, not arguments of a compound term. This makes it possible to compile

part it ion /4 with a conditional branch instead of with shallow backtracking.
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5. Global dataflow analysis

It is difficult to obtain information about a proigram by executing it in its original form, since the

range of possible behaviors is potentially infinite, and even simple properties of programs may be undecid-

able. To get around this problem, the idea of abstract interpretation is to uansform the program into a

simpler form which allows practical analysis. After the analysis the inverse transformation gives informa-

tion about the original program. The fundamentals of a general method based on this approach and its

mathematical underpinning are explained by Kildall (371 and Cousot & Cousot (231. Marriou and Sonder-

gaard [471 give a lucid explanation of the basic ideas. This method has been studied extensively and S

developeii into a practical tool for Prolog (18,21,24,25,49,50,53,66.67,76, 84).

The four sections that follow summarize the relevant parts of the theory of abstract interpretation,

present my application of it to Prolog, describe the analysis algorithm in detail, and discuss the integration . S

of the algorithm into the body of the compiler. In Chapter 7 an evaluation is done of the effectiveness of

the algorithm.

5.1. The theory of abstract interpretation

The transformed program should mimic the original faithfully. This is made rigorous by introducing

the concept of descriptions of data objects. Let E be the powerset, i.e. the set of all subsets, of a set of data S

objects, and D be a partially ordered set of descriptions. Then an abstract interpretation is defined by the

following conditions:

(1) Ep :E-4E, Dp :D-4D

(2) c: E -+D, y: D -- E

(3) a and y are monotonic.

(4) VdED :d =a(y(d))

(5) VeeE :c <Y(a(e))

(6) VdeD :Ep(y(d))<y(Dp(d)) S
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The operator Ep in the first condition describes a single step of the execution of the program P as a state

Stransformation. Symbolic execution of the transformed program is described by the operator Dp. Except

for she conditions given above, the choice of Ep and Dp is completely free. The choice is guided by

several trade-offs. for example: (I) speed versus precision of the analysis. (2) complcxitcy versus confidence
S

in the correctness of the analysis.

As an example of Ep (from Cousot & Cousot (231). consider a program in an imperative language

represented as a graph where each node is a simple statement such as an assignment or a conditional. Let

an environmeni be defined as a correspondence between each variable in the program and a possible value.

Then foreach edge of the graph a set of possible environments (called a context) is given. Initially they are

all unknown. An application of Ep transforms all contexts to their new values reached after one execution

step.

For Prolog, a natural choice is to identify Ep with the standard operator Tp:t'-*2 which

describes its procedural semantics. In this case E is 2', where Bp is the Herbrand universe of the program

P. i.e. the set of all ground goalst that can be constructed using predicates. functors, and constants of the

program. Tp does a single "forward chaining" step to find the conclusions that can be inferred from a

given set of ground goals. Formally, Tp maps any I c Bp into Tp (i) = (A e Bp : A :- A 1,"-, A, is a

ground instance of a clause in P and (A ,." • ,A. ) Q I ). In other words, an application of Tp transforms

a subset of Bp into a new subset containing the new goals inferred from the program's clauses given the

old goals. The meaning of a program P is defined as lfp(Tp) (where Ufp = the least fixpoint operator).

This is the set of all ground goals that can be derived from the program clauses. For example, consider the

following program:

nat (0) .

nat(s(X)) :- nat(X).

which states that nat (X) is true if X is zero or X is the successor of a natural number. The program's

meaning is:

t Thee amt callcd "alorn'" in mathematical logic. To avoWd confusion with the momn data type in Prolog, this disscfia-

lion uses he Prolog icnminou•ug

-5• •"= m .mmwmm .mm m m m m
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I nat(O}, nat(s(0)}o nat (a (s (O) , nat (s(,S(s (OM) - I ..

which represents the set of natural numbers.

The second and third conditions introduce the operators 4 (the abstraction function) and y (the con-

cretization function). The operator a: E -ý D determines the description corresponding to a particular set

of data objects. The operator 7y:D -+ E determines the set of data objects corresponding to a particular

description.

The fourth and fifth conditions ensure thiat a and y behave correcdy with respect to each other. Con-

dition four means that in going from descriptions to data objects and back no information is lost. Condition

five means that in going from a data object to a description and back that the resulting set of data objects

includes the o'rigina] data object. The sixth condition is known as the safeness criterion. It is necessary to

ensure that the symbolic execution (through Dp) mimics the execution of P accurately (through Ep). In

othbr words, the abstract interpretation gives descriptions that include all the data objects that the execution

of the original program gives.

To illustrate what the conditions mean consider the abstract domain of signs of real numbers. The

data objects are real numbers. ~Let there be three possible signs for numbers: + (positive). - (negative), and

0 (zero). The set of descriptions D describes the possible states of a set of reals, so it contains all combina-

tions of the three signs:

D = I (). (0). +, -,+-,{,0). (+,0), (+-0) J

According to the second condition a maps a set of reals onto its signs, and y maps a set of signs onto a set 0

of reals. For example:

ct( (-5)= (-}

a( (-3.5 J)= (+,-1

"y((+))=(re R.r>O}

The fourth condition says that going from a sign to a set of reals and back will give thc same sign. Thc 0

fifth condition says that going from a set of reals to a sign and back will give a set of reals that includes the

i ii I I0
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original SeL So for example:

W+) = c(•(C+)))

since y( [+)= the set of positive reals, whose sign is (+). and:

5 ) c: y((x( ( 5))

since a( (5 } +). and y( 1+)) is the set of positive reals, which contains 5. In order to explain condi-

tion six, considcr thc equation 27"x37. Here Ep is multiplication of reals, and Dp is the corresponding

operation in the abstract domain of signs. The multiplication corresponds to (+) x {+J in die abstract

domain. The result of the abstract multiplication should be (+1. since 27 x 37 = 999, which is positive.

Condition six is a formalization of this requirement.

Dataflow analysis is done by transforming the original program over the domain E described by Ep

to a new version over the domain D described by D!. Then y(lfp (Dp)) (ifp = the least fixpoint operator)

gives a conservative estimate ofthe required information. Much work has been done in discovering useful

domains D for particular applications and efficient algorithms for finding fixpoints of Dp [ 10, 53).

5.2. A practical application of abstract interpretation to Prolog

The implementation of abstract interpretation presented in this dissertation uses a very different Ep

from the one suggested in the previous section by the formal definition of Prolog's procedural semantics.

The choice of Ep used in the Aquarius compiler closely follows execution on a machine. Considcr a pro-

gram with a predicates P,. The daoa objects are the n-topics (TI , T 2 , - - ".T) where each T7 is a functor

of same name and arity as P, and the arguments of T are terms constructed using data functors and atomic

terms in the program and possibly containing unbound variables. E is the powerset of these data objects.

The descriptions arc the n-tuples (LI ,L 2 , --- ,L.) where each 4, is a functor of same name and arity as

Pi and the arguments of L, arc constrained to be on a given finite lattice. D is the set of these'descriptions.

A latice is a partially ordered set in which every ioncrpty subset has a least upper bound (denoted as the

lub) and a greatest lower bound (denoted as the gib). Each of the elements of the lattice corresponds to a

set of possible values in the original program. This lattice is called an argumnw lantice, since it is used to

represent the possible values of a predicate argumcnWL A predicate lattice (such as L.) is the Cartesian
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product of the lautices of all the predicate's arguments.

The operator Ep that mirrors execution of the program corresponds to a single resolution step. It is a

transformation of a set of data objects and an execution state to another set of data objects and a new exe-

cution state, following Prolog's depth-first execution semantics, that is, its lcft-to-right execution of goals

in a clause, and its top-to-bottom selection of clauses in a predicate. The operator Dp that mirrors execu-

Lion of the program over the descriptions is similar, except that the arguments are lattice values.

If the conditions of abstract interpretation hold, then the least fixpoint of the symbolic executioi, over

the lattice is a conservative approximation to the global information, in other words the set of values that a 0

variable can have during execution is a subset of what is derived in the analysis.

The threc sections that follow describe the lattice used by the analysis algoriinm. The first section

introduces and defines the lattice elements and the types with which they correspond. The next section 0

gives an example to show how to derive the types. The last section summarizes the properties of the types

that are used by the algorithm.

5.2.1. The program lattice

Dataflow analysis for Prolog differs from that of statically typed languages because it does not check

types, but it infers them. The most important information that can be deduced about an argument is

whether it is used as an input or an output argument of a predicate, i.e. the mode of the argument. After the

mode is determined, it is useful to find its iype, i.c. the set of values that it can have. The remainder of this

chapter refers only to the type of an argument, in the assumption that this implies the mode as well. I have 0

experimented with four lattices of varying complexity in the analyzer, and the lattice that is currently

implemented has been chosen to give the most information while keeping analysis fast.

During the analysis the algorithm maintains two lattices for each predicate in the program. These

lattices correspond to the eniry and exii types of the predicate. i.e. the value of the variable valid upon

entering the predicate and upon successful exit from the predicate. The lattice describing the entire pro-

gram is the Cartesian product of the predicate lattices.
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j

any value is possible

any
Z \ _ .recursively dereferenced

nonvar rderef

"7 \ . uninitialized
ground nonvar+ uninit

rderef

* ground+
rderef

Mthe empty set of values

impossible a (u.-treachable argument)

Figure 4.4 - The argument lattice

The argument lattice of the entry and exit types in the current analyzer is shown in Figure 4.4. In this

lauice, any (the top element) denotes the set of all values, impossible (the bottom element) denotes

the empty set (i.e. this predicate is unreachable during execution), uninit denotes the set of uninitial.

ized variables (unbound variables that are not aliased; see Chapter 2). ground denotes the set of values

that are ground (i.e. the term contains no unbound variables). nonvar denotes the set of nonvariables,

rderef denotes the set of values that are recursively dereferenced (i.e. the team is dereferenced. which

means that it is accessible without any pointer chasing, and if it is compound then all its arguments arc

recursivcly dcrcfcrenced), and ground+rderef denotes the set of values that arc both ground and

recursively dercfcrenced.

5.2L. An example of generating an uninitialized variable type

This section gives a simple example of the generation of uninitialized variable types to give an idea

of what abstract interpretation does and to illustrate the argument lattice. Uninitialized variables are gen-

erated whenever the analyzer deduces that an unbound variable cannot be aliased to another. For example.

consider the following program fragment:
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prod(...) -.. goal(Z) ..

goal(X) :- X-s(Y), goal(Y}.

If Z is the first occurrence of that variable in the pred (...) clause then it is considered a candidate

uninitialized variable. This is possible because it is certainly not aliased to any other variable. In the

definition of goal (X), if X is uninitialized then the argument Y of the structure s (Y) may be con-

sidered uninitialized as well. This Y is passed on as an argument to goal (M). Therefore both calls of

goal (X) are with an uninitialized argument, so it is consistent to give the argument X an uninitalized

variable type. •

It may happen that elsewhere in the program there is a call of goal (X) where X is not uninitial-

ized (for cxample it may be a compound term, or it may be aliased). In that case, the assumption that X is

uninitialized is invalidated. This may invalidate assumptions about other arguments of other predicates, so

it iS necessary to propagate this information. For correctness, it is necessary to iterate unti the least

fixpoint is reached. At that point symbolic execution of the program does not change any of the derived

types. 0

5.2.3. Properties of the lattict elements

The example given above already gives an inkling of the relevant properties of ground, uninitialized, •

and recursively dereferenced variables that simplify the analysis. Here is a more complete list of these pro-

perties:

€ The property of being ground, uninitialized, or recursively dereferenced propagates through explicit

unifications. The propagation is bidirectional:

(1) If X is ground, uninitialized, or recursively dereferenced, then after executing an explicit
0

unification with a compound term (e.g. X-s (A, B)), all of its variables (e.g. A and B) are

ground, all of the new variables (e.g. A and B) arc uninitializcd, or all of the new variables are

recursively dercferenccd.

(2) In the other direction. if all the variables in the compound term arc ground, then X is ground.

If all the variables are recursively dereferenced, then X is recursively derefcrcnccd if it was

II I II0
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previously uninitializcd.

0 The property of being ground is independent of aliasing. For example, if X is ground, then it remains

ground after exccuung the unification X=Y. This is not true of recursively dereferenced or uninitial-

izcd variablcs.
I

An uninitialized variable is not aliased to any other variable. Lattice calculations for uninidalized

variables do not affect each other.

5-3. Implementation of the analysis algorithin

Pr'evious sections have introduced the ideas underlying the algorithm, the program lattice used by the

algorithm, an*ýxamplc of how types are derived, and the properties of the latice elements. This section

gives a more complete explanation of the algorithm. The presentation starts with an overview of the data

representation. It then describes the algorithm, and finally it gives a detailed example of analysis.

Table 4.5 - The components of the variable set VS

Name Description
S The set of variables encountered so far in the clause. This set

is important because any variable encountered in a goal that is
not in this set is known not to be aliased to any other, i.e. it is a
new variable, and therefore it is both uninitialized and derefer-
enced.

G The set of variables that are ground. These variables arc
bound to terms that contain no unbound variables.

N The set of variables bound to a nonvaable term. This set is a
superset of G.

U The set of variables that arc uninitialized. A variable becomes
uninitialized if it is unbound and known not to be aliased to
any other variable. The symbolic execution enforces this con-
straint. This set is disjoint with N.

D The set of variables that are recursively dereferenced. A vari-
able is recursively dereferenced if it is bound to a term that is
dereferenced, i.e. it is accessible without any pointer chasing,
and if it is compound then all its arguments are recursively
dereferenccd. This set is a supersct of U.

5.3.1. Data representation

During analysis the types arc represented in two ways:

(I) As lattice elements. For each predicate, there arc two structures containing a lattice lement in each
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argument. These structurcs represent the entry and exit types of the predicate. For example, the

predicate concat / 3 has two structures which could have the values:

entry: concat (anyground,uninit)

exit: concat(ground, ground, any)

This says that upon entering concat/3 the second argument is ground and the third argument is

uninitialized. When the predicate is exited the first two arguments are ground.

(2) As sets of variables. Type information can also be stored as a set for each type that contains thc

variables of that type.

These two different representations each have their advantages. The lattice representation makes it easy to

calculate the lub (least upper bound). The variable set representation makes it easy to symbolically execute.

a clause, i.e. to propagate and update information about variables' types through the clause. Functions are

provided to convert between the two representations (Figure 4.7). For the lattice in Figure 4.4, thexe are

five sets of variables which are updated during the symbolic execution of a predicate. Conceptually they

are part of a 5-tuple VS = (S, G, N. U. D) that holds the current type information (Table 4.5).

5.3.2. Evolution of the analyzer

The current analyzer was preceded by three simpler versions. The lauice of the first analyzer 0

represented only entry types and had three elements: impossible, uninit, and any. The second

analyzer added the ground type in the entry lattice and an exit lattice of the same structure. The third

analyzer added the rderef type to these lattices. The current (fourth) analyzer added the nonvar •

type. Despite not using a representation for variable aliasing. the third and fourth analyzers are able to

derive many nontrivial rderef and nonvar types. The added types ae independent. Le. each version

of the analyzer does no better than previous versions on types that previous versions also derive. •

The choice of what lattice types to add was done by inspecting the compiled code of programs and

by deciding what types were easy to derive in the context of the structure of the existing analyzers. Types

were added that are present in many programs. Measurements show that having an exit lattice and doing

back propagation (see below) are essential features to derive good ground. rderef, and nonvar

0



86

types. A numerical evaluation of thc efficiency of the analysis (the percentage of arguments for which

types arc derived) and the effect of analysis on execution time and code size is given in Chapter 7.

For the next version of the analyzer the added types r1ist (recursive list. i.e. the term is either nil

or a cons ccll whose tail is a recursive list), integer, and ((nonvar+deref) or uninit) (the

term is either a dcrefcrcnced nonvariable or uninitialized) arc contemplated.

type varsct = (set, set, set, set, set); /0 5-Aiuple '/

var Programn : set of predicate;
Lty : mapping predicate -4 lattice;

"-L,,,i mapping predicate -- lauice;
P : predicate;

procedure analysis.
var E :set of predicate;

VS : varset;
begin

E := (P I arity(P) = 0 ) u (declared entry points);
Initialize L,,,, with the types of the declared entry pointss;
Initialize Lt,;, to impossible for all predicate arguments;
while E * 0 do begin

for each predicate P e E do begin
VS := latticeto..varset(Lt,u,, [P ], P);
VS := updatc_cxit(IVS, predicateanalyze(P. VS), P)

end,

end E := {P I L,,y P I has changed or 3 G e P : L.., [G I has changed)

end;

Figure 4.5 - The analysis algorithm: top level

5.3-3. The analysis algorithm

The analysis algorithm is presented at three levels of detail. An English-language description is

given of the basic ideas. A detailed pseudocode definition (Figures 4.5 through 4.7) describes the complete

algorithm at a high level of abstraction. Appendix 0 gives the implementation in thc compiler.

The algorithm maintains entry and exit lattice elements for each pre&catc argument in the program.

Analysis proceeds by traversing the call graph starting from a set of entry points that have known types.

The entry points include all predicates of arity 0 and any entry declarations given by the programmer

(Appendix A). The traversal is repeated until there are no more changes in the lattice values, that is. until a
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function prcdicatecanalyzc(P : predicate; VS varset): varset;
var F : formula,

VS, •array [ I .. n I of varsct;
G, goal;
i , j : integer;

begin i/ At this point P =C C. I (list of n clauses) / 0
for each non-active clause Ci E P do begin P Symbolic execution of clause C, 1

/* At this point Ci = (Gi. .  G..) (conjunction of ni goals) 1
VS, :=VS;
for j := I to n, do begin -/* Symbolic execution of goal G.q .1

if (G,, is a unification) then begin
VSi := symbolic, unify(VSj, Gi,) /* Figure 4.8 *1

end else if Gq E Program then begin P* Gii is defined in the program /
L,.,,y LGii] := lub(L.,,yJ [G, 1. varsettoIauice(VSj, Gi));
if non.exponentiality constraint then begin

VS. := update, exit(VSi. predicale-analyze(Gii, VS8), Gii)
end

end else begin P' Gj is not defined in the program /
F := varset.to_type(VSi. Gjj);

G, := enry_specialize(Gij, F);
VSi := updateexit(VS,, exit.varsct(G, ). G.,)

end
end;
VS. := back..propagate(VSi. CQ) / To obtain more precision 1

end;

return n=VSi /0 Merge the exit values of all VS. /

end;

Figure 4.6 - The analysis algorithm: analyzing a predicate 0

fixpoint is reached. With suitable conditions (i.e. all type updating is monotonic and types are propagated

correctly) this fixpoint is the least fixpoint and the resulting types give accurate information about the origi-

nal program. When a goal is encountered during a traversal three things are done: (1) the goal's entry lat-

tice type is updated using the current value of VS, (2) if the goal's definition is part of the program then the

definition is entered, and (3) upon return, the new value of VS is used to update the goal's exit lanice type.

A correct value of VS is maintained at all times during the traversal of a goal's definition.

The definition of the algorithm in Figures 4-5 through 4.7 leaves out some details but is a faithful

description of the analysis. The two conditions non-active and non-aponentiality are explained in the next

section. The following sections describe what happens in symbolic execution of a predicatc (including

back propagation) and symbolic execution of a goal.



function updateexit(VS1 , VS 2 : varset; G : goal): varset;
var VS : varset;
begin

/* Calculate new VS from old VS, and exit VS 2 [
VS.nonvar :VS 1 .nonvar u VS2.nonvar,
VS.ground VS .ground 0 VS 2.ground;
VS.rdcrcf := (VS i.rdercf n VS 1.ground) u VS2.rderef;
VS .sofar :=VS1.sofar u vars(G);
VS .uninit :=VS.uninit - vars(G);
r* Calculate new exit lattice */
L.. IG I := lub(L..i, IG ].'varset-to_lauice(VS, G ));
return VS

end;

function lub(L,1 L 2 : lattice) : lattice;
return (least upper bound of L1 and L.z);

function lauiceto_varset(L : lauice; G : goal): varset;
return (varset corresponding to L using variables of G);

function varset_tolatice(VS : varset; G : goal): lattice-
return (lattice corresponding to VS using variables of G);

function back-propagate('S : varset; C :clause): varset;
return (improved exit varset from VS using unification goals of C);

function varset_totype(VS : varset; G : goal): formula;

return (type formula corresponding to VS using variables of G);

function entry specialize(G : goal; F : formula) : goal.
return (specialized entry point of G when called with type F);

function exit_varset(G : goal): varset;
return (exit varset stored for the known goal G);

Figurc 4.7 - Utility functions needed in the analysis algorithm

5.3A. Execution time of analysis

This section shows that the average analysis time for programs that contain only linearly recursive

predicates (i.e. no clauses contain more than one recursive call) and that have bounded arity is proportional

to the size of the program. The analysis time T.,.a,. is proportional to the time of each iteration Ti, and

the number of iterations Ng, needed to reach the least fixpoint:

TFop oams = 0 ( only liner r

For programs that contain only linearly recursive predicaltes. the time of each iteration is:

7'.,,, =0(5 .,4A
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where S is thc total number of goals in the program and A is the maximum number of Limes a predicate is

traversed. (Programs with non-linearly recursive predicates are discussed below.) This is true because the

algorithm traverses each clause at most once in an iteration. It assumes that the symbolic execution of a

goal whose definition is not travcrsed is a constant time operation. A predicate is traversed only if the

current entry type is worsc than the previous worst entry type. The number of times this situation can

occur is bounded by the depth of the entry lattice of the predicate, which is proportional to the maximal

arity in the program. Therefore:

S = Y lengt (Cj)
s=1 j=l

S=O(max arity(P,))

where the program contains n predicates, and each predicate P, contains n, clauses C.,. The arity of a

predicate is denoted by arity(Pi) and the number of goals in a clause is denoted by length(Ci,). The

number of iterations is trivially bounded by the depth of the program lauice:

N,r, = 0(D.,)

where D,,,w is given by:

Dtoat= 2- 4 ariiy (P,)
8=.]

In this equation, 2 counts thc entry and exit lattices, arity (P,) is the number of arguments in the predicate

lattice, and 4 is the depth of each argument lattice. This bound on Njm, is wildly pessimistic. For most real

programs N,, is bounded by a small constanL All the benchmark programs satisfy Ni., 57 (Chapter 7).

However, there exist pathological predicates P. for which N., = 0 (arity (P.) ). For example, consider the

program:

main :-a(9.a a..... a.

a(O................)._

a(N,A.AC.D.E,F,G.H.I.J : N1 is N-1, a(N1.AC.D.E,F'.G,H,I,J,A).

The analyzer requires 10 passes to determine that all arguments of a/ 11 arc ground and dercferenced

upon exit.
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To summarize these results. the worst-case and average case total execution times of analysis for programs

without non-linearly recursivc predicates are:

T..,•y...or. =0 (A -S -D,.,,a

To,=,,,.,,.,, =O(A -S )

If thc arity is bounded. then the average execution time of analysis is proportional to the program's size.

For programs that contain non-linearly recursive predicates this result needs to be amended. There is

a tradc-off between precision and execution time of the analysis. If not enough predicates are traversed

then analysis information is lost. If too many predicates are traversed then analysis time becomes too long.

Two constrainmsarc used to prune the traversal of the call graph:

(]) The non-active constrainL A clause that is in the process of being traversed is called an active

clause. During recursive calls of predicate,_analyze, the algorithm maintains a set of the active

clauses and will not traverse an active clause twice.

(2) The non-exponentiality constraint. Traverse a predicate (i.e. call predicatc-analyze) only if one of

two conditions hold: (a) The entry type has changed since the last traversal of the predicate, or (b) At

least one of the predicate's clauses is active.

Condition (a) is understandable: it is needed to ensure that an updated type is propagated correctly. The

rationale for condition (b) is more subtle. If it did not hold, then the exit types derived by the analysis

would be significantly worse because the base case of a recursive predicate may not be reached during the

traversal. Running the analyzer both with and without this condition shows this to be true for most pro-

grams.

The problem with condition (b) is that it leads to an analysis time that is exponential in the number of

non-linearly recursive clauses in a predicate. For many programs this is not serious. However, it occurs

often enough that it should be solved. One of the benchmark programs, the nand benchmark, has this prob-.

lcm. A better condition is needed to replace condition (b). It must (I) ensure that the base case of all

recursive predicates is reached (for good exit typcs), and (2) not result in time cxponcntial in the number of

non-linearly recursive predicates.
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5.3.5. Symbolic execution of a predicate

The heart of the datallow analysis algorithm is the symbolic execution of a predicate (F;gure 4.6).

Each clause of the predicate is traversed from left to right. During the traversal the type information is kept

in the variable set VS. Symbolic execution of the predicate consists of four steps:

(1) For each clause of the predicate, translate the lattice entry type of the predicate into the variable set 9

VS, and start traversing thc clause.

(2) Symbolically execute each goal in the ilause and update VS.

(3) At the end of each clause, back propagation improves VS by deducing information that only

becomes available at the end of the clause. For example, consider the clause:

a(X) :-X-[YILI. b(Y, L).

If both Y and L are in the ground set G of VS at the end of the clause then this is also true of X

because of the unification X= I Y I LI. Back propagation is used to improve the exit types for

ground, recursive dereference, and nonvariable types. Measurements show that it is a necessary step

to get good exit types.

(4) At the end of the predicati, combine the variable sets of all clauses by intersecting their correspond-

ing components. Convert the result back to the lauice representation and update the exit type for the S

predicate.

5.3.6. Symbolic execution of a goal

Symbolic execution of a goal is done in three ways, depending on whether the goal is a unification, the goal

is defined in the program, or the goal is not defined in the program.

5.3.6.1. Unification goals

Symbolic execution of unification is defined by the function symbolic unify(VS, X=T) in Figure 4.8,

which converts VS = (S, 0, N, U, D) into VS' = (S ', G', N', U', D'). These equations use the utility func- 5

tions of Table 4.6. For each component of VS. any equation in Figure 4.8 with a true condition can be
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Table 4.6 - Utility functions of a term T

Notaton Definition

vars(T) The set of variables in the term T.

dups(T) The set of variables that occur at least twice in the term T.

new(T) = vars(T) - S The set of all variables in T that have not occurred before.

old(T) = vars(T) ro S The set of all variables in T that have occurred before.

deref(T) = vars(T) - (S - U) The set of all variables in T that arc candidates to be recursively
dereferenced. This is the same as new(T) u (vars(T) n U), i.e.
new(T) supplemented with the variables in T that are uninitialized.

S'= Suvars(X=T)

fGG u varsM if XEG
G G otherwise

N u G'u (X) if nonvar(T) or (var') andTe=N)

N uG' otherwise

UvnewMr-otd, fr- (XI-,dupsM( if (Xe SorxEU)
U"= U- vars (X=T) otherwise

DDuderefMF)u (X) if (XSorXe U) and oldM c(DuU)
JD u deref (T) if (Xe S or XE U) or XE (D n G)

D u deref (r) - (X) if dups(T)=0andXeDandoid(I)cU
DcnG otherwise

Figure 4.8 - Symbolic unification VS':= symbolic._unify(VS, X=T)

used. In practice, if more than one condition is satisfied, an equation giving more information (i.e. the

resulting set is larger) is used first. These equations are listed first. For example. the first equation of D'

gives a larger set, so it is preferred over the others. If both X and T are va -t'es, then the algorithm

switches X and T is to see if one of the more desirable equations is "atisfied before attempting one of the

lesser equations.
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Table 4.7 - Conditions for the lattice entry type

Name Condition
Ce,. vcars(X) c G 0
CV. var(X)
Co.1 X (dups(P) u S - U)
C,d,,re (vars(X) n S) c D

C______ (X E N)

Table 4.8 - Calculation of the lattice entry type

Cgrou C,, Cold Crd.ef Cowar Lattice value

yes - - yes - ground+rderef
yes - - .no - ground
no no - yes - nonvar+rderef
no no - no nonvar
no yes no - - uninit
no yes yes yes yes nonvar+rderef
no yes yes yes no rderef
no yes yes no yes nonvar
no yes yes no no any

5-3.6.2. Goals defined in the program

Symbolic execution of a goal with a definition is done by symbolically executing the definition.

Information is kept about the part of the call graph that has already been traversed, so that analysis will not 0

go into an infinite loop. The function varsetto_lauice(VS, P) is defined by Tables 4.7 and 4.8. For each

argument X of P. first determihe the values of the five conditions in Table 4.7. Then use these conditions to

look up the lautice value for the argument in Table 4.8. 0

5.3.6.3. Goals not defined in the program

Examples of goals that are not defined in the program being analyzed are built-ins and library predi-

cates. Symbolic execution of these goals is done in two parts. First, entry specialization replaces the goaI

by a faster entry (section 5.4.1). Second, the type declarations that the programmer has given for the entry

are used to continue the analysis. If there are none, then worst-case assumptions arc made.

5.3.7. An example of analysis

The following program is interesting because it is mutually recursive:

0



94

Table 4.9 - Analysis of an example program

inc 12(AB,C) inc 13(A,B,C,D)
A B C :A B C D

Start

entry impossible impossible impossible impossible impossible impossible impossible

exit impossible impossible impossible impossible impossible impossible impossible

• After pass I
entry rderef uninit U.•.ri uninit rderef rderef uninit

exit nonvar rderef nonvar7 rderef any ground nonvar

After pass 2

entryi rderef uninit uninit uninit rderef rderef uninit
exit nonvar rderef nonva; rderef any nonvar nonvar

After pass 3
entryI rderef uninit uninit uninit rderef rderef uninit

xil nonvar rderef nonvarI deref any nonvar nonvar

mair incl_2([AB], C, D).

incl_2([]. C, [C)).
incl2([AIEI, C. D) -- incl_3(C, A, E, D).

iincl3(C, A, E, [AID]) :- inclc 2(E. C, D).

* The predicates inc_2/3 and incl_3/4 arc extracted from a definition of set inclusion. Three

analysis passes are necessary to reach the fixpoint (Table 4.9). The entries that have changed with respect

to the previous pass arc in italics. The final types are given in Table 4.10. Most of the correct types are

determined after the first pass. A single exit type of inel_3/4 is corrected in the second pass. This is

necessary because the third argumcnt of ine 13/4 is the same as the first argument of inci_2/3.

Table 4.10 - Final results of analysis

incl 2(A,B,C)

entry type: rderef (A),uninit (B),uninit (C)
Sexit type: nonvar (A), rderef (B), nonvar (C)

incl_3(A,B,C,D)
entry type: Lninit (A),rderef (B),rderef (C),uninit(D)

exit type: rderef (A) ,nonvar(C) ,nonvar(D)

S.4. Integrating analysis into the compiler

Deriving type information is only the beginning. The analyzer must be integrated into the compiler

to take advantage of the type information. The dataflow analysis module itself does four source transfor-

mations (Figure 4.9) before passing the result to the next stage, which does determinism extraction. The



95

kernel entry
Prolog declarations typCs

inp uts p.. . . . . . . . . . . . . . . . . . . . . . .ts.. . . . . . . . . . . . . . . ... ..--

I 9

s p e c ia liz a ti o n a n a ly s is d e i d
entry specialized enc e type

specialization
(replace goals)

'with specialized entries O reister
conversion

Ieie trpes wroto

uninitialized regise oe typeSupdating
i ~updatedi

head I•types
unraveling

Ikernel Prolog

with unraveled heads
outputs - - -.....

kernel
Prolog types

Figure 4.9 - Integrating analysis into the compiler

following source transformations are done in the dataflow analysis module:

(1) Entry specialization. Determine a fast entry point for each occurrence of a call whose definition is

not in the program being analyzed and continue analysis with this entry poinL

(2) Uninitialized register conversion. Convert uninitialized memory types to uninitialized register 9

types when it resulits in a speedup. It is done when an argument can be returned in a register without

giving up last call optimization.

(3) Head unraveling. Unravel the heads of all clauses again in the light of the derived type information.

For example. the head a (k, h, A) can be unraveled in three different ways. namely
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(a(AB,C) :-A=B,C=B) or (a(A,B,C) :-A=C,B=C) Of (a(A,B,C) :-B-A,CC-A). If

both A and B arc nonvariables and C is unbound, then the first or third possibilities allow the com-

piler to do argument selection. Unraveling is already done during the conversion to kernel Prolog.

but it must be donc again after dataflow analysis sincc the new types may allow it to be done better.

(4) Type updating. Supplement the type declarations given by the programmer (if any) by the derived

types. All inconsistencies arc reported and compilation continues with the corrected types.

The first three of these transformations arc-discussed in more detail in the following sections.

5.4.1. Entry specialization

Duringja'nalysis, a fast entry point is determined for each call whose definition is not in the program

being analyzed (i.e. each dangling call). For example, the call sort (A, B) is replaced by the entry point

Ssort * 2' (A, B) if B is uninitialized. Analysis continues with the types of the fast entry poinL The

program is unchanged until the end of analysis, so the determination of the fast entry point is repeated in

each analysis iteration whenever a dangling call is encountered. This mechanism is intended to speed up

execution of built-in predicates and library routines, but it is also available to the programmer.

The fast entry point is determined by calculating the type formula corresponding to the variable set

V'S with the function varsetjto_type(VS, G) (Figures 4.6 and 4.7). This type formula is used to traverse

the modal entry tree for the goal. The modal entry tree is a data structure that contains a set of entry points

and the types that each requires (Appendix A). Entry specialization is also done in the clause compiler,

and a detailed example of the use of the modal entry tree is given in Chapter 5 (section 3A).

5.42. Uninitialized register conversion

Often an uninitialized memory type can be convened to an uninitialized register type. The compiler

uses four conditions to guide the conversion process. Define a survive goal as one that does not alter any

temporary registers (except for argument- with uninitialized register type, which arc outputs). A goal that

potentially alters temporary registers is a non-survive goal. Thc compiler maintains a table of survive

goals. With these definitions the four conditions for a predicate P arc:
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(I) All arguments of P with uninitialized memory type are candidates to be converted.

(2) A candidate argument of P must occur at most once in the body of each clause of P. In each clause

where it occurs, the argument must be in the last non-survive goal or any survive goal beyond iL

(3) For each clause of P, if the last goal G is a non-survive goal, then the candidate argument of P must

be in the same argument position in G as in the head of P. This is necessary to avoid losing the

opportunity for last call optimization (LCO): if the argument positions are different then a move

instruction is needed between the last call and the return. If the last goal is a survive goal then the

condition is unnecessary because it is not as important to retain LCO: a survive goal can never be

m•tually recursivc with the predicate it is part of.

(4) Often the last goal G has candidate arguments that are not candidate arguments of P. so they have to

be initialized when returning from G. This has two disadvantages: P loses LCO and P must allo-

cate an environment (which may not exist otherwise). The solution to this problem involves a trade-

off: is it better to have LCO in P and fewer uninitialized register arguments in G. or to have no LCO

in P and more uninitialized register arguments in G ? The compiler recognizes a class of predicates

G for which the first is true: Define a fast predicate as one whose definition contains only built-ins

and survive goals. If G is fast then reduce the set of G s candidate arguments to include only those

that arc candidate arguments of P.

A transitive closure is done until all four conditions are satisfied. These conditions can be relaxed slightly

in several ways. However. even with the existing conditions it is possiblc to convcrt about one third of all

uninitialized types into uninitialized register types (Chapter 7). The third and fourth conditions are not

needed for correctness, but only for execution speed. The third condition ensures that LCO is not lost. The

fourth condition speeds up the chat_parser benchmark by 1% and was added after code inspection

discovered cases where the use of uninitializcd registers slows down execution,

5.42. Head unraveling

This transformation repeats the head unraveling transformation (Chaptcr 3) with the information

gained from dataflow analysis. This incrcascs the opportunities for determinism extraction. For example,
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bcfore analysis the clause:

a (X X, X).

is transformed to the following kcrnel Prolog by making the head unifications explicit (i.e. "unraveling"

the hcad unifications):

a(X,Y,Z) X-Y, X-Z.

If analysis derives that X is unbound and both Y and Z are nonvaniable, then the above expansion hides the

• determinism by twicc unifying an unbound variable with a nonvariablc. Unraveling the head unifications

again after analysis results in:

a(XY,,Z) Y-Z, X-Y.

In this version, the nonvariables Y and Z are unified together, better exposing the deterministic check that

is done, and the unbound variable X is only unified once.

*- 6. Determinism transformation

This section groups four transformations that expose the determinism inherent in a predicate. The

purpose of the first three transformations is to make the determinism in the predicate easily visible, so that

the fourth transformation, deteminism extraction, is as successful as possible in generating case state-

ments. The following transformations are done in order.

(i) Head-body segmentation. By separating the heads of clauses from the clause bodies, this reduces

the code expansion caused by type enrichment and determinism extraction.

(2) Type enrichment. This adds types to predicates for which global analysis is not able to determine

the type. The compiler creates different versions of the predicate assuming different input types.

This increases code size, but improves performance since often a predicate is deterministic at run-

time even though this could not be detected at compilc-time.

(3) Goal reordering. This reorders goals in a clause to expose more determinism. Tests (such as arith-

metic relations) are moved to the left and predicates guaranteed to succeed (such as unifications with

uninitialized variables) are moved to thc right.
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(4) Determinism extraction with test sets. This transformation converts the predicate into a nested

case statement that makes its determinism explicit, so that a suaightforward compilation to BAM

code is possible.

6.1. Head-body segmentation

This transformation reduces the code expansion resulting from enrichment and determinism extrac-

tion. A predicate is split into a new predicate and a set of clause bodies. The new predicate contains only

the goals of the original predicate that are useful for determinism extraction, i.e. all explicit unifications and

tests (including type checking and arithmetic comparisons, see Table 4.11) in each clause starting from the

head up to the first goal that is not in this category. The rest of the clause bodies are separated from the

predicate. This is done to avoid code duplication in determinism extraction, since the same clause may

occur in several leaves of the decision tree.

For example, the predicate:

p(AB) :-
var(A), p(A), q(AC), t(CD), u(D.B)

; A-b, r(A), s(A)

is transformed into:

p(A,B)
var(A). '$dl'(A,B)
A-b, '$d2 (A)

$dl'I (AB) :- p(A), q(AC). t(CD), u(D.B).

$d2' (A) :- r(A). a(A).

The new predicate consists only of those parts of the original predicate that are useful for extracting deter-

minism. The determinism extraction is free to create a decision tree from the new predicate without worry-

ing about duplicating thc clause bodies at the leaves of the trec. The separated clause bodies arc compiled

once only, and the BAM transformation stagc (Chapter 6) mcrges them with the decision tr=, thus creating

a decision graph.
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The decision exactly where to split the clause bodies depends on several factors. All goals in the

body are classified into two kinds: goals that arc useful for extracting determinism (called "tests"). and

other goals. Then the split follows these rules: (1) Only those tests all of whose variables are in the head

becomc pan of the new predicate. (2) If the length of the clause body is less than a given threshold, then

0 all of it becomes part of the new predicate.

Head-body segmentation interacts with type propagation. It often occurs that a clause body is called

from several leaves in the decision tree with different types. In that case, it is compiled with a type that is

the intersection of the types of the entry points. A complication arises when one of the leaves considers a

variable to be uninitialized, and another leaf does not. In that case, the first leaf jumps to a piece of code to

initialize the variable, and only afterwards jumps to the clause body.
0

6.2. Type enrichment

By looking at the type or the value of one or more arguments it is possible to reduce the set of

clauses that have to be tried. Often the dataflow analysis is able to derive sufficiently strong types so that a

good selection can be done, i.e. a deterministic predicate can be compiled efficiently. However, if the

types given for the predicate are weak then a source transformation is done to enrich them. The enrich-

ment consists of adding a test to check at run-timr whether an argument is a variable or a nonvariable, and

to branch to different copies of the predicate in each case.

The number of arguments that arc enriched is given by the argument S of the compiler option

select_limit (S). Define a good predicate argument as one that is an argument of a unification not

known to succeed always, i.e. in the unification neither argument is known to be unbound. An argument is

known to be of a given type if the type is implied by the type formula. Whether or not enrichment is done

is based on the following heuristic:

Enrichment Heuristic 1: If the number of good arguments known to be nonvariable is less
than the selection limit S. then choose the lowest numbercd good argument that is not known
to be nonvariablc. Otherwise choose only the first argument, if it is a good argument and it is
not known to be nonvariablc.

This heuristic is applied recursively on enriched predicates. The default selection limit is always SI.

This default is justified gOven that (I) a selection limit S=l already generalizes the first argument selection
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of the WAM, and (2) compilation time and object code size increase rapidly with the selection limit. Even

with S=i. the source transformation occasionally results in some duplicate code being generated. This is

removed by the BAM transformation stage. When S=1 the heuristic is simpler

Enrichment Heuristic 2: If there exist no good arguments known to be nonvariablc, then
choose the lowest numbered good argument that is not known to be nonvariabic. Otherwise
choose the first argument, if it is a good argument and it is not known to be nonvariabic.

This heuristic generalizes the first-argument selection of the WAM, i.e. it always does at least a first argu-

ment selection, but depending on the types that the predicate has (often derived from dataflow analysis) and

the predicate itself (what kinds of head unifications it does), the amount of selection can be vastly greater.

The heuristic may seem complex, but it is a natural way to make a predicate deterministic.

To show how enrichment works, consider the following predicate without type declarations:

a (a) .
a (b) .

It is transformed into:

a(A) va( r(A), A) . % If A is unbound.
a(A) nonvar(A). a_n(A). % If A is nonvariable.

a v(a). a n(a).
a v(b). a-nib).

The predicate a/1 has been enriched with an unbound type (in av /1) and with a nonvanable type (in

a_n / 1). As another example, consider the definition without any type declarations:

member(X, [Xl_l).

member(X. [LI). S

In this case the heuristic picks the second argument, since the first one does no useful unifications. After

enrichment, the predicate becomes:

member(X, L - var(L), member v(X, L).
member(X. L) nonvar(L), member n(X, L).

member_v(...) (same as original definition)

member n(... :- (same as original definition)

The two tests var (L) and nonvar (L) determine which of the two dummy predicates to execute.

member_v/2 or member n/2, and arc compiled into a single conditional branch. This is a
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consequence of the fact that the two tests are mutually exclusive, i.e. if one succeeds then the other fails

and vice versa. Both member_v/2 and member n/2 have the same definition as the original predi-

catc, but they have different types for the second argument. The predicate member v/2 is compiled

assuming the second argument is a variable. The predicate membern/2 is compiled assuming the

second argument is a nonvariable. Both member v/2 and membern/2 are also targets of the factor-

ing transformation (section 4).

Type enrichment can introduce a significant increase in code size if it is not handled carefully. In

practice, the code size is kept small because: (i) the added types result in significantly smaller code for

clause selection in each of the two dummy predicates, (2) before doing enrichment, head-body segmenta-

-ion separates clause heads from the bodies, so that long clause bodies are not duplicated, and (3) the BAM

transformation stage (Chapter 6) removes any remaining duplicate code. In a sense, the definitions are first

"loosened up" by head-body segmentation and type enrichment to allow more optimization, and then later

"tightened up."

6-3. Goal reordering

This transformation reorders goals in a clause to increase determinism and to reduce the number of

superfluous unifications that are done. Goals that are useful in determinism extraction are put as early as

possible, and goals that are certain to succeed (such as unifications with uninitialized variables) are put

later.

The goals in a clause are classified in four categories: tests (Table 4.11), unifications with unbound

variables, unifications with uninitialized variables, and other goals. The goals are reordered so that tests

are first (for deterministic selection), followed by unifications with unbound variables (may be affected by

aliasing). unifications with uninitialized variables (unaffected by aliasing, so they can safely be put last),

and the other goals. The reordering takes into account the fact that unification is commutative, i.e. that

unification goals can be permuted in any way without changing the semantics. Some reorderings are beuer

than others because aliasing can worsen the type formula. e.g. if X is unbound (var (X)) then after per-

forming the unification Y-z it may not be unbound any more, if it is aliased to Y or Z. The rcordcrng is
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constrained so that aliasing does not change the operational semantics.

For example, consider a predicate that has an uninitialized argument: 0

mode((a(A,B.C) :- uninit(C))) .

a(X, Y. Z) :- Z-XIL), X<Y ...

The transformation knows that the unification Z- fX I L] does not instantiate X or L because Z is unbound

and unaliased. Thercfore the unification is moved back:

a(X. Y, Z) :-X<Y. Z-[XIL..

This has two advantages: (1) the test X<Y is brought forward so that it can be used by determinism extac-

tion, and (2) the upification Z= [X I L ] is not done if the test x<Y fails.

This transformation compensates for the popular programming style which puts all unifications in the

head and all tests in the body, e.g. people prefer to write:

a([XlLI. [XIMI} :- var(M ..

instead of:

a([XILI, Z) :-var(X), Z-[XIM].

The first version does not imply anything about the instantiation pattern of the arguments, whereas the

transformed version does.

6.4. Determinism extraction with test sets

The majority of predicates wriuen by human programmers are intended to be executed in a deter-

ministic way. These predicates are in effect case statements, yet they are too often compiled in an

inefficient manner, by means of shallow backtracking (i.e. saving the machine state, unification with the

clause heads, and repeated failure and state restoration). This section describes the general technique used

in the compiler to convert shallow backtracking into conditional branching.
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Figure 4.10 - Some examples of test sets

6.4.1. Definitions

Predicates arc compiled into code which is as deterministic as possible through the concipt of the

test set. Two definitions are u•eful:

Definition ST: A goal G is a simple test with respect to the kernel Prolog predicate P and thc
type formula F if it satisfies the following conditions:

* G usces only variables that occur in the head of P.

o The implementation of G does not changc any state in the exe.ution model, i.e. G
does not cause side-effects (10 or database operations), G does not create choice points.
and G does not bind any variables.

* G does not always succeed

Definition TS: A set of goals is a test set with respect to the kernel Prolog predicate P and the
type formula F if it satisfies the following conditions:

"* Each goal in the set is a simple test according to definition ST.

"* With a given set of variable values. at most one goal in the set can succeed.

"* A multi-way branch in which eachdestination corresponds to the success of one of the
goals in the set can be implemented in the target architecture.

The tests in the set need not actually be present in the definition of P. Whether or not a given set of goals is

a test set depends on the architecture and the predicate P.
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6.4.2. Some examples

Most conditional branches in an architecture correspond to a test set. For example, a branch-if-less-

than instruction corresponds to the test set (A<B, .AŽB) . More complex conditions such as an n-way

branch implemented by hashing can also be represented as test sets. Figue 4.10 shows some examples of

test sets. The second and third examples correspond to WAM instructions.

To illustrate thc use of test sets, consider the predicate:

max(A, B, C) :-AB, C-B.
max(A, B, C) :-A2B, C-A.

which is one way to calculate the maximum of A and B. It is compiled as:

max(A. B, C) :- if A>B then C-A
else if A<B then C-B
else (C-B or C-A)

(The Prolog notation is simplified for readability.) The predicate is executed completely deterministically if

A>B or A<B. a choice point is created only when A-B. The choice point maintains the operational

semantics: since both clauses of the original predicate succeed when A-B, thre are two identical solu-

tions.

type testset = testset(metsname. testsetident, set of goal);

function dctcrminism(D : disjunction;/H : goal; F : formula; Previous set of testset) : disjunction;
var TS : tcstsct;

Ts,, : set of testset 0
begin

if length(D) 5 I then return D;
TSu, := findjestses(D. H. F. Previous);
if TS., =0 then return D;
TS := pick_testset(TS,,,);
return codetestsct(TS. D. H. F, Previous) 0

end;

Figure 4.11 - The determinism extraction algorithm

0
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function find_tcstsets(D : disjunction. H : goal. F : formula; Previous set of testset) set of testset;
var TS : testset;

TSseI set of testsct,
i , j :integer

begin rn At this point D = (C ; ... ;C)where D has n choices /
TS.., =0;
for i I to n do begin

/* C =(G i ..... Gi.) where Ci has ni goals /
for j := I to n, do

if Gii = I" then exh inner loop
else for all testscts TS from table do begin

1' TS = testset(Name jdem, Tests) from Table 4.11 0/
if TS e Previous and vars(Gii) c vars(H) and bindset(G,. F) 0 then

if 3 TE Tests : (Ge, implies T and not(F implies T)) then
TS., := TS., u ITS

* end
end;
return TSs,,

end;

Figure 4.12- Finding all test sets in a predicate

function pickjtestset(TS,,, :set of testse0 : testset;
var 75 : testseu;
begin

pick TSE TS,A, such that
V U e TS,, : goodness(TS) ' goodness(U); r* From Equation (G) 1

return TS
end;

Figure 4.13 -Picking the best test set

6A.3. The algorithm

Given a predicate, the compiler proceeds by first finding all test sets that contain tests that are

implied by goals in the predicate. This depends on the type formula that is known for the predicate; for

example, the unification X-a is only a test if X is nonvariablc, i.e. if the type formula implies

nonvar (X). Then a "goodness" measure is calculated for each test set, and the test set with the largest

goodness is used first. The goodness measure is calculated heuristically- in the current implementation

each test set is weighted by an architecturc-depeant goodness (which depends on how efficienty it is
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function codejtestsct(TS : testsct; D : disjunction; H goal; F formula; Previous set of testset) disjunction; .
var T : goal;

Choices : disjunction-
begin

Choices [];
/r At this point TS = tesLsct(Name. Ideni . Tests) /
for all T E Tests do begin 0

D,,, =subsume(T, D);
D,,,,: deterrninism(D,,,, .H, updateformula(T. F), Previous u ITS]);
append ' $test' (T, D,,) to Choices;

D := subsume(noi(T), D)
end;
D := determinism(D, H. F, Previous u (TS)); 0
append 'Selse' (D) toChoices;
return ' Scase" (Name ,ident. Choices)

end;

Figure 4.14 - Converting a disjunction into a case statement

implemented in the architecture) and by the number of possible outcomes (e.g. hashing with a large number

of cases is considered better than a two-way branch). The predicate is convetned into a case statement

using the best test set. The algorithm is called recursively for each arm of the case statement to build a

decision tree. This tree is collapsed into a graph by the BAM transformation stage.

Figures 4.11 through 4.J4 give a pseudocode definition of this algorithm. The figures define the

function determinism(D, H, F, Previous) that performs the determinism extraction. Given a predicate 0

written as a head If and a disjunction D, along with the type formula F that is true for that predicate, the

function finds as many test sets as possible in the disjunction and converts them into case statements. It

returns a new disjunction that contains these case statements. The parameter Previous is used to avoid S

infinite recursion. It contains all test sets that have already been used to make sure each test set is only

used once.

The function findjestsets(D. H, F. Previous) returns a list of all test sets in the disjunction (Figure

4.12). It picks a test set if there is a goal in the predicate which implies a test in the test set. It limits the

goals to those that do not bind any variables (bindset(Gq. F) = 0) and those that use only variables that

ocwur in the head (vars(G,,)c vars(ll)). The function pickjtcstseT(JS) returns the test set with the

greatest measure of goodness. aw given by Equation (G) (Figure 4.13). The function code jevss7TS. D,

• • • m m m
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II. F, Previous) converts the disjunction D into a case statement when given a test set TS (Figure 4.14).0
It uses the functions subsumc(F. F 1) and updateforrnula(F, F 1), which are defined in section 3.

Table 4.11 -- Test sets

Name Example Test Example BAM translation
* equal X==Y equal (X, Y, Lbl)

(X or Y is simple at run-time)

equal(atomicA) X==A equa i (X, A, Lbl)
(A is an atom)

equal(structure.F/N) 'Sname arity" (X,F,N) equal([X],F/N,Lbl)
(F/N is name/anty)

hash(atomic) X-A (A is atomic) hash (tatm, X, N, Lbl)

hash(structure) X=S (S is a structure) hash (tstr, X, N, Lbl)
comparison(ClassKind) X<Y jump (Its, X, Y, Lbl)
(Class E (eq, Its, gtsi)
(Kind E (arith.unify, stand))

Type var(X) test(eq,tvar,X,Lbl)
(Type E AlITypes)
sw'tch(Typc) atom (X) switch(tatm,X,L1,L2,L3)
(Type E TagTypes - (var))

Table 4.11 lists the test sets currently recognized by the compiler. This includes unification goals, all

type checking predicates, and all arithmetic comparisons. For each test set it gives the name, a representa-

tive test in the test set (only one is given, although usually there are several others), and the translation of

that test into a conditional branch of the BAM instruction set. For the test sets hash(atomic) and

hash(structure) the BAM code includes a hash table (not shown) in addition to the hash instruction. The

following definitions simplify the table:

TagTypes = (var, atom, structure, cons, negative, nonncgativc, float), i.e. all types that
correspr'id to one tag in the VLSI-BAM architecture.

AllTypes = TagTypes u (atomic, integer, simple, compound), i.e. it includes types that
correspond to more than one tag.

The goodness measure for a test set in a predicate is calculated using the following rule:

Goodness = 1000D + G (G)

where D is the number of directions of the test set that occur in the pmdicatc and G is the raw goodness

measure of the test set. This rule ensures that the number of useful directions in thc testsel is most impor-

tant. The raw goodness is used only when the number of directions is the same. Table 4.12 gives the raw

goodness of all test sets in the VLSI.BAM architccturc (341, with a brief justification of the ranking. Thc
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Table 4.12 - Raw goodness measure of test sets in the VLSI-BAM

Test set Rank Comments

switch(cons) 131 Switch is best because it is fast and it is a three-way branch. so it
switch(structure) gives the most information. Switch of compound terms is beuer

than other switches because it makes traversing a recursive term
(like a list or a tree) fast.

switch(negativc) 130 Switch of atomic terms is worse because it penalizes the case of
switch(nonnegative) traversing a recursive term.
switch(atom)
switch(intcger) 129 Switch of integer is worse because the VLSI-BAM has separate

negative and nonnegative (tpos and tneg) tags, requiring two
branches..

var 120 These test sets are types that correspond directly to tags, and there
atom exist fast two-way branches on tags.
cons
structure
negative
nonnegative

equal 85 This test set requires two instrucuons--a compare and branch, and
also possibly loading its arguments into registers.

equal(atomicj 80 These test sets each require two instructions-a compare and
comparison(_,-) branch.
integer 79 These test sets are types that each correspond to two tags, so they
atomic need two tag checks.
compound _

equal(structurej 60 Equality comparison of a structure's functor & arity needs a
memory reference.

simple 50. This test set corresponds to a type that needs five tag checks (four
without floating point).

hash(atomic) 41 Hashing is the slowest because it needs to calculate the hash ad-
dress.

hash(structure) 40 Hashing on a structure is slighdy slower than hashing on an atomic
term because a memory load is needed to access the main functor
of the structure, whereas the atomic term is directly available in
the register.

value of the rank is not important; only the relative order is important. Architectures rank the test sets

according to how efficiently they are implemented in the architecture. To compile for a different architec-

ture, only the ranking is changed in the compiler. The ranking is modified for other processors by a corn-

piler option. For example, for the MIPS processor, the option mips changes the ranking to make the test

set equal (atomic, I I ) best, i.e. a comparison.with the atom [ ] (nil), because it can be implemented

with a single-cycle conditional branch instruction. The MIPS does not have separate tags for negative and

nonnegative integers, so the test sets negative and nonnegativc are no( implemented as efficicntly as on the

VLSI-BAM. These two test set- have lower ranks.

----- l- l l l ,.., ,,,.,i. i w I m mm0



Chapter 5

Compiling Kernel Prolog to BAM Code

1. Introduction

The previous chapters described the conversion of standard Prolog to kernel Prolog and the optimiz-

ing kernel transformations. This chapter shows how the optimized kernel Prolog is compiled to BAM

code. The compilation to BAM is performed in two steps for each predicate. In the first step. the control

instructions that make up the framework of the predicate are compiled by the predicate compiler. This

includes compiling the deterministic case statements into conditional branches and the disjunctions with

choice point instructions.

In the second step, the clauses that make up the body of the predicate are compiled by the clause

compiler. The clause compiler uses two primitives, the goal compiler and the unification compiler, to com-

pile goals and explicit unifications. The clause compiler also does register allocation, entry specialization

(replacing built-in predicates by faster entry points), and performs the write-once transformation (for fast

trailing), and the dereference chain transformation (to maintain consistency with the dataflow analysis).

These transformations are explained in detail in the sections below.

2. The predicate compiler

In the kernel transformation stage (Chapter 4), determinism extraction attempts to convert each

predicate into a series of nested case statements. This is not always successful; sometimes the case stae-

ments still retain disjunctions (OR choices) that could not be converted into deterministic code. The predi-

cate compiler compiles both the case statements and the disjunctions into BAM code. The case statements

are compiled into conditional branches. The disjunctions are compiled into choice point instructions. The

predicate compiler uses two primitives, the determinism compiler and the disjunction compiler, to compile

the predicate's case statemenLt and disjunctions.

0
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2.1. The determinism compiler

S
Compiling a kernel Prolog predicate into dctern.inistic BAM code is done in two steps. First. the

determinism transformation (a kernel Prolog transformation, Chapter 4) converts a kernel Prolog predicate

into a series of nested case statements. Then the determinism compiler compiles the nested case statements

into BAM code. A case statement may contain any test set, and each test set is mapped to a conditional

banch. The test sets and their corresponding conditional branches are given in Table 4.11.

2.2. The disjunction compiler 0

A disjunction (an OR formula) is a list of clauses that encapsulates a choice. The first clause is exe-

cuted the first .uime the disjunction is encountered. The remaining clauses are executed in order on

backuacking--4-ach time backtracking returns to the disjunction the next clause is tried. This is imple-

mented by code which generates choice points. A choice point encapsulates the state of the abstract

machine at the time it is created. Backtracking restores machine state from a choice point to let execution

continue from the point at which the choice point was created.

Creating and restoring machine state in choice points is time-consuming. To minimize the size of the

choice points (and hence the time required to create them), the choice point management instructions in the

BAM are streamlined to perform the least amount of data movemenn. They save only those registers that

are needed in the clauses of the disjunction after the first, and for each clause of the disjunction they restore

only those registers that arc needed in that clause. Argument registers arc restored in the clause itself and

not in the fail. instruction. Therfore the size of the choice point does not have to be stored in the choice

point and decoded in the fail instruction. A disadvantage is a slightly larger code size.t Consider the

following kernel Prolog for a predicate P with n clauses:

Head ( C ; C 2  .-. ;C-: fail).

A single choice point is created for each invocation of P. The set of registers saved in the choice point is

the set of all head arguments that are used in clauses after the first, i.e. C 2 through Ca. Arguments that 5

t This is lss of a problem in dih VLSI-BAM sinc die muniction rardcrtr mages pain of single-word lolds inso

doublc-word kiads.
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occur only in clause C, do not have to be stored in the choice point. The set of registers that is restored for

each clause is the set of arguments used in that clause.

Before creating the choice point, the compiler dereferences those arguments that it can deduce will

be dercfcrcnccd later. This avoids dereferencing the same argument more than once. The set of arguments

to be dereferenccd is derived by checking the type formula corresponding to each goal in the body of the

predicate's definition, and noting whether its arguments have to be dereferenced. For example, arithmetic

operations and relational tests are goals that require their arguments to be dereferenced.

To illustrate the compilation scheme, consider the following predicate:

p(AB,C,D) a a(A)
c (C)

-d (D)

fail

It is compiled as:

procedure (p/4 .
choice(!1/3,[2,3.l(p/4,2)). ; Save registers r(2) and r(3).
jump (a/1).

label (1 (p/ 4 , 2)).
choice(2/3,[2,no).0(p/4.3)). ; Restore only register r(2).
move (r (2) ; r (0)).
jump(c/l).

label (I (p/4, 3)).
choice(3/3,[no.3].fail). ; Resto:e only register r(3).
move (r(3), r(O)).
jump(d/l).

The choice instructions do all the choice point manipulation: choice (1/3, ... ) creates the choicc

point, choice (2/3,.... ) modifies the address to return to on backtracking, and

choice (3/3, .. .) removes the choice point. Register r (0) is not saved in the choice point because

it is not needed in clauses beyond the first. The second and third clauses restore only the registers they

need. Register r (1) is not saved because it is not needed at all.

Each choice instruction contains a list of the registers that it used. The length of the list is the same

for all choice instructions in a predicatc. For choiccs after the first, the atom no is put in the positions of

registers that do not have to be restored. For examnplc, the list (0, no, 5] means that registers r (0)

and r (5) are restored from the first and third locations in the choice point, and the second location is not
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accessed.

In this example a further optimization can be done by merging the move instructions with the choice

instructions, i.e.:

choice (3/3. [no.31 ,fail).

move (z (3; , r (0)).

becomcs:

choice (3/3. [no.O],fa1).

This is possible because the value loaded in a register is determined by its position in the list, not by its

number, and because registcr r (3) is only used to load r (0).

40
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3. The clause compiler

The clause compiler converts a clause from kernel Prolog form (with type annotations) to BAv

code. The structure of the clause compiler is given in. Figure 5.1. After compiling the goals in the body

there arc two intermediate results: (1) BAM code in which variables have not yet been allocated to registers

(skeleton code) and (2) a variable occurrence list (the varliso), that contains all unallocated variables in the

skeleton code. The final BAM code is obtained by passing the varlist to the register allocator.

• Each goal in the clause body is compiled in four steps. First, three transformations are performed on

the goal: entry specialization, the write-once transformation, and the dereference chain transformation.

Then the goal is compiled into BAM code by one of two routines, the unification compiler or the goal com-
I

* piler, dcpendinj on whether thc goal is a unification or not.

These arc d,-c important blocks in the clause compiler

(I) The goal compiler. Its main task is to handle argument passing. Because of the interaction between

the different kinds of unbound variables, initialized and uninitalized, this results in a case analysis.

In addition, the goal compiler compiles in-line some built-in predicates and the dummy predicates

that were created in the transformation to kernel Prolog.

(2) The unification compiler. Its task is, given a type, to compile an explicit unification into the sim-

plest possible code.

(3) The register allocator. Its task is to allocate variables to registers in such a way that the number of

superfluous move instructions is minimized. It uses a data structure called the varlist which is gen-

erated by the clause body compiler.

(4) Entry specialization. This attempts to replace each goal in the clause by a faster entry point,

depending on the types known at the call.

(5) Write-once transformation. This transformation is part of a technique for reducing the overhead of

trailing.

(6) Dereference chain transformation. This transformation is necessary to keep the dataflow analysis

and the clause compiler consistent.
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The following sections givc morc details about these each of these blocks. First. an example of a clause

compilation is given, with emphasis on the skeleton code, the varlist, and a specification of the register

allocator. This is followed by discussions of the goal compilcr, the uniflcation compiler, entry spocializa-

tion, the write-once transformation, and the dereference chain transformation.

3.1. Overview of clause compilation and register allocation 0

This section gives an example of how a clause is compiled. Consider the following clause with no types:

a(AB) :- b(AC), d(C,B).

Compilation of this clause proceeds in three steps: First the kernel Prolog is compiled to BAM code and a

variable occurrehce list, or varlisi. In this example, most of the work in this step is done in the goal com-

piler. The resulting BAM code is referred to as skdeleon code since variables have not yet been allocated to

registers. The varlist is derived from the skeleton code and contains the list of variables and registers in it.

Second, the register allocator uses the varlist to allocate variables to registers. Third, after all predicates

and all clauses are compiled, the BAM optimization stage improves the code (Chapter 6). The skeleton

code for this clause is:

allocate(X). ; Create an environment (its size is still unknown).
move(r(O),A). ; Load the head arguments into variables A and B.
move (r (1) ,B) . 0

move(tvar-r(h),C). ; Create an unbound variable and put it in C and D.
move(tvar-r(h),D). ; C may exist beyond a call, D exists between calls.
pragma (push (variable)).
push (D. r (h), 1) .
move(A,r(O)). ; Load the parameters of the first call.
move (D, r (1)).
call(b/2).
praqma(tag(Ctvar)). ; C has an extra link, with a tvar tag.
move([CJr(O)). ; Extra indirection to remove the extra link.
move (B, r (1)
call (d/2).
deallocate(X). : No last call optimization in the skeleton code.
return.

The varlist for this clause is:

• • w l I0
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(prefr(0IA. : Corresponds to move(r(0),A).
pref.r(l),B.

C,pref,C,D,D, : Corresponds to the unbound variable in C and 0.
pref, A. r (0) .
prefD, r(1).
fence, ; Corresponds to call(b/2).

C, r (0),
pref,B, r(1),
fence] ; Corresponds to call(d/2).

3.1.1. Construction of the varlist

The varlist is constructed to satisfy these conditions:

(1) The only contents of the varlist are unbound variables, temporary registers, and the atoms fence

and pref.
0

(2) The order of variable occurrences is the same in the skeleton code and the varlist.

(3). The atom fence is inserted as a marker at each point where temporay variables do not survive.

This corresponds to each call (..) instruction in the skeleton code.

(4) Two variables that are preferably allocated to the same register are preceded by the atom pref and

called a pref pair. A pref pair is created when allocating the variables to the same rgis allows an

* instruction to be removed. For example, the move (A, r (0)) instruction can be removed if the

variable A is allocated to register r(0).

(5) A variable occurs exactly once in the varlist if and only if it occurs exactly once in the skeleton code.

* Such a variablc is called a void variable. An instruction containing a void variable may be removed.

(6) A variable occurs more than once in the vadist if and only if it occurs more than once in the dkelton

code.

3.1.2. The register allocator

"The register allocator assigns a register to each variable in the varlist such that there are no conflicts.

* i.e. a single register never holds two values at the same time. The allocator also calculates the size of the

environment (the number of permanent registers) for the allocate and deallocate instruntios.

The algorithm is defined in Figure 5.2. It assumes that variables arwe epresented as logical variables, i.e.
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procedure registerallocator(VL : varlist);
var V11,.d " ,.m, , Vpr,, •, set of variablc;:
begin

1.o., := ( variable Y I Y occurs exactly once in VL);
V X E V.,,d do Allocate each X to r (void) ;
VWr, := ( variable Y IThc sequence [Y...., fence .... YJ occurs in VL 1;
V XE V',•,. do Allocate each X to a different p (M:)
Environment size := number of elements in Vp,,.;
V,,,• ( variable Y I Y occurs more than once in VL }:
1,,r := prcfcr(VL );
while V,,,, * 0 do begin

while 3X e V,,! : X is allocatable to r (I) without conflict do begin
Allocate X to its preferred register r (I)"

Vf : vp,,f - V );V,.-W: V,.W. - MX ;

Vp,,: prefcr(VL)
end;
if 3 X E Ve,.p then begin

Allocate X to the lowest r (I) possible without conflict;
vp,,f =v,,f - Mx);
V,,aa V,,,,: - (X I;
Vp,,! prcfer(VL)

end
end

end;

function prefer(VL : varlist) : set of variable;
begin

return ( variable'Y I The sequence [ pref, Y. _] or [ pref, _. YJ occurs in VLJ
end;

Figure 5.2 - The register allocator

that allocating a variable to a register binds that variable in all sets that contain it It assumes that there are

an infinite number of temporary and permanent registers. It uses the following correspondence between

variable lifetimes and registers:

(!) A variable that occurs exactly once is allocated to r (void).

(2) A variable occurring on both sides of a fence marker (it crosses a fence) is allocated to a per- 0

manent register p (m) (a location in the environment).

(3) A variable that does not cross a fence and that occurs more than once is allocated to a temporary

registe rr (I).

The algorithm is independent of the write-oncc transformation and the derefercncc chain transformation.
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This is possible because the clause compiler is careful to feed the allocator a varlist that takes the two

transformations into account.

In the example of the previous section, the allocator assigns the following values to the variables:

A -r (0)

B -p(0)
C - pO)
D = r(1)
X 2

Since both B and C cross a fence, they are iliocated to permanent registers. Both A and D are allocated to

their preferred registers. The number of permanent variables. X, is 2.

3.1.3. The final-result

The final BAM code output by the compiler after all transformations and optimizations (including the

BAM transformations of chapter 6) is:

allocate(2). ; Allocate space for two permanent variables.
move (r(), p(O).
move(tvar-r(h),r(l)). ; Create an unbound variable and put it in r(1) and p(l).
move (r (1) ,p(l) )
pragma (push (variable)).
push(r(1),r(h), 1)'.
call (b/2}.

pragma (tag (p (1). tvar)).
move([p(1)lr(O)). ; Indirection due to dereference chain transformation.

move (p (0) , r (1)
deallocate (2).

jump(d/2). ; Last call optimization converts 'call' to 'jump'.

3.2. The goal compiler

Given a goal and type information about the goal, this module sets up the arguments to call the goal,

does the call, and sets up the return arguments. The main task of the goal compiler is to handle the com-

plexities that arise when supporting combinations of uninitialized and initialized parameters. The follow-

ing situations arc also handled:

(I) Duplicate variables. An uninitialized variable that occurs twice in a goal must be initialized before

calling the goal.
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(2) Uninitialized register variables. Passing arguments as uninitialized register variables requirns

some care. These variables are not passed into a predicate, but are outputs returned in registers.

(3) Dummy predicates. Several compiler transformations create new predicates as part of the tansfor-

mation. These predicates are only called once, so they are compiled in-line.

(4) Built-in predicates. Some built-in predicates arc translated into in-line code (Table 5.5). S

function compilcgoal(G : goal; F : formula; Vf : set) : return (Code list; F.., formula; Vf..,, set);
var .Vjj, set of variable, 5

inicode, Precode , Call, Posicode : list of instruction;
A : term,
gi,r, : (ini, mem, reg);
i integer;

begin
/" Initialize all uninitialized variables that are duplicated "1
V,,,,u, := { X I F implies (uninitmem(X) or uninit.reg(X)));
V.,,, := ((vars(G ) - V# ) u V,,,,,) n dups(G); /* Table 4.6 */
Initcode := list of (VX E Vj,,, : Code to initialize the variable X);

/* Pass arguments to the goal and clean up afterwards "1
Precode :i.
Postcode :];
for i := I to arity(G) do begin

A (argument i of goal G);
g, givenjflag(A , F, V,#); /* Table 5.1 '1
r, :=require..flag(A , G); /* Table 5.2 */
Append precodel gi * r, ] to Precode; /* Table 5.3 *1
Append postcodel gi, r, I to Postcode r* Table 5.4 A/

end;

/* Call the goal */
if(G can be expanded in-line) then

Call := (in-line expansion of G) /r Table 5.5 1
else if (G is a dummy predicate) then

Call := (in-line compilation of G's definition)
else if (G does not alter temporary registers) then

Call := (a simple_cal l instruction for G) r Table 3.7 /
else

Call :=(a call instruction for G);
Code := append(Initcode , Precode , Call, Posicode)

end;
Figurc 5.3 - The goal compiler

The function compilc.goal(G. F, V'f ) defines the goal compiler (Figure 5.3). Its inputs arc the goal (G), a

type formula (F). and the set of variables that have a value on input (V1 ). Its outputs arc a list of BAM

instructions (Code), the type formula true on output (F.,), and the set of variablcs that have a value on

lllm nlllllnl l in i i rN • - -
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output (v,).

Each goal has three type formulas associated with it: a Require type, a Before type, and an After type.

These types are optionally given by programmer input and arc supplemented by dataflow analysis. The

compiler maintains a table of these types for all predicatk s including buih-ins and internals. The Require

type gives the types that the arguments being passed to the goal must have, i.e. the goal compiler is

required to make thcm true in all cases. The Before type gives the types that arc true before the call. The

After type gives the types that arc true after.thc call returns. No special action is needed by the goal com-

piler to ensure the validity of the Before and After types.

Comipiling a goal is made more complex because the kind of argument needed by the goal may not

be the same as llhe one that is given to it. The goal's Given type (which is valid before the goal and given

by F in Figure 5.3) must be reconciled with the goal's Require type. The most common Require and

Given types are the three varieties of unbound variables: uninitialized memory and register variables and

initialized variables. This requires a case analysis" with 3 x 3 cases for each argument of the goal to prop-

0 erly match the Require and Given types.

Table 5.1 - Calculating the Given flag of an argument

Condition on argument A 9i
nonvar(A) ini
var(A ) A (F implies uninitmem(A)) mem
var(A ) A ((A e Vf ) v (F implies uninitrcg(A ))) req
var(A ) A (A e V1,f) ini

Table 5.2 - Calculating the Require flag of an argument

Condition on argument A ri
requirc(G ) implies uninit~mem(A) mere
require(G) implies uninitreg(A) reg
otherwise ini



121

Table 5.3 - Calculatng the precode from the flags

g, r, precodel g, . r, I

reg reg I
mem reg [I
ini reg I]
rea mem (move(tvar-r(h),B),adda(r(h),l,r(h)))
mem mem I I
ini mem (move(tvar'r(h),B),adda(r(h),lr(h))]
reg ini fmove(tvar r(h),B),push(B,r(h),1)J
mer ini [move(A,(A]),move(A,B)]
ini ii []

Table 5.4 - Calculating the postcode from the flags

9p r ostcodel g, . rJ
reg reg [I
mere reg [mnove (B, [A) ]
ini reg unify(A,B)
reg mere [move(B,A)]
mem mere [I
ini mem unify(A, B)
reg ini [move(B,A)]
mer ni [
ini ir n.

Require and Given flags r, and gi (with values in fini, mem, reg)) are associated with each goal

argument for the Require and Given types. Tables 5.1 and 5.2 define how the Require and Given flags are

calculated. The function require(G) in Table 5.2 is a defined predicate in the compiler that returns the

Require type for any goal. It knows all about built-in and internal predicates and the results of dataflow

analysis.

Duplicate arguments (e.g. A in the call p(A. A)) are treated specially. An argument that is duplicate

cannot be uninitialized-it occurs in more than one place, so it is not unaliased any more. The goal com-

piler initializes these arguments before doing the case analysis.

Table 5.3 gives the precode. i.e. the code that is generated before the call to set up, and Table 5.4

gives the postcode, i.e. the code that cleans up after the call. To enforce the Require type, in seven of the 0

nine cases a different argument B is passed to the call instead of the goal's original argument A. For

example, if the Given flag is mem and the Require type is reg. then the compiler must create a new vari-

able B of type uninit rcg(B) to pass to the goal. After the goal returns, the original argument A and the

returned argument 8 are unified together. The new variable B is created for all comoinations of Given and

0
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Require flags except (reg , reg) and (mem, mem). In these two cases no precode or post.ode is needed.

To simplify the prcsentation, Figure 5.3 only does pan of what the algorithm implemented in the

compiler does. The definition of compile-goal in the figure only handles Require and Given types that are

all uninitialized variables. The actual algorithm handles any types. The type formula F and the variable

set V,1 arc updated continuously during the cxcCuton of compile goal. A variable occurrence list is calcu-

lated for the register allocator. The actual algorithm handles 12 cases for parameter passing instead of 9-

as an optmization, two varieuies of Given u.niniualized register types are recognized.

Table 5.5 - BAM expansion of internal built-ins

Kernel Prolog BAM instruction

'$cut load' (X) move (r (b) , X)
• $cut7 MX cut MX

'$name_arity' (X,' .',2) test(ne,tlst,X,fail)
' Sname_arity' (X, Na, Ar) equal((X],tatm"(Na/Ar),fail)
'$namearity' (X,Na, 0) equal(X,tatm-Na,fail)

'$test' (X,Types) (a sequence of test instructions)
'$equal' (X•Y) equal (X,Y, fail)
'$add' (A,B,C) add(A,B,C)
'$sub' (A,BC) sub(A,BC)
'Smod' (A,B,C) mod(A,B,C)
'$mul' (A,B,C) mul(A,B,C)
'$div' (A,B,C) div(A,B,C)
'Sand' (A,B,C) and(AB,C)
'Sor' (A, B, C) or(A,B,C)
* Sxor' (A, B, C) xor(A,B,C)
'$sll" (A,B,C) sll(A,B,C)
"$sra" (A,B,C) sra(A,B,C)
'Snot' (A,C) not (A,C)

3.2.1. An example of goal compilation

This section gives a simple example of compilation to show how the goal compiler works in practice.

Consider the following predicate in standard Prolog:

a(X, Y) :- Y is X+1.

This is converted to kcrnel Prolog:

a(X, Y) :-'$add'(X, 1, Y).

To compile the call to ' Sadd# /3 it is necessary to pass parameters in the right way. In particular, it is

necessary to pass the output of the addition into variable Y. The built-in '1Sadd' (A, B, C) ha4 the
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following types associated with it

Require = (deref (A) , deref (B) , uninitreg (C)). 0
Afer = (integer (A), integer (B) , integer (C), rderef (A) , rderef (B) , rderef (C))

From the Require type. the first two arguments X and I of ' $add' /3 must be derefercnced and the third

argument Y must be an uninitialized register. The Given types of X and Y depend on the type formula for

a (X, Y). Assume first that no type is given for a (X, Y). From Tables 5.1 and 5.2, the Given flag for Y

is ini and the Require flag for Y is reg. From Tables 5.3 and 5.4, the precodc in this case is empty and

the postcodc is a call to unify(A ,B) to generate unification code. The compiled BAM code is:

procedure(a/2).
deref(r(O),r(O)). : Dereference X.
add(r(O),l,r(O)). : Perform the addition.
deref(r(1),r(1)). ; Dereference Y.
unify(r(O),r(lbnonvar.?.fail). ; Unify Y with the result of the addition.
return. 0

If a (X, Y) has a type then the code can often be simplified. For example, assume that its type is

(deref (X) , uninitmemx(Y)), i.e. X is dereferenced and Y is an uninitialized memory variable.

Then the Given flag for Y is mere. The compiled BAM code is: 0

procedure (a/2).
add(r(0),l,r O)).1; Perform the addition (X is dereferenced).
pragma (tag(r(l) .tvar)).
move(r(O), Jr( )(). 1 Bind Y to the result of the addition.
return.

3.3. The unification compiler

This section gives an overview of the compilation of unification, the optimizations that are done, and

several examples.

3.3.1. The unification algorithm 0

Given a unification goal and type information about its arguments, this algorithm generates the sim-

plest possible code to implement the unification. In thc general case, the algorithm builds a tree of instruc-

tions. Each node of the trec has three branches--one each for read mode and write mode unificauion, and

one for failure. The algorithm generates dcreferencc instuctions if necessary and trail instructions to undo

,, n Ul I I II I II I I 0
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variable bindings when backtracking. It does other optimizations including optimal write mode unification,

type propagation, and depth limiting.

Write mode unification of a term generates a block of push instructions that builds the term on the

heap. Read mode unification of a term is done sequentially for each of the term's arguments. First it

checks the name and arity of the term. Then the arguments are unified. For arguments that are simple

terms this consists of a single move, equal, or unify instruction. For arguments that are compound

terms the unification algorithm is called recursively.

The function unify(X, Y, F, V,#) defines the unification algorithm (Figure 5.4 and 5.5). Its inputs

are the two terms to be unified (X and Y), the type formula true on input (F). and the set of variables that

have a value on input (Vf ). Its outputs are a list of BAM instructions (Code), the type formula true on

output (F.,,), and the set of variables that have a value on output (V51'.,,).

"Thc algorithm does several tasks that are not shown in the figure since they would unnecessarily

complicate the presentation. The instruction list, the type formula, and the variable set are updated con-

tinuously during the compilation. Before using the value of a variable, it is dereferenced if necessary.

Before binding a value to a variable, it is trailed if necessary. A variable occurrence list (varlist) is calcu-

lated for the register allocator (Figure 5.2).

3.3.2. Optimizations

The actual implementation does four optimizations not shown in Figure 5.4 and 5.5. It does optimal

write mode unification. It keeps track of terms that are ground and recursively dereferenced to avoid com-

piling superfluous write mode unifications and dereferences. To reduce code size, it performs the last argu-

ment optimization and the depth limiting transformation.

3.3.2.1. Optimal write mode unification

The algorithm is modified to build a compound term in write mode with the least number of move

instructions. First the codc for building the main functor with empty sloLs for its arguments is generated.

This is followed by the code for building the arguments and filling in the slo•s with the correct heap offsets.
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function unify(X, Y: term; F : formula; V# : set) return (Code list; F.. • formula; V,.., set);
begin

Code =l;
if (var(X) and vai(Y)) then begin

if (F implies (unbound(X) or unbound(Y))) then
Compile a store instruction

else
Compile a call to a general unification subroutine:

return
end else if (nonvai(X) and nonvar(Y)) then begin

Compile a check that X and Y have the same functor and anty a;
for i := I to a do begin

Append unify(X,. Y,. F. V# ) to Code 0
end;
return

end if (nonvar(X) and var(Y)) then Swap X and Y
elsk if (var(X) and nonvar(Y)) then Do nothing;

if (X E Vt ) then return unifywrite(X, Y, F, V1' );
else begin /* At this point XE V#! / 0

if (F implies nonvar(X)) then return unify_read(X, Y, F, V,1)
else if (F implies var(X)) then return unify_write(X, Y. F, V#l)
else begin

Compile a three-way conditional branch comparing the tags of X and Y;
Call unifyread and unify-wrime to compile the read and write mode branches

end
end

end;

Figure 5.4 - The unification compiler: the main routine

This technique was proposed as an optimization over the WAM by Andrd Mari.n (441. The examples of

unification given later use this technique. The justification of the BAM instructions needed for unification

was done with this technique (Chapter 3).

3-3.2.2. Last argument optimization

This is an important optimization that significandy reduces the code size. It can be performed when-

ever a compound term has a compound term in its last argument. Without this optimization, the tree gen- 6

crated by the algorithm has the same depth as the term that is compiled. For each level in the tree a new

block of write mode code is generated. For lists of n elements this results in 0(n 2 ) move instrucions.

The optimization reduces the code size to 0 (n) by creating only a single write mode block, and letting all 0

depths of the tree jump into it. This optimization was proposed by Mats Carlsson 114). The code for write

S• • mm mmziS
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function unify-writc(X. Y: term; F : formula; V,• set) return (Code list; F., formula; V,1!..: set);
begin

/0 At this point X is an unbound variable '/
Generate a block of instructions to create the term Y on the heap;

* Bind X to this block (i.e. generate code to dcreference X if necessary,
store a pointer to this block in X. and trail X if necessary)

end;

function unify_read(X, Y: term; F : formula; V 1 : set) return (Code : list; F.., formula; V,1**, . set);
begin

b / At this point Y is a nonvariable and F itnplies nonvar(X) 'I
Code :=f l;
Compile a check that X contains a structure of same functor and arity as Y;
fori := I to arity(Y) do begin

Append unify(Xi, Y,, F, V, ) to Code
end

* end;
Figure 5.5 - The unification compiler, read and write mode unification

modc unification of a nested term is replaced by a single jump instruction to the write mode code block of

* the outermost term. An example of unification given below uses this optimization.

3.3.2.3. Type propagation

There are two ways in which propagating type information during the compilation of unification

improves the code. First, during the unification, the algorithm keeps track of the variables that are ground,

uninitialized, and recursively dereferenced. This information is propagated into the arguments of com-

pound terms. The propagation of ground and recursively dereferenced types was added after mcasurc-

ments of the dataflow analyzer showed that these types are numerous.

Second, when a new variable is encountered in a term, then the unification compiler has the choice

whether to create it as an initialized variable or as an uninitialized variable. It is not always best to create

new variables as uninitialized, since this often makes it impossible to apply last call optimization. To solve

this problem it is necessary to look ahead in the clause. The variable is created as uninitialized only if there

is a goal later in the clause with this variable in an argument position that must be uninitialied.



127

3.3.2.4. Depth limiting

Because the unification compiler generates a separate read and write mode branch for each functor in 0

the term that is unified, deeply nested terms rcsult in a code size explosion. Thc last argument optimization

(see above) reduces the code size when the nesting occurs in the iast argument. For other cases, a diffcrcnt

technique is necessary. The unification compiler replaces a deeply nested subterm by a variable, creates S

the subterm with write mode unification and does a general unification with the variable. The depth limit is

set by the compiler option depth_l imit (N), and the dcfault depth is N-2. For example, consider the

following unification where the complicated term z (...) is nested deeply: S

x-3 (t (U . .Z{. . . ))

It is replaced by a sequence of three unifications:

X-s(t(u(...A...))M. B-z(...). A-B

The variable B does not yet have a value, so the unification B-z (...) is executed in write mode. A gen-

eral unification is performed for A-B. Since the size of a write mode unification is linear in the size of the

compound term, this considerably shortens the code for deeply nested terms. Measurements were done to

determine the effect of this trafisformation on execution time. In most cases it is insignificant, e.g. for the

nand benchmark (Chapter 7), a program that contains deeply nested structures, the difference in execution

time between depth limits of two and three is insignificant (i.e. only a few cycles out of several hundred

thousand).

3-3.3. Examples of unification

Consider the following sample clause:

a(A. s(A, [XIX))). .

The WAM code for this clause is (assuming the twc) arguments of the clause arc in registers r (0) and

r (1)):

-- " • • • • • m m
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procedure a/2 the clause has two arguments.
get structure s/2,r(1} ;; unify r(l) with s(A, IXIX)).
unify value r(O) unify the first argument with r(0).
unify variable r(3) load the second argument into r(3).
getlist r(3) unify r(3M with [XIX].
unify variable r(2) load the first argument into r(2)'.
unify value r(2) ;; unify the second argument with r(2).

* proceed return to caller.

Tcmporary values arc stored in regisers r (2) and r (3). Thc execution time of this code averaged

over rcad and write mode is 63 cycles on thc Xenologic X-I processor 185], an implementation of thc PLM

Sarchitecture [28). The BAM code generated for'he same clause is (the pragmas have been Jeff out for clar-

ity):

procedure (a/2).
deref(r(l),r(l)). ;: dereference r(1).
switch(tstr.r(l).l(a/2,3),l(a/2,4),fail). ; three-way branch.

label ( (a12, 3). ;; write mode for s(A, IXIX)).
trail (r(M)). : conditionally push r(l) on trail stack.
move(tstr-h,[r(1)]). ; bind s(A,[XIXI) to second argument.
push(tatm^(s/2),h,1). ; create the term s(A, [XIXJ.
push(r(0),hl).
push (tlst (h+2) .h, I).
pad(l).

label l (a/2, 1). ; common code for last arg. opt.
move(tvar-h,r(2)). ; create the two arguments of (XIXI.
push(r(2) ,h,l).
push (r (2) . h, i-) .
return.

label(l(a/2.4)). ;: read mode for s(A,(XIX]).
equal(jr(1)Jtatm^(s/2),fail).; check functor & arity of s/2.
move([r(l)+1 ,r(3)). ; load first argument into r(3).
deref (r (3), r (3)
deref (r (0), r (0).
unify(r(3),r(0),?.?0fail). ; unify first argument with r(O).
move([r(l)+2],r(O)). ; load second argument into r(0).
deref(r(Ok)r(O)).

switch(tlstr(O)0(a/2.6).l(a/2,°)0fail). ; three-way branch.
label(l(a/2,6)). ;; write mode for [XIX).

trail (r (0)).
move (tlst'h, (r(O) 1).
jump(l(a/2,1)). : jump to common code (last arg. opt.).

label (l (a/2. 7)). ; read mode for [XIXI.

move((r(0)).r(2))
move ([r(0)+l], r(0)).
deref (r (0) . r (0)) .
deref(r(2).r(2)).

unify(r(0),r(2).?.?.fail). unify arguments of [XIX).
return.

Again, thc two arguments of thcclause rc in registcrs r(0) and r (i) and cmporary valucsare sored

infegiitcrS r(2) and r(3). Torducc hecodesie.tc twrite modccodcfix [XIX] jumpsintotf



middle of the code for s (A, [X I X]). With this optimization the code is 29 BAM instructions long (after

translation and instruction reordering, (his is 264 bytes on the VLSI-BAM). The WAM code is only 7

instructions long (17 bytes on the PLM) because each instruction encapsulates a choice. WAM instructions

for unification assume the existence of a read/wntc mode bit in the implemcntation, which collapses the

execution trcc onto itself.

The code size ratio VLSI-BAMIPLM is large for this example. It was hoped during development

that (I) code expansion would be less for other kinds of Prolog code (e.g. calls, parameter passing, back-

tracking), and (2) dataflow analysis would reduce the complexity of unifications. These intuitions have

been borne out (Chapter 7): the static code size in VLSI-BAM bytes measured for large programs is only

three times that bf the PLM, a microcoded WAM with a byte-coded instruction seL

The execution time of the above code on the VLSI-BAM is 25 cycles (measured with a simulator

taking pipeline delays into account and averaged over mad and write mode). This is about 40% of the

cycles needed for the X-I. This time can be estimated by taking the average execution times of BAM

instructions when translated to the VLSI-BAM architecture: unify takes 5 cycles, equal takes 3

cycles, switch, deref. trail., and move from memory take 2 cycles each, push, adda, and all

other move instructions take I cyc;e each, and pad instructions take 0 cycles because they are collapsed

into the pushes. These estimates are only approximately correct because of instruction reordering optimi- 0

zations performed on VLSI-BAM code.

Through programmer annotation or dataflow analysis it is sometimes possible to know the type of an

argument at compile-time. For example, sometimes it is known whether an argument is unbound or bound.

Consider the same sample clause again:

a(A, s(A.[XIXI)).

Assume it is known that the second argument is an uninihalizcd memory variable. This is expressed with

the following type declaration:

:- mode((a(AB):- uninitmem(E))). 0

With this type the clause's code is only 9 BAM instructions long (36 bytes on the VLSI-BAM):
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procedure (a/2)
move(tstr'h,[r(1)]). bind s(A,[XIXI) to second argument.

push(tatm-(s/2),h01). create the term s(A.[XIX]).

push(r(O),h,l).
push(tlst"(h+2),h.,).
pad(1).
move(tvar-h.r(O)). create the two arguments of (XIX].
push(r(Oh.l) .

* push(r(O),h,1) .
return. return to caller.

The execution timc of this example is I I cycles.

3.4. Entry specialization

For each goal in the clause, the clause compiler attempts to replace it with a faster entry point,

depending on the types existing at that point. For example, if it is known that the arguments N and A of the

predicate functor (X, N, A) are atomic then a faster version can be compiled.

Entry specialization is done in both the clause compiler and the datafiow analysis. Doing it in both

places is complementary since the analysis only keeps track of a limited set of types: ground. nonvariable,

uninitialized, and recursively dereferenced. During clause compilation more information is known, for

example, if the goal X<Y occurs in a clause, then afterwards it is known that x<y is cae. Analysis does

not have a representation for this information, but it could be useful for entry specialization.
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atomic (A)?

non

u~ninit()?yes

uninit (B)? S$name < *I' (AB) Uninit (B) ?

no yes~ noye0

name(A,B) '$ name_>_*2'(AB) 'S name > V(AB) "S_name_>_1_*2"(A,B)

Figure 5.6: Example of a modal entry tree for entry specialization

Entry specialization can be done for any predicate whose definition is not in the program. The sys-

tem has implemented this for the built-in predicates, but it can be used by dhe programmer for any library

predicate. For each predicate that has faster entry points, a modal entry declaration is given, along

with type declarations for the fast entry points. These declaration are used in the dataflow analysis and the

clause compiler to replace any call to the predicate with a faster entry poinL For example, here is the

modal entry declaration for the name (A, B) built-in predicate:

:noda 1 entry (name (A. B).
mode (atomic (A) .

mode (uninit (B),
entry(*$ name > 1 *2' (A.B)).
entryV$ name > I I(A.B))

mode (uninit (A).
entry($ name < I'M(AB?.,
mode (uninit (B),

entry('$ name > *2° (A.B)),
entry (name (A.B))

M).

This declaration defines a binary trec. depicted in Figure 5.6. The nodes of the trec are decision points con-

taining a type. if the type is valid then the left subtrce is chosen, otherwise the right subtrec is chosen. Thc

leaves of the tree are the entry points. If none of the types are valid then the lefunost Icaf is chosen, which

l II I0
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usually is the same predicate as the original one. Each of the four fast enuy points also has a type declara-

tion:

mode(CS name > 1' (A.B), (dertf(A),deref(B)), atomic(A),
(list (B) ,ground(B)) ,n.

:-mode('$ name < "1"(AB), (uninit(A),deref(B)), true,
(atomic(A),deref(A),list(B),ground(B)), n).

mode('$ name > *2'(AB), (deref(A),uninit(B)), true,

(atomic (A),list (B) ,ground (B),.rderef (B)). n).

mode('$ name > 1 *2'(A.B), (deref(A},uninit(B)), atomic(A),
(list (B) ,ground (B) , rderef (B)), n).

These declarations arc written in a five-argument form that is more general than a standard type declaration

(Appendix A): it gives the entry types (both Require and Before) and the exit (After) types for the predi-

*q

3.5. The write-once transformation

In the BAM all unbound variables are kept on the heap. This makes trail checking significantly fas-

ter. However, when combined with the ability to destructively modify the value of permanent variables

(e.g. to dereference them and save the dereferenced value in the permanent) it leads to several problems.

These problems are all neatly resolved by the write-once transformation.

Putting all unbound variables on the heap means that there are no pointers to the environment/choicc

point stack; all pointers point to the heap. This reduces trail checking to a single comparison with the heap

backtrack pointer r (hb) and a conditional push to the trail stack. It is not necessary to do-anothcr com-

parison to decide whether the variable is on the heap or in an environment. In addition, since all unbound

variables are created on the heap there are no "unsafe variables" as in the WAM. An unsafe variable is an

unbound variable that is created on thc environment and that must be moved to the heap ("globalized")

before last call optimization dcallocates its memory.

Modifying the value of a permanent variable (e.g. by dercferencing or binding it) cannot be done

without a trail operation. Indeed, consider the case where a permanent dcrefercnccs to a nonvariablc term.

If the dereferenced value overwrites the original value, then both the original value and its address have to

be trailed since backtracking has to restore fth original value. This is expensive, since it has to be done
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every time a permanent is bound or dereferenced.

One solution to this problem is never to store a dereferenced permanent back in the environment.

This solves the problem but it is inefficient since a permanent may have to be derefcrenced several times in

a clause.

A better solution is to allocate a new permanent on the environment whenever the value of an old

one needs to be changed. The new permanent gets the new value and the old permanent is unchanged. As

a result, all permanent variables are only given values once, so they are called "write-once" permanents.

Because it is not changed, the old permanent does not have to be trailed. At the cost of a slightly bigger

environment, this completely eliminates the need to trail permanent variables. This allocation scheme is

implemented in the clause compiler.

To summarize:

(1) " All unbound variables are created on the heap, and unbound permanent variables in an environment

always point to the heap.

(2) The trail check is a single comparison with r (hb) and a conditional push to the trail stack (2 cycles

on the VLSI-BAM).

(3) Permanent variables arc only given a single value in a clause. Whenever a permanent would be

changed, a new one is allocated and given the modified valuc.

(4) Register allocation must allocate a different permanent register for each permanent variable in thc

clause. It is not allowed to use the same register for two variables whose lifetimes do not overlap. 0

This solution is implemented in the clause compiler by mapping a permanent variable onto a new variable

whenever its value would change. The register allocator treats the new variables just like any other, and

allocates them to temporary or permanent registers. 0

The main disadvantage of this technique is that environments are larger. For example, consider a

clause of the form:

e(AE) :-a(A.B). b(BC), C(C.D). d(D.E).

where variables arc chained from one predicate to the nexL In the WAM. it is allowed to allocate
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pcrmanent vanablcs such that variables whose lifetimes do not overlap are allocated to the same permanent

register. For the above examplc, this requircs just two permanent registers, so the total environment size is

four words (it also includes rcgisters r (e) and r (cp)). Only two permanents are needed no matter

how long thc chain of body goals is. This method requires trailing of the permanent's values, because

backtracking must see the original values. This scheme is consistent with the original implementation of

thc WAM, i.c. binding permanent variables on the environment and globalizing unsafe variables to ensure

corrcctness.

40 In contrast, the number of permanent variables needed by the write-once technique increases linearly

with thc length of the chain. For the above example, this requires four permanent variables, so the total

environment size is six words. The total memory usage is increased by less than this amount because no

trailing of permanents is needed.

This is an example of a trade-off between memory space and execution time. The extra memory

space needcd is comparable to the increased size of the trail stack if there is no trail check for permanent

variables. Since this is small. I have opted to decrease execution time at the expense of larger environ-

mcnts. By keeping all unbound variables on the heap and by implementing permanent variables as write-

once variables, permanent variables can be dereferenced and bound without trailing, and the cost of trailing

heap variables is reduced to a single comparison and conditional push.

3.6. The dereference chain transformation

This transformation is needed to maintain consistency between the dataflow analysis and the clause

compiler. A new unbound variable (of either initialized type or uninitialized memory type) is created as a

pointer to a memory location. Binding the variable stores the new value in the location. However, the

registcr(s) that originally contained the unbound variable still have pointers to the location. One level of

indirection is necdcd to access the value.
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Just before the call to a(A)

argument A: IEFaL II3- t varI

Just afrer the call to a(A)

argur~ntiA: tvarl

Extra link
between A

and its value

- 0
value bound to A

Figure 5.7 - The need for the dereference chain transformation

To see why this is necessary and what it implies, consider the execution of the clause main (Figurc 5.7):

main (i) a(A), (ii) write(A).

a(A) A-s(t(a),u(b).v(C)).

The relevant situation can be seen in the transition from (i) (just before the call to a (A)) to (h/) (just after

the call to a (A)). At (i) a new unbound variable A is created on the heap. At (ii) the variable A has been

bound to a value. The important point is that A still has a tva r tag, and that one indirection is needed to

access the tst r pointer. The extra link exists because the creation of A and its binding are done in

separate steps. This is true for both initialized unbound variables and uninitialized memory variables.

0
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This situation is not a problem unless dataflow analysis determines that A is returned as a derefer-

enced value. In that case there is a conflict between what the analysis deduces and what the clause com-

piler thinks is truc. There arc two ways to solve this problem: either weaken the analysis so that it will not

deduce a derefcrencc type in this case, or modify the clause compiler to ensure that the variable is derefer-

* cnced by doing an extra indirection whenever the variable is accessed after it is bound. The compiler

implements the second solution since dereferencing is a time-consuming operation and it is important to

derive as many dercfcrence types as possible. The trade-off between doing an extra indirection for a value

that may not be accessed later and doing an extra dereference loop seemed to be a fair one.

The'compiler inserts code to do this indirection whenever the variable is accessed after it is bound.

In addition to maintaining consistency with the analysis, this speeds up later dereferencing. There is a

minor interaction with the register allocator-for correctness, variables that get an extra indirection are not

allowed to be pref pairs.



Chapter 6

BAM Transformations

1. Introduction

After compiling the program from kernel Prolog into BAM code, a series of optimizing transforma-

tions is performed. The transformations performed are: (i) duplicate code elimination, (2) dead code elim-

ination, (3) jump elimination, (4) label elimination, (5) synonym optimization, (6) peephole optimization,

and (7) determinism optimization. This chapter first gives two definitions and then presents the transforma-

tions.

2. Definitions-

9
The following two definitions are useful:

Definition DB: A distant branch is a branch that always transfers control to an instruction
other than the next in the instruction stream.

According to this definition, there are exactly four distant branches in the BAM: fail, return, jump, and

switch. All other branches do not satisfy the definition since they can fall through to the next instruction.

Definition BB: A contiguous block is any sequence of instructions that terminates with a dis-
tant branch.

According to this definition, a contiguous block can start with any instruction and can contain conditional

branches with a fall through case. Therefore the code contains a large number of overlapping contiguous

blocks. This is useful to get maximum optimization when looking for contiguous blocks that satisfy some •

property. The individual transformations mentioned in this chapter will usually only look at contiguous

blocks satisfying certain constraints, for example, the contiguous blocks that begin with a label.

3. The transformations

Seven transformations (Figure 6.1) are done on the BAM code generated for each predicate by the

kernel to BAM compilation stage. A transitive closure is performed on the sequence of seven tnnsforma- O

tions, i.e. they are applied repeatedly until there are no more changes. Each transformation is carefully

137
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coded to result in code that is better (i.e. faster or shorer) than its input, so the closure operation ter-

0 minates.

*BAM code

Duplicate code elimination

JID~eiad code elimination

Jump eliminationn

[Synonym optimization

0,,

Peephole optimization

[~rrinisotio

Optimized BAM code

Figure 6.1 - BAM Transformations

3.1. Duplicate code elimination

All duplicate contiguous blocks except the last occurrence are replaced by a jump to the last one.

This optimization is also known as cross-jumping. It tightens up loose code generated by the type enrich-

ment transformation (Chapter 4). It is implemented by first creating an table indexed by all contiguous

blocks that (1) begin with a label. (2) do not contain any other labels (but they are allowed to contain

branches), and (3) are not degenerate blocks that consist of only a singic jump. return. or fail instruction

(but a single switch is allowed). The table contains the label of the last occurrence of the block. All con-
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iguous blocks in the codc, including those that do not begin with labels, are looked up in the table and

replaced by jumps if they are not the last occurrence. The result of this optimization is to reduce code size

at the price of slightly slowing down execution.

* 3.2. Dead code elimination

All code that is not reachable from the entry point of a predicate is removed. This is donc in two

steps: First, all the labels that arc reachable through any number of branches are calculated by doing a tran-

sitive closure. Second. a linear traversal of the cbdc is done and the instructions following a distant branch

up to the next reachable label are eliminated.

3.3. Jump elimination

Rearrange contiguous blocks to minimize the number of jump, call, and retmrn instructions. This

optimization is a variant of the jump chaining optimization. A transitive closure is done on the foMowing

replacements:

(1) Replace a jump by the contiguous block it points to if the block is only pointed to by one branch or if

the block is shorter than a preset threshold. The threshold can be changed by a compiler directive.

The replacement is not done if the block is part of write mode unification or unification with an atom,

since these two cases are hurt by the transformation.

(2) Replace a call to a dummy predicate by the code for the predicate if it is straightlinc code, i.e. its

code consists only of non-branches, call instructions, and branches all of whose destinations are

fail. The predicate's code must be terminated bya returnor fail instruction.

(3) Replace a conditional branch to a conditional branch by a new conditional branch if possible. The

only case currently recognized is:

test (netvar,V. L)

label (L).
switch(Tag.V,fail.L2.L3).

which causes the test instruction to be replaced by:
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switch (Tag, V, LI, L2, L3).

label (LI) .

(4) Replace a branch one of whose destinations is a jump or fail instruction by a new branch identical to

the original one except that the destination label is replaced by the destination label of the jump or by

fail.

3.4. Label elimination

Remove all labels that are not jumped to by any branch in the code. This is done in two steps: First,

the set of all destinations of all branch instructions is collected. Second, the labels not in this set are

removed from the code.

3.5. Synonym optimization

This transformation is similar to strength reduction. It does a linear taversal of the code and

replaces every addressing mode by the cheapest addressing mode that contains the same value. For exam- 0

pie, if p (1) and r (O) contain the same value, then an occurrence of p (1) can be replaced by

r (0). The following cost order (from cheapest to most expensive) is used by default and is based on the

cost in the VLSI-BAM architecture:

Addressing mode Reason for cost Overhead
(cycles)

r (b) Promotes creation of cut (r (b)) which is a no-op 0
r (I) Usable without overhead 0
Atom Requires Idi (load immediate) instruction I
Tag"X Tagged pointer creation needs lea (load effective address) instruction I
p (I) Permanent variable needs ld (load) instruction I
[ r (I)] Indirection needs Id (load) instruction
jr (I) +N ] Offset indirect needs Id (load) instruction I
[ p (01) Indirect permanent needs 2 Id (load) instructions 2 9
(p (1) +NJ] Offset indirect permanent needs 2 Id (load) instructions 2
r (void) Most expensive because it must not be changed

The reason given for the cost describes the instructions ncccssary to implement the addressing mode

for the VLSI-BAM. More information on the instruction set of the VLSI-BAM is given in (341. The

addressing mode r (void) is created by the register allocator. It corresponds to a void variable, i.e. a

variable that occurs only once in a clause and whose value thay therefore be ignored. It is made the most
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expensive because it must remain unchanged so that peephole optimization can remove the instruction con-

taining it.

The synonym optimization is implemented by maintaining a set of equivalence classes at all points of

O the program. where each equivalence class is a set of addressing modes whose values are identical. Labels

in the code cause the set of equivalence classes to be reset to empty. A future extension of this module

could eliminate this restriction by following the labels and performing a transitive closure, resulting in a

* slight performance gain.

3.6. Peephole optimization

A transitie closure is performed on a peephole transformation with a window of three instructions.

The set of patterns was determined empirically by looking at the compiler's output and adding patterns to

fix obvious inefficiencies. Each pattern is implemented as a single clause in the optimizer. The patterns

are one, two, and three instructions long. However. thc window is extended to arbitrary size for one pat-

tern, a generalized last call optimization:

call (N/A) .
deallocate(1). %.Arbitrary number of deallocate instructions.

deallocate (j).
return.

which is transformed to:

deallocate(l). % Same sequence as above.

deallocate (J).
jump (N/A).

3.7. Determinism optimization

A choice instruction is removed if it is followed by a sequence of instructions that cannot fail and a

cut instruction. This simplc-looking optimization significantly increases determinism--many predicates

(e.g. Warren's quickson benchmark) containing a cut become deterministic that would otherwise be com-

piled with a choice point.

-- p Nm ~ l ml IInll ll
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A similar optimization is performed by the simplification transformation of kernel Prolog (Chapter

4). For example, it transforms (, p q) into (',p). The determinism optimization extends

simplification-if the goal s compiles into instructions that cannot fail then it is able to successfully

optimize the BAM code of (s, !, p ; ql even when simphificaaon cannot determine that s always

succeeds.

Consider this predicate, which contains no cut:

mode((max(AB,C) :- uninit(C))). % C is unbound and unaliased.

max(A, B, C) A<B. B-C. % No cut here.

jmax(A, B, C) A-C.

It is compiled into the following BAM code (slightly simplified for readability):

procedure (max/3).
deref (r (0), r (0)).
deref(r(1),r(1)).
jump(lts.r(0),r(l),l(max/3,1)). % Conditional branch A<B.
move(r(O).[r(2)|). % A<B is false.
return.

label (I (max/3, M
choice(l/2,(O,21.l(max/3,4)). % A<B is true.
move(r(l), [r(2)])
return.

label (1 (max/3, 4)-) .
choice (2/2, [0,2), fail).
move (r(O), [r (2) 1).
return.

When A<B is true, a choice point is created to try both clauses. If a cut is inserted into the first clause:

:- mode((max(AB,C - uninit(C))). % C is unbound and unaliased.
max(A, B, C) A<B, :, B-C. % Cut is added here.
max(A, B, C) A-C.

then the code becomes deterministic:

S

I0
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procedure(max/3).
move (b, r (3)).
deref (r (0), r (0)).

dereftr(1),r(l)).
jump(lts.r(O),r(1),l(max/3,4)). ' Conditional branch A<B.

move(r(O), (r(2)1).
return.

label (1 (max/3. 4)).
cut (r (3)).
move (r(1) , Ir(2) 1).
return.

Measurements done by Touati 170] justify this optimization. He finds that it makes about half of all choice

point operations avoidabic.

0



Chapter 7

Evaluation of the Aquarius system

1. Introduction

This chapter attempts to quantify some of the ideas that were introduced in previous chapters. The

evaluation process is as important as any other part of the implementation of a large software system. Dur-

ing the design phase it guides the design decisions. After the design is complete, it shows what features of

the design contributed most to its effectiveness and it gives a foundation for starting the next design. Quan-

titative measurements are the most reliable guideposts one has during the design. For example, it is easy to

imagine man), possible compiler optimizations, but most of these have an insignificant effect on perfor-

mance. It is more difficult to discover opuimizations that are widely applicable.

Five evaluations are performed in this chapter

(1) The absolute performance of the system.
0

(2) The effectiveness of the dataflow analysis.

(3) The effectiveness of the determinism transformation.

(4) A brief comparison with a high performance implementation of the C language.

(5) A bug analysis, summarizing the number and types of bugs encountemrd during development.

Table 7.1 describes the benchmarks used in this chapter and their size in lines of code (not including com-

ments). The benchmarks were chosen as examples of realistic programs doing computations representative

of Prolog. This includes benchmarks that spend much of their time executing built-in predicates because

this behavior is common in real-world programs. The benclunarks are divided into two classes, small and

large, depending on whether the compiled code with analysis is smallcr or larger than 1000 words. The

benchmarks loglO, ops8, timeslO, and dividelO arc grouped together and referred to as deriv because they

are closely related. The benchmarks arc available by anonymous ftp to arpa.berkelcy.edu.

All VLSI-BAM numbers in this chapter were obtained f(rom the VLSI-BAM instruction-levcl simu-

lator and include cache effects 1171. The simulated system has 128 KB instruction and data caches. The

144
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Table 7.1 - The benchmarks

Benchmark Lines Description

nrcvcrsc 10 Naive reverse of a 30-element list.
tak 15 Recursive integer arithmetic.
qsort 19 Quicksort of a 50-c-lement list.
log I0 27 Symbolic differentiation.
ops8 27 Symbolic differentiation.
timcsl0 27 Symbolic differentiation.
dividelO 27 Symbolic differentiation.
serialisc 29 Calculate serial numbers of a liSt.
queens_8 31 Solve the eight queens puzzle.
mu 33 Prove a theorem of Hofstadter's "mu-math."
zebra 36 A logical puzzle based on constraints.
sendmorc 43 The SEND+MORE=MONEY puzzle.
fastmu 54 An optimized version of the mu-math prover.
query 68 Query a static database (with integer arithmetic).
poly_10 86 Symbolically raise a polynomial to the tenth power.

.crypt 64 Solve a simple cryptarithmetic puzzle.
meta.qsort 74 A meta-interpreter running qsort.
prover 81 A simple theorem prover.
browse 92 Build and query a database.
unify 125 A compiler code generator for unification.
flatten 158 Source transformation to remove disjunctions.
sdda 273 A dataflow analyzer that represents aliasing.
reduccr.nowrite 298 A graph reducer based on combinators.
reducer 301 Same as above but writes its answer.
boyer 377 An extract from a Boyer-Moore theorem prover.
simplekanalyzer 443 A dataflow analyzer analyzing qsort.
nand 493 A logic synthesis program based on heuristic search.
chat-parser 1138 Parse a set of English sentences.
chat 4801 Natural language query of a geographical database.

caches arc direct mapped and use a write-back policy. They are run in warm start: each benchmark is run

twice and the results of the first run arc ignored. The cache overhead is greatest for tak compiled without

analysis, and for poly_10. simplc..analyzcr, chat, and boycr. For these programs it ranges from 9% to 24%.

For meta_qsort, reducer, and chatparser the overhead ranges from 2% to 3%. For all other programs the

overhead is less than 0.5%.

2. Absolute performance

This section compares the pcrformancc of Aquarius Prolog with Quints Prolog. Tables 7.2 and 7.3

compare the performance of Quintus Prolog version 2.5 running on a Sun 4/65 (25 MHz SPARC) with that

of Aquarius Prolog running on the VLSI-BAM (30 MHz). The "Raw Speedup" column gives the ratio of

the speeds. The "Nomanizcd Spocdup" column divides this ratio by 1.8. Our group is in the process of



146

porting the Aquarius system to the MIPS, MC68020. and SPARC processors. It was not possible to get

numbers for these systems in time for the final version of this dissertation.

The normalization factor of 1.8 takes into account the Prolog-specific extensions of the VLSI-BAM

(a factor of 1.5) and the clock ratio (a factor of 30/25 = 1.2). The general-purpose base architecture of the

VLSI-BAM is very similar to the SPARC. The effect of the architectural extensions of the VLSI-BAM

1341 has been carefully measured to be about 1.5 for large programs. However, for the small programs the

compiler is able to remove many Proiog-specific features, so that the normalized speedup numbers in Table

7.2 arc an undcrcstimate. 0

Table 7.2 - Performance results for small programs (in ms)

Benchmark Size Quintus v2.5 Aquarius Normalized Raw
(lines) (Sun 4/65) (VLSI-BAM) Speedup Speedup

dcriv 1.143 0.0913 7.0 1 12.5
loglo 27 0.153 0.0168
ops8 27 0.239 0.0189
timesl0 27 0.345 0.0257
divide 10 27 OA06 0.0299

nreversc 10 1.62 0.136 6.6 11.9
qson 19 4.820 0.173 15.5 27.8 0
serialise 29 3.10 0.447 3.9 6.9
query 68 23.7 3.57 3.7 6.6
mu 33 7.04 0.808 4.8 8.7
fast-mu 54 9.08 0.932 5.4 9.7
queens_8 31 21.2 1.13 10.4 18.7
tak 15 1120. 25.4 24.5 44.1
poly-iO 86 417. 35.5 6.5 11.7
sendmorc 43 490. 38.4 7.1 12.8
zebra 36 423. 84.1 2.8 5.0

geometric mean 6.7 12.1
standard deviation of mean 1.9 3.3

For the small benchmarks, the normalized speedup is somewhere between 6.7 and 12.1 (Table 7.2).

The normalized speedup of the large benchmarks without built-in predicates is about 5.2 (Table 7.3).

Speedup is better for the small benchmarks because dataflow analysis is able to derive better types for

many of them. For some of them (such as tak and nreverse) it derives essentially perfect types. The small

programs show a large variation in speedups. The tak benchmark does well because it relies on integer

arithmetic, which is compiled efficiently using uniniualized register types. The zebra benchmark does

poorly for two reasons. First, it does a large amount of backtracking, which is inherently limited by

-memory bandwidth. Second, it works by successively instantiating arguments of a compound data

S
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Table 7.3 - Performance results for large programs (in ms)

* Benchmark Size Quintus v2.5 Aquarius Normalized Raw
mark (lines) (Sun 4/65) (VLSI-BAM) Speedup Speedup

No built-ins

prover 81 8.67 0.921 5.2 9.4
metaqsort 74 49.6 4.71 5.8 10.5

* nand 493 173.3 13.7 7.0 12.7
reducer..nowrite 298 312. 37.2 4.6 8.4
chatparser 1138 1157. 129.5 5.0 8.9
browse 92 5450. 741. 4.1 7.4
geometric mean 5.2 9.4
standard deviation of mean 0.5 0.8

Including built-ins

unify 125 183 1.40 7.2 13.0
,lattn 158 13.6 1.42 5.3 9.6
sdda 273 29.5 2.94 5.6 10.0
crypt 64 21.7 4.00 3.0 5.4
simple-analyzcr 443 180. 33.4 3.0 5.4
reducer 301 405. 44.9 5.0 9.0
chat 4801 3100. 699. 2.5 4.4
boyer 377 4870. 1360. 2.0 3.6
geometric mean 3.8 6.9

standard deviation of mean 0.7 1.3

geometric mean (all large programs) 4A 7.9

Table 7.4 - Time spent in built-in predicates

Benchmark Time (%) Most used built-ins

prover 0 -
meta..qsort 0 -
chat.parscr 0 -
nand <1 -
browse 1 lengtW
reducer 40 write/I. compare/3, arg/3
unify 40 arg/3. functor/3, compare/3
crypt 50 div/2, mod/2, *12
boyer 60 arg/3, functor/3
simpleanalyzer 70 compare/3, sor/2. aruJ3
sdda 70 write/lo -=.,2. comparer
flauten 80 write/l, sort, compare3, name2, functr/3, ar3

structure. The analysis algorithm does not have a represetation for this operation, so it cannot be optim-

ized.

The built-in predicates in Aquarius Prolog are not greatly faster than those in Quintus Prolog. since

many of the Quintus built-ins are not written in Prolog, but in hand-crafted assembly. The Aquarius system

shows better speedup over Quintus built-ins wntten in Prolog (such as read/i and write/1) and the

entry specialization ransformuton also speeds up the built-ins. Table 7.4 gives the percentage of time that
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the benchmarks spend executing inside built-in predicates. This number does not take into account built-

ins that are implemented as in-line code (arithmetic test, addition and subtraction, and type checking). The

table also gives the most often used built-in predicates for each benchmark in decreasing order of usage.

Several benchmarks use built-in predicates significandy. The normalized speedup for these pro-

grams is 3.8. somewhat less than programs without built-ins (Table 7.3). The normalized speedup for all

large programs is 4.4 (the reducer benchmark is counted only once in this average). The boyer benchmark

does poorly because it relies heavily on the arg/3 and functor/3 built-in predicates. The chat

benchmark uses these built-ins as well as others including setof/3, but it was not possible to measure

the fraction of execution time spent in them. The sdda and flauen benchmarks do well partly because the

write/1 built-in is much faster in Aquarius than in Quintus.

3. The effectiveness of the dataflow analysis

This section evaluates the effectiveness of the datafiow analysis with three kinds of measurements.

Tables 7.5, 7.6. and 7.7 give the effect of the dataflow analyzer on performance and code size, and the 0

efficiency of the analyzer both in terms of its execution time and the fraction of arguments for which types

can be deduced.

For a representative set of realistic Prolog programs of various sizes up to 1,100 lines, the analyzer is

able to derive type information for 56% of all predicate arguments. It finds that on average 23% of all

predicate arguments are uninitialized, 21% of arguments arc ground, 10% of arguments are nonvariables,

and 17% of arguments are recursively dereferenced. The sum of these three numbers is greater than 56% 5

since it is possible for an argument to have multiple types, e.g. it can be ground and recursively derefer-

enced at the same time. Doing analysis reduces execution time on the VLSI-BAM by 18% for programs

without built-ins and static code size by 43% for all programs.

Table 7.5 gives the execution timc in microseconds of the benchmarks for the VLSI-BAM compiled

without analysis (No Modes) and with analysis (Auto Modes). The last three columns give the ratios of the
S

auto modes to the no modes times. To give an idea how built-ins affect the results of analysis, Table 7.5

gives two performance ratios for the large benchmarks: the first for all programs, and thc second for
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Table 7.5 - The effect of dataflow analysis on performance

Benchmark No Modes (ps) Auto Modes (Pas) Auto/No Modes
Time Deref Trail Time Deref Trail Time Deref Trail

deriv 146 18.2 5.5 91.3 0.3 0.1 0.63 0.02 0.02
Iogl0 25.9 2.3 0.7 16.8 0 0
ops8 28.5 3.3 1.0 18.9 0.3 0.1

* timeslO 39.7 5.1 1.3 25.7 0 0
dividclO 51.7 7.5 2.5 29.9 0 0

nreverse 308 79.7 31.1 136 0 0 0.44 0.00 0.00
qsort 378 109 25.1 173 0 0 0.46 0.00 0.00
scrialisc 512 75.8 12.3 447 44.9 0.7 0.87 0.59 0.05
mu 992 154 . 48.0 783 139 34.7 0.79 0.90 0.72
fastmu 1120 148 38.0 932 64.4 7.9 0.83 0.44 0.21
queens_8 1700 271 67.9 1090 33.4 0 0.64 0.12 0.00
query 5180 560 174 3570 0 0 0.69 0.00 0.00
talk 71700 13800 3180 25400 0 0 0.35 0.00 0.00
poly-I0 60400 6280 1740 35600 1080 209 0.59 0.17 0.12
zebra 84600 11400 8.6 84100 11400 8.4 0.99 1.00 0.98

average 0.66 029 0.19

prover 1070 110 29.4 820 51.2 5.9 0.76 0.47 0.20
unify 1600 198 33.9 1400 138 19.3 0.88 0.69 0.57
flatten 1460 149 9.9 1420 133 6.5 0.97 0.90 0.66
sdda 3180 368 36.9 2940 296 21.3 0.92 0.81 0.58
crypt 4090 319 104 4000 262 104 0.98 0.82 1.00
metaqsort 5330 674 182 4450 417 63.0 0.83 0.62 0.35
nand 18700 2290 542 13400 902 22.9 0.72 0.39 0.04
simple-analyzer 35400 3880 316 31900 3080 76.2 0.90 0.79 0.24
reducer 48800 6680 1210 44900 5580 731 0.92 0.84 0.61
chatparser 151000 19400 6990 131000 11200 4360 0.87 0.58 0.62
browse 820000 117000 28600 741000 96700 20400 0.90 0.82 0.71
boyer 1410000 73900 6340 1360000 75000 6270 0.97 1.02 0.99

average 0.89 0.73 0.55
average (no built-ins) 0.82 0.58 0.39

programs that do not use built-ins significantly (the first five of Table 7A). Data initialization times are

subtracted from deriv, nreverse, qsort, serialise. and prover. The table also gives the time each benchmark

spends performing dercferencing (DercO and trailing (Trail).

The time spent in dereferencing and trailing, two of the most common Prolog-specific operations, is

significantly reduced by analysis. For the small benchmarks analysis reduces dereferencing frnm 17% to

5% of execution time, and trailing from 4% to 0.6% of execution time. This is because they arc simple

enough that analysis is able to deduce most relevant modes. For thec large benchmarks derefercncing is

reduced from 11% to 9% and trailing is reduced from 2.3% to 1.3%. These results are less extreme for two

reasons: thec large benchmarks use built-ins, which arc unaffected by analysis, and the analyzer loses infor-
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Table 7.6 - The effect of dataflow analysis on static code size

Benchmark No Modes Auto Modes Auto/No Modes
(instructions) (instructions)

tak 80 34 0.42
nreversc 287 139 0.48
queens_8 472 146 0.31
qsort 485 215 0.44
deriv 5891 1123 0.19

loglO 1464 272
ops8 1469 277
timesI0 1479 287
dividel0 147? 287

query 1425 403 0.28
serialise 860 520 0.60
mu .1169 731 0.63
fastmu 1165 718 0.62
zebra 1271 814 0.64
poly l0 3023 893 0.30

average 0.45

crypt 1239 1027 0.83
browse 1863 1150 0.62
prover 4395 1318 0-30
meta qsort 2484 1424 0.57
flatten 4267 2335 0.55
unify 6326 4210 0.67
sdda 6526 5031 0.77
simple analyzer 9057 5836 0.64
nand 23406 6654 0.28
reducer 11726 7682 0.66
boyer 24862 9136 037
chaLparser 33557 20516 0.61

average 0.57

mation due to its inability to handle aliasing and its limited type domain.

Table 7.6 gives the static code size (in VLSI-BAM instructions) for the benchmarks compiled

without analysis (No Modes) and with analysis (Auto Modes). The effect of analysis on code size is

greater than the effect on performance. This follows from the compiler's implementation of argument

selection: when no modes are given, the compiler generates more code to handle arguments of different 0
types. If analysis derives the type then the code becomes much smaller. The code size compares favorably

with other symbolic processors. and is low enough that there is no disadvantage to having a simple instruc-

tion set. With the analyzer, code size on the VLSI-BAM is similar to the KCM (61, about three times the

PLM, a micro-coded WAM 128). and about one fourth the SPUR using macro-expanded WAM 18).

S
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Table 7.7 - The efficiency of daLaflow analysis

Benchmark Args Preds Time Modes (fraction of arguments)
(sec) uninit ground nonvar rderef any

deriv 12 8 11.9. 0.33 0.67 0.00 0.67 1.00
loglo 3 2 2.9

9 ops8 3 2 3.0
timesio 3 2 3.0
dividelO 3 2 2.9

tak 4 2 2.3 0.25 0.75 0.00 0.75 1.00
nrcvcrsc 5 3 2.2 0.40 0.60 0.00 0.60 1.00
qsort 7 3 3.4 0.43 0.57 0.00 0.57 1.00
query 7 "5 . 4.2 0.86 0.14 0.00 0.14 1.00
zebra 10 6 3.5 0.10 0.00 0.50 0.00 0.60
serialise 16 7 4.2 0.38 0.19 0.06 0.19 0.63
queens_8 16 7 6.0 0.31 0.69 0.00 0.69 1.00
mu 17 8 9.6 0.12 0.47 0.00 0.12 0.65
polyj0 27 11 16 0.33 0.67 0.00 0.67 1.00
fast mu 35 7 21 0.29 0.55 0.05 0.55 0.89

average 0.35 0A8 0.06 0.45 0.89

mcta qsort 10 7 11 0.30 0.00 0.10 0.00 0.40
crypt 18 9 12 0.00 0.61 0.11 0.56 0.72
prover 22 9 13 0.27 0.09 0.27 0.14 0.68
browse 42 14 20 0.24 0.45 0.05 0.40 0.74
boyer 62 25 31 0.27 0.00 0.06 0.00 0.34
flauen 83 28 34 0.27 0.08 0.16 0.11 0.52
sdda 87 32 45 0.18 0.07 0.17 0.08 0.44
reducer 134 41 50 0.13 0.10 0.05 0.12 0.29
unify 141 29 84 0.18 0.19 0.14 0.21 0.56
nand 180 43 5900 0.26 0.67 0.00 0.28 0.93
simpleanalyzer 270 71 77 02.3 0.10 0.08 0.10 0.41
chat.parser 744 156 263 0.44 0.19 0.02 0.09 0.67
average 0.23 0.21 0.10 0.17 0.56

Table 7.7 presents data about the efficiency of the dataflow analyzer. For each benchmark it gives

the number of predicate arguments (Args) where a predicate of arity N is counted as N, the number of

predicates (Preds), the analysis time (Tune), the fraction of argumens that are uninitialized (uninit), ground

(ground), nonvariable (nonvar), or recursively dereferenced (rdere), and the fraction" of arguments that

have any of these types (any). Analysis time is measured under Quintus release 2.0 on a Sun 3/i60. It is

roughly proportional to the number of arguments in the program, except for the nand benchmark. The sum

of the individual modes columns is usually greater than the any modes column. This is because arguments

can have multiple modes---thcy can be both recursively dereferenced and ground or nonvariable. Unini-

tialized arguments are present in great quantities. even in large programs such as chawparser and

simpleuanalyzer. Comparing the small and large benchmarks, the fraction of derived modes decreases for
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the largc programs for each type except nonvariable. For both the small and large benchmarks the analyzer

transforms one third of the uninitialized modes into uninitialized register modes. 0

4. The effectiveness of the determinism transformAtion

To show what parts of the determinism transformation of Chapter 4 are the most effective, it is useful

to define a spectrum of determinism extraction algorithms ranging from pure WAM to the full mechanism

of the Aquarius compiler. To do this, the Aquarius mechanism for extracting determinism is divided into

three orthogonal axes:

(i) The kind of tests used to extract determinism. These tests are separated into three classes: exp'icit

unificati6ns (e.g. X-a, X-s (Y)), arithmetic tests (e.g. X<Y, x>1), and type checks (e.g.

var (X). atomic (X)). Pure WAM uses only explicit unifications with nonvariables. Aquarius

uses all three kinds.

(2) Which argument(s) are used to extract determinism. Pure WAM uses only the first argument of a

predicate. Aquarius uses any argument that it can determine is effective. It uses enrichment heuris-

tic 2 (Chapter 4 section 6.2).

(3) Whether the factoring transformation is performed (Chapter 4). Factoring significantly increases

determinism for predicates that contain many identical compound terms in the head. Pure WAM

does not assume factoring. Aquarius does factoring by default.

These three parameters deline a three-dimensional space of determinism extraction algorithms. Each algo-

rithm is characterizct. by a 3.tople depending on its position on each of the axes (Table 7.8). This results in

3 x 2 x 2 = 12 data points. Pure WAM selection corresponds to the first element in each column, denoted

by the 3-tuple (U. ONE. NF). The Aquarius compiler's selection corresponds to the last element in each

column, denoted by the 3-tuple (UAT, ANY. F).

For each of these 12 points three parameters were measured: execution time. static code size, and compile

time. All programs are compiled with dataflow analysis and executed on the VLSI-BAM. All averages are

geometric means. It was only possible to do measurements for nine benchmarks: nreversc, qsot, query,

mu, fastrmu, queens.8, flatten, mcta qsort, and nand. Therefore the variance of the results is large and
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Table 7.8 - Three dimensions of determinism extraction

Kind of test Which argument Factoring

Explicit unifications only (U). First argument only (ONE). No factoring (NF).

Explicit unifications and arithmetic Any argument (ANY). Do factoring (F).
tests (UA),
Explicit unifications, arithmetic
tests, and type checks (UAT").

they can be relied upon only to indicate trends. The benchmarks were written for the WAM. The meas-

uremcnts compare only the relative powers of different kinds of determinism extraction in the BAM. They

do not compare the \VAM and BAM directly.

Aquarius selection .UA . ANY. F, 0. -- percent slowdown

relative to Aquarius

- difference betweenS8 12 2 -* "- two vertices

IUAT. .A , !NF 8UAT,ONE,_F 12 UA. ANY,'F 2

,UAT, ON NFJ 12 1UA, ANY, NFI 10 UA, ONE, F 112 UANY, F 13

3 2 0

WAM selection "ýE 16

Figure 7.1 - The effectiveness of determinism extraction

Figure 7.1 depicts the 12 points as a lattice. Each vertex denotes one particular combination of deter-

minism extraction. The top element corresponds to Aquarius selection and the bottom clement corresponds

to WAM selection. Each edge connect% two points that differ by one step in one coordinate. The vertices
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arc marked with the percent slowdown compared to Aquarius selection. The edges are marked with the

percent difference in execution time between their two endpoints.

The mean speedup for the nine benchmarks when going from WAM selection (U, ONE, NF) to

Aquarius selection (UAT, ANY, F) is 16%. There is no significant change in mean code size for any of the

twelve data points. The variance of the compile time is too large to make any conclusions about it.

The mean speedup of factoring is 8%. However, factoring is the only uansformation that sometimes

slows down execution. The factoring hcuristic.should be refined to look inside compound arguments to see

whether there is any potential determinism there. If there is none, it should not factor that argument.

One way of finding a set of effective extensions for determinism extraction is by traversing the lattice

from bottom to top, and picking the edge with the greatest performance increase at each vertex. Starting at

WAM selection (U, ONE, NF). the first extension is the ability to use arithmetic tests in selection. This

speeds up execution by 3%. The second extension is the ability to select on any argument. This speeds up

execution by another 3%. The third extension is the factoring transformation. This speeds up execution by

8%. At this point, the resulting performance is within 2% of Aquarius selection. 0

The resulting vertex (UA, ANY, F) seems to be a particularly good one, i.e. the ability to select on

arithmetic tests in any argument works well together with factoring. Leaving out any one of these three

extensions reduces performance by at least 8%. A plausible reason for this result is that the benchmarks do

many arithmetic tests on the arguments of compound terms and it is only the combination of the three

extensions that is able to compile this deterministically.

S. Prolog and C

The performance of Aquarius Prolog is significantly better than previous Prolog systems. A question
0

one can pose is how the system compares with an implementation of an imperative language. This section

presents a comparison of Prolog and the C language on several small programs. The comparison is not

exhaustive-there are so many factors involved that I do not attempt to address this issue in its entirety. I
0

intend only to dispel the notion that implementations of Prolog are inherently slow because of its expres-

sive power. A serious comparison of two languages requires answering the following questions:
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(1) How can implementations of different languages be compared fairly? This comparison concentrates

exclusively on the language and ignores features external to the language itself, such as user inter-

face, development time, and debugging abilities. One method is to pick problems to be solved, and

then to write the "best" programs in each language to solve the problems, choosing the algorithms

appropriate for each language. The disadvantages of this approach are (a) different languages are

appropriate for different problems, (b) how does one decide when one has written the "best" pro-

gram? To avoid these problems I have chosen to compare algorithms, not programs.

(2) Which algorithms will be implemented in both languages? Ideally one should select a range of algo-

rithms, from those most suited to imperative computations (e.g. array computations) to those most

suited to symbolic computation (e.g. large dynamic data objects, pattern matching). Prolog is at an

advantage at the symbolic end of the spectrum because to implement symbolic computations in an

imperative language we effectively have to implement more and more of a Prolog-like system in that

language. The programmer does the work of a compiler. At the imperative end of the spectrum, the

efficiency of Prolog depends strongly on the ability of the compiler to simplify its general features.

(3) What programming style will be used in coding the algorithms? I have made an attempt to program

in a style which is acceptable for both languages. This includes choosing data types in both

languages that are natural for each language. For example, in Prolog dynamic data accessed by

pointers is easiest to express, whereas in C static arrays are easiest to express. It is possible to use

dynamic data in C, but it requires more effort and is used only for those tasks that need it specifically.

(4) How are architectural features taken into account? For fairness both implementations should run on

the same machine. The measurements use the same processor, the MIPS, for both implementations.

However, a general-purpose architecture favors the execution of imperative languages, since it has

been designed to execute such languages well. This shows up for algorithms whose Prolog implc-

mentation makes heavy usc of Prolog-specific features. To allow the reader to make an informed.

judgment, the table does not correct for this fact. It is important to bear in mind that by adding addi-

tional architectural features comprising 5% of the chip area to the VLSI-BAM (a pipelined processor

similar in many ways to the MIPS), the performance increases by 50, for programs that use
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Prolog-specific features (compiled with the current version of the Aquarius compiler). Architectural

studies done by our research group suggest that these features could be added to a future MIPS pro-

cessor.

Table 7.9 compares the execution time of small algorithms coded in both C and Prolog on a 25 MHz MIPS

processor. Measurements are given for tak, fib, and hanoi. which are recursion-intensive integer functions;

and for quicksort, which sons a 50 element list 10000 times. Prolog and C source code is available by

anonymous ftp to arpa.bcrkelcy.cdu. In all-cases the user time is measured with the Unix "time" utility.

The C versions are compiled with the standard MIPS C compiler using both no optimization and the optim- 0

ization level that produces the fastest code (usually level 4). The Prolog versions are compiled with

dataflow analysis and translated into MIPS assembly by a partial translator. The same algorithms were

encoded for both Prolog and C, in a natural style for each. The natural style in C is to use static data,

whereas in Prolog all data is allocated dynamically.

Table 7.9 - Comparing Prolog and C (in see)

Benchmark Aquarius MIPS C
Prolog Unoptimized Optimized

tak(24,16,8) 1.2 2.1 1.6
fib(30% 1.5 2.0 1.6
hanoi(20,1.2,3) 1.3 1.6 1_5
quicksort 2.8 3.3 1.4

Recursive functions are fast in Prolog for three reasons: last call optimization converts recursion into

iteration, environments (stack frames) are allocated per clause and not per procedure as in C. and outputs

are returned in registers (they arc of uninitialized register type). Last call optimization allows functions

with a single recursive call to execute with constant stack space. This is essential for Prolog because recur-

sion is its only looping construct. The MIPS C compiler does not do last call optimization. C has con-

structs to denote iteration explicitly (e.g. "for" and "while" loops) so it does not need this optimization as

strongly. The time for fib(30), the only recursive integer function that is not able to use last call

optimization in Prolog, is closcst to C.

The two quicksort implementations are careful to use the same pivot elements. The C implemcnta-

tion uses an array of integers and does in-place sorting. The Prolog implementation uses lists and creates a

new sorted list. The list representation needs two words to store each data element. Coincidentally, the



Prolog version is twice as slow as the C version, the same as the ratio of the data sizes.

Table 7. 10 - Classification of bug types

Kind Description %
Mistake A part of the compiler that is incorrect due to an oversight. When many mis- 39

takes occur related to one particular area, then they become hotspot bugs.

e Local A problem that can be fixed by changing just a few predicates. For example, it (37)
may be due to a typographical error or a simple oversight in a predicate
definition.

e Global A problem that can be fixed only with many changes throughout the compiler. (3)
This kind of mistake is more fundamental. For example, avoiding the genera-
tion of BAM instructions, with double indirections requires many small
changes.

Incomplete A part of the compiler whose first implementation is incomplete because of in- 19
complete understanding of its purpose. Later use stretchcs it beyond what it
was intended to do, so that it needs to be extended and/or cleaned up. For ex-
ample, the updating of type formulas when new information is given.

HoLspot A critical area of the compiler that requires much thinking to get correct. Its 16
importance is much greater than its size would indicate. Such an area gets
more than its share of mistakes.

o. Conceptual A concept in the compiler design whose implementation is prone to many mis- (13)
takes. For example, the concept of uninitialized variables.

o Physical A part of the compiler's text. For example, symbolic unification in the (14)
dataflow analyzer and parameter passing in the clause compiler both resulted
in many bugs.

Mixture An undesired interaction between separate parts of the compiler. Despite 16
careful design, often the separate transfonnations and optimizations are not
completely orthogonal, but interact in some (usually limited) way. For exam-
ple, maintaining consistency between the dataflow analyzer and the clause
compiler. This leads to the dereference chain transformation, which in its turn
leads to the problem of interaction between it and the preferred register alloca-
tion.

Improvement A possible improvement in the compiler. This is not strictly a bug, but it may 9
point to an important optimization that could be added to the compiler. For
example, a posible code optimization or reduction in compilation time.

Understanding A problem due to the programmer misunderstanding the required input to the 4
compiler. This is not strictly a bug, but it may point to difficulties in the
compiler's user interface or in the language. For example, the difference
between the terms _is_ and _<_ in Prolog. The first is a variable and the
second is a structure.

6. Bug analysis

This section gives an overview of the number and types of bugs encountered during compiler

development. A bug in a program is a problem that leads to incorrect or undesired behavior of the pro-

gram. In the compiler, this means incorrect or slow compilation, or slow execution of compiled code.
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Table 7.10 classifies the bugs found during development 176). (The percentages do not add up to 100%

because bugs can be of more than one type.)

The development of the compiler started early 1988 and proceeded until late 1990. An extensive

suite of test programs was maintained to validate versions of the compiler. The test suite was continually

extended with programs that resulted in bugs and with programs from external sources. Records were kept

of all bugs reported by users of the compiler other than the developer. A total of "79 bug reports were sent

from January 1989 to August 1990 by five users. The frequency of bug repons stayed constant near four

per month. Statistical analysis is consistent with the distribution being random with no time dependence, 0

i.e. the number of bug reports fluctuates, but there is no increasing or decreasing trend. Therefore the

development introduced bugs at about the same rate as they were reported and fixed. This coincidence can

be explained by postulating that the time spent developing was limited by the necessity of having to spend 0

time debugging to maintain a minimum level of robustness in the compiler. This is consistent with my per-

sona] experience during the development process.

.0
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Chapter 8

Concluding Remarks and Future Work

"'So many things arc possible just as long
as you don't know they'rc impossible."

* - Norton Juster, The Phantom Tollbooth

1. Introduction

In this chapter I recapitulate the main result of this dissertation, distill some practical lessons learned

in the design process, talk about the caveats of language design, and give directions for future research.

2. Main result

My thesis is that logic programming can execute as fast as imperative programming. For this pur-

pose I have implemented a new optimizing Prolog compiler, the Aquarius compiler. The driving force in

th compiler is to specialize the general mechanisms of Prolog (i.e. the logical variable, unification,

dynamic typing, and backtracking) as much as possible. The main ideas in the compiler are: the develop-

ment of a new abstract machine that allows more optimization, a mechanism to generate efficient code for

deterministic predicates (converting backtracking to conditional branching), specialization of unification

(encoding each occurrence of unification in the simplest possible way), and the use of global dataflow

analysis to derive types.

The resulting system is significantly faster than previous implementations and is competitive with C

on programs for which dataflow analysis is able to do sufficiently well. It is about five times faster than

Quintus Prolog. a popular commercial implementation.

3. Practical lessons

During the design of this compiler I have found four principles useful.

(I) Simplicity is common. Most of the time. only simple cases of the general mechanisms o; the

language are usod. For example, most uses of unificatia arc memory loads and stores. Many of

these simple cases arc easily dectwed at compile-time.

159
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(2) Use the design time wisely. There are many possible optimizations that one can implement in a

compiler of this soar. To get the best results, rank them according to their estimated performance ,

gain relative to their implementation effort, and only implement the best ones. Do not be distracted

by clever ideas unless you can prove that they are effective.

(3) Keep the design simple. For each optimization or transformation, implement the simplest version 0

that will do the job. Do not attempt to implement a more general version unless it can be done

without any extra effort. It is easy to become entangled in the mechanics of implementing a complex

optimization. Often a simple version of this optimization achieves most of the benefits in a fraction

of the time.

(4) Document everything, including bugs. Documentation is an extension to one's memory and it pays

for itself quickly. The mental effort spent in writing down what one has done results in a better

recollection of what happened. In this design, I have maintained two logs. The first is a file in chro-

nological order that documents each change and the reason for it. The second is a directory contain-

ing bug reports contributed by the users of the compiler and brief discussions of the fixes.

The first three of these principles are corollaries of what is sometimes called the -80-20 rule": 80% of the

results are obtained with 20% of the effort. Using this principle consistently was very important for my

work and for the BAM project as a whole.

4. Language design

The Prolog language is only an approximation to the ideal of logic programming. During this

research, our group has grappled with some of the deficiencies of Prolog. There are deficiencies in the area

of logic: Prolog's approximation to negation (i.e. negation-as-failure) is unsound (i.e. it gives incorrect

results) when used in the wrong way. Prolog's implementation of unification can go into infinite loops

when creating circular terms. The default control flow is too rigid for data-driven programming.

There are deficiencies in the area of programming: The correspondence between a program and its

execution efficiency is not always obvious. Unification is only able to access the surface of a complex data

structure. Because the clauses of a predicate arc written separately, many conditions have to be repeated or

• it I I0
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extra predicates have to be defined. There is a sense in which Prolog is a kind of assembly language.

All of the above problems have solutions, some of which have been implemented in existing systems

and in the Aquarius system. However, for three reasons I have resisted the impulse to change the language

* more than just a little. First, of all logic languages. the Prolog language has the largest and most vigorous

user community, and this is a resource I wanted to tap. There are many programs written in Prolog. in vari-

ous styles, and I wanted to see if this existing pool of ingenuity could be made to run faster. Second, it is

* unwise to change more than one component of a system at the same time, especially if they can interact in

unpredictable ways. That is, one should not design a new language and "i compiler for it at the same time.

Third, I do not deem myself compc.tent yet to design a language. I believe in the rule of bootstrapped com-

1* petence: Before writing a compiler. write programs. Before designing a language, write compilers. Com-

petence in each task is limited by competence in its prerequisite.

The best languages are those which distill great power in a small set of features. This makes such

* languages useful as tools for thought as well as for implementation. Practical aspects such as how efficient

it can be implemented are as important in a good language design as theoretical aspects. A good language

is theoretically clean (i.e. easily understood) as well as being efficiently implementable. Examples of such

languages are Pascal (many algorithms are specified in an Pascal-like pseudo-code), Scheme, and Prolog.

To create such a language, a person must have completely digested a set of ideas as well as have a large

amount of practical experience. This is a difficult combination-it is easy to gloss over the areas one does

not know well.

5. Future work

The goal of achieving parity with imperative languages has been achieved for the class of programs

for which dataflow analysis is able to provide sufficient information, and for which the determinism is

accessible through built-in predicates. To further improve performance these limits must be addressed.

To guide the removal of these limits it is important to build large applications and study the interac-

tion between programming style and the implementation. This is a problem of successiv. refinement. A

more sophisticated implementation cataly)es a new style of programming, which in its turn catalyzes a new
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implementation, and so forth. The first step in this process was the development of the first Prolog com-

piler and the WAM. The Aquarius system is only the second step. It is able to generate efficient code from

programs written in a more logical style than standard Prolog. However, the limits of this style are not yet

understood as they are in the WAM. Further work in this area will lead to a successor to Prolog that is

closer to logic and also efficiently implcmcntable.

5.1. Dataflow analysis

When writing a program, a programmer commonly has a definite intention about the data's type

(intending predicates to be called only in certain ways) and about the data's lifetime (intending data to be

used only for a limited period). Because of this consistency, I postulate that a dataflow anal)zer should be

able to derive this information and a compiler should be able to take advantage of it.

There has been much good theoretical work on global analysis for Prolog, but few implementations,

and fewer still that are pan of a compiler that lakes advantage of the information. Measurements of the

Aquarius system show that a simple dataflow analysis scheme integrated into a compiler is already quite

useful. However, the implementation has been restricted in several ways to make it practical. As programs

become larger, these restrictions limit the quality of the results. I hope the success of this experiment

encourages others to relax these restrictions. For example, it would not be too difficult to:

"* Extend the domain to represent common types such as integers, proper lists, and nested compound

terms. This is especially important for general-purpose processors.

"* Extend the domain to represent variable aliasing explicitly. This avoids the loss of information that

affects the analyzer.

"* Extend the domain to represent data lifetimes. This is useful to replace copying of compound terms

by in-place destructive assignment. In this way dynamically allocated data becomes static. The term

"compile-time garbage collection" that has been used to describe this process is a misnomer, what

is desired is not just memory recovery, but to preservc as much as possible of the old value of the

compound temr. Often a new compound term similar to the old one is crcatcd at the same time the

old one becomes inaccessible. Destructive assignment is used to modify only those parts that arc
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changed.

0 Extend the domain to represent types for each invocation of a predicate. For example, the analyzer

could keep track not only of argument types for predicate definitions, but ot argument types for. goals

inside the definitions. This is useful to implement multiple specialization, i.e. to make separate

copies of a predicate called in several places with different types. For the chat-parser benchmark,

making a separate copy of the most-used predicate for each invocation results in a performance

improvement of 14%.

5.2. Determinism

The second area in which significant improvement is possible is determinism extraction. The

Aquarius compiler only recognizes determinism in built-in predicates of three kinds (unification, arithmetic

tests, and type checking). Often this is not enough. In many programs, user-defined predicates are used to

choose a clause.
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Appendix A

User manual for the Aquarius Prolog compiler

1. Introduction
The Aquarius Prolog compiler reads clauses and directives from stdin and outputs Prolog-readable

compiled code to stdout as one fact per instruction. The output is assembly code for the Berkeley Abstract
Machine (BAM). Directives hold starting from the next predicate that is input. Clauses do not have to be
contiguous in the input stream, however, the whole stream is read before compilation starts.

This manual is organized into ten sections. Section 2 documents the compiler's directives. Section 3
gives the compiler's options. Section 4 gives a short overview of the dataflow analysis done by the com-
piler. Section 5 gives the type declarations accepted by the compiler. Section 6 summarizes the differ-
ences between Aquarius Prolog and the Edinburgh standard. Section 7 gives an example showing how to
use the compiler. Section 8 describes the method used to compile specialized entry points to increase the
efficiency of built-ins. Section 9 describes the assembly language interface. Section 10 describes how to
define BAM assembly macros.

2. Directives

The directives recognized by the Aquarius compiler are given in Table 1.

3. Options
The Aquarius compiler's options are given in three categories: high-level (these options control

actions of the compiler at the'Prolog level), architecture-dependent (these options are constant for a partic-
ular architecture), and low-level (mainly useful for debugging purposes). The default options are set for
the VLSI-BAM processor. The options are given in Tables 2.3. and 4.

4. Dataflow analysis
Dataflow analysis is enabled with the analyze option. It generates ground, nonvar, recursively

dercferenced and uninitialized variable types which are merged with the programmer's types. Both unini-
tialized memory and uninitialized register types are generated. Entry declarations (given by entry
directives) are used to drive the analysis. Predicates of arity zero are always used as entry declarations.
The quality of the generated types is such that compilation time. execution time, and code size awe all
significantly reduced. Therefore it is recommended always to compile with analysis. The whole program
is kept in memory during the analysis.

All mode, entry, and op directives ae executed before the analysis starts. Other directives are
executed after the analysis and before compilation. The directives default and clear interfere with
dataflow analysis, so they should be given only when the analyze option is disabled.

4.1. Dataflow analysis and dynamic code
The compiler makes the distinction between static and dynamic code. Static code is completely

known at compile-time and is subject to analysis. Dynamic code is created at rum-time by the built-in
predicates assert/l. retract/1. and their cousins. htisnotanalyzed. There ar two cases to con-
sider:
(I) A dynamic predicate calls a static predicate. In this case, there must be an entry declaration giving

the wort-case type of the call for each static predicate that might be called by a dynamic predicatc.
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Leaving out this declaration may result in incorrect compilation.

(2) A static predicate calls a dynamic predicate. The analyzer will assume worst-case types for the
dynamic predicate unless it has a type declaration.

The most common uses of dynamic code arc as databases of facts, or as rules that only call a limited set of
static predicates. For these uses, there is no problem in integrating analyzed static code with dynamic code.

4.2. Dataflow analysis and the call/I built-in

The call/i built-in predicate can call any predicate in the program with any modes, and it is not
possible in general to determine these predicates and their modes at compile-time. However, most pro-
grams that usc call/1 will call one of a known set of predicates or will call a dynamic predicate. There
arc three cases to consider:

(I) If the set of predicates that may be arguments of ca ll/I is known by the programmer, then these
predicates should be given entry declarations with worst-case modes. (This case can be written more
efficiently by writing a new predicate that directly calls one of the set, and avoids calling call / 1..)

(2) If the predicates that may be arguments of call/i are dynamic, then analysis is correct without
entry declarations. This is true because dynamic predicates are not analyzed.

(3) If any predicate in the program may be an argument of call/1 and nothing is known about the
modes lien analysis is useless and it should not be done.

5. Types

The Aquarius compiler accepts type declarations for a predicate. Using types results in a significant
improvement in code quality. Types are represented as (Head: -Formula) where Head contains
only variables and Formul -A is a logical conjunction. Almost any Prolog test can be used in a type for-
mula. Possible type formulas are given in Table 5. This representation for types is simple, yet powerful
enough to represent much important information in a compact way. The representation generalizes the
declarations of Dec-10 Prolog. For example, the Dec-10 declaration:

:- mode (concat (+,+,-))

is expressed here as:

:- mode((concat(A,B,C) :-nonvar(A),nonvar(B),var(C))) .

6. Differences with Edinburgh Prolog

Aquarius Prolog recognizes new type-checking built-ins which arc not part of the Edinburgh Prolog
standard as embodied by C-Prolog. The new built-ins and their definitions in standard Prolog are given in
Table 6.

7. An example of the compiler's use

The following example shows how the compiler is used:

0
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% /hprg2/Bam/Compiler/compiler % Run the compiler.
% Code is entered directly.

:-mode((a(A):-nonvar(A))). % Enter the type.
a(a). % Enter a simple two-fact predicate.
a(b).
"D-% End-of-file.

% The output follows:

% Cputime between start and finish is 1.383

procedure(a/I).
deref(r(O),r(O)).
hash (atomic, r(0), 2,-1 (a/1, 1) ).

fail.
label (1 (a/1, 1)

pragma(hashlength(2)).
pair (a, 1 (a/l, 3))
pair (b, I(a/l, 4))

label(l(a/1,3)).
label(l(a/l,4)).

return.

8. Entry specialization for more efficient built-ins

The directive modalentry (Head, EntryTree) adds a discrimination tree of entry points for
the predicate Head. This directive is used by the system to implement more efficient built-ins. Ihis not

normally needed by programmers, although they can take advantage of it for other predicates. The com-
piler uses the discrimination ree to choose the most efficient entry point for each call of a predicate
depending on the type formula that is true at the predicate's calL The syntax of the discrimination tree in
modal_enry is:

tree(entry(EntryHead)).
tree (mode(Formula,TrueTree,FalseTree))

tree (TrueTree), tree (FalseTree).

EntryHead is the entry point that replaces Head and Formula is a type formula. Compilation of a
the predicate Head proceeds by following a path down the discrimination tree. If the formula valid when
Head is called implies Formula then the TrueTree is followed. Otherwise the FalseTree is fol-
lowed. Tree traversal stops when an entry point entry (EntryHead) is encountered. At that point the
original call is replaced by EntryHead.

9. Interfacing with BAM assembly language routines

Prolog predicates can efficiendy call routines writen in BAM assembly code (the compiler's output)
or in the target machine's assembly language (for example,. VLSI-BAM. MIPS. or MC68020 assembly
code). The interface with both low-level languages is provided through the five-argument type declaration.
This declaration has the following form:

mode(Head, Require, Before, After, Survive).

Head is the head of the predicate. Require is the required typc formula, i.e. the formula made true by
the compiler. All uninitialized variable types (both uninitialized memory and uninitialized register) must
be part of the required formula. Before is the type formula known to be valid before the call.
After is the type formula known to be valid after the call. Survive is the rmgister survive flag. If the
flag is y then the predicate must not alter the values of any argument registers (except those used to return
a result). It must save and restore any argument registers it needs. The predicate is called with a
simple-call instruction and must return with a simplereturn insuuction (or its equivalent in
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VLSI-BAM processor assembly). A simple call may not be nested. It is more efficient than a stndard call
because it does not need an environment frame around it in the calling routine.

If the survive flag is n then the predicate is assumed to invalidate all argument register values. In
this case the argument registers arc available as scratch registers and the calling routine will create an
environment frame.

Efficient parameter passing is implemented by using uninitialized variables. These are of two kinds:
uninitialized memory and uninitialized register variables. An uninitialized memory variable is a pointer to
an empty memory cell. Binding to it is a store to memory. An uninitialized register variable is an empty
register. Binding to it is a move to the register. No trailing o3 dereferencing is needed in either case.

Declaring an argument to have a uninitialized register type means thai the output of the routine is
stored in the corresponding argument register. Similarly, an uninitialized memory type requires the output
to be stored to the location pointed to by the argument register. Inputs and outputs must be put in separate
registers.

10. Defining B1AM assembly language macros 0
It is possible to define macros in the Prolog source that are expanded into BAM assembly instruc-

tions. The advantages of macros are that they do not have call-return overhead, that unnecessary shuffling
of data between registers is avoided, and that the full range of low-level compiler optimizations is per-
formed on them. A macro definition has the following form:

: macro((Head :- Body)). 0
where Head is the head of the predicate that will be expanded and Body is a series of BAM instruc-
tions. For example:

"mode(quad(A,B), uninit reg(B), true, deref(B), y).
-macro((quad(A,B) :- add(AA,X), add(XX,B))).

The macro definition is preceded by a mode declaration telling that the second argument is the outpuL

Macro definitions must obey the following rules:

(1) All legal BAM instructions and addressing modes are allowed in the macro definition including user
instructions, except as noted below. User instructions are never generated by the compiler, but they
are recognized and optimized in macro definitions. Labels are given as ground terms or as Prolog
variables. The latter are given unique ground values by the compiler. Registers are given as user
registers (e.g. r (hi and r (t2)) or as Prolog variables (e.g. X and Y). The latter arc allocated
by th compiler. Do not use numbered registers (r (0), r (1) .

(2) The macro definition must be preceded by a mode declaration. The exit modes must be valid upon
exiting the macro. All head arguments that return results must be of uninitialized register type.

(3) The macro may not alter any of the head arguments except those returning a resulL

(4) The second argument of the de re f (X, Y) instruction must be a new variable, i.e. it must not have
a value upon entering the macro. Failing to obey this constraint will lead to incorrect behavior on
backtracking.

(5) It is not recommended to create choice points inside macros since it is not known how many registers
arc live. 0
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Table 1 - Compiler directives

Directivc Action

- help. Print a summary of these directives.
- default. Set the default options for the VLSI-BAM processor and clear all

type declarations and modal entries.
- mips. Ensure compatibility with the MIPS processor. This directive

should occur only once in a file. It sets the option align(l), dis-
ables the option split_intcger. and sets all other options to their
default values. It clears all type declarations and modal entries.

- vlsiplm. Ensure compatibility with the re-microcoded VLSI-PLM. This
directive should occur only once in a file. It sets the options
highjreg(6) and align(l), disables the option split-integer, and
.sets all other options to their default values. It clears all type de-
clarations and modal entries. Trail checks and shifts are com-
piled differently.

clear. Clear all type declarations and modal entries.
option (Options). Add the options in Options to the current options. Op-

t ions may be a single option or a list of options.
*-nctoption(Options). Remove the options in Options from the current options.

options may be a single option or a list of options.
- printopt ion. Print a list of the currently active options.

mode((Head:-Formula)). Type declaration for a predicate. The type information is
remembered until new types are given for that predicate or until
all type information is cleared. This declaration is not used as a
starting point for dataflow analysis. However, the types generat-
ed by dataflow analysis are used to supplement the declaration,
and an error message is given if there is a contradiction.

- entry ((Head:-Formula)) . Type declaration for a predicate--same as above. This declara-
tion is also used as a starting point in dataflow analysis.

- mode (H, R, B,A, S), Detailed type declaration fora predicate. This declaration is use-
ful for interfacing with assembly language. H is the head. R is
the required type formula (made true by the compiler before each
call). B is the before type formula (assumed true before each
call). A is the after type formula (assumed true after each call), S
is the survive flag (yin depending on whether the call lets regis-
ters survive). The after type formula is used by dataflow analysis

to improvc the generated types.
entry(H,R,B,A,S). Detailed type declaration for a predicate--same as above. This

declaration is also used as a starting point in dataflow analysis.
modalentry(H,T). Optional discrimination tree of efficient entry points for the

predicate H. The tree T contains type formulas used to replace
each call of the predicate by a more efficient entry point

- macro ((Head: -Body)). Macro definition. The head is expanded into a sequence of BAM
assembly instructions.

- include (FileName). Insert the text of the file FileName. This directive may be
nested up to the system limit of simultaneous open files.

pass (Anything) Pass the input " :- pass (Anything) ." unaltered to the out-
put in Prolog-readable form.

: - version. Print the creation date of this version of the compiler.
opIA, BC). Declare an operator in Prolog. Pass the input

op (A, B, C) "" unaltered to the output in Prolog-readablc form.
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Table 2 - High-level compiler options

Option Default Description
select limit (L) L,=I Perform selection for up to L arguments. Selection is done

according to the eruichment heuristic. See Chapter 4 section
6.2.

analyze off Perform dataflow analysis for all predicates in the input
stream. This option enables analysis of the entire input
stream, no matter where it occurs in the stream. The starting
points for analysis are the entry declarations and all predi-
cates of arity zero. The types obtained from the analysis are
merged with the programmer's types. The predicates are
then compiled with the merged types.

compile on Compile the input. When this option is disabled, the entry
types generated by the dataflow analyzer for the source predi-
cates are output as valid Prolog-readable type declarations.

factor on Do factoring source tansformation. With this transformation
similar compound terms in adjacent heads are only unified
once. Often this gives faster code.

comment .on Give information about what the compiler is doing.

same numbersolutions on Keep the same number of solutions on backtracking as stan- 0
dard Prolog. Relaxing the semantics by removing this option
results in better code in some cases.

same order solutions on Keep the same order of solutions on backtracking as standard
Prolog. Relaxing the semantics by removing this option
results in better code in some cases.

depth_limit (D) D=-2 Nesting depth limit on unification goals. Unifications deeper •
than this limit are transformed to remain within this limit
This transformation is used because compilation time and
code size for deeply nested unifications would otherwise in-
crease as the square of the size of the unification.

short block (S) S=6 Threshold on basic block length for shuffle optimization.

Table 3 - Architecture-dependent compiler options

Option Default Description

lowreg (L) L--O Lowest numbered machine register.
highreg (H) H=100 Highest numbered machine register. In the VLSI-BAM pro-

cessor, registers higher than r(15) are mapped into 0
merY'ory.

lowyperm (P) P=O Lowest numbered permanent variable.
hash size(H) H=5 Minimum size of a hash table.
align (K) K=2 Align all compound terms to start on a multiple of K.
uni on Generate unify..atomic instruction to unify with an atomic

termrr. 6
split_integer on Use separate tags for negative and nonnegative integers.
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Table 4 - Low-level compiler options

Option Default Description

system (X quintus The system running the compiler (other value: cprolog).
w r i t- e on Write the object code when compilation is complete.

peep on Do peephole optimization.
stats (S) oft Print timing statistics during compilation. S is one of the fol-

lowing atoms, or a list of them: t (top level of compilation).
c (compilation of a single procedure), p (peephole optimi-
zation), s (selection algorithm---extraction of determinism).
d (deterministic code generation).

debug off Print debugging messages during compilation.

iTa6le 5 -Type formulas

Type Meaning

nonvar (A' A is a nonvariable term, i.e. its main functor is instantiated. Nothing is implied
about its arguments.

ground (A), A is a ground term, i.e. it contains no unbound variables.
va r (A) A is an unbound variable.
uninit (A) A is an uninitialized memory variable. At the Prolog level, this means that A is an

unbound variable known not to be aliased to another variable. In the implementa-
tion, A is a pointer to an empty memory cell. Binding to this variable is a simple
store, without dereferencing or trailing.

uninitreg (A) A is an uninidalized register variable. At the Prolog level, this has the same mean-
ing as an uninitialized memory variable. In the implementation, A is an empty
machine register. This type increases the efficiency of parameter passing by re-
turning a value directly in a register. It is useful for interfacing with assembly
language.

deref (A) A is dereferenced.
rderef (A) A is.recursively dereferenced, i.e. A is dereierenced and all subterms of A arc re-

cursively dereferenced.

structure(A) A is a structure.
list (A) A is a list, i.e. a cons cell or nil.
cons (A) A is a cons cell, i.e. a non-nil list.
compound (A) A is a structure or a cons cell.
functor (A, F, N) A is the structure F with arity N.

atom(A) A is an atom.
atomic (A) A is atomic, i.e. a number or an atom.
simple (A) A is atomic or an unbound variable.
integer (A) A is an integer.
float (A) A is a floating point number.
number (A) A is an integer or a float.
negative (A) A is a negative integer.
nonnegative (A) A is a nonnegative integer.
A>O A is a positive integer.
A=-x A is thc atom x.

true Nothing is known about the type.
fail This means "execution can never reach this point."
(Fl,F2) This means "F! and F2," wherc FI and F2 arc type formulas.
(Fl; F2) This means "Fi or F2," where FI and i2 are type formulas.
not (F) This means "not F," where F is a type formula.
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Table 6 - New type-checking predicates in Aquarius Prolog

Predicate Prolog Definition
nil (A) :-nonvar(A), A[J.
cons(A) nonvar(A), A=(_t_]

compound(A) nonvar(A), \+atoznic(A).
st ructu re (A) aaconvar (A) , \+atomic(A), \+A=[_ I_.
ground(A) :-nonvar(A), functor(A, _, N), ground(N, A)'.
sirnple(A) (var(A) ; atomic(A)).
negatzive(A) :-integer(A), A<O.
nonnegative(A) integer(A), A>'O.
is-iist(A) :- var(A), ';A-[(] ; A=[_ IB], is-iist(B)).

is proper list(A) (var(A),!,fai1;A-r];A-[_IB),is~poe lst(B)).

The following clauses are part of the definition:

grourid(N, _) :-N=:0O.

ground(N, A) ?J=\=O, arg(N, A, X), ground(X), NI is N-1, ground(Ni, A).
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Appendix B

Formal specification of the Berkeley Abstract Machine syntax

% Formal specification of the Berkeley Abstract Machine (BAM) syntax

% Copyright (C) 1989 Peter Van Roy and Regents of the University of California

% May be used and modified for non-commercial purposes if this notice is kept.

% Written by Peter Van Roy.

% This file is an executable Prolog program that checks the syntactic

% correctness of BAM instructions. The predicate instr(I) is true if I is
% a legal BAM instruction. In addition to instructions output by the Aquarius
% compiler, this predicate also accepts the user instructions of the BAM,
% which allow the run-time system to be written completely in BAM assembly.

% *** Check correctness of a sequence of BAM instructions **

% Create saved state:
% Note: In C-Prolog this must be started up in a system
% equal to in size or larger than the one which created it.
main save(check, 1), prompt(_, ''), read(Instr), pipe(Instr, 0, 0), halt.
main :- halt.

% Pipe working loop:
pipe(end of file, M, N) -:-

T is M+N,
write('*** Checked '),write(T),write(' instructions; "),
write(M),write(" correct and '),write(N),write(' incorrect."),nl.

pipe(Instr, M, N)
(instr (Instr)

-> M1 is M+l, Nl=N

; M1-M, NI is N+1,

write('*** Incorrect: "),write(Instr),nl

!, read(NewInstr), pipe(Newlnstr, Ml, Ni).

% BAM Instructions ***

% 1. Unification support instructions:
instr(deref(V,W)) :- vari(V), vari(W).
instr(equal(EA,A,L)) :- eae(EA), arg_i(A), lbl(L).
instr(unify(V,W,F,G,L)) vari(V), vari(W), nvflag(F),nv flag(G),lbl(L).
instr(trail(V)) :- var i(V).
instr(move(EA,VI)) eam(EA), var i(VI).
instr(push(EA,R,N)) :- eap(EA), hreg(R), pos(N).
instr(adda(R,S,T)) :- numreg(R), numreg(S), hreg(T).
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instr(pad(N)) .- pos(N).

instr(unify_atomic(V,I,L)) var i(V), an-atom'ic(I), lbl(L).
instr(fail) -

%2. Conditional control flow instructions:
instr(switch(T,V,A,B,C)) a~tag(2'), var -i(V), lbl(A), lbl(B), lbl(C).

instr~choice(I/N,Rs,L)) :-pos(l), pos(N), 1=<N, lbl(L), regs(Rs).
instr(test(Eq,T,V,L)) eq~ne(Eq), var_i(V), a~tag(T), lbl(L).
instr(jump(C,A,B,L)) cond(C), numarg_i(A), numarg-i(B), lbl(L).

instr(rnove(CH,V)) a-var(V), choiceyptr(CH).

instr(cut(V)) .- avar(V).
instr(hash(T,R,N,L)) :-hash_typeur), reg(R), pos(N), lbl(L).
instr(pair(E,L)) an an atornic(E), lbl(L).

%3. Arithmetic instructions:

instr(add(A,B,V)) :-numarg_i(A), numarg-i(B), a -var(V).0

instr(sub(A,B,V)) :-nuxnarg_i(A), numarg~i(B), a_var(V).
instr(mul(A,B,V)) nuinarg-i(A), numarg-i(B), a -var(V).

instr(div(A,B,W~)) nuxnarg_i(A), numarg~i(B), a_.var(V).

instr(mod(A,B,,V)) numarg_i(A), numarg-i(B), a -var(V).
instr(and(A,B,V)) :-numarg-i(A), nuznarg~i(B), a_var(V.
instr( or(A,B,V)) numarg_i(A), numarg~i(B), a_var(V).

instr(xor(A,B,V)) :-numarg_i(A), nuxnarg~i(B), a~var(V).
instr(not(A,V)) :-numarg_i(A), a -var(V).
instr(sll(A,B,V)) :-numarg_i(A), nurnarg~i(B), a -var{V).
instr(sra(A,B,V)) .- nuxnarg_i(A), numarg~i(B), a_ývar(V).
instr(sll). I* vlsi~plm only 'I
instr(sra) . /* vlsi_plm only *

% 4. Procedural instructions:
instr(procedure(N/A)) . atorn(N), natural(A).

instr(call (N/A)) atonm(N), naturalfA).
instr (return) .
instr(simple call(N/A)) atom(N), natural(A).
instr(simple return).
instr(label(L)) lbl(L.
instr(jump(L)) .- lbl(L).
instr(allocate(Perms)) :-natural(Perms).

instr (deallocate (Perms)) natural(Perms).
instr(nop).

% 5. Pragma information for translator and reorderer:
instr(pragma(P)) :-pragma(P).

% 6. Additions to BAN for the assembly language programmer:
instr(I user xnstr(l).

SAdditions to BAN for the assembly language prograzmmer ~

? his section describes the parts Of the BAN language that are never output
%by the compiler, but only used by the BAM assembly programmer. This is used
'ito write the run-time System in BAN code, so that it is as portable as
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% possible. Additional instructions are jump to register address, convert
% tagged atom or integer to untagged integer (ord), its inverse (val), and
% non-trapping full-word unsigned comparison, non-trapping full-word
% arithmetic., and trailing for backtrackable destructive assignment.

user-instr(jump-reg(R)) :-reg(R).

user instr(jump~nt(C,A,B,L)) :-cond(C), numarg~i(A), numarg-i4B), lbl(L).
user-instr(ord(A,Bfl : arg(A), a -var(B).
user_instr(val(T,A,V)) a-tag(T), numarg-i(A), a var(V).
user_instr(add_nt(A,B,V)) :-numarg~i(A), numarg_i(B), a var(V3'.
user_instr(sub_nt(A,8,V)) :-numarg~i(A), numarg~i(B), a -var(V).
user_instr(and_nt(A,B,V)) :-numarg~i(A), numarg_i(B), a-var(V).
user -instr( or -nt(A,B,V)) :-numarg-i(A), numarg_i(B), a -var(V).
user instr(xor_nt(A,B,V)) :-numarg-i(A), numarg-i(B), a -var(V)..
user_instr(not_nt(A,V)) :-numarg_i(A), a var(V).
user -instr(sll -nt(A,B,V)) :-numarg~i(A), numarg~i(B), a -var(V).
user_instr,(sra_nt(A,B,V)) :-numarg-i(A), numarg-i(B), a-var(V).
user-instr(trail-bda(X)) :- avar(X).

% Additional registers:
% See Implementation Manual for list of existing registers.
user reg(r(A)) :-atom(A).

Pragmas

% A variable is a multiple of N.
% Inserted just before loads in readmode unification.
pragma (align (V,N)) a- avar(V), pos(N).

% Inserted just before a sequence of pushes in writemode unification.
% (The pushes may be interleaved with non-memory moves.)
pragma (push (term(Size))) :-pos (Size).
pragma (push (cons)).
pragma (push (structure (A))) -pos (A)..
pragma (push (variable)).

% Specify the tag of a variable.
% (This is useful for processors without explicit tag support.)
pragma(tag(V,T)) a- avar(V), a-tag(T).

% Length of a hash table.
pragma(hash_length(Len)) :-Pos(Len).

Tags

a-tag(tatm). I' atom '
a~tag(tint). /- integer
a~tag(tneg). I' negative integer .
a-tag(tpos). I' nonnegative integer '
a~tag(tstr) . f* structure *I



a-tag (tlst).I cons cell *
a_tag(tvar). 1' variable *

atom tag (tatm).

pointer-tag(tstr).
pointer-tag(tlst).
pointer_tag (tva r)

Addressing modes

heap ptr(r(h)).
choicejptr(r(b)).

reg(r(I)), int(I).
reg(U) user reg(U).

hreg(R) reg(R).
hreg(R) heapyptr(R).9

perm(p(I)) natural~l).

an atomic(I) int(I).
an atomic(T-A) atom(A), atom-tag(T).
an-atomic(7-(F/N)) atom(F), pos(N), atom-tag(T).0

a -var(Reg) reg(Reg).
a var(Perm) perzn(Perm).

arg(Arg) a -var(Arg).
arg(Arg) an-atomic(Arg).

var-i(Var) a-var(Var).
var-i([Var]) a-var(Var).

arg~i(Arg) var -i(Arg).
arg~i(Arg) an-atomic(Arg).0

nuznreg(Arg) reg(Arg).
numreg(Arg) int(Arg).

numarg~i(Arg) var -i(Arg).
numarg-i(Arg) int'(Arg).

var-Off([Var)) a-var(Var).
var-off(jVar4I]) a-var(Var), pos*(I).

%Effective address for equal:
ea-e(Var) a- avar(Var).0
ea-e(VarOff) var off(VarOff).

S Effective address for move:
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ea-mn(Arg) :-arg(Arg).

ea-m(VarOff) var-off(VarOff).
ea-m(Tag-H) pointer tag(Tag), heap_ptr(H).

%Effective address for push:
ea~p(Arg) arg~i(Arg).
ea~p(Tag-H) :-pointer tag(Tag), heap-ptr(H).
ea~p(Tag-(H+D)) pointer tag(Tag), pos(D), heapjptr(H).

~'Miscellaneous '

eq~ne(eq). /* Equal ~
eq~ne (ne) . / * Not equa 1/

cond(lts) ../* Signed less than *

cond(les). /* Signed less than or equal *

cond(gts). /* Signed greater than *I
cond(ges). /~-Signed greater than or equal *

cond(eq). /* Equal */
cond(ne). I' Not equal ~

hash_type (atomic).
hash_type (structure) -

lbl (fail).
lbl(N/A) :-atom(N), natural(A).
lbl(l(N/A,I)) atom(N), natural(A), natural(I).

fly_flag(nonvar).
nv-flag(var).
nv-f lagV'?I) .

% A list of register numbers:
% (May contain the value 'no' as well)
regs (III).
regs(URtSetj)): (int(R); R-no), regs(Set).

**Utilities ~

ground(X) nonvar(X), functor(X, _, N4), ground(N, X).

ground(N, _) -Ni:iO.

ground(N, X) :- N=\O, arg(N, X, A), ground(A), Ni is N-1, ground(Nl, X).

int(N) integer(N).
natural(N) integer(N), N>0O.
p0s(N) integer(N), 14)0.
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Appendix C

Formal specification of the Berkeley Abstract Machine semantics

% Formal specification of the Berkeley Abstract Machine (BAM) semantics
% Copyright (C) 1990 Peter Van Roy and Regents of the University of California
% May be used and modified for non-commercial purposes if this notice is kept.
% Written by Peter Van Roy.

% The specification is a Prolog program that defines the meaning of BAM in
% terms of its execution in a simple memory model. It runs BAM code directly
% from the output of the Aquarius compiler.

% The specification does not include the user instructions of the BAM since
% their behavior depends on the target machine.

% The specification is written in the Extended DCG notation.

% Meaning of registers:
% r(b) Index to most recent choice point.
% r(e) Index to current environment.
% zXtr) Top of trail stack.
% r(h) Top of heap stack.
% r(hb) Value of r(h) at last choice point creation.
% r(pc) Code address.
% r(cp) Continuation pointer for code.
% r(tmp_cp) Temporary continuation pointer for code, used only in simplecall.
% rtretry) Retry address for backtracking, only exists inside choice points.
% r(I) Argument and temporary register.
% p(I) Location on current environment.

% Types stored in registers:
% r(e) Contains values of registers (r(e),r(cp)) U {p(O), ... , p(N-l}],
% where N is the size of the environment.
% r(b) Contains values of registers (r(e),r(cp),r(tr),r(b),r(h),r(retry)) U RS,
% where RS is a subset of (r(O), r(l), ...

% r(tr) Contains a natural number.
% r(h), r(hb) Contain words with a pointer tag.
% r(pc), r(cp) Contain natural numbers or symbolic labels.
% r(tmpcp) Contains a symbolic label.
% r(retry) Contains a symbolic label.
% r(l) Contains a word.
% p(I) Contains a word.

% Comments:
% A word is either an integer or a structure of the form Tag'Value where Value
% is a natural number except if Tag-tatm, in which case Value is an atom or a
% structure (F/N) where F is an atom and N is a natural number.
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% A symbolic label is either the atom 'fail', or the structure FIN, or the
% structure l(F/N,I), where F is an atom and N and I are natural numbers.
% r(cp) is stored in environments, allowing nested calls.
% r(tmp-cp) is not stored in environments, allowing only one level of call.
% However, no environment is needed in a predicate containing a simple -call.
% There are no explicit stacks for environments or choice points; registers
% r(e) and r(b) each contain a set of register values.

%Accumulator declarations:

% Accumulators:

acc info(code, T, In, Out, table comnmand(T,In,Out)).
acc info(lblmap, T, In, Out, table -command(T,In,Out)).
acc info(regs, T, In, Out, table command(T,In,Out)).
acc info(trail, T, In, Out, table conunand(T,In,Out)).
acc info(heap,, T, In, Out, heap_table -conmmand(T,In,Out)).
acc-info(count*, T, In, Out, (Out is TI-In)).

% Predicate declarations:

% Top level:
pred-info( execute, 0, [regs,heap,trail,code,lblmap,count]).
pred-info( instr loop, 0, [regs,heap,trail,code,lblmnap,count]).
pred_info( instr_loop__end, 1, [regs,heap,trail,code,lblmap,countj).
pred-info( instr, 1, fregs,heap,trail,code,lblxnap)).
pred-info( numericjpc, 2, 1lblmap]).

%.Addressing modes:
pred-info( heap, 3, 1 heap]).
pred-info( reg, 3, [regs 1)
pred-info( perm, 3, (regs 1)
pred-info( a-var, 3, (regs
pred-info( var-i, 3, (regs,heap]).
pred-info( arg, 2, [regs D).
pred-info( arg-i, 2, tregs,heap]).
pred-info( numreg, 2, tregs D).
pred-info( numarg, 2, tregs,heapj).
pred-info( var-off, 2, (regs,heap]).
pred-info( imrn-tag, 2, fregs D).
pred-info( ea-e, 2, [regs,heap)).
pred-info( ea-m, 2, Iregs,heap]).
pred-info( eayp, 2, fregs,heapj).

% Instruction utilities:
pred info( deref rtn, 2, tregs,heap,trail]).
pred-info( deref-rtn-cont, 3, [regs,heap,traill).
pred-info( equal-rtn, 3, fregs,heap,traill).
pred-info( switch-rtn, 5, fregs,heap,traillD.
pred-info( test-rtn, 4, lreg3,heap,traillD.
pred_info( jump_cond_rtn, 4, (regs,heap,trail]).
pred_info( hash lookup, 3, (regs,heap,trail,lblmap.code]).
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pred-info( hash-lookup_2, 3, (regs,heap,trail,lblmap,codejj).
pred~info( hash -indirect, 3, 1 heap D).
pred-info( save-choice_regs, 2, (regs.heap,trail)).
pred~info(restore-choice regs, 2, Iregs,iheap,trail]).
pred~info( detrail -rtn, 2, [regs,heap,trail)).
pred-info( trail-rtn, 1, (regs,heap,traill).
pred~info( cmp-trail, 2, [regs,heap,traill).
pred-info( unify rnf, 3, (regs,heap,traill).
pred_info( unify_rt~n_-2, 3, tregs,heap,trailj).
pred~info( unify_rtn_2, 5, fregs,heap,trail]).
pred-info( unify~rtnargs_2, 6, [regs,heap,trail]).
pred~info( unify rtn_args_3, 7, [regs,heap,trailH).
pred-info( unify-atm, 3, fregs,heap,trail]).
pred_info( unify_end, 2,' [Tegs,heap,trail]).
pred_info( unify__varvar, 2, tregs,heap,trailD).
pred-info( get_size, 3, 1 heap 3)
pred-info(. arith, 4, fregs,heap )

pred-info( , write-rtn, 0, fregs,heap,trailj))
pred-info( write-rtn, 1, fregs,heap,trail]).
pred-info( write-arg, 2, Eregs,heap,trailD).
pred-info( write-angs, 3, iregs,heap,trail]).

%Implement the accumulator commands:
table command(ins(I,Val), In, In) ins(In, I, Val).
table -cornmand(get(I,Val), In, In) get(In, I, Val).
table_conunand(set(I,Vall, In, Out) set.(In, I, Val, Out).

% Mask off tag before looking up heap entry:
heap table-command(ins(_ 1,Val), In, in) irxs(In, I, Val).
heap_table-command(get(_ 1,Val), In, In) :-get(In, 1, Val).
heap_table-corruand(set(_ 1,Val), In, Out) set(In, 1, Val, Out).

Initialization and runtime options

dynamic (bamspec option/i).

main
save(bamspec, 1),
prompt(-, ''1,
(copyright,
execute
errorUI'Sorry, the executable BAM specification has failed.'])

halt.
main :

halt.

copyright :

wnite('Berkeley Abstract Machine (SAM4) Executable Specification'), nl,
write('Copyright (C) 1990 Peter Van Roy and 1),
write('Regent3 Of the University of California'), iii, nl.
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flagyprint(I) :-bamspec~option(print), !,write('Executing '), write(I) ni.
flagyprint _)

%Look up symbolic label to get a numeric PC:
numeric_pc(PC, PC) -- >> (integer(PC)J, *.!

numeric~pc(PC, NPC) -- >> [get (PC,NPC) ] :blmap.

% Read in the instructions and create the code array and label map:
% The code array gives the instruction corresponding to each PC value.
% The label map gives the PC value corresponding to each symbolic label.
read-code(Code, LblMap)

read (Inst r) ,
read-code(Instr, 0, Code, LbUl1ap).

read-code(end-of-file, _, Code, LblMap) : ,seal(Code), seal(Lblmap).
read-code((:-Option), PC, Code, LblMap) :

asserta (bam~spec option (Option)),
read(Nextlnstr),
read-code(Nextlnstr, PC, Code, iblMap).

read-code(Instr, PC, Code, LblMap)
ins(Code, PC, Instr),
insert -lblmap(Instr, LblMap, PC),
PCl is PC+l,
read (Next Inst r),
read-code(Nextlnstr, PCl, Code, LblMap).

%Add an entry to the label map:
insert lblmap(label(L), LblMap, PC) : ,ins(LbIMap, L, PC).
insert lblmap(procedure(P), LblMap, PC) !,ins(Lbl~ap, P, PC).
insert lblmap(_, _

%*** Top level execution '

execute
write('Reading BAt' code'), nl,
read -code(Code, LblMap),
write('Starting execution'), nl,
execute(leaf, Regs, leaf, _,# leaf, _,Code, _, LblMapr -, 0, M),
write('Executed 1), write(N),.,write(' instructions.'), nl,
print-array(Regs).

execute(File) :
seeing (OldFile),
see (File),
read-code(Code, LblMap),
seen,
see (OldFile),
execute(leaf, Regs, leaf, _,leaf, _,Code, _,LblMap, _, 0, N),
'eriteV(Eyzecuted '), write(N), write(' instructions.'), ni,
print-array(Reg3).
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execute -

(set(r(e),leafH):regs,
I[set (r (b) ,leaf))]:regs,
[ set (r (h ),tvar 0)) regs,
jset (r (tr).0)]: regs,
[set.(r (pc) ,0)]:regs,
[set(r(cp),global -success/O)]:regs,
instr(choice(1/2, (],global-failure/O)),
iflstr-loop.

%Instruction execution loop:
instr_loop -- >>

(get (r(pc) ,PC) I:regs,
! I.

instr-loop__end(PC).
instr loop -- >>»

erroru['Attempt to execute beyond existing cude.']).

instr_loop__endfwrite/l) -- ,write_rtn, instr(return), instr loop.
instr_loop end(nl/O) -- >> ! nl, instr(return), instr-loop.
instr_loop__end(global -success/O) -- >> !,

write("*~* Global success ***i), ni.
instr-loop end(global failure/O) -- >> !,

writ~e('*** Global failure **Uni.

instr_loop end(fail)-»
instr (fail) ,

2.nstr-loop.
instr-loop end(PC)-»

numeric_pc(PC, NPC),
% Fetch:
[get (NPC, Instr) 3 :code,
?NPCl is NPC+l,
(set (r(pc) ,NPCl)] :regs, S
% Execute:
(1] :count,
flag print (Inst r),
iflstr (Instr),
*1 I
instr loop.

instr loop_ end(PC)-»
error(['Program counter is ',PC]).

BAM Instructions

%1. Unification support instructions:.
instr(deref(V,Wfl -

var_i(get, V, X),
deref rtn(X, Y),
var-i(set, W, Y).

instr(equal(EA,A,L)) -

ea e(EA, X),
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arg_i(A. Y).
(lbl (L) ),
equal Irtn (X, Y, L)

iristr(unify(V,W..F,G,L)) -- >>

var-i(get, V, X),
var_i(get, W, Y),
(nv -flag(F) I,
(fnvy flag (G) ),
libi (L)),
unify_rtn(X, Y, L).

instr(unify~atornic(V, I,L)) --

var-i(get, V, X),
,an atomic(I)J

unify_rtn(X, I, L).

var 7i(get, V, X),
trail rtn(X).

instr(move(EA,VI)) -

ea-rn(EA, XL,
var_I(set, VI, X), !

instr(push(EA,R,N))-»
eayp(EA, X),
{hreg(R)),
[get (R,Y) I:regs,
[set (Y,X)) :heap,
{posM() ,
add word(Y, N, YN),
[set(.R,YN)) :regs.

instr(adda(R,S,T)) -

(hreg(R) I,
(get (R, X) I : regs,
numreg(S, Off),
add word(X, Off, NX),
threg(T) 1,
(set (T,NX)] :regs.

instr(pad(N)) -->>

!get(r(h),H)] :regs,
1p05(N),
add -word (*, N, 1lewH),
[set (r(h),NewH)) :regs.

S2. Conditional control flow instructions:
instr (choice (l/N,R3,L) ) -- >> (pos(N), N>l, regs(Rs), lbl(L)J, ',

save -choice regs(Rs, ?JewB),
fins(NewB, r(retry), LI,
jqet(r(tr),TR)j:regs, (ins(NewB, r(tr), TRU),
(get(r(e), E)I:regs, (ins(NewB, r(e), E)),
jget(r(cp),CP)j:regs, (ins(NewB, r(cp), CPU),
(get(r(b), 8)):regs, fins(NewB, r(b), B)),
[get(r(h), H)J:regs, fins(NewB, r(h), H)),

[set(r(hb), H)I:regs,
(set(r(b),NewB)1 :reQs.
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[get (r(b) ,B)] :regs,
restore Tchoice-regs(Rs, B),
f set (B, r(retry) ,L, NewB) )
(set(r(bi ,NewB) I:regs.

instr(choice(N/N,Rs,L)) -- >> ipos(Ni, regs(Rs), lbl(L)), !
[get (r(b) .B) J:regs,
restore Tchoice-regs(Rs, B),
Iget (B, r(b) ,NewB) 1,
(set(r(b),NewB) 3:reas,
(get (NewB, r (h , H) ),
[set (r (hb) ,H)I: regs.

instr~fail) -- >>

[get (r (bi , B)]regs,
(get (B, r(h , H) I,
(set (r (h) , li) I regs,
(get (5,,r (e) ,E) I,
[set(r(e),E)]3 regs,
fget (B, r(cpl, CPi I,
[set (r (cp) ,CP) I :regs,
fget (r(tr) ,CurTR)] regs,
(get (B, r (t r) , OldTR)),
detrail rtn(CurTR, OldTR),
(get (B, r(retry), L) ) ,
[set (r (pci *L)] regs -

instr(switch(T,V,A,B,Cj) -- >

(a-tag(T)),
var i(get, V, X),
extract -tag(X, TX),
ilbl(A), lbl(B), lbl(C)),
switch rtn(T, TX, A, B, C).

instr(test(Eq,T,V,L)) -- >>

la-tag(T)),
var -i(get, V, X),
extract tag (X, TX),
I eqjie (Eq)1
(lbl(L)IJ,
test rtn(Eq, T, TX, L).

instr(jump(C,A,B,L))-»
fcorid(C) I,
numarg (A, XA), (extract-value (XA, VA), check-int (X),
ntwiarg(B, XB), lextract value(XB, VB), check int(XM),
(lbl(L) ),
jurnpcornd rtn(C, VA, VB, L).

[get(r(b) ,B)] :regs,
a~var (set, V, B) .

irastr(cut(V)) -- >>

a_var(get, V, X),
(set (r(b),X)J :regs,
Iget (X, r(h) ,H) 1,
Jset(r(hb),iH) :regs.

instr(hash(T,1A,N,L)) -- >> hash type(T), pos(N), lbl(L),

reg~et, , X)
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hash indirect CT, X, Y),
(get (L,PC)] :lblmap,
hash lookup(PC, Y, N).

instr (pair(_, _)) -- >>
(error(U'Attempt to execute inside a hash table.'])).

%3. Arithmetic instructions:
instr(add(A,B,V)) -»arith(add, A, B, V).

instr(sub(A,B,V)) -»arith(sub, A, B, V).

instr(mul(A,B,V)) -»arith(mul, A, B, V).

instr(div(A,B,V))-» arith(div, A, B, V).

instr(mod(A,B,V))-» arith(rnod, A, B, V).
instr (and (A, B, V)) -»arith(and, A, B, V).

instr( or(A,B,V)) -»arith( or, A,. B, V).

instr(xor(A,B,V))-» arith(xor, A, B, V).

instr(not(A,V)) -» arith(not, A, 0, V).
instr(sll(A,B,V))-- arith(sll, A, B, V).
instr(sra(A,B,V)) -»arith(sra, A, B, V).

%4. Procedural instructions:
instr(procedure(N/A)) -- >> latom(N), natural(A)).
instr(call(N/A)) -- >> {atom(N), natural(A)),

Jget (r(pc) ,PC)] :regs,
[set (r (cp) ,PC)]: regs,
(set (r(pc) ,N/A)] :regs.

*instr(return) ->
(get (r(cp) ,PC)] :regs,
(set (r(pc) ,PC)] :regs.

instr(siznple Tcall(N/A)) -->> {atozn(N), natural(A)),
(get (r(pc) ,PC)] :regs,
(set(r(tmp~cp),PC)] :r~dgs,
(set(r(pc),NIAfl-.regs.

instr(simple return) -->>

(get (r(tmp-cp) ,PC) 3:regs,
(set (r(pc) ,PC) 3:regs.

instr(label(L)) -- lbl(L)).
instr(jump(L))-» (lbl(L)),

(set(r(pc),L)3:regs.
instr(allocate(N))-»

(natural (N) ),
(get(r Ce) ,E)] :regs,
fins(NewE, r(e), E)),
(get (r(cp),CP)) :regs,
fins(NewE, r(cp), CP)),
(sealI(NewE)) ,
Iset(r(e),NewE) I:regs.

instr(deallocate(N))-»
(natural (N) I,
(get (r(e) ,EW :regs,
(get (E,r(e),NewE) ),
Iget(E,r(cp),NewCP)),
(set (r e) ,NewE)) :r~egs,
1set(r(cp),NewCP))I:regs.

instr(nop) -- >> [).
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% 5. Pragma information for translator and reorderer:
% Pragmas are no-ops in the execution.
instr(pragma(P)) -- >> (pragma(P)), '. 0

% 6. Additions to BAM for the assembly language programmer:
% The meaning of these instructions depends on the underlying architecture,
% so they are not included in this specification. See the Implementation
% Manual for a discussion of their use.

Pragmas

% A variable is a multiple of N.
% Inserted just before loads in readmode unification. 0
pragma(align(V,N)) :- a-var(V), pos(N).

% Inserted just before a sequence of pushes in writemode unification.
% (The pushes-may be interleaved with non-memory moves.)
pragma(push(term(Size))) :- pos(Size).
pragma (push(cons)) . 9
pragma(push(structure(A))) :- pos(A).
pragma(push(variable)).

% Specify the tag of a variable.
% (This is useful for processors without explicit tag support.)
pragma(tag(V,T)) -- a var(V), atag(T).

% Length of a hash table.
pragma(hashlength(Len)). :- pos(Len).

% *** Tags

a_tag(tatm). /* atom */
a_tag(tint). /* integer */
a_tag(tneg). /* negative integer */
a_tag(tpos). /* nonnegative integer */ 0
a_tag(tstr). /* structure */
a_tag(tlst). /f cons cell */
a_tag(tvar). /* variable */

atom tag (tatm) .

atomic tag (tatm).
atomic tag (tint).
atomic tag(tneg).
atomic tag(tpos).

pointertag(tstr).
pointertag(tlst).
pointer tag(tvar).

S" " " = = • • = = = ia It | i i i i i | | la0
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% * Addressing modes '~

% Both read and write access:

heap(get, W, X) -- » iptrword(W)), [get(W,X)]:heap.

heap(set, W, X) -- Iptr-word(W)1, [set(W,X)]:heap.

ptr-Word(T _) :- pointer_tag(Tk.

reg(get, R, X) -»(reg(R)), [get(R,X)]:regs.

reg(set, R, X) -»(reg(R)), Iset(R,X)]:regs.

reg(r(I)) :-int(I),

hreg(R) :-reg(R), !

hreg(r(h)).

perm(get, P, X) -- >> (perm(P)), [get,(r(e),E)]:regs, tget(EP,X)).

perm(set, P', X) -- >> (perm(P)), [get(r(e),E)]:regs, (set(EPX,tNewE)I,

(set (r(e) ,NewE)I :regs.

perm(p(I) :- natural(I).

a -var(WR, V, XI -- reg(WR, V, X),

a var(WR, V, X) -- »permn(WR, V, X).

a -var(Reg) :-reg(Reg), !.

a-var(Perm) :-perm(Perml..

var -i(WR, IV)., X) -»a var(get, V, W), heap(WR, W, X), !

var i(WR, V, X) -»a var (WR, V, X)

% Read access only:

% An int is its own value:
int(N) :-integer(N).

% An atomic is its own value:

an-atomic(I) int(I), !

an-atomic(T"A) :-atom(A), atom-tag(T), !

an-atomic(T^(F/N)) :-atom(F), pos(N), atom-tag(T).

arg(Arg, Arg) -»(an atomic(Arg)), !.

arg(Ai:g, X) -»a_var(get, Arg, X).

arg~i(Arg, ArgI - (an-atomic(Arg)), !

arg~i(Arg, X) - var-i(get, Arg, X).

numreg(Arg, ArgI -) fint(Argfl, !

numreg(Arg, X) r- eg(get, Arg, X).
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numarg(Arg, Arg) -- fint(Arg)),

riumarg(Arg, X) -»var-i(get, Arg, X).

var-offU[Var+I], X) -- >> a-var(get, Var, .7), !
lpos(I)), add -word(l, 1, T2),, (get(T2,X)J:heap.

var offU[Varl, X) -->> a~var(get., Var, !T), (get(T,X)3:heap.

% Creating immediate tagged pointer objects:
imm-tag(Tag-(r(h)+D), W) -- >> (pointer tag(Tag) I,

[get(r(h) ,T) J:regs,
Ipos(D)), add -word(T, D, X),
insert_tag(Tag, X, W).

imm-tag(Tag-r(h), W) -->> (pointer_tag(Tag)), ,

[get (r (h) , X)) I: regs,
insert-tag(Tag, X, W).

%Effective address for equal:
ea-e(Var, X) -->> a_var(get, Var, X), '

ea-e(VarOff, X),-->> var-off(VarOff, X)'.

% Effective address for move:
ea-m(Arg, X) -»arg(Arg, X), !

ea -m(VarOff, X) -»var-off (VarOff, X), !

ea-m(T'.r(h), X)'-- imm-tag(T-r(h), X).

% Effective address for push:
ea_p(Arg, X) -- »arg-i(Arg, X)',
ea~p(T-Y, X) -»irnrntag(T-Y, X).

**Miscellaneous *

eq__ne(eq). /* Equal '
eq~ne(ne). I* Not equal *

cond(lts). /* Signed less than ~
cond(les). I' Signed less than or equal *
cond(gts). I' Signed greater than */
cond(ges). /* Signed greater than or equal '
cond(eq). I' Equal */
cond(ne). /* Not equal '

hash-type(atomic).
hash_type(3tructure).

lbl(fail).
lbl(N/A) :-atom(Nl', natural(A).
lbl(l(N/A,I)) :-atom(N), natural(A), natural(I).

fly_f lag (nonvar) .
nvf flag (va r).
nv-flag V ?'I
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% A list of register numbers:
% (may contain the value 'no' as well)
regs(f ))

% Dereference utilities:

deref rtn(X, X) -»(nonvartag(X)I,

deref rtn(X, Y)-»
[get (X,x2)J :heap,
deref-rtn-cont(X, X2, Y).

deref rtn cont(X, X, Y)-» ,YX.
deref-rtn-cont(_, X, Y) -»deref-rtn(X, Y).

%Equal routine:

equal_rtn(X, X,_)-» .

equal_rtn(_, _, L) -»Iset(r(pc),L)]:regs.

%Switch and test routines:

switch rtn(_, tvar, A, _, _) -- >> !, (set(r(pc),A)]:regs.
switch rtn(T, TX, _,B, _) -- Iequivalent-tag(T,TXfl,!, [3et(r(pc),B)I:regs.
switch-rtn(_, _,_ ,C - set(r(pc),C)j:regs.

test rtn(Eq, T, TX, L) -»(test -true(Eq, T, TX)), !, 13et(r(pc),L)]:re~g3.
test-rtn ( _, _, _j, _) -»1].

test true(eq, T, TX) :-equivalent_tag(T, TX).
test-true(ne, T, TX) \+equivalent-tag(T, TX).

%Arithmetic utilities:

arith(Op, A, B, V)-»
numarg(A, XA), (extract-value(XA, VA), check -int(XA)),
numarg(B, XB), (extract -value(XB, ye), check int(XB)),
arith-Operation(Op, VA, VB, VC),
a-var(set, V, VC).

arith-operation(add, VA, VB, VC) :-VC is VA+VB.
arith_operation(sub, VA, VB, VC) :-VC is VA-VB.
arith-operation(mul, VA, VB, VC) :-VC is VA*VB.
arith operation(div, VA, VB, VC) :-VC is VA//VB.
arith-operation(mod, VA, VB. VC) VC is VA mod VB.
arith-operation(and, VA, VB, VC) VC is VA P B.
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arith_operation( or, VA, VS, VC) VC is VA \/ VB.
arith_operation(xor, VA, yE, VC) VC is (VA /\ \(VB)) N/ (B I\ \(VA)).
arith-operation(not, VA, -, VC) VC is \(VA).
arith -operation(slI, VA, VS, VC) VC i~s VA«<VB.
arith__operation(sra, VA, VB, VC) :-VC is VA»>VB.

%Conditional jump:

jump-cond rtn(C, VA, VB, L) -->> (jumnp-true(C, VA, VB)), J, set(r(pc),L)]:regs.
jump cond~rtn(_, _ _ - I

jump -true(lts, VA, VB) :-VA@<VB.

jump_ true(gts, VA, VB) VA@>VB.
jump_ true(les, VA, VS) VA(@=<VB.
jump true(ges, VA, VS) :-VA@>-VB.

jump_,true( eq, VA, VB) VA--V5.
jump-true( ne,' VA, VB) :-VA\-=VB.

%Hash table utilities:

hash_1.lookup(PC, X, N) -- >>
{PC1 is PC+I),

[get (PCl,pragma (hash length (N)))] :code,
IPC2 is PCl+1),
(PCN is PCI+N),
hash lookup_2(PC2, PCN, X).

hash -lookup_,2(PC, PCH, _)-- PC>PCN), !
hash -lookup2.(PC, PCN, X) -- >> (PC-<PCN),

[get (PC,pair(E,L))] :code,

lset(r (pci ,L)]I:regs.
hash -lookup_,2(PC, PCN, X) --> (PC-<PCNI,

MiP is PC+l),
hash-lookup_2(PCl, PCN. X).

%Indirection needed for structures because main functor is in memory:
hash indirect(atomic, X, X) -->> LI.

hash indirect(structure, X, Y) -- >> [get(X,Y)3:heap.

%Choice point and fail utilities:

save-choice -regs~l), _) -- >> LI.
save choice regs(Jno11ksI, B)-->,

save -choice~regs(Rs, B). 4
save choice regs(IlIRs), B) ->

(g9et (r(1),R) J:regs,
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(ins (B. r(M , R))
save-choice regs(Rs, B).

restore-choice-regs(I?], _ -

restore-choice-regs((nolRs], B) -»~

restore choice -regs(Rs, B).
restore-choice-regsC(IIRs], B) ->

I get (B, r(M), R) I,

restore-choice-regs(Rs, B).

% Trailing and detrailing:

trail-rtn(X)-»
(get (r(hb) ,HB))3:regs,
cmp~trail(X, HB).

cmnptrail(X, HB) -->> fess-trail(X, HB)), !,

(get (rhir) ,TR)]3:regs,
(set (TR, X)I:trail,
ITRi is TR+l),
(se~t(r(tr) gTR1)] :regs.

cnip_trail(_, _I -- >> 1].

less-trail(_ X, _^Y) :- X<Y.

% Restore to unbound the variables on the trail between OldTR and CurTR.
detrail rtn(CurTR, OldTR) -»(CurTR-<OldTRI, !

detrail rtn(CurTR, OldTRI - (CurTR>OldTR),
fCurTRl is CurTR-1),
(get (CurTRI,V)I]:trail,
(set (VV)):heap,
detrail-rtn(CurTRl, OldTR).

% General unification routine:

unify-rtn(Wl, W2, L)--
unify rtn_-2(Wlf W2, Flag),
unify_ end(Flag,, L).

unifyj end(success, _) -- >> H.
% For later: detrailing if L\fail.
unify_ %end(fail, L) -- >> (set(r(pc),,L)]:regs.

unify_rtn_-2(wl, W2, Flag)--
lextract_tag value(Wl, Ti, Vi)),
(extract_tag_vaiue(W2. T2, V2)),
unify-rtn_2(T1, V1, T2, V2, Flag).

unify_rtn_2(tvar, Vi, NTag, V2, success) -->> MWag\--tvar), '
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trail-rtn(tvar-Vl),
(make-word(NTag, V2, Word)),
[set (tvar-Vl,Word)]I:heap.

unify_rnf_2(NTag, V21 tvar, Vi, success).--»> (NTag\=-tvar), '

trail-rtn(tvar-Vl),
(make-word(NTag, V2, Word)),
(set (tvar-Vi,Word)] :heap.

unify_rtn_2(tvar, VI, tvar, V2, success) -->>!
unify varvar(Vl, V2).

Hatching atomic tags:
unify_rtn_2(ATag, Vi, ETag, V2, Flag) -- >>

(atomic_tag(ATag)),
(atomic_tag(BTagfl,
(equivalent_tag(ATag, BTag)),-

unify atm(Vi, V2, Flag).0
%Non-matc 'hing nonvaniable tags:

unify_rtn_2(ATag, -, BTag, -, fail) -- >>

(ATag\--tvar, BTag\--tvarl,
f\+equivalent_tag(A~ag, BTag)),

MHatching pointer tags (recursive case):
unify-rtn_-2(ATag, Vi, ATag, V2, Flag) -- >>

(po~inter-tag(ATag)),
get_size(ATag, Vi, Sz),
unify rnflargs_2(0, Sze ATag, Vi, V2, Flag).

%The term' s Size is the maximum offset needed to traverse thxe term in memory.
get size(tlst, _, 1) -» >>

get size(tstr, V, N) -- >>
(get (tstr-V, Func)] :he~p,

IFunc-(tatm (_IN))).

unify_rtn-angs_2(N, Sze ,_,_ success) -- >> (N>Sz), '

unify_rtn -angs_2(N, Sze T, V, We Flag) -->> (N-<Sz), '

(VN is V+N),
(WN is W+N),
(get(T'VN,VX)J:heap, deref -rtn(VX, DVX),
(get(T-WN,W`X)]:heap, deref rtn(WX, DWX),
unify rtn -2(DVX, DWX, F),
(Ni is N+11,

unify_rtn-args-3(F, NI, Sze T, V, W, Flag).

%Continue with other arguments if argument unification succeeded:
unify_rtn-args_3(fail, _, _, _, _, _, fail) -- » [>
unify-rtn-args_3(success, Nie Sz, T, V, W, Flag)-»

unify-rtn-args_2(Ni, Sze T, V, W, Flag).

%Unifying value parts of two atomic terms with equivalent tag:
unify__atm(V, .1, success) -- >>'

unify_atm(_, _, fail) -->> (3. 4

% Unifying two variables: bind youngest to oldest, trail youngest.
unify varvar(v1, V2) -->> (Vl)V2), '

0
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trail -rtn(tvar-vl).,
[setCtVar-Vi,tvar-V2)] :heap.

unify varvar(Vi, V2) -->> (Vl-<V2), '

trail rtn(tvar-V2).
(set (tvar-V2,tvar-Vl)jI:heap.

%Simrple type utilities:

ground(X) nonvar(X), functor(X, _, N), graund(N, X).

ground(N. X) N- \-O, argtN, X, A), ground(A), NI is N-1, ground(Nl, X).

natural(N) -- integer(N), N>=O.
pos(N) :-integer(N), N>O.

% word, tag, and value manipulation utilities:

% This takes into account the relationship between tpos, tneg and tint.
% For integers it extracts ipos or tneg tags and the absolute value
% of the integer. It creates the correct integer, given the tpos, tneg
% or tint tags.

equivalent tag(T, T)
equivalent -tag(tint, tpos)
equivalent__tagftint, tneg).

extract tag(N, tpos) integer(N), N)'-O, I

extract tag(N, tneg) integer(N), N<O, 1.
extract_tag(tr, T).

extract value(N, N) int(N), N>0O,
extract value(N, M4) int(N), N<O, ~,M is -N.
extract-value (_ V, V) .

extract tag value 4W, T, V)
extract tag(W, 7),
extract-value (W, V) .

nonvartag(I) :-int(I), !

nonvartag(T _) :-\+T-tvar.

% Only used for pointer tags:
insert tag(T, _V, T^V).

make-Word (tint, 1, 1)
make vord(tpos, 1, 1I :

make worditneg, N, 1) t- I is -N.
make wYordiT, V, 7'V).
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% Eventually, print out value of PC:
check int(I) :- int(I), .

check int(_)
error(I'Operand of conditional is not. an integer.')).

% Table utilities: 0

% This code implements a mutable array, represented as a binary tree.

% Insert a value in logarithmic time and constant space:
% This predicate is used in this program only to create the array,
% although it can also be used to access array elements.
ins(T, I, V) :-hash(I, H), ins_2(T, H, V).

ins_2(node(N,W,.L,R), I, V) :-ins_2(N, W, L, R, I, V).

ins_2(N, V, _, I, V) :- I=N, '.

ins_2(N, _, L, R, I, V)

compare(Order, I, N),
ins_2(Order, I, V, L, R).

ins_2(<, I, V, L, _) :-ins_2(L, I, V).
ins_2(>, I, V, _, R) :- ins_2(R, I, V).

% Access a value in logarithmic time and constant space:
% This predicate cannot be used to create the array incrementally,
% but it is faster than ins/3.
get(T, I, V) :- hash(I, H), get 2(T, H, V).

get_2(node(N,W,L,R), I, V) :- 0

compare(Order, I, N),
get_3(Order, 1, V, W, L, R).

get_3(<, I, V, _, L, _) get_2(L, I, V).

get_3(-, _, V, W, _, _) V-W.

get_3(>, I, V, _, _, R) get__2(R, I, V).

% Update an array in logarithmic time and space:
set(T, I, V, U) :-hash(I, H), set_2(T, H, V, U).

set 2(leaf, I, V, node(I,V,leafleaf)).
set_-2(node(N,W,L,R), I, V, node(N,NW,NL,NR))

compare(Order, 1, N),
set_3(Order, I, V, W, L, R, NW, NL, NR).

set 3(<, I, V, W, L, R, W, NL, R) :-set_2(L, I, V, NL).
set 3(-, _, V, _, L, R, V, L, R).
set_3(>, I, V, W, L, R, W, L, NR) :- set_2(R, 1, V, NR).

% Prevent any further insertions in the array:

S.. .. .- - --. .,=~m . m mmm mmm mmmmm lm i m mllm•mmmm
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seal(leaf).
seal(node(_, _,L,R)) :-seai(L), seal(R).

% Print values of array in sorted order:
print_array(Term) :

flat array(Term, 2, Fiat),
print_iist(Fiat).

print_list([]).
print-list(UA->B) IL])

write(A), put(9), write('= ',write(B), ni.
print-list CL).

flat-array(Term, N, Sort)
N>0, Ni is N-i,
flat-array(Term, Ni, Flat, ],'
sort(Flat, Sort).

flat -array~leaf, N, N] - :0O,
flat_array(nod'e(_, _,_,_), N, '.):-N=:-0, !
flat-array(Te rm, _,Term).

flat -array(leaf,_)-> .
flat__array(node(H,T,L,R), N)->

flit -array(L, N),
{hash(H, M),
(flat -array(T, N, F)),

flat array(R, N).

% Invertible hash function:
% Bit inversion of the ijiteger components of a ground term. Other parts are
%a unchanged. This one inverts the low 16 bits. It can be changed by changing
%a the last argument of bit-invert/3.
hash(I, HI) integer~l), 1, bit -invert(I, H, 16).
hash(T, H) functor(T, Na, Ar), functor(H, Na, Ar), hash_2(Ar, T, H).

hash_2(0, ), :-!

hash_2(N, TO H) :- 11>0,
arg(N, T, X),
arg(N, H, Y),
ha~sh(X, Y),
NI is N-1,
hash_2(N1, T, H).

bit invert(0, 0, ) :- .
bit-invert(N, 1, B) :- 14>0,

L is N»1l,
R is N/\1,
BI is B-i,
bit invert(L, LI, Bl),
I is R*(1«B) + L1.
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%Error handling:

error(L)-
write('*** Error: ,0
error_lOOP(L),

write(' ***'), ni.

error loop(H))
error loop([MIL]) :- write(M), error-loop(L).

%Primitive version of write:

write rtn --

(get (r(0) ,X) ]:regs,
write rtn(X).

write -rtn (tvarV) -- ,(Qrite (' '), write (V) 3.
write rtn(l) -->> (int(I)I, !,(wr~ite(I)3.
write rtn(tatrn (F/N)) -- ,(write(....) write(F/N), write(.'f..
write rtn(tatrnA) -- ! write(A)1.
write rtn(tlst-V) -»!

IW.is V+1),
Iget (tlst-V, Head) I:heap,
(get (tlst-W,Tail)) :heap,
deref rtn(Head, DHead),
deref rtn(Tail, DTail),

write rtn(DHead),
1write VI') I,
write rtn(DTail),
(write ('3)).

write rtn(tstr-V) -»'

(get (tstr-V,tatm-(F/N) 3]:heap,
(write(M), write(V(V)J
write__arg(V, 1) ,
write_,args (2, N, V),
(writeV('3)).

write args(I, N, _)-- I>Nl, !

write-args (I, N, V) -»(1-<N), !
(Ii is 1+1),

write-arg(V, 1),
write__args (11, N, V) .

write -arg(V, I)-»
(W is V+Ii,
(get(tstr-W,X) I:heap,
deref-rtn(X, DXI,
write-rtn(DX).
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Appendix D

Semantics of the Berkeley Abstract Machine

1. Introduction

This appendix gives an English-language description of the semantics of the Berkeley Abstract
Machine (BAM) as comments attached to a Prblog specification of its syntax. The BAM is intended to
operate on the same data structures as the Warren Abstract Machine (WAM), therefore some familiarity
with the WAM is an advantage. The semantics are represented by short descriptions supplemented by
pseudo-code and examples where necessary.

The BAM is designed to be simple and easily translated to most general-purpose processors. Many
of its optimizations apply to any processor, for example the streamlined choice point management and the
use of write-once permanent variables to simplify trailing. Although the first target is the VLSI-BAM pro-
cessor, we have built translators for other processors including the MIPS and the MC68020. Pragmas give
information that is used to obtain the best translation for different processors.

" The instruction set is divided in six categories, each in a different section. Each section starts with a
box giving the syntax of the instructions presented in that section. This is followed by a description of the
instructions' actions. Section 2 gives the unification instructions. Section 3 gives the conditional control
flow instructions. Section 4 gives the arithmetic instructions. Section 5 gives the procedutal control flow
instructions. Section 6 gives the pragmas, which contain information that allows better translation. Section
7 gives the user instructions, additions to the BAM that are never output by the compiler but are intended
for the BAM assembly programmer. The last section defines the syntax and semantics of the addressing
modes used in the instructions. *

In explaining the semantics, a few assumptions are made about the data representation. An infinite
number of registers is assumed; the translator should map registers of sufficiently large index to memory.
A tagged architecture is assumed; ie. each word contains a tag and a value field which are treated as
separate entities in some instructions and as a unit in other instructions. A load-store architecture is
assumed; almost any architecture has a subset of instructions that satisfy this assumption. Thc actual
details of the translation to the target architecture are not given since they depend on the characteristics of
the architecture. These characteristics include the number of registers, the addressing modes, hardware
support for certain features (tagging, dereferencing, trailing, etc.), the precise format of choice points and
environments, and so forth.
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2. Unification instructions

Unification syntax

instr(deref(V,W)) vari(V), var_i(W).

instr(equal(EA,A,L)) eea_e(EA), arg_i(A), lbl(L).
instr(unify(V,W,F,GL)) vari(V.),var i(W),nvflag(F),nvflag(G),lbl(L).
instr(trail(V)) var i(V).
instr(move(EA,VI)) ea m(EA), var i(VI).
instr(push(EA,R,N)) eayP(EA), hreg(R), pos(N).
instr(adda(R,S,T)) -numreg(R), numreg(S), hreg(T)..
instr(pad(N)) pos(N).
instr(unifyatomic(V,I,L)):- vari(V), anatomic(I), lbl(L).
instr(fail).

deref (V, W) Dereference the argument V and store the result in W. The argument
V is unchanged. This is the only instruction which dereferences its
argument All other instructions assume that their arguments are
dereferenced. Giving the dereference instruction two arguments
simplifies the implementation of write-once permanent variables and
makes a fast implementation of trailing possible.

equa l (X, Y, L) Compare X to Y and branch to L if they arm not equal. The comparison
is a full word operation, eq .vaeat to "eq" in Lisp. It is assumed that

X and Y are dereferenceu.

unify (X, Y, T, U, L) Perform a general unification of X and Y. and branch to L if it fails.

Always binds oldest variables to the youngest. In the failure case all
bindings are undone. It is asslimed that X and Y are dereferenced. The
two parameters T and U are added as an optimization, and may be

safely ignored. They are flags (with values 'I , var, or nonvar)
that say whether it is known if X and Y are variables or nonvariables.
With this information a better translation to the target processor can be
done.

trail (X) Push the address of X on the trail stack if the trail condition X<r (hb)
is satisfied. It is assumed that X is a dereferenced unbound variable,
i.e. it has a tvar tag. Only one comparison is necessary for the trail
check. The state register r (hb) points to the heap location which

was the top of the heap when the most recent choice point was created.

move (X, Y) Move X to Y. Depending on the addressing mode, this instruction does
a load or store or creates a tagged value.

push (X, R, N) Push X on the stack with stack pointer R, then increment R by N. This

instruction is used for write mode unification.

adda (X, Y, R) Add X and Y into R. This is a full word operation which never traps,
unlike the arithmetic instructions in section 4. This instruction is used
to allocate space for uninitialized variables. The second argument Y is
an offset which is scaled properly by the translator (i.e. it is unchanged
for the VLSI-BAM since it is word-addressed, and it is multiplied by 4
for the MIPS, since it is byte-addressed).
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pad (N) Add N words to the heap pointer r (h). This is a full word operation
which never traps, unlike the arithmetic instructions in section 4. It is

* used to ensure the correct alignment of compound terms. The space
reserved by pad will never be stored to. If the increment is a multiple
of the alignment then the pad disappears. The increment is scaled
properly by the translator (see previous description of adda).

unify_atomic (X, Y, L) Unify the variable X with the atomic term Y, and branch to L if it fads.
h is assumed that X is dereferenced. The unify_atomic instruc-
tion is a special case of general unification that is added to reduce code
size in the VLSI-BAM processor. There is a compiler option to enable
or disable the generati3n of this instruction.

fail Untrail all variable bindings and jump to the retry address. Do not
restore argument registers. Argument registers are restored by the
choice point management instructions.

3. Conditional control flow instructions

Clause selection syntax
instr(switch(T,V,A,B,C)) :- atag(T), vari(V), lbl(A),lbl(B),lbl(C).
instr(choice(I/N,Rs,L)) pos(I), pos(N), I=<N, lbl(L), regs(Rs).
instr(test(Eq,T,V,L)) eq_ne(Eq), var_i(V), a_tag(T), lbl(L).
instr(jump(C,A,B,L)) cond(C), numargi(A), numargi(B),lbl(L).
instr (move(CH,V)) a_var(V), choiceptr(CH).
instr(cut(V)) a-var(V).
instr(hash(T,R,N,L)) hashtype(T), reg(R), pos(N), lbl(L).
instr(pair(E,L)) an atomic(E), lbl(L).

switch (T, R, A, B, C) A three-way branch: branch to the label A, B, C depending on whether
the tag of R is tvar, T, or any other value. The label fail is not
an address, but denotes a branch to the global failure routine. It is
assumed that R is dereferenced.

choice (I/N, RS, L) The choice point management instruction for choosing clause I out of
N clauses. Choice points are of variable size. The semantics of choice
depends on I as follows:

1=1 Create a choice point with retry address L. Save in it the
registers listed in RS.

I<I<N Restore the registers mentioned in RS from the choice point,
ignoring no terms. The no terms make it possible to
know the position of the registers in the choice point without
an explicit size field in the choice point. Update the retry
address to L.

I=N Restore the registers mentioned in RS, ignoring no terms.
Remove the choice point. (L will always be fail when
I=N.)
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The above notation is consistenh with three possible implementations
(in order of decreasing efficiency): (1) The implementation given
above, in which only those registers listed in RS are saved and restored,
and the choice point does not have a size field. Restoring registers is
done by the choice instructions, not by the fail instruction. The com-
piler does an effort to minimize the set of registers mentioned in RS.
(2) Saving all registers up to the maximum register listed in RS. In this
case the choice points are of variable size, and the no terms in RS are
ignored. The notation is consistent with choice points containing a size

field. (3) Always saving and restoring all registers. In this case the
choice points are of fixed size, the RS argument is ignored, and the fail
instruction restores the registers. In this case the semantics correspond
to the try, retry, and trust instructions of the WAM.

test (ET,X,L) Branch to label L if the tag of X is equallnot equal to T.
Equality/nonequality is selected by the value of E. Thc label fail is
not an address, but denotes a branch to the global failure routine. It is
assumed that X is dereferenced.

jump(C,X,Y,L) Compare X and Y and jump to L if the comparison is true. The kind of
comparison is given by C. This instruction traps if either argument is

not an integer. The label fail is not an address, but denotes a
branch to the global failure routine.

cut (x) Implement the cut operation. Move X into the r (b) register; also
move the value of r (h) in this choice point into the r (hb) regis-
ter. The latter move is an optimization that reduces the number of
trailed variables, but is not needed for correctness. The compiler
ensures that X contains a pointer to the choice point which was most 0
recent when the current predicate was entered.

hash (T, R, N, L) Look up register R in a hash table located at label L. The hash table
contains atomic terms (when T=atomic) or the main functors of
structures (when T=structure). If R is not in the hash table, then
execution falls through to the next instruction. Otherwise execution
continues at the label contained in the hash table. When
T=structure the compiler guarantees that R points to a structure.
The following is an example of hash table code:

hash(Type,Reg,N,Lbl). ; Hash Reg into table at Lbl

.. ; Fall through if not present

label(Lbl). ; The hash table
hashlength(N). ; Length of the hash table

pair(Ei,Ll). ; N entries
pair (E2, L2) .

pair(Ei,Li). ; Jump to Li if Reg = Ei

pair (EN, LN)

pair (E, L) A hash table entry. E is either an atom or the main functor of a struc-
turc. The label L is the address where execution continues if the sup-
plied value matches E.
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4. Arithmetic instructions

Arithmetic syntax

instr(add(A,B,V)) numarg i(A), numarg i(B), avar(V).
instr(sub(A,B,V): numarg_i(A), numarg i(B), avar(V).
instr(mul(A,B,V)- numarg_i(A), numarg_i(B), a_var(V).
instr(div(A,B,V)) numarg i(A), numarg_i(B), avar(V).
instr(and(AB,V)) numarg_i(A), numarg i(B), avar(V).
instr( or(A,B,V)) numarg_i(A), numarg i(B), avar(V).
instr(xor(A,BV)) numarg_i(A), numarg_i(B), avar(V).
instr(not(A,V)) numargi(A), avar(V).
instr(sll(A,B,V)) numarg i(A), numargi(B), avar(V).
instr(sra(A,B,V)) numargi(A), numarg i(B), a var(V).

All arithmetic instructions assume that their operands are dercferenced and destuctively overwrite
the result register. All perform operations on integers with correct tag and return a result with correct tag,
trapping if either operand or the result is not a integer. Arithmetic semantics are:

add(XY,Z) Z- X+Y
sub(XY,ZI Z -X-Y
mul(XY,Z) Z- X*Y
div(X,Y,Z) Z -X/Y
and(X,Y,Z) Z- X and Y (bitwise and)
or(X,Y,Z) Z- Xor Y (bitwise or)
x'or (X, Y, Z) Z4- X xor Y (bitwise exclusive or)
sil (XY,Z) Z -X << Y Oogical shift of X leftY places)
sra(X,Y,Z) Z- X >> Y (arithmetic shift of X right Y places)
not (X, Z) Z4- not X (bitwise invert X into Z)

5. Procedural control flow instructions

Procedural syntax
instr(procedure(N/A)) atom(N), natural(A).
instr(call(N/A)) atom(N), natural(A).
instr (return) .
instr(simplecall(N/A)) atom(N), natural(A).
instr(simple return).
instr(label(L)) lbl(L).
instr(jump(L)) Ibl(L).
instr(allocate(Perms)) -natural(Perms).
instr(deallocate(Perms)) natural(Perms).

procedure (P) The entry point of procedure P.

call (N/A) Call the procedure N/A. assuming a fixed location for the arguments.
Thc arguments of N/A are sequentially loaded into argument regis-
mrs. By default thc registers used arc numbered from zero, i.e. r (0).
r (1). ... This call is used for all user-defined predicates. It may be
nested, but must be surrounded by an allocatc-deallocate pair when
used in the body of a predicate.

return Return from a call.
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simple_call (N/A) Simple call of the procedure N/A, assuming the same argument pass-
ing as call (N/A). This is a one-level call, it may not be nested. It
does not require a surrounding allocate-deallocate pair. It can be

implemented by saving the return address in a fixed register. This

instruction is useful for interfacing with assembly routines.

simple_ret urn Return from a simple call.

label (L) Denotes a branch destination. The label fail is not an address. but

denotes a branch to the global failure routine.

jump (L) Jump unconditionally to label L. The label may be to the first instruc-

tion of another procedure N / A or it may be internal to the current pro-
cedure. The label fail is not an address, but denotes a branch to the
global failure routine.

allocate (N) Create an environment of size N on the local stack, i.e. a new set of N
permanent variables which are denoted by p (MI . Typically. the only
state registers stored in the environment are r (e) and r (cp) The
environment must NOT contain the r (b) register.

deallocate (N) Remove the top-most environment (which is of size N) from the local

stack.

6. Pragmas

Pragma syntax

instr (pragma (Pragma)) :- pragma (Pragma) .

pragma(align(V,N)) :- avar (V), pos(N). 0
pragma(push(term(Size))) :- pos(Size) .

pragma (push (cons)) .
pragma(push(structure(A))) :- pos(A) .

pragma (push (variable)) .
pragma(tag(V,T)) a.var (V), a-tag(T).

pragrma(hashlength(Len)) pos(Len).

align (V, N) At this point the contents of register or permanent V are a multiple of
N. This information helps the reordering stage to gencrate double-
word load instructions for the VLSI-BAM processor.

hash length (N) N is the length of the hash table tarting at this point.

push (term (S)) At this point a block of push instuctions is about to create a term of

size S on the heap.

push (cons) At this point a cons cell (of size two words) is about to be created on
the heap. This information helps the reordering stage to generate
double-word push instructions for the VLSI-BAM processor.

push (structure (A)) At this point a structure of arity A is about to be created on the heap.
This information helps the reordering stage to generate double-word
push instructions for the BAM processor.

push (variable) At this point an unbound, initialized variable is about to be created on
the heap.

hash_length (N) This is the start of a hash table of length N.

* , , i l i I I I i
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tag (V, T) The contents of variable V have tag T. This pragma precedes a load or
a store with address V. It is used to make loads and stores efficient for
processors which do not have explicit tag support.

7. User instructions

This section describes the parts of the BAM language that are never output by the compiler, but only
used by the BAM assembly programmer. This is used to write the run-time system in BAM code, so that if
is as portable as possible. Additional instructions are jump to register address, creating and decomposing
tagged words, non-trapping full-word arithmetic, non-trapping full-word unsigned comparison, and trailing
for backtrackablc destructive assignment. Additional registers are used in implementing the run-time sys-
tem, and can be mapped to memory locations.

Additional instructions
instr(I) :-user instr(I).

user_instr(jump_reg(R)) "- reg(R) .
user_instr(jumpnt(C,A,B,L)):- cond(C),numargi(A),numargi(B),Ibl(L) .
userinstr(ord(A,B)) arg(A), a var(B).
userinstr(val(TA,V)) a_tag(T), numargi(A), avar(V).
userinstr(addnt(A,B,V)) -numargi(A), numargi(B), avar(V).
userinstr(subnt(A,B,V)) numarg_i(A), numargi(B), avar(V).
user_instr(andnt(A,B,V)) numargi(A), numarg-i(B), avar(V).
userinstr( or nt(A,BV)) numarg_i(A), numargi(B), avar(V).
userinstr(xornt(A,B,V)) numarg_i(A), numargi(B), avar(V).
user instr(notnt(A,V)) numarg_i(A), avar(V).
userinstr(sll._nt(A,B,V)) numargi(A), numargi(B), avar(V).
userinstr(srant(A,B,V)) numargi(A), numarg-i(B), avar(V).
userinstr(trail bda(X)) a.var(X).

user_reg(r(A)) "-atoom(A) .

jumpreg (R) Jump unconditionally to the address stored in register R.

jump_nt (C A, B, L) Compare A and B and jump to L if the comparison is true. The kind of
comparison is given by C. This instruction does a full word com-
parison and never traps. The label fail is not an address, but
denotes a branch to the global failure routine.

ard (A, B) Store in B the machine integer that corresponds to the atom or integer
in A. This function strips the tag from A, and therefore depends on the
target machine and the program that is compiled. It is used to convert
atoms and integers into table indices.

val (T,A,V) Create a tagged word in B by combining the tag T and the machine
integer in A. This function is the inverse of ord(A,B): In the
sequence ord(AlB), val(T,B,A2) the argument A2 will
recCivean identical value to Al if T isthetagof Al.
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addnt (A, B, V) These arithmetic instructions destructively overwrite die rcsult register

subni (A. B, V) All perform operations on full words. return a full word, and never
andnt (A, B, V) trap. See the previous section on arithmetic for a description of the

o r_nt (A, B, V) operations performed. 0
xor nt (A, B,V)
not nt (A, B, V)
sll nt (A, B,V)
sra nt (A, B,V)

t ra i l-bda (X) Push the address and value of X on the trail sLack if the trail condition
X<r (hb) is satisfied. It is assumed that X is dereferenced. When
detrailing, the old value of X is restored. This is used to implement
backtrackablc destructive assignment. Only one comparison is neces-
sary for the- trail check. The state register r (hb) points to the heap
location which* was the top of the heap when the most recent choice
point was created.

S. Instruction arguments

This section defines the syntax of the instructions' arguments.

Addressing modes for equal, move and push

% Effective address for equal:
ea e(Var) :- a_var(Var).
ea e(VarOff) :- varoff(VarOff).

-A Effective address for move:
eam(Arg) :- arg(Arg).
eam(VarOff) -- varoff(VarOff).
eam(Tag-H) pointer tag(Tag), heap_ptr(H).

% Effective address for push:
ea_p(Arg) arg_i(Arg).
ea-p(Tag'H) :- pointer tag(Tag), heapptr(H).
ea_p(Tag-(H+D)) pointer tag(Tag), pos(D), heapyptr(H).

40
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Othe addresing modes
heap pt r(r (h) )
choice~ptr (r (b)).

reg(r(I)) int(I).
reg(T) usei reg(T).

hreg(R) -reg(R).

hreg(R) heapyptr(R).

perrn(p(I)) natural(I).

an-atomic(l) int(I).
an atomic(T'A) :--atom(A), atom tag(T).
an-atomic(T-(F/N)) atoln(F), pos(N), atom-tag(T).

a-var(Reg) reg(Reg).
a-var(Perm) perm(Perm).

arg(Arg) a- avar(Arg).
arg(Arg) an-atomic(Arg).

var-i(Var) a var(Var).
var-i([Var]) a-var(Var).

arg~i(Arg) var -i(Arg).
arg-i(Arg) an-atomic(Arg).

numreg(Arg) reg(Arg).
numreg(Arog) int(Arg).

numarg~i(Arg) var -i(Arg).
numarg~i(Arg) int(Arg).

var_pff(fVarl) a-var(Var).
var-off(UVar~l)) :-'a var(Var), pos(I).

Tag synmax

a-tag(tatm). 1* atom *I
a-tag(tint). /* integer *
atag(tneg). I' negative integer '
a~tag (tpos). I' nonnegative integer I
a-tag(tstr). I' structure *
a-tag(tlst). 1* cons cell1
a-tag (tva r) . 1* variable '

atom-tag (tatm).'

pointer tag(tstr).
pointer tag(tlst).
pointer tag(tvar).
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Conditionals syntax
eq~ne (eq).
eq~ne(ne).

cond(eq). /* Equal *1

cond(ne) . I' Not equal.*/I
cond(lts). /* Signed less than '
cond(les) . /* Signed less than or equal 4

cond(gts) - /* Signed greater than *I
cond(ges) . I' Signed greater than or equal 4

Miscellaneous syntax
hash type (atomic).
hash type (structur~e).

lbl(fail).
lbl(N/A) atoni(N), natural(A).
lbl(l(N/A,I)) :-atom(N), natural(A), int(I).

nv~flag (nonvar).
nv~flag (var)0
n~v-flagQ'?'i.

% A list of register numbers:
% (may contain the value 'no' as well)
regs(II))
regs(IRISetiI) :- nt(R); R-no), regs(Set).0

-Utility predicates
ground(X) :-nonvar(X), functor(X, _, N), ground(N, X).

ground(N, _) -N:0.

ground(N, X) :-N-\-O, arg(N,X,A), ground(A), N1 is N-1, ground(N1,X).

int(N) :-integer(N).

natural(N) :-integer(N), N>OD.
pos(N) :-integer(N), N>O.
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Appendix E

Extended DCG notation:
A tool for applicative programming in Prolog

I. Introduction

This appendix describes a preprocessoi that simplifies purely applicative programming in Prolog.
The preprocessor generalizes Prolog's Definite Clause Grammar (DCC) notation to allow programming
with multiple accumulators. It has been an indispensable tool in the development of the Aquarius Prolog
compiler. Its use is transparent in versions of Prolog that conform to the Edinburgh standard. The prepro-
cessor and a user manual are available by anonymous ftp to arpa.berkeley.edu.

It is desirable to program in a purely applicative style, i.e. within the pure logical subset of Prolog.
In that case a predicate's meaning depends only on its definition, and not on any outside information. This
has two important advantages. First, it greatly simplifies verifying correctness. Simple inspection is often
sufficient. Second, since all information is passed locally, it makes the program more amenable to parallel
execution. However, in practice the number of arguments of predicates wriuen in this style is large, which
makes writing and maintaining them difficult. Two ways of getting around this problem are (i) to encapsu-
late information in compound structures which are passed in single arguments, and (2) to use global instead
of local information. Both of these techniques arc commonly used in imperative languages such as C, but
neither is a satisfying way to program in Prolog, for the following reasons:

* Because Prolog is a single-assignment language, modifying encapsulated information requires a
time-consuming copy of the entire structure. Sophisticated optimizations could make this efficient,
but compilers implementing them do not yet exist.

* Using global information destoys the advantages of programming in an applicative style, such as the
ease of mathematical analysis and the suitability for parallel execution.

A third approach with neither of the above disadvantages is extending Prolog to allow an arbitrary number
of arguments without increasing the size of the source code. The extended Prolog is translated into stan-
dard Prolog by a preprocessor. This report describes an extension to Prolog's Definite Clause Grammar
notation that implements this idea.

2. Definite Clause Grammar (DCG) notation

DCG notation was developed as the result of research in natural language parsing and undestanding
(Pereira & Warren 1980]. It allows the specification of a class of auributed unification grammars with
semantic actions. These grammars are strictly more powerful than context-free grammars. Prologs that
conform to the Edinburgh standard (Clocksin & Mellish 19811 provide a built-in preprocessor that
translates clauses written in DCG notation into standard Prolog.

An important Prolog programming technique is the accumulator [Sterling & Shapiro 19861. The
DCG notation implements a single implicit accumulator. For example, the DCG clause:

term(S) -- > factor(A), [+1. factor(B), IS is A+B).

is translated internally into the Prolog clause:

term(S,Xl,X4) :- factor(A,X1.X2), X2-[+lX3], factor(B.X3,X4), S is A+B.

Each predicate is given two additional arguments. Chaining together these arguments implements the
accumulator.
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3. Extending the DCG notation

The DCG notation is a concise and clear way to express the use of a single accumulator. However.
in the development of large Prolog programs I have found it useful to carry more than one accumulator. If
written explicitly, each accumulator requires two additional arguments. and these arguments must be
chained together. This requires the invention of many arbitrary variable names, and the chance of intro-
ducing errors is large. Modifying or extending this code, for example to add another accumulator, is tedi-
ous.

One way to solve this problem is to extend the DCG notation. The extension described here allows
for an unlimited number of named accumulators, and handles all the tedium of parameter passing. Each
accumulator requires a single Prolog fact as its declaration. The bulk of the program source does not
depend on the number of accumulators, so maintaining and extending it is simplified. For single accumula-
tors the notation defaults to the standard DCG notation.

Other extensions to the DCG notation have been proposed, for example Extraposition Grammars
(Pereira 19811 and Definite Clause Translation Grammars [Abramson 19841. The motivation for these
extensions is natural-language analysis, and they are riot directly useful as aids in program construction. S

4. An example

To illustrate the extended notation, consider the following Prolog predicate which converts infix
expressions containing identifiers, integers, and addition (+) into machine code for a simple stack machine.
and also calculates the size of the code:

expr code(A+B, Si S4, Cl, C4)

expr-cod-(', S S1, S2, Ci, C2),
expr co~e(B, S2, S3, C2, C3),
C3-[pluslC4l, /I Explicitly accumulate 'plus' '/
S; is S3+1. /* Explicitly add I to the size '/

expr_code(I, Si, S2, Cl, C2)atomic (I) ,

Ci-Lpush(I) tC2J,
S2 is Sl+l.

This predicate has two accumulators: the machine code and its size. A sample call is
expr_code (a+3+b, 0, Size, Code, (]),which returns the result:

Size -5 5
Code - (push(a).push(3),plus.push(b),plusI

With DCG notation it is possible to hide the code accumulator, although the size is still calculated expli-
cidy:

expr-codetA+B, Si. S4) -- >

expr code(A. Si. S2),
exprcode(B, S2, S3),
[plus), /* Accumulate 'plus' in a hidden accu•u•ator '/
{S4 is S3+11. /* Explicitly add I to the size 'I

expr code(I, Si, S2) -- >
(atomic (I) I.
[push(I) 1,
fS2 is S1+1).

The extended notation hides both accumulators:

- •m m tmb mllllll0
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expr-code(A+B) -- >
exprcode (A),
exprcode(B),
(plusl:code, /* Accumulate 'plus' in the code accumulator 'I
[l]:size. /* Accumulate I in the size accumulator 4/

expr-code(I) -- >>
(atomic (I ),
[push(I) J:code,

[11 :size.

The translation of this version is identical to the original definition. The preprocessor needs the following
declarations:

acc info(code, T. Out, In. (Out-[TIInJ))./* Accumulator declarations 1
accinfo(size, T, In. Out-, (Out is In+T)).

predinfo(expr code, 1, (size.codel). /* Predicate declaration 4/

For each accumulator this declares the accumulating function, and for each predicate this declares the
name, arity (number of arguments), and accumulators it uses. The order of the In and Out arguments
determines whether accumulation proceeds in the forward direction (see 3ize) or in the reverse direction
(see code). Choosing the proper direction is important if the accumulating function requires some of its.
arguments to be instantiated.

S. Concluding remarks
An extension to Prolog's DCG notation that implements an unlimited number of named accumula-

tors was developed to simplify purely applicative Prolog programming. Comments and suggestions for
improvements are welcome.
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Extended DCG notation: 0
A tool for applicative programming in Prolog

User Manual

1. Introduction

This manual describes a preprocessor for Prolog that adds an arbitrary number of arguments to a
predicate without increasing the size of the source code. The hidden arguments are of two kinds: 0

(i) Accumulators, useful for results that are calculated incrementally in many predicates. An accumula-
tor expands into two additional arguments per predicate.

(2) Passed atguments, used to pass global information to many predicates. A passed argument expands
into a single additional argument per predicate.

The preprocessor has been tested under C-Prolog and Quintus Prolog. It is being used by the author in pro- 0
gram development, and is believed to be relatively bug-free. However, it is still being refined and
extended. The most recent version is available by anonymous ftp to arpa.berkeley.edu or by contacting the
author. Please let me know if you find any bugs. Comments and suggestions for improvements are wel-
come.

2. Using the preprocessor •

The preprocessor is implemented in the file accumulator. pl. It must be consulted or compiled
before the programs that use iL In Prologs that conform to the Edinburgh standard, such as C-Prolog or
Quintus Prolog, the user-defined predicate term expansion/2 is called when consulting or compiling
each clause that is read. With this hook the use of the preprocessor is tansparent.

Clauses to be expanded are of the form (Head-->>Body) where Head and Body are the 0
head and body of the clause. The head is always expanded with all of its hidden arguments. Table I sum-
marizes the expansion rules for body goals. In the table, Goal denotes any goal in a clause body, Acc
denotes an accumulator. Pass denotes a passed argument, and Arg denotes either an accumulator or a
passed argument. Hidden arguments of body goals that are not in the head have default values which can
be overridden. For compatibility with DCG notation the accumulator dcg is available by default. If-
then-else is not handled in this version.

The preprocessor assumes the existence of a database of infonnation about the hidden parameters
and the predicates to be expanded. Three relations are recognized: a declaration for each predicate, each
accumulator, and each passed argument. These relations can be put at the beginning of each file (in which
case their scope is the file) or stored in a separate file that is consulted first (in which case their scope is the
whole program).

A short example gives a flavor of what the preprocessor does:

% Declare the accumulator 'castor':
accinfo (castor. . .. trueY.

t Declare the passed argument 'pollux':
pass_info(polluxl.

% Declare three predicates using these hidden arguments:
prod_info(p. 1, (castor,polluxl).
pred_info(q. 1. (castor.polluxi).

S• * m, i i l I I I0
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Table I - Expansion rules for the preprocessor

Body goal Action

(Goal Don't expand any hidden arguments of Goa 1.
Goal Expand all of the hidden parameters of Goal that are also in the

head. Those hidden parameters not in the head are given default
values.

Goal :L If Goal has no hidden arguments then force the expansion of all
arguments in L in the order given. If Goal has hidden argu-
ments then expand all of them, using the contents of L to override
the expansion. L is either a term of the form Acc,
Acc (Left, Right), Pass, Pass (Value), or a list of such
terms. When present, the arguments Left. Right, and Value
override the default values of arguments not in the head.

List : Acc Accumulate a list of terms in the accumulator Acc.

Li st Accumulate a list of terms in the accumulator dog.

X/Arg Unify x with the left term for the accumulator or passed argument
Arg.

ACC/X Unify X with the right term for accumulator Ace.

X/Acc/Y Unify X with the left and Y with the right term for the accumula-
tor Acc.

insert ( X,Y) :Acc Insert the arguments x and Y into the chain implementing the ac-
cumulator Acc. This is useful when the value of the accumulator
changes radically because X and Y may be the arguments of an
arbitrary relation.

insert(X,Y) Insert the arguments x and Y into the chain implementing the ac-
cumulator dcg. This inserts the difference list X-Y into the ac-
cumulated list.

predinfo(r, 1, icastor,pollux]).

% The program:
p(X) -- >> Y is X+l, q(Y), r(Y).

This example declares one accumulator, one passed argument, and three predicates using them. The pro-
gram consists of a single clause. The preprocessor is used as follows: (bold-face denotes user input)

% cprolog
C-Prolog version 1.5
I ?- (["accunulator.pil".
accumulator.pl consulted 9780 bytes 1.7 sec.

yes
I ?- ['example.pl'].
example.pl consulted 668 bytes 0.25 sec.

yes
I ?-

Now the predicate p(X) has been expanded. Wc can see what it looks like with the listing com-
mand:

I ?- limting(p).

p(X, SI, S3, P) :- Y is X+l, q(Y, SI, S2, P), r(Y, S2. S3, P).

(Variable names have been changed for clarity.) The arguments S1, $2, and S3. which implement the
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accumulator castor, arc chained together. The argument P implements the passed argument- It is
added as an extra argument to each predicate.

In object-oriented terminology the declarations of hidden parameters correspond to classes with a
single method defined for each. Declarations of predicates specify the inheritance of the predicate from
multiple classes, namely each hidden parameter.

3. Declarations

3.1. Declaration of the predicates

Predicates are declared with facts of the following form:

predinfo(Name, Arity, List)

The predicate Name/Arity has the hidden parameters given in List. The parameters are added in the
order given by List and their names must beatoms.

3.2. Declaration of the accumulators 0
Accumulators are declared with facts in one of two forms. The short form is:

acc_info(Acc, Term, Left, Right, Joiner)

The long form is:

accinfo(Acc, Term, Left, Right, Joiner, LStart, RStart)

In most cases the short form gives sufficient information. It declares the accumulator Acc, which must be
an atom, along with the accumulating function. Joiner, and its arguments Term, the term to be accu-
mulated, and Left & Right, the variables used in chaining.

The long form of acc info is useful in more complex programs. It contains two additional argu-
ments, LStart and RStart, that are used to give default starting values for an accumulator occurring
in a body goal that does not occur in the head. The starting values arc given to the unused accumulator to
ensure that it will execute correctly even though its value is not used. Care is needed to give correct values
for LStart and RStart. For DCG-like list accumulation both may remain unbound.

Two conventions are used for the two variables used in chaining depending on which direction the
accumulation is done. For forward accumulation, Left is the input and Right is the outpuL For
reverse accumulation, Right is the input and Left is the OutpuL

To see how these declarations work, consider the following program:

% Example illustrating the difference between
% forward and reverse accumulation:

I Declare the accumulators: 0
ace info(fwd, T, In, Out, Out-[TlIn]). % Forward accumulator.
accinfo(rev, T, Out, In, Out-(TlInl). % Reverse accumulator.

% Declare the predicates using them:
pred info(flisto 1, (fwdJ).
pred info(rlist, 1, [rev)).

% flist(N° [1, List) creates the list (1, 2..... NJ
flist(O) -- >> 11.
flist(N) -- >> N>O, (NJ:fwd, NI is N-i, flist(NI).

I rlist(N. List, M]) creates the list [N ..... 2, 11

rlist(O) -- >> H]. 0

rlist(N) -- >> N>O, [NI:rev, Ni is N-i, rlist(Nl).

This defines two accumulators fwd and rev that both accumulate lists, but in different dircctions. The
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joiner of both accumulators is the unification Out- IT I In), which adds T to the head of the list In
and creates the list Out. In accumulator fwd the output Out is the left argument and the input In is

6 the right argument. This builds the list in ascending order. Switching the arguments, as in the accumulator
rev, builds the list in reverse. A sample execution gives these results:

I ?- flist(1O, (], List).

List - [1,2,3,4,5,6,7,8,9,10]

* yes
I ?- rlist(1O, List, 1)).

List - [10.9,8,7.6,5,4,3.2,1]

yes
*1 1?-

If the joining function is not reversible then the accumulator can only be used in one direcon. For exam-
pie, the accumulator add with declaration.

accinfo(add, I. In, Out, Out is I+In).

It can only be used as a forward accumulator. Auempting to use it in reverse results in an error because the.
argument In of the joiner is uninstanuated. The reason for this is that the predicate is/2 is not pure
logic: it requires the expression in its right-hand side to be ground.

3.3. Declaration of the passed arguments

Passed arguments are declared as facts in one of two forms. The short form is:

* • passinfo (Pass)

The long form is:

passinfo(Pass, PStart)

In most cases the short form is sufficientL It declares a passed argument Pass, that must be an atom. The
* long form also contains the starting value PStart that is used to give a default value for a passed argu-

ment in a body goal that does not occur in the head. Most of the time this situation does not occur.

4. Tips and techniques

Usually there will be one clause of pred info for each predicate in the program. If the program
becomes vcry largc, the number of clauses of pred info grows accordingly and can become difficult
to keep consistent. In that case it is useful to remember that a single predinfo clause can summarize
many facts. For example, the following declaration:

pred-info(_, _, List).

gives all predicates the hidden parameters in List. This keeps programming simple regardless of the
number of hidden paramcters.
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Appendix F

Source code of the C and Prolog benchmarks

/I C version of tak benchmark '/

#include <stdio.h>

int tak (x,y, z)
int x, y, z;

ir't al, a2, a3;
if (x <= y) return z;
al = tak(x-l,y,z);
a2 = tak(y-lz,x);

a3 = tak(z-l,x,y);
return tak(al,a2,a3);

main (

printf("%d\n", tak(24, 16, 8));

1* Prolog version of tak'benchmark */

main :-tak(24,16,8,X), write(X), nl.

tak (X, Y, Z, A) X =< Y, Z = A.

tak (X, Y, Z, A) X > Y,
X1 is X - 1, tak(Xl,YZ,Al),
Y1 is Y - 1, tak(Y1,Z,XA2),
Z1 is Z - 1, tak(Zl,X,Y,A3),
tak(AIA2,A3,A).

/* C version of fib benchmark */

#include <stdio.h>

int fib(x)
int x;

if (x <m 1) return 1;
return (fib(x-l)+fib(x-2));
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main()

printf("%d\n", fib(30));

/* Prolog version of fib benchmark */

main :-fib(30,N), write(N), nl.

fib(N,F) N =< 1, F = 1.
fib(N,F) N > 1,

Ni is N - 1, fib(Ni,FI),.
N2 is N - 2, fib(N2,F2),
F is Fl + F2.

/* C version 6f hanoi benchmark t/

#include <stdio.h>

han (n, a,b, c)

int nl;

if (n<=O) return;
nl = n-1;
han(nl,a,c,b);
han (nl, c, b, a);

main()

han (20, 1,2,3);

/* Prolog version of hanoi benchmark "/

main :- han(20,1,2,3).

han(N, _,-) :- N_<0.
han(N,A,B,C) -- N>O,

NI is N - 1,
han(Ni,A,C,B),
han (NI, C, B, A) .

/* C version of quicksort benchmark '1
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#include <Stdio.h>

int ilist[5O] = 127,74,17,33,94,18,46,83,65, 2,

32, 53, 28, 85, 99, 47, 28, 82, 6,11,

55, 29, 39, 81, 90, 37, 10, 0,66,51,
7,21,85,27,31,63,75, 4,95,99,

11,28, 61,74, 18,92,40,53,59, 8);

mnt listf501;

qsort(l, r)
int 1, r;

int v, t, it j;

if (1<0) 1 0
v=listil]; i=l; j=r+1;

do I
do i++; while (listfi]<v);
do j--; while (listfj]>v);

Iwhile (j>i);
list [i)=list [j): list Ij~list[1]; list flJ=t;

qsort (1, j-1);
asort (j+l, r);

main()

irit i, j;

for(j-0; j<10000; 5++)4

for(i=0;i<50;i++) list(i]=ilisi(i];0
qsort (0, 49);

-----------------------------------------------------------------

/* Prolog version of quicksort benchmark '

main range(1,I,9 9 9 9), qsort(9), fail.

main qsort(S), write(S), nl.0

range (L, L,II) .

range(L,I,H) :-L<H, Li is L+1, range(L1,I,H).

qsort(S) -- qsort((27,74,17,33,94,18,4
6 ,83 ,6 5 , 2,

32,53,28,85,99,47,28,82, 6,11,0

55,29,39,81,90,37,10, 0,66,51,
7,21,85,27,31,63,75, 4,95,99,
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11,28,61,74,18,92,40,53,59, 83,S,11).

qsort(IXILI,R,RO) :
partition (L, X, L1,L2) ,
qsort (L2,R1,RO),

qsort(L1,R, [XIR1I).

qsort1, R, R)

partition(f(YILJ,X, (Y(LZJ,L21 Y=CX, partition (L,X, L1,L2) .

partition(fYIL],X,L14(YIL2]) y>X, partition(L,X,L1,L2).

partition([], , 1), [3)
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Appendix G

Source code of the Aquarius Prolog compiler

Due to the size of the source code, it has not been included here. The complete Aquarius system
including source code will be distributed in Spring 1991. The source code of the compiler may also be
obtained from the author.

Files in the compiler

File Description

accumulator .pl Extended DCG preprocessor

accumulatorcleanup. p1 Cleanup file needed for preprocessor
analyze.pl Dataflow analyzer
clause_code.pl Clause compiler

conditions.pl Formula manipulation utilities

compiler.pl Top level of compiler. includes type enrichment

expression. pl Compile arithmetic expressions

factor.pl Factoring transformation
flatten.pl Flattening transformation
inline. pi In-line replacement
routex. pl Mutual exclusion and implication of formulas

peephole .p1 BAM transformations (except synonym)
preamble. pl Part of standard form transformation
proccode. pl Predicate compiler

regalloc.pl Register alklcator

segment. pl Head-body segmentation and goal reordring

selection. pl Determinism extraction

standard, pl Standard form transforniation

synonym. pl Synonym optimization
tables. pi Compilation tables
testset.pl List of test sets

transformcut.pl Cut transformation

unify.pl Unification compiler

utility.pl Utility predicates

-- • m m mm mmm mmmlmll mm Il • I I ll I • ii0
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ABSTRACT which both dhe compiler and architecture wer developed tOgethe

Most Prolog machines have been baned on specialie architec- [12-14]. Architectural features that cannot be used by dh. compiler
* ~tines. Our goal is to star with a general purpose archritecture and or which can=o demonstrate performance improvement are n=

determine a minimal set of extensions for high performance Prolog included. Ukewise. architectral features are added which support
execution. We have developed both the architecture and optimizig often used primitive operations. We have adopted this approach
compiler simultaneously, drawing on results of previous Implemen- from the beguinning of out project.
tations. We find that most Prolog specific operations can be done It has been conjectured that commercial special purpose sym-1
satisfactrily in software. however. there is a crucial set of features bolic: processing architecturs are doomed because they am not comin
that the architecture must support, to achieve the best PRol"g perfor- modity items, and consequenily. economics prevent them from stay-
mance. The emphasis of this paper is on our architecture anid Ing on the leading edge Of implementation technology. However. if
instruction set. The cost and benefits of the special architectural the Architectural features necessary toID mprov t mbolic perfor-
features and Instructions are analyzed. Simulated performance mance are modest and do not hinerfert with the general purpose
results ame presented and indicate a peak compiled Prolo peafor- architecture, then as more dhip are becomes available. funtur imple-
manc of 3.68 million logical inferences per second. fientarOns Of general purpose proooemn can delive high perfor-

mance symbolic comput&ing InA standard product. We hope that our
work is amp towards this result.

1. ~ ~ This Pape presents the design of a processor based on fth
Logic programming in general and Prolog [11 in particular Berkeley Abstrac Machin (SAM) architecture and Umotva=e Its

have become popular for rapid software prottyilI& naua design with the reolts of our preliminary studies. we also present a
language translation. and expert system progamming. Prolog's use brief dscussion of the optimizing compiler, a costjbeneft analysis of
of dynamic typing. backtracking, and unification place heavy compu- die architectural features and the simulated performance. Familiar-
tatiorial demands on general purpose computers. in an atep to ity with the WAMt is helpful. Scin2 summarizes the pmrocesson
a~chiv ever highe performance, several special purpose architec- Archritecture and hardware implementation. Section 3 presenthde
tums have been proposed and built. Early Prolog architectures [2] Intrcion sVA along with the moslts of our aidles which motivated
were mkicocoded interpreters. Because no compilation was donm. intru"tin selection. MW Ccompilation of Prolog programs is
performance was disappointing. Higher performance proenors [3- described in section 4. mad in section 5 we present a costhesefit
6] have since been based on fth Warre Abstract Machine (WAM) MAnaYsi Of fth specia faure and instrctions.. Section 6 giv& fie
M7. Their instructos sets were derived from the WAM to support, Performance results 1Ue final section concludes with a summary of
exeartios of Prolog programs. These processors are special purpose. oursl
microcoded engines which depend on parallel execution of opera-
dons within each relatively coams-greined Instrction for high per-
formance. Irltial designs Implemented only die Imstuctlons doat Z F1 acnt rifetue Imlesnsmtalo
supported the WAM and depended on a bosa processo for nont- The BAM processor is a general purp dose *inl dulp pipelirud
WAM computtons.o To support Prolog buit-IN (primitive Piolog Processo with entaraons to support Prolog executio (lgRpm I).
opeastions proided by the system) and stMM 1/0. newer desid Both data &W Jusauction words am232 bits. and most nIstruction
incorporate general purposeP Izutrctons fa minimize dependence on execte in a single cycle. The main hea-ure for Prolog me tag maid-
a host Alternatively. Mie use of a simple. non-WAM instaction set pulatiot (inqptered ho AtI~beic and doC meMor systema). a
bette supports; compiler optimnL*utiL Several such special purpose double-word dona port to meory. special brIdI on tag support and

*reduced Instruction set architectures have been proposed for logic several Instructions to support eour action model for Prolog.
programming (8-1 1). These architectures; include primitives w"ic Ma architecture Is ifP -ezI in detail along with our motiva-
support the use of tagged data polmer derefezuae. and multi-way dons in fth subsections below. Retaining a cor general purpose
branches. Our hypothesis is tha providing support for bothcma e arhitectur Imposes; casamins on the symbolic extensons. For

opi~ atinad low-level oprai P1ý,onse best be aocoamplce by example. the p m esm droul be able In hendle sagged data kemsa
etniga simple general pu-pose arditactue fin support Piolog single earites. with no speia unmu for doe tags. We discss the

widhout compromisin aie Vaeal urps P pO erwnnL formac.zdflcoons of this on dom ward forma in Me virtual memor sys-

MW pu W Then we present fu da seue , rFeg ' ister ucture ard
0MA lrV" M f oen VudP~pW MmeMoY Interface. Finally. we Iprsn some details of doe imple-

archiectures over otler archacteenres cm be traced to research in mentatlon sucha a the pipeline structure and mar mechanism for

To appear in the Proceedings of the 17th

International Symposium on Computer Architecture



short virnal adress
32 32 ter value

loi .. S ile 4 121 26

32 64 Usneni scmeal o&fse-

7 sepricu ap

PC12 26

I W* 32long VUnUAl addjMSS

12 12 32Figure 2
Userace-1000accSegmentation of Virnia] Address Space

113 8A&M38 64 Is 001 data type. each area using a different mapping. At one extreme all
data types can be mapped to the same LVA segment (this is
equivalent to masking the most significant six address bits). At the0

~uoon a~e diicache other extreme, all SVA segments can be mapped to distinct LVA
segments. In our current implementation of Prolog. variable. list.

Figure I and structure pointers are mapped to the same LVA segment.,

Block Diagram of the BAM Processor w~herea the environment/choice point stack, the owal stack, and the
symbol table are mapped to separate segments.

multiple-cycle in~rctos Another use of segmentation is for sharing data in a multipro-
cessor system. In this case the 38-bit LVA is used as the global vir-

2.1. Word Format tual address and sharing of data by cooperating processes is dame at

prolog does not require the user to specify tie type of a data th segment level.-
item. This requires that run time type checking be implemented by
adding a tag to each data item to encode the type of that item. Many 2.3. Memory Interface
Prolog processors handle the tag and value fields Sepratly This 7be high memory bandwidth requirement of Prolog dictates
approach does not satisfy our goal of integrating tagging into a g en- separate insauction and data buses (Figure 1). In addition, we have
eral purpose architecture. Instead, we use a standard 32-bit word epne h aabst obewr it.Adul-oddt

lengh ad pacethe ag n te mst sgniicat fur bts f te wrd. bus is motivated by Carlson's study [ 17) of the architectural require-
Arithmetic comnputations and addresses, however, Use the entire 32- ments of high performance Prolog processors. Carisont compiled
bit word, so general purpose computations are not affected by Prolog ptograms into basic register transfer level operations and then
Prolog's use of tags. Tag values fixed by the hardware are those for compacted them into more complex instructions while enforcn
non-negative integers (0000) and negative integers (1111) . This microarcliireaural constraints. His results slhow that the bs
selection of tags for integers is a common technique Used by Usp performancetcost tradeoff occurs when the architecture provides a
implementations on general purpose machines (151. We have do dob-wotd port to data memory.
fixed the tag value for variable pointers (tvar w 0001) to increase the
number of bits available for branch displacements in several Prolog A double-word Memory Port improves the performance Of term *-

specific instructions. All other tag values arm software defined. Our creation anid speeds block tranfers to and from environmes and
Pzolog implementation uses tags similar to those ofM the chi~ doice points. Some previous Prolog processors support fast choice

point creation and restoration through the use of specalze buffers

2..Segmented Virtual Addresses or shadow registers 13,91. Such hardware solutions are costly and do
Oneconeqenc ofusng othth ta an vlueas n ddrss not Atu our goal of maintaining a general purpose ardutchiUre
One onsquene o usng bth he ag ad vlueM anaddess Instead, we rely on double-word memory operations aind on compiler

is that each data type Is mapped Itito its own are Of virtual memory. optimization to minimize shallow backtracking 118).
For Prolog's execution model one wishes to place several data types Orpoesrdsg stgtyculdwt h ah eir
In the same sack or heap. One possible solution is to =ask (zero) Wedeide against oein-chiptgtyculdwt caches deci urcs.i signm
the tag bits of the address before using it to WcOW memory, mIs Weproeciatedt apronesson-chip carafrrchsine, n a ou kasueIis more
solution is not satisfactoty when applied to appictions not using uspifautamdense pratcessor chipsae for larg ule chrs foseaues cande
tags (for example. C prorams). To avoid thi difficulty, we have acsC fas, hoenser static AM chisforlargen candchnsi ospeedy cache
introduced a segment table which MAPS the most9 s figsilfla six bits addU tahowee.parionectione vilton-p Mardcnitnc d hecki s a ndt
of an address to a twelve-bit value (Figure 2). An add,=s before cub itragear Soi minoi [19neotchp or eaisaou.h
mapping is referred to as a short virtual address (SVA), and the 38- ~ ~ i 11
bit address resulting from tie mapping Is referred lo as a long virtual
address (LVA). 7Ws Memory segMetaton sceeis aimilar soto 2A& De Archltecture

segmentation used in the 801 procsorN 1161. The 801 uses segMe All programmer visible pruoorw registers are accessed as two
tation So e ~ fth virua oldres space; hOwever Our pbUImay sem of 32 negsters: Mhe general purpose register set aid the special
motivation for using segmeritation is to allow multiple data types to register am~ The general purpose negsters are used for procedure
be mapped o fte same LVA s~egma M~appinig two bits In addition argument passing. temporary storage, md a stock pointers TheS
Mto de tag bits allows the use of seveal Memory -ra for a given only general purpose negster with a preassigned use is the continua-



tion pointer (r31). This register is implicitly set to the return address instructions are divided into three groups: general purpose. prolog
by the call instruction. All other uses of the general purpose regis- inspired general purpose. and Prolog specific. The general purpose
ters an defined by software convention. instructions are those which can be found in typical processors. The

The special registers provide access to the processor status Prolog inspired insatictions am those which are not often present in
word (PSW), program counter (PC), partial product/quotient register general purpose processors. but which can still be used for general
(PQ), segment mapping table, cache interface configuration registers, computation. The remaining instrutieons ae tailored specifically to
and a set of fifteen extra registers (sO-sl4). the requirements of Prolog execution.

The general purpose instructions are summrized in Table 1. It
is important to point out that all arithmetic and logic operations

2.S. Implementation Details operate on the full 32-bit word. Also, conditional branches consist
The execution pipeline consists of five stages (Figure 3). All of separate compare and branch instructions. Compare instructions

instructions which modify registers or memory do so in the last pipe- set or dear the TF (true-false) condition code bit. and the branch
line stage. Bypassing forwards available results of calculations to instructions take the branch when ITF is Set. Branches. jtnps. and
instructions following in the pipeline. Hardware interlocks an pro- calls an delayed by one instruction. The instructon in a branch
vided for both load and store delays. If data from a load instruction delay slot can always be executed (b0). annulled (turned into a nop)
is used by the next instruction, then the next instruction is delayed by if the branch is taken (biw), or annulled if the branch is not taken
a cycle. Also, memory instructions immediately following a store (bran). Both directions of annulling an included because Prolog
are delayed by a cycle. often favors annulling when the branch is taken (for example.

branching out of straight-line code to the tnification failure routine),
whereas conditional branches to the top of a loop (common in prn-

I nsnuictimo fetch cedural languages) favor annulling when the branch is not taken
R tegiaer mad The remainder of this section motivates and presents our exten-
A ALU sions to the general purpose instruction set. A major influence on the
M memory ead design of these extensions was the simultaneous development of an
W tegmr/memornwrite optimizing Prolog compiler. The abstract machine used by the com-

piler was initially designed using a top-down approach (21]. We
Figure 3 assumed a set of data structures similar to those used by the WAM.

BAM Processor Execution Pipeline Knowledge of possible compiler optimizations was ap01ied to the
semantics of Prolog to decompose Prolog's general operations ino

All instructions an 32 bits with a 6-bit opcode and fixed source their components. These components, the abstract Instruction set.
register format. Instruction execution is controlled by an opcode are the instructions and addressing modes required to compile Ptolog
pipeline which operates in parallel with the execution pipeline. Each operations into efficient code. Efficient translation of abstract
stage of the opcode pipe decodes the opcode associated with that machine instructions into the architectural instruction set was a
stage of the execution pipeline. Multi-cycle instructions and condi- pime influence in the first pass of the instruction set design.
tional instructions are implemented using "internal opcodes" [20]. In addition to our studies of abstract instruction sets, we inves-
The internal opcodes of multi-cycle instructions an fetched from a tigated the microarchitectural requirements for high performance
PLA and inserted into the opcode pipeline. When an internal opeode Prolog [17] and gathered execution statistics for the VLSI-PLM, a
Is inserted. no instruction is fetched during that cycle. Thus a single microcoded implementation of the WAM [41. These investigations
external opcode can invoke a sequence of internal opcodes to pro- pointed out those microarchitecturtl features that would give the
vide for often used complex operations (for example, pointer der- greatest performance gains and the Prolog operations that most need
ferencing). Internal opcode insertion is also used fer atomic syn- instruction set suppor.
chronization operations, for pipeline interlock delays, and for trap
and interrupt handling. Conditional execution is implemented by
conditionally replacing an opoode in the opcode pipe with an internal 3.1. Prolog Inspired General Purpose Instructions
opcode. Our design uses 55 external opcodes and 24 internal Prolog inspire general purpose incnutions are those mstruc-
opcodes; of the internal opcodes, nine ae related to traps (trap, 0). tions which support Prlog and which also may be useful in the
13 implement multi-cycle oeti inrccions (drl aur std pu and, l implementation of other languages (Table 2). These instructions
impu), and two implement conditional operation i include load and store of immediates, single-cycle double-word load
pusht). andi store, and push and pop memory operaion.

"Fast tag logic" is used to implement single-cycle tag- Immediaes ca be loaded, stored. or used in a comparison (W.
compare-and-branch inmctions. The fast tag logic consists of an a. add ari) lbe I mmediates ae tagged and ar created by sign-extra register file which duplicates the tag portion of the general pur- .. t.cp) b imdae r agdmdaecetdb in
pose register file and special tag comairson logic which allows extending a 12 or 17-bit Immediate and replacing the four mostposeregisterfile dspecial tag comparison ndrn, ons logic which w significant bits with an immediate tag. Loadimmediate (Wdi) is usedquick tag comparison and branch. Previous Prolog processors (3v for creating integers and atoms. Store immediate (sA) is an optimi-
have also duplicated tag bits to accelerae branching on g va . zation of a/di, at sequence and is used to bind an atom with a vari-

The general purpose register file has two read ports (one able that is known at compile tlme to be tmbo.,,
single-word and one double-word) and two write ports (both single- Double-word memory operations (&d s4 at dc, pwhd,
word). This port structure provides the bandwidth required bysingle-cycle double-word memory accesses without Steatdy invas- pushdc) am motivatd by Ptrolog's larg memory bandwidth require-

n& the cwmplexity ofite register le design. ments. A double-word atowe or push is single-cycle only if the
source registers form a consecutive, evagwd nglit pair, becae
only thire registers, two of which must be adjaent., con be read per

3. Insructon Set cycle hum the register file. Although non-conm e double store
In this section we presen the BAM Instruction et. ITe and •ush (sr, pushd) an two-cycle Instructon, this is offset by the



instruction Oprands Action Cyces
Id. Idl r(i). displ6. ift) s(k) o- M[1(i)4displ6J (Idi distinguishable to cache)I

St, Stu r(i), f(k). displ6 M[O~)+displ6l +- r(i) (amt distinguish abe to cache)I
1m (i), r(k). rGl) M~r(k).r(jll] - f(i) 20

laM r(i), disp 16. r(k) r(k) +.- Mfr(i)+displ6l; M~r(i}.displ6] *- .1 2
add, sub.and. or. lor r(i), rrj). r(k) IM )- r(i) op r(j)I
a&W2. sub32 1(i), r(j), r(k) *() 4- r(i) op r(j) (trap on signed 32-bi --eflow) I
afti, andi. on,. xari r(i). imM16. i(k) 1(k) +- T(i) op iunml6 I
slL sra. s r(i).r TO.rIM k) +~)- r(i) op r@<~4:0>' I
Sibi, smai. STlU 1(i), immS. r(k) f(k) +- 1(i) op imnm5<4:O>I
divs, mpys 1(i). r(j), r(k) (r(k). PQ, MF 4-0p(r(i). rtj), PQ, TF)I
cmp cond. r(i). r(J) TF+- (r(i) cond zfj)) 1
bt addk26 if ( PC<0:0> addr26I
btan addr26 if (iM PC<5:0' 4 addr26. else annul! neut irtmncton I
brat addr26 if (MF ( PC<25:0. +-- addr26; umul next kisnsocton II
imp addr26 PCc25:O> +. addK26I
jmpr r(i), displ6 PC +-r~i) +displ6 2
call addth26 r(3 1) -PC+lI:;K4S.0> *--add2I
rd s(i), r(k) r(k) 4- s(i) I
wr f(i). s(k) SWk 4- (i) I
imp imms save PKs and PSW; set supervisor bit; PC +-- 20(32+bsm5.c4-0>) 6
Ift restore saved PSW; fetch at saved PCs 4

Table I
General Purpose Instructions

Tables 1-3 suimmarie the BAM pmuessor inssruction set, divided into three poups: general purpose. Prolog-inspired gen-
erW purpose, and Prolog specilic. The first two columns give the histauction mnemonic and operands. The third column
gives the instrution's register transfer description. RMi denotes general purpose register J; s(i) denotes special register i:
disp n is a sign-extenided n -bit displacemnent; imm n is a sign-extended n -bit immediate; addr26 is a 26-bit segment offset;
offl-.. and 0f028 are zeroecxtended 3-bit displacements; tag is a four-bit immediate tag value; m&d cond is one of twenty
comparison conditions. Mfx1 is the memory location at adesx. Tafvalue specifies the tag issertioni operation. Tvar
represents the value of the unbound variable tag (0001). Cycle counts assume no pipeline stalls duec to load or stare delays.
All branch and jump inistunctions are delayed, and the following instruction is executed unless it is annulled. The cycle count
of dref depends on the number of memory operations (1) performed.

absence of a pipeline stall when they sre immediately followed by a and uninitialized varables arid determine at compile time when des-
memory openition. tructive assignment is safe).

Push instructions are included to support compound term crea- Unsigned maximum (sinax) is provided to simplify the
don. Using branch-and-bound search techniques, we determined an management of the environment and choice point stack pointers.
optimal set of single-cycle instnictions for creation of all Possible Because these stacks are Intermnixed, allocation occurs at the max-
two and three-wortS structures. This set of instructions is optimal in imum. of the two stack pointer values.
the sense that, for our microarthitecture, each structure is created in
the smallest number of cycles. The resulting "compound term crea- 3LPoo pcfcL~clnStSpo
tion instruction set" favors the idiom of placing two words of data inrlgSeifcIsrcio e upr
registers and then moving them to memory using a double-word Prolog specific instructions are those instructions which ame
push. Push operatons also allow the fill of dwcce efo tailored specifically for efficiert execution of Prolog (Fable 3).
memory to be skipped ifsa push Incur a cache miss mnd also refers to Ths irsfci support tagged pointe creaion two and three-
the first, word of fth cache line [19). This optimization has been used way branch on tag. pointer demiestencing. mnd unification of atoms.
insa previous Prolog design 15). The push instructions Allow the
amournt of fth increment to be speciid, and any general purpose 3.M Taggd Data Suppoct
registe can be used as a sack palmter. Pointer creation is accomtplished by the load effective address

Prolog requires that variable assigrment be undone on back- (lea) Instructlon which calculates an address and then reptaces the
hacking. This uubiniding of variables Is Implemented by recording most significant four bits with an immediate tag. Ths instniction is

varibleaddose ona "ral" sack Th orginl W M mdel used to cmine pointers to unbound variables and compound terms

requires seveal pointer comparisons to determine If trailing is neoes- Git an structurs)
sary. Our implementation restricts variables to dhe globa stack Type checking built-Ins are supported with single-cycle
(which reduces die number of comparisoa to one) an use aco- ccnmpr-&nd-bnn1diM-c-aS Instutos (brgdq mnd brgme). These
pare Instruaction followed by a conditional push (ashth). The PO instructions also allow fth compile to replace shallow backtracking
Instrction Is used during backtrackng to retreve variable addresses with a condfitional branch an an argument's tag.
from die trail stack. The compiler can reduce On amournt of trailing Prolog allows astoud variables to be bound together. The
mid dearaillin dmrogh the use of Blow anatlysis to determine when resulting rfefernc chain must be Iere6emuced before maibuequent
uninitialized variables 1221 can be used (our use of umnIntialIzed vail- variable binding. WAM Instnuctions always dereferanc their
abler is dilferma ftm 1221 --we usse die sme tag for both initialized operands, Often resulting In superfluous dereibreiciing. Howeve, our



Instruction Overands Action Cycles
wid mg. imm 7. r(k) f(k) +- tglmml7I
ai tag. irm 17, 1(k) M[rfk)] +- tSinunm7 1
sid tag. unmm2. W~. dispS M[r(k).disp5l 4- t@S'imml2 1
anpi cor4 r(i). tag.inun12 7F +- NO cond tagnnml2) I
tdd r(i). displ 1. r(k). zrl) rKk) *-M~rfi)displ 11; (r0i+dirpll even)I

11)~ M(r(i}.dusl 1+11
std r(i). r(j). r(k). dispil M(1(k).displl 11- r(Wi. (rlk)4.diaplI even) 2

Std& r(i). r(k). displ6 M[*~)+displ6] 4- (i); (0 and r(k)edisp16 even)I
M(r(k)..disp164.1] +- r(i~e')

push r(i). r(k). displ6 MWrMk+-- r(i); r(k) + r*k) + displ6I
pusht 1(i). 1(k). displ6 if(T1M ( M~r(k)] 4-r(i). r(k) 4-r(k) +displ6) I
pushd r(i), r(j). r(k). displ I Mr(*)] +- r(i); Mjr*k+ll 4- r(j); (r(k) even) 2

r*) +- r(k) + dispi I
pushdc r(i), r(k). displ6 MEW~k] + r(i); Mlr(k>eIl] +- r(i+1); (0 and rt'k) even) I

z(k) +-r(k) +displ6
Pop 0(i. displ6. frk) r(k) ~-MI1(i)-disp6l; r(i) ~- r(f) - displ6 I
umin. unax 1(i). r(j). f(k) r~kj unsign~ed ynia/kax(1(i). r(j))

Table 2
Prolog Inspired General Purpose Instructions

Instruction Operands Action Cycles
lea mag. r(i). dispI2. *~) ~ ) ~- mag(k*i.sdVs2) I
btieq, bugne tag, r(i), displ16 if (r(i)<31:28> 40' tag I

(PC + PC + disp 16; snnul oeut iristuction)
dref 10i) if (r(i)c3 1:28> - vwa) (I - number of me~owy refs) I&

do (unp - r(i); r(i) +-M[1(i)] ) 100-.2+21
until &((i)<3 1:28> * war) or (tmp - r(i)))

add2g. sub2g.
snd28,cor2g, xor28 1(i)r(j), 1(k) 1r(k) 4-r(i) op r(j) (&rW on no-Wneger sags)I

cmp28 Cond. f(i). r(j) TF - (r(i) cond 1(j)) (trap on noanbueger tags) I
ciii tag, inuml7. r(i) if (r(iWc31:29> - rvar) ( M[1(i)] ~tagiinz17; TF +- 0

else if (1(i) - rmm17) 7F+-0;elm TF~ 1-
swb r(i). rOj). offlS. ofl2j8 if ((r(i)<31:28> a tvar) and (rGj)c3l.28> * tvar))1

PC +--PC +0ffl8;
etse if ((1(i)<31:28> * tvar) sand (i )c3I128> a -)

( PC +-PC + o0f2j8 M MuA inetImbution
else mnul next inistruction

swt I(i), tagl, mag2 if (1(i)c31:29> = l~tagl)(q or w82 is n)I
oUin.j c(t2... PC + PC, +Offl-j;

else if (00<31:211> w 9@0~
( PC +-PC + of[2_&.S manul ouxt inmuction

els manul oaxt instruction

Table 3
FMiig; Inmunctions:

optimizing compiler keeps track of which variables am derdefemwed 3= UiiainSpw
arnd generates explicit deseferences only when necessary. imple- 3±UI~IS
menting dereference as a single Instuction reduces static: code size Unification is one of the primary operations of Prolog; it is
and allows dereference memory reads to be pipelined. resulting in a used for argument passing. stucture creation, structure decompos-
tighter loop thun the equivalent assembly code [9,.101. We use die doni. and pattern matching.- Althoiugh general unification is a comn-
same tag value for both unbound variables anid refesence pointers Plex algorithm. if one is given information about dhe arguments
(unbound variables sam sef referential). The dereference Instruction being unified, the general ulgorithm con be gready simplified, Tbis
(dr~l) is Implemiented as a sequence of kaennal opoodes. is one of the advantages of die WAM Instruction aet over an iner-

All of the basic arithmetic and compare instuctions (add. sub, preter. Our compiler takes this principle further and ptopagates
and, or. wo, ave) have a version whdch traps on 28-bk ovrtw information In simplify unification as much as possible.
These Instructions operate an die fun~ 32-bit wotd, bunt 28-bit Analysis of die primitives necessary to aqipoa unification of a
overflow occurs If either of die sources or the remalt do nt~ have Prolog variable with an atom [211 movatews die single-cycle unify-
Imeger tap (0000 or I1I111). The *qi on 28-b overflow allows Pro- Immediate Instruction (uWi) which binds dhe mom to die variable if
log arithmetic operations to be compiled to Af. sa code which die variable is nbound and otherwise am diem for equality.
avoids ctam Instructions for tag oveflow checlng& If a 28-bit Unification of a Pzolog variable with a compound term als
overflow does occur, the trap rouitine can signal an overilow enror or bernefits frm special xpoui. Analysis of die primitives necessay
convert the duata h alternative rpIeeain to support unification of a Prolog variable: with a liu or structure (21)



Pro&M Argument The (%) Cost (cycles) Argument Type (%)

gCLAist variable list other swt two-way Program quick quick var noavar var recursve

prover 18.7 80.5 0.8 1.20 1.40 success failure nonvar var var
metaqsort 42.1 42.0 16.0 1.58 2.32 prover 15.6 15.6 0.0 61.4 0.0 7.5
simpleanalyzer 24.4 67.4 8.3 1.33 1.74 metaqsort 0.0 0.0 0.0 50.5 49.5 0.0
chat-parser 8.9 84.8 6.4 1.15 1.37 simple-analyzer 0.1 2.2 13.3 7U.: 11.5 2.1
average 23.5 68.7 7.9 1.32 1.71 chat0parser3 11.8 13.6 69.3 52.3 3.5

get-structure variable structure other swM two-way avera4.0 7.4 6.7 62.9 15.8 3.0

prover 26.7 73.3 0.0 1.27 1.53
meta-qson 37.6 62.4 0.0 1-38 1.75 Table 5
simpleanalyzer 13.5 86.5 0.0 1.14 1.27 WAM General Unification SLatisacs
chat..parser 44.0 52.5 3.5 1.48 1.98
average 30.4 68.7 0.9 1.31 1.8 This table gives the percent occurrence of various argumen types passed togeneral unification h, the WAM (get_value and unify-value insmctions).

In the quick success column both arguments -e identically equal. In the
Table 4 quick failure column both arguments are nonvariable and have unequal tags

WAM Variable/Compound Term Unification Statistics or both are atomic and are tmequal. In the var/nonvar column the first argu-
This table gives the Ipercent occurrence o the argument type for ment is a variable and the second is a nonvariable. Likewise, in the

Thistabe gves ie erent ccurenc ofthearguent~'i~ ~ nonvar/var column the first argument is noavariable and the second is vari-
variable/compounid tenn unification in the WAM (get and get,_Muttire able. In the var/var column both arguments we variable. the last column
instructions). Columns 2-4 give die percent occurrence of variable, cotains the remaining cases which must be passed to a recursve
list/structure, and other types. The swt column gives the average time t uniication subroutine.
execute the three-way branch assuming that the execution times for the
three directions, (variable, lisu/stnjcturn, othdr), a (2, 1. 2) cycles respec-
tively. Likewise. the two-way column assumes that the dhree-way banb is four cycles (not counting dereferencing of the arguments). Using
simulated using two two-way branches and that the execution times for the switch-bind (swb). BAM executes this case in five cycles. Although
three directions are (3, 1, 4). The statistics for tables 4 and 5 were gathered the partial unify instruction of the LIBRA has a slight performance
using the VLSI-PLM [4] microarchitectue simulator, advantage, its complexity does not fit with our goal of minimally

extending a general purpose ar:!,:ecture.

motivates the switch-tag instruction (swt), a three-way branch based -

on the tag of one register. One direction of the branch i,; taken if the Compilation of Prolog
tag is an unbound variable; a second direction is taken if the tag
matches a specified immediate tag (usually list or structure); and a A significant aspect of our project was the simultaneous

third direction is taken for all other tags. The three-way branch development of an optimizing Prolog compiler 121,23]. The corn-

could be implemented using two two-way branches, however. WAM piler incorporates techniques for determinism extraction and use of

execution statistcs (Table 4) show that there is a small but destructive assignment. The compiler accepts standard Prolog and

significant performance advantage to the three-way branch. produces code for a simple non-WAM abstract machine. Although
the compiler uses stacks and data structures similar to WAM imple-

The LOW RISC processor [8] provides a S-way branch as n the mentations, it does not use the WAM during compilation, but instead
Casnel-2 processor [10] provides a 10-way branch based on the ge directly compiles to its own abstract machine. Automatic mode gen-
of a single register. WAM execution statistics show that such gen- eration (type inferencing) is implemented using abstract interpreta-
eraity is unnecessary for unification of a Prolog variable with a oin- tion 124]. It derives ground, uninitialized variable [22], and derefer-
pound term. ence modes. Optimizations are still being implemented, and we

When the compiler cannot determine any information about the expect our performance numbers to improve compared to the
types of the arguments to be unified, then general unification must be numbers listed in the following sections.
used. In this case one can still take advantage of dynamical proper- Compilation of Prolog is done in three stages. Frst. the com-
ties of the argument types. The common cases of general unification piler produces code for its abstrac machine. Second, this code is
should be done quickly in-line and infrequent cases passed to a gen- macro-expanded into the BAM instruction set Finally, the BAM
eral unification subroutine. Analysis of WAM execution (Table 5) code is optimized by a peephole optimizer and instruction reordering
indicates that about 70% of all general unifications are simple bind- stage ta maximizes the use of the double-word bus and minimizes
ings of an unbound variable with a nonvariable. These statistics Te numberof nops and pipeline stalls.
motivate the switch-bind instruction (xwb), a three-way branch
based on the tags of two registers. The conditions of the t S of Architectural Fatures and lhsftr-
branch directions ae: varlablMeinvuwable, nonvariablelvariable, dos
and otherwise (order of the arguments mauers). This allows the tions
common cases of variabletionvariable and onvariable/variable to In section 3 we motivated our instruction selection based on
be done in-line. A general unification subroutine is called for all several sources of information: work on abstract instruction sets for
other cases. Note that although the quick success a•d quick failure compilers, bottom-up analysis of microarnhitecwral requirements for
cases are simple to check for, their execution frequency is low high performance Prolog, and analysis of WAM execution statistics.
enough that we have chosen not to do these checks in-line. In this section we give a more rigorous validation of the architectural

The Pegasus processor [9] supports general unification with a design and instruction selection by analyzing the cost and perfbr-
16-way branchbased on two tag bits fro eachof twogiste t, mance benefits of each special purpose feature nd instruction.

LIBRA pmcessor 1111 haa a "patllal unify" instruction. This Thr has bow me work to detemine such rslts for other

single-cycle instruction performs either a nop, a store, a call, or a designs (9, 10, 15], but mn complete analysis has been done.

branch depending on die tags and comparison of the two arguments.. , Cost of Features
It executes the variablecaonvariable case of general unification in To s hof FeaturesTable 6 shows the implementation cost of throe features which



Feature Active area DC-n complexity instrucions affected
segment mapping 4.8% "I00D compiled -

tagged-immediate 2.2% 100% compiled IdW, cmpi, s, id. lea, muni
double-word memory port 1.9% 95% compiled; 5% by hand ldd, std. , pushd pushdc
fast tag logic 1.6% "100% compiled btge. btgne, swt, swb. dref, uni
multi-cycle€onditional 0.1% 100% compiled six, std, pushd, pusht. dft, uni
tag overflow detect "0.0% 100% by hand (10ates) cmp28, add28. sub28T and28, or28. xor28
total special features 10.6% 99% compiled; 1% by hand

Table 6
Cost of Special Architectural Features

For each special feature of the BAM processor, this table gives the percentage of active area (transistors and wires) required
to implement the feature, the design complexity of the layout, and a list of insmctions which depend on the featu•. The
design complexity is given as a percentage of the layout that was automatically generated (using tilers route. etc.) and the
percentage that was laid out by hand. "10 compiled indicates that less than 30 gates were placed by hand. Multi-
cycle/conditional is a subset of internal opcodes-4he 0.1% active a refers to the entre internal opcode implementation.

extend the BAM beyond a general purpose architecture. Implemen- Table 6. Fast tag logic, double-word memory port, segmem map-
tation cost is expressed in terms of chip area required to implement ping. multi-cycle support, and tagged-immediate support are con-
the feature and in terms of VLSI design effort required. The chip sistently important features. Tag overflow detection is important
area is measured in percent of total active are which includes ooth only in programs which make heavy use of integer arithmetic. The
transistor and wiring ama. The chip contains approximately 110,000 overall Prolog support column is determined by using only the
transistors, and the total active area is 91 square millimeters using istructions from Table I (and non-tagged versions of I& and anii).
1.2 It CMOS. The VLSI layout was done using a symbolic layout omitting segment mapping and all instrctions in Tables 2 and 3.
editor with custom designed, parameterized cells. The building To summarize, the specialized support added for Polog does
blocks were assembled into larger units using a datapath compiler, not require unreasonable amounts of chip space or hand layout,4l %
PLA compiler, tiler, and router. The design effort for each feature is active area for all Prolog related features), and it provides a perfor-
given as a percentage of its design that was automatically performed mance benefit of 70%.
by the design tools. The last column of Table 6 lists those ins•tuc-
tions which depend on a given feature. We do not give each 5.3. Benefits of Individual Insructions
feature's effect on the cycle time, since the microarchitecture and Table 8 provides a similar analysis applied to individual
logic designs were done carefully to prevent these features from instructions or instruction groups, rather than to architectural
being on the critical path. features. Significant (grcater than one percent) performance benefit

Segment mapping requires the greatest area of the special is obtained from a majority of the special purpose instructions (dref
features. This area is primarily due to the 32 by 24-bit register file umn/wumax. lea, push/dc. s, and btseqne). The multi-cycle
which contains the segment map. This register file is used to extend pointer dereference instruction (drg) has an average execnio time
the address space as well as perform tag mapping. A smaller register of 1.6 cycles. Macro-expansion of dref into an explicit loop
file tailored to tag mapping alone would take less ara The next increases the average dereference time to 2.2 cycles. Although the
greatest area consuming feature is the tagged-immediate generation benefit of dref per dereference is only 0.6 cycle, the total perfor-
circuitry. This is due in part to the use of three distinct instruction mance benefit is significant because of its frequent use. Some of the
formats for tagged-immediates. The double-word memory port smaller benchmars, however, show no benefit for drof due to the
requires extra ports on the general purpose register file to support the complete elimination of dereferencing by compiler optimization.
increased bandwidth. The area listed is the difference in siz Unsigned maximum (umax) is used during envionmen and choice
between our four/five-port register file and the more usual three-port point creation. Omission of wnax causes the time to determine the
register file. The extra pads required by the double-word bus are not top of stack to increase form one to three cycles Tagged-poimer
included in the cost. After the fast tag logic, the remaining features creation (lea) Is a frequent operatio and its omission adds an extra
use a very small portion of the totalactive are. cycle for tag insertion (using or). Elimination of auto-Incement

addressing (push, pushd, pushdc) requires one extra cycle for each
5.2. Benefits of Features block allocation. The three-way branch on tag (sw) can be replaced

To determine the performance benefit of each featre. we cal. by two btgeq insmuctions, adding an extra cycle to two of the brnch
culated the cycle count increase caused by omitting the use of all directions. Elimination of the two-way I P1 on tag (btgeqlae)
instructions that depend on the feature [25]. For example, if omitting would require a two instrursion compare amd bruch.
the instructions ldd, sa. stdc. pushd, and pushdc increases execution The remaining itucto have leas than one penram average
time from 100 cycles to Ill cycles, then the performance benefit due performance benefit. Because the VLSI-PLM spends about 5% of its
to the double-word memory port is 11%. An instruction is omitted time traling variable addresses, we Included special support in the
by replacing It with Its macro-expansion into simpler Intructio. BAM (pusht). However, due to the compiler's use of uninitialized
An effort was made to determine optimal expansions, and after vadables, which do not ave wto be trailed, trailg time is reduced to
maCro-expansIon, peephole optimization and instruction remodering 1.4% In the BAM. OmLitting pokt causes a slow down of 0.7%,
are performed. Omission of segment mapping equires that explicit which corresponds to traill time tncrasing flum 2 so 3 cyces. Pielim-
Instructions be ineed to mask tag bits before tagged-poiners an lry aMalysis using macro-expanded WAM for the diaLparser
used addresses. A detailed description of the analysis techmiques benchmark Indicated that the benefit forpqp would be 1.5%. Com-
is lSiven in 26). piler optimIzation of trailing has rnduced this mult Similarly. omn-

Table 7 lists the performance benefit of the features given in Piler OptImlzatioh reduces the nmber of general uniflcad ,



Benchmarlk Featuet Perfcornance Benefit()
fatst tag double-word segmzent mia-cycle tagged- M&g oversaw all Prowlg

______ lgc meriorv vua rriavDDiR conditonal nunmediate detect
108g0 2.4 &.1 5.3 0.0 9.3 0.0 30.0
ops8 6.6 14.7 4.2 2.6 9.2 0.6 42-60
timeslo 6.2 14.1 4.0 1.0 12.0 0.0 47.1
dividelO 5.6 15.4 3.6 1.7 13.5 0.0 46.9
nfeverse 14.0 14.6 22.1 0.7 25.0 0.0 99.8
qsort 11.1 4.1 10.6 1.6 14.0 13.0 75.5
serialist 24.0 18.2 9A 7.0 5.0 2.3 83.5
query 0.0 3.6 1.7 0.0 2.3 2.7 12.
mnu 36.0 14.5 20.0 15.3 1.0 0.1 95.9
queens..8 6.9 17.0 5.9 0.7 3.0 34.6 105.9
polyjO0 18.8 9.8 8.9 3-3 9.7 3.1 71.5
sak 0.0 8.3 4.2 2.8 4.2 28.1 66.6
prover 18.3 20.6 7A 6.3 9.0 0.0 72.6
merA..qsort 19.6 17.6 12-8 10.7 9.! 0.6 72.3
sample-snalyzer 20.5 12.4 12.3 10.6 5.6 5.0 67.6

chtiua17.3 17.9 8.8 828 7.7 0.0 67.7
avenge 18.9 17.1 10.3 9.1 7.9 1.4 70.1

Table 7
Performance Benefit of Special Aychitectural Feature

Instruction Perfiormance Benefit (*)
Benchmark umin push b" geq

dref umax lea vushdlc swt begne Puslit s"b uni stid ow0
lo"l0 0.0 0.3 5.3 2.2 0.2 1.9 0.0 0.0 0.0 0.2 0.0
oasl 0.9 3.2 5.0 3.2 0.9 2.5 0.3 0.0 0.0 OA 0.0
dineslo 0.0 4.1 5.9 4.2 1.1 2.0 0.0 0.0 0.0 1.1 0.0
dividelo 0.0 3.7 7.1 3.8 1.0 1.8 0.0 0.0 0.0 1.0 0.0
oreverse 0.0 IA 22.8 11.0 11.0 0.0 0.0 0.0 0.0 0.0 0.0
qsort 0.0 1.6 10.6 3.7 4.5 0.0 0.0 0.0 0.0 0.0 0.0
serialist 3.7 6.1 2.8 2.6 2.5 1.1 0.5 IA 0.0 0.1 OA
query 0.0 0.1 0.6 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0
mu 109 1.6 3A 2.7 4.8 4.4 2.1 0.5 0.7 0.0 0.3
queens-) 0.0 2.6 2.3 3.3 2.9 1.3 0.0 0.0 0.0 0.0 0.0
poly...I 0.9 3.2 5.4 2.8 2.8 0.8 0.4 0.1 0.0 0.0 0.0
rtak 0.0 2.8 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Frovm 1.3 3A4 2.3 3.5 2.2 1.2 0.3 0.2 0.7 0.4 0.2
netaaqsort 5.8 5.0 3.2 2A4 2.6 0.8 0.7 0.5 0.1 0.2 0.2

simple...aalyzer 7.3 3.3 2-5 1.4 2.6 1.5 0.3 0.2 0.1 0.3 0.0
cliaz.Parme 3.5 3.3 3.0 2.4 1.7 1.6 1.6 1.6 0.7 0.2 0.7

aew4.5 3.8 2.8 2.4 2.0 1.3 0.7 0.6 OA 0.3 0.30

TableS 8
Performance Benefit of Indvidual Instuctions

Tables 7 and 8 give die pacro perfoumance benefit for each sp=fewia iano ud insmructiam of doe BAK processor. The last
columrn of Table 7 lists die performewueo benfit of segmient mapping and all instructions given in Tables 2 and 3. Aveanges am
calculaied using only the lat four benchmarks which we representative of well wrie., medium sand (100-1000 life) Prulog
programs. All benchmarks me compiled with asusomatic mode generation, anid cache effects we nm included&

minimizing fte benefit of ar". Our initial studie alo Ovezes- single-cycle branch took caue of 100% of these cues, we calculate
timated the benefits of special support for unificadon of atomis (uni. the further improvement would be about 0.7%. Given dyte additional
ati. sidd). Although pwht, "u, pop, xW, sd, and aWi provide mair- comiplexity that such a branch implies, we conclude that a mult-way
ginial performance benefit their implementation uses only feature branch with mome than three directions is not effective for Prolog.
already requird by other Instructions. 6 eiilec eut

An Interesting conclusion about the number of directions 6 efrac aul
needed in multi-way branches can bemd t heeniue Table 9 compares dhe performance of the DAM processo to
ments. Multi-way, briches ame Implemenledý In die SAM with dot dhat of other Prolog sysems. The results for DAM are simulated
awz and swb Instuctions. which we both sIngle-cycle three-way assuming a 30 Whz clock and Include overhead due so cache misses
branaches (Tabl 3). Swt Is used for unification of compound terms. 1 191. The itSmulated system has 128 KB loutnuctlon and data caches.
for which gresate than a three-way IbrAnc ft not needed (Table 4 and The caches am directqp - ad us a write back policy. They are
121D. Se6 Is used for unificadtio of merms whose types awe mwiown ra in warin start, that Is. each benchmark is run twice and die results
at compile time. It takes care of 70% of dim caes (Fable 5). which of the first ran awe lIgore&. Cache effects are significat only for die
gives an 0.6S execudon time impetivement (Table 8). If some lastr five programs in Table 9. lTe cache overhead Is greaest for



Benchmark Quintus VLSI.PLM I(CM nom de AM auowde

loglo 0.468 (31.5) 0.137 (9.22) 0.039 (2.62) 0.0263 (1.77) 0.0149 (1.00)
opsg 0.767 (40.8) 0.177 (9.41) 0059 (3.14) 0.0289 (114) 0.0188 (1.00)

* ureslO 1.05 039A) 0.247 (9.26) 0.082 (3.Ue) 0.0403 (1.5) 0.0267 (1.00)
dividelO) 1.27 (42A) 0.287 (9.58) 0.091 (3.04) 0.0433 (144) 0.0300 (1.0)
nreveme 4.87 (36.2) 2.10 (15.6) 0.65 (4.83) 0.308 (2.28) 0.135 (1.00)
qsort 16.9 (36.2) 4.24 (21.6) 1.32 (6.73) 0.371 (1.89) 0.196 (1.00)
senialise 10.8 (23.0) 2.47 (5.27) 1.22 (2.60) 0.516 (1.10) 0.469 (1.00)
query 72.3 (18.9) -12.6 (3.30) 5.22 (1.37) 3.82 (1.00)

mu 28.3 (35.0) 5.18 (6.41) - 1.02 (1.26) 0.808 (1.00)
*prover 24.1 (26.2) 6.83 (1.41) - 1.07 (1.16) 0.921 (1.00)

queens...8 73.7 (65.1) 28.8 (25.4) - 1.88 (1.66) 1.13 (1.00)
mete-qsort 231 (49.0) 44.5 (9.45) - 5.25 (1.11j) 4.71 (1.00)
simple-.analyzer 636 (19.0) -- 36.9 (1.1) 33A (1.00)
polyjO0 1420 (40.0) 307 (3.65) - 62.5 (1.76) 35.5 (l.00)
tak 3300 (62.8) 940 (17.9) - 71.1 (1.35) 52.6 (1.00)
chat-.parser 3590 (27.0) 781 (587 - 161 (1.21) 133 (1.00)
geometric mean 036.7) .(10.3) (3.48) (1.44) (1.OD)

Table 9
performance Results

This table compare the perfamnane of DAM with that of several other Prolog implementauionis for which benchmark results we
available-Quintus Prolog. the VLSI-PLM. and the KCNL Each result is presented as a time in milliseconds followed in
parentheses by the ratio to the best DAM time. 7he Quintus Prolog results art for compiled code executing under Quintus Prolog
Release 2.0 on a Sun 3/60. The VLSI-PLM [4] results are simulated assuming a cycle time of 100 ns with no cache misses. The

* ~KCM results [6] are derived from actual measurements of a system with a cycle dime of 90 ns. The DAM results are simulated
assuming a 30 M&fi clock and 128 KB instruction and data caches [191. For BAMK the auto modes and no modes columns give
results with and without automatic mode generahion. Results ame presented for the well-known Warre benchmarks (the first
eight in the table), of which query is modified to use integer division in place of the original floating point; for mu. which proves a
theorem of Hofstadier's 'rnu-nuth"; for prover, a simple theorem prover for queens.... which solves the eight queens problemn
using an incrementa generate-and-test. statgy; for metaa.qsort, a meta-imerpreter twinning Warre's qbort: for mutrupk-analyzer, a
flow analyzer analyzing Warren's qsorn; for poly 10. which symbolically raises a polynomial to th eth poe fa k whicht
executes recursive integer arithmetic; and for chat..parser, which parse a set of English sentences. Further information about the

* ~benchmarks may be found in [281. Vie benchmarks are available by anonymous ftp from arpa~berkeley.edu.

simple-.analyzer. poly-1O. and tak; for these programs the overhead slightly larger than that of the KCM8. This is due to direct compila-
ranges from I1I% to 38%. For meta-qsort and chat..parse the over- lion into simple instnactions. the success of flow analysis in reducing
head is less than 3%. code size, andl the appropriateness of thse BAM instruction set for

Although programs are usually compiled with automatic mode Prolog.
generation. we have included numbers without modes to show the _________________

*effect on performance. The average performance improvement due B AM IPLM IKCM /PLM ISPUR /PLM
to automatic mode generation Is 1.44. The number is higher for b7 3.1 3.0 14.1
some of the smaller benchmarks because mode generation Is able to instructions 2.6 1.1 12.0
do a better job for them. For example, the qsort and queens-.8 bench-
marks perform well because the mode information allows the comn- Table 10
piler to eliminate most choice point craution and replace variable Static code size ratios
binding with destructive assignment. The number is lower for thse
simple-analyzer benchmark because Ii uses built-in predicates This table grive the staic code slaes of die BAK, the KCL WAd the

*heavily. SPUR relative to the PLM, a micro-coded .splemientation of the WAM
13]. The DAM code size is calculated from prover, mea..qsom

The KCM [6). one of the best WAM implementations, has a simplenaalyzer, and chp.Ie. Then KCM code swe as from 16).
relatively large amount of specialized hardware to execute a WAM- Trhe SPUR code size is frcom [27.
like instruction set efficieently, whereas the DAM processor uses
modest hardware to support an optimizing compiler. We find that
the speed advantage of the DAM over die KCl is equal to or greater 7. Conclusions
than the cycle time ratio. The primary goal of our research has been to determine a

A common measure of Prolog spieed is logical Inferences per minimal set of extensions to a general purpose architecture necessary
second (LIPS). In general this quantity is ambiguous; however. it is for achieving high performance logic programming. At tse same
well defined for the naive reverse benchmiark. The execution time time, boweve, performance of the general purpos architecture has
for naive reverse with automatic -odes (Table 9) gives a perfor- not been compromised. We have IdentidW taged-Immediat sup-
mance of 3.68 million LIPS, port. segment mapping, double-word memory buas. special logic for

Table 10 compares Use stadec code sizes of fte BAK the KCM fast branch on tag, and multi-cycle Insbualion support as important
1 6). anid the SPUR [27] relative to the PLM [3]. Macan expansion of Prolog specific feature. Our messrettents justfy tse utility of
WAM code into SPUR instructions causes the large code size of the push, pointer dereferenot, and ragged-pointer craution insuiuctions.
SPUR. Static code size for dse DAM is surprisingly mstitl only Our special instructions fotrballing and unification of iatos, how-



ever. are of marginal benefit. Finally, we conclude that a multi-way 11. J. W. Mills, "LIBRA: A High-Performance Balanced Corn-
branch with momt than three directions is not effective for Piolog. puter Architecture for Prolog," Ph.D. Thesis, Arizona State

We have demonstrated that one can extend a general purpose University. December 1988.
architecture to include explicit support for symbolic languages such 12. G. Radin, "The 801 Minicomputer," Symposium on Architec-
as Prolog with modest increase in chip area (11%) and yet aain a aural Support for Programming Languages and Operating Sys-
significant performance benefit (70%). temns (ASPLOS 1), pp. 39 - 47. March 1982.
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Abstract
The rapid prototyping of microprocessors requires a high level of automation. An

environment suitable for developing application programs which accelerate the design pro-
cess should provide an efficient method for manipulating data and a powerful programming
environment. This paper describes the benefis we have discovered by using PROLOG as the
foundation for ASP, a suite of CAD tools tailored towards the automatic generation of
microprocessors. PROLOG provides an inherent relational database which is ideal for
describing and manipulating a host of elements at all phases of a design, from a behavioral
description to a circuit layout. PROLOG also lends itself to heuristical as well as algo-
rithmic programming styles.

1. Introduction
There are many characteristics inherent to data elements in Computer Aided Design

(CAD) that make them difficult to represent in a database [1-2]. The difficulty lies in express-
ing the many different relationships between elements. For example, a wire element may be
related to other wire elements by node, by layer, and by location. A CAD tool should be able
to generate a set of elements by any of these relations. This paper will show that the relational
database inherent in Prolog is well suited for the requirements of a CAD database. An imple-
mentation of objects which cover the entire design process is presented.

Although some CAD problems are well understood, most of the problems in CAD are
only partially understood or not well defined. Problems of this nature are solved by employ-
ing heuristics such as simulated annealing, and rule based expert systems. Problems that are
well understood such as the simulation and channel routing are solved by proven algorithms.
Problems that are partially understood may have heuristics imbedded within algorithms. Pro-
log supports both algorithmic as well as heuristic programming techniques which make it an
ideal candidate for CAD programming. This paper will illustrate many of the Prolog pro-
gramming techniques employed in ASP.

ASP [3) is a full-range synthesis system tailored for the development of microproces-
sors. It produces VLSI masks from instruction set architecture specifications written in Pro-
log. The system is composed of several hierarchical components that span behavioral, cir-
cuit, and geometric synthesis. Behavioral descriptions are transformed into register transfer
level descriptions by VIPER (4]. Controller and datapath are realized in sticks by a suite of
layout tools in VENOM. The blocks are compacted, placed, and routed by Sticks Pack [5].

This paper will reveal some of the problems associated with representing data for CAD
while illustrating the solutions that we have discovered using Prolog. An application of these
philosophies, Sticks in Prolog (SIP) is explained in detail and the other abstract levels in ASP



".2-

are introduced. Advantages for using a clause based language for CAD development will be
presented by describing the programming methodology employed by ASP.

2. Design Considerations For Implementing CAD Objects
To model the many complex CAD structures as well as the relationships between struc-

tures, many CAD environments use object oriented databases. CAD elements, whether they
be geometry for a compactor, transition states for a simulator, or logic expressions for a logic
minimizer can all be expressed in terms of objects. There are two strategies for representing
CAD elements as objects.

In one approach the database provides a set of primitive objects (objects such as
polygons, properties, containers, and paths) that model CAD relationships with a representa- •
tion policy. For example a container object can be used to describe a common node relation-
ship by placing all objects belonging to a node within the container object. Similarly, a com-
mon layer relationship can be represented by placing all objects that share a common layer
within the container object [6]. The primative objects must be capable of representing every
data element and relationship that will be necessary for any design. A policy to represent
CAD elements with the primative objects must be chosen. There may be several possible
representations of an element within a given set of objects. For example given a data object
of type BOX containing four integer value fields, a box can be represented as a center coordi-
nate with width and length measurements as in CIF, or as a pair of coordinates denoting two
opposite comers. Relationships between objects must be explicitly defined. Once esta-
blished, all CAD applications must adhere to the well defined set of policies.

In another approach, each CAD element is expressed as an object [7-8]. For example,
elements such as wires, nets, contacts, transistors, and waveforms are all expressed as tailored
objects. Relationships can be expressed implicitly within the objects by adding data fields.
For example, a wire element may contain a field describing the layer of the wire or by a
pointer to another of the same layer. With this methodology, the representation policy is dee-
ply imbedded within the data objects. Provisions must be made for adding new objects. For 0
example, assume that a system tailored for CMOS circuits must be modified to handle bipolar
transistors for a BIMOS circuit. If the data fields chosen for the transistor element are inca-
pable of representing the bipolar transistor, a new data type must be added to the system.
Furthermore, all programs that process transistors must be modified to support the new data
type. The primary issue in developing a set of data objects to represent CAD elements is
determining how much inherent support to offer [9]. •

2.1. PROLOG as a Database

Relationships between the elements can be expressed in terms of groups. For example,
elements in a cell can be grouped by node, by location and by layer. Current object oriented
databases for CAD have strict set relations [6-8]. For example, many databases categorize
wires by layer, but not location. To find wires of the same layer, one simply calls a generator
that returns instances of wires that are of the queried layer. But to find wires of the same
grid, one cannot simply generate wires based upon the grid information, but must generate
wires by layer and filter out the wires that are not of a common grid. Data in Prolog is linked
by structure and by value. Thus, the procedure for generating all wires on the metal I layer is
the same as the procedure for generating all wires on row 5, or generating all wires of node
vdd, or generating all the wires of row 5 and node vdd in metal 1. Prolog also provides



-3-

*w structures such as binary trees and sorted lists. These constructs make accesses to the ASP
Prolog database very uniform.

In ASP, each CAD element is expressed as an object. Elements ranging from
behavioral descriptions of architectures to logic equations for a module generator to offset
contacts in an ALU layout are all directly expressed in and referenced through Prolog. In

* Prolog there is no syntactic or semantic difference between a procedure call and a database
query. This makes the introduction of new data types very simple. Clauses that process new
data types can be easily integrated into the system. There ame thirty different representations
of a design. each with a set of data objects. One of the lowest levels, Sticks in Prolog, will be
described in detail in the next section.

* 2.2. Sticks in PROLOG

Sticks in Prolog (SIP) is a grid based sticks representation in Prolog that supports
hierarchy and parameterized elements. Module generators or human designers generate SIP
files which are converted to mask geometry by the STICKS-PACK compactor. In SIP. VLSI
elements are modeled as facts. Attributes for the elements are represented as atoms within
the facts. Currently, the SIP language consists of four facts representing VLSI elements:

wire(Layer, pt(XI, Y1 ). pt(X2, Y2). Width. Net).
cont(Type. pt(Xl, YI). Offset. Net).
transistor (Type, pt(SXI . SYI). pt(GX2. GC '2), pt(DX3 . D Y), W. L. Nets, NNeg, Netd).
pin (pi(X). YI), Layer. Width, Label, Cell).

Layer are of the atoms: ml, m2,p, pd, nd

These represent the physical layers of the element (metall, metal2, poly, P-diffusion, or N-

diffusion).

Contact offsets are of the atoms: nw, nn, ne, ww, nof, ee, sw, ss, se

Contact types are of the atoms: mlm2, mlpd, mind, mip

Width, XY coordinates, W, and L are integers. Nets are atoms that represent the connectivity
node of the element. Elements of the same node are electrically connected. Nodal informa-
tion is extracted by a net extracting program. pt(X. Y) represents a point location at (X, Y).
Transistors have 3 point locations, one for the source, one for the gate, and one for the drain.
Each location has a separate node.

Example: An Inverter in SIP:

-ir ml , p t(O.0).) p1(O.5 ) 2 ,vdd ).

wire(mJ. pt(O.1). p9(2J).2,vdd).

wire(m]. p1(10.1). p0842).2.vss).
wire m]. pt(8 3), ps 2S)2,ouO.wire(ml .pt(6,), ps(6.$).Zw, ).
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wirep. pi 8 , ), pt(62 ).Zi,).

trans(nd. pt(2.1). pt(2.2). pl(2.3). 4.2. vdd. in, out).
traw(pd, pt(8.), pt(82). pt(83). 2.2. vss, in, out).
cont(mlpd, (2.1). nof. vdd).
cont(mlpd, (23), no!, out).
cont(mlpd. (8,1). nof. vss).
cont(mlpd. (83), nof. out).
pin(pt(6. 0). p. 1. input, imv).
pin(pt(6. 5). p, 1. output. inv).

Different CAD applications often generate different sets of elements. For example, the
simulator may generate all of the elements that are of nodes adjacent to a given node. The
compactor may generate all of the elements that are of the same grid and layer as a given ele-
merit. The floorplanner may generate all of the terminals of a given cell side. With the SIP
representation, data elements can be generated by any combination of characteristics very
easily. For example all of the wires that are of ml of node vdd which have a width greater
than 3 can be generated in two lines of Prolog:

wire(m] , PtI , Pt2, Width, vdd),

Width > 3,

This representation also allows fields to be easily parameterized within a cell. For example,

In a cell definition we have parameterized an output transistor with the statement:

parameter(ourputrans, pt(2, 3)).

A call to the following clause would permit the modification of the W/L ratio of any transis-
tor that has been parameterized.

modsize(NMe., Neww, New):."
pw'nwtVar(N~na. p1(XLoc, YLoc)),
retract(trae(Layer. pt(Sy. Sy), pt(Xloc, Yloc). pf(Dx. Dy). -, Ns, Ng, Nd))),
awn (trans'Layer, pg$Sy. Sy). pt(XMoc. Yloc). pe(Dx. Dy), Neww. NVw Ns. NZ. Nd))),!.

modtsize(Namw, Neww. Newl):.
wrik'sransifor nfow, ).!.

I I P
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This flexibility allows tools to address and modify specific elements within any context.
For example, a program that tries to optimize the performance of a circuit containing many
cells can do so by adjusting the W/L ratio of the output transistors. With the output transis-
tors parameterized, the program can reference the output transistors from any cell simply as
"outpurrans" regardless of the transistor's environment.

SIP provides an excellent abstraction of VLSI layout for an automated module genera-
tors that produce sticks layout, for example, the following clause:

makeinverl(Vddgrid. Vssgrid, Ingrid, Ovigrid. Pw. P4, Nw. NI):-
Pdgrid is Vddgrid -1.
Ndgrid is Vssgrid + 1.
assert(wire(ml , pi(2. Vddgrid), pt(2, Pdgrid). 1, wik)).
a=err(wire(ml, pf(2 . Vssgrid), p1(2, Ndgrid), 1. unk)).
a=er1(wire(m). p1l. Vddgrid), p(5. Vddgrid), 1, unk)),
axserr(wire(ml. pi(1. Vasgrid), pt(5. Vssgrid). 1. unk)).
awrf(wire(ml. p1(4. Pdgrid). pt(4 , Ndgrid). 1. unk)).
=aert(wire(ml, pt(4. Outgrid), p1(5. Outgrid), 1. ink)).

assert(wire(p, pt(3, Pdgrid). pt(3. Ndgrid). 1. unk)).
awert(wire(p, pO(O, Ingrid). pt(3. Ingrid), 1, unk)),
a.mrt(cont(tmld, pt(2. Pdgrid), nof. wit)).
assart(cont(ml d, pt(2 , Ndgrid), nof, unt)).
assert(cona(ml d, pt(4. Pdgrid). nof. unt)).
assert(conl(mld. pt(4, Pdgrid), nof, unk)),
assert(ran'(pd, pt(l, Pdgrid), pt(2. Pdgrid). pt(3, Pdgrid), Pw, PlwLk. ui, unk)),
aul(ftrans(nd. pf(I. Ndgrid). pt(2. Ndgrid). pt(3, Ndgrid), Nw, Nlwnk, unk. unk)),!.

will generate an arbitrarily sized inverter with variable input and output locations. Nodal
information is deduced by the extractor. Roms, PLAs, and other regular layout structures can
be generated in a similar fashion.

3. PROLOG Programming for CAD

There has been a growing trend in CAD to develop tools that use both algorithmic and
rule-based programming styles [10- 11]. Algorithms are generally fast. but are inefficient at
handling problems that have many special cases. Rule-based systems are well suited for
solving problems with many special cases or problems that are not well defined. Rule-based
systems have generally been slow. Rules in such a system must be looked up and efficient
management systems have not yet been developed. Many CAD problems, such as simula-
tion, have algorithmic solutions, but most problems, such as routing and logic minimization,
can be solved by a host of methods.

Prolog provides an environment for both algorithmic and rule-based programming
styles. Several examples of both styles have been implemented in ASP. An example of how
simulated annealing is implemented in Prolog is illustrated in the Appendix. The clausal
nature of Prolog allows rules to be easily updated or modified. Algorithms can also be
expressed in a simple and intuitive manner which makes Prolog a language ideal for rapid
prototyping.

Prolog source code is typically 10-100 times more dense than C or Fortran source code
performing the same function. This makes Prolog systems much more readable and
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maintainable. For a large system such as a silicon compiler, this has turned out to bc essen-
tial.

3.1. PROLOG Programming Methodology Employed by ASP

There are three basic formats for Prolog clauses arc employed by ASP: 0

Procedural Clauses: These clauses work to achieve a certain value or state without fail-
ing. Examples of such clauses include arithmetical functions and list manipulations.

/* The mindist routine finds the minimum spacing distance between two objects of layer and
width. The 'space' routine returns the minimum spacing distance between two layers, and 0
the width routine determines the minimum width of a layer */

mindisrt(Layerl, WidKM. Layer2, Width2, Distbetwnobjcts):-
space(Layer). Layer2, Distance),
width(Layerl, Widlhspacel),
Widthmodl is Width) *Widthspacel,
width(Layer2, Widthspace2),
Widthmod2 is Width2*Widthspace2.
Distbetwnobjcts is Widthmod) + Widthmod2 + Distance.

Filtering Clauses: These clauses interpret a given set of data elements differently depend-
ing upon the values of certain data fields. If-Then, and Case constructs can be expressed
through these clauses.

/* checkonstr determines how to space two elements. Each sub-clause filters out a certain
condition. If the elements are on the same row, the spacing is irrelevant If the elements are 0
contacts, they can not be stacked upon each other and must be spaced accordingly. If the ele-
ments are not contacts and of the same node, the spacing doesn't matter, otherwise the ele-
ments must be spaced */

checkconstr(Layerl. Width), Node). Row], L.ayer2, Width2, Node2, Row2, Layer2):- •
Row) =Row2.

checkconstr(Layerl. Width). Node], Row). Layer2. Width2, Node2. Row2. Layer2):-
cotacts(Lay.rl, Layer2),

checkconsr(Layerl, Width), Nodel, Row], Layer2, Width2, Node2, Row2. Lay.2):-
Node)=Nod. 0

checkconstr(Layerl. Widthl. Node]. Row]. Layer2. Width2, Nod2,. Row2. Layer2):-

Generator Clauses: These clauses generate sets of elements through backtracking or the S

bagof construct in Prolog.

I P0
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/ Makebox. a routine that creates boxes from various elements, first processes wires, followed by contacts and
transistors. */

makebox:-
wire(Layer, pt(Xi., Y). pI(X2. Y2), Wid, Node),

fall.

makebox:-
cot•(Type. pt(Row, Y), Ose., J.

fail.
mak/box:.-

trans(Type. pO(Sx. Sy). ps(Gx. Gy). pt(Dx. Dy). W, L. Sn, Gn. Dn),

i,..fail.
makebax.

4. Conclusion
Prolog provides a relational database and a powerful programming environment. The

relational database is easy to use, can represent all CAD objects, and provides a flexible inter-
face to the programming environment. The clausal nature of Prolog provides an environment
suitable for algorithmic and rule based programming styles. The success of ASP has shown
that Prolog is a robust language well suited for CAD development.

This work was sponsored in part by Defense Advanced Research Projects Agency
(DoD) and monitored by Space and Naval Warfare Systems Command under Contract No.
N00039-84-C-0089.



S. Appendix

% Simulated Annealing package
% You provide the move set. stopping criterion. and number of inner loop iterations.

siman(InitTemp. StateO, Cost. Finalstate, Finalcost):-
doOuter(Iniffemnp, StateO, CostO, Finaistate, Finalcost).

% Outer Loop

do~uter(Temp, StateO, Cost. StateO, Cost):-
endhere(lremp, StateO, Cost). % Outer loop complete by criterion endhere

doOuter(O, Temp. State, Cost. Finalstate. Finalcost):-
dolnner(O. Temp, State, Coat. Newstate, Newcost),
updatetemp(Ternp. NewT),
doOuter(NeWT, Newstate, Newcost, Finalstate. Finalcost).

%Inner Loop

doInner(Coumt. Temp. State, Cost. State, Cost):-
maxtinnercount(Mcoumt),
Count > McounL. % inner loop complete

dolnner(Cowit, Temp, State, Cost. Finalstate, Finaloost):-
genncwstate(State. Newstate. Newcost), % create a new state by move
Deltacost is Cost - Newcost,
accept(Deblacost, Temp),
Nextcoumt is Count + 1
do~nner(extcount. Temp. Newstate, Newcost. Finalstate, Finalcost).

dolnner(Count. Temp. State. Cost. Finalstate, Finalcost):- % new state not accepted
Nextcount is Count + 1,
dolnner(Nexteount, T, State, Coat. Finalstate, Finalcost).

accept(Deltacost. Temp):- % Good move
Deliacost =< 0.

accept(Deltacost, Temp):- % Random factor
Aexp is -l*Deltacostfremnp,
Mfactor is exp(Aexp),
randorn(Randnum).
Randiurn ýc Mactor.

updatetemp(Tcmp. Newtemp):-
Newternp is Temp *0.04, 1.

maainnecount(l00).
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Abstract

One of the key steps in performance prediction of multiprocessor systems using simulations is the
m-abdatiou process. A step in the validation process consists of sequentia.1 execution of benchmanrk

programs on the multiprocessor simulator and a uniprocessor simulator. and comparing the results
and performance measurements data. The simulated cycle count, simulator overhead, operation
count, and memory access count are identified to be the key performance data needed for zhe
comparison. This process is illustrated using the multiprocessor .NuSim for the paralle.l execution
of Prolog programs and the uniprocessor simulator, VPsim. For large programs, the counts obtained
from the two simulators are within 10% of each other.
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1 Introduction0

Sim~ulation is an accurate and effective approach in predicting performance of a new multi-
processor systern. raking into account. the man-, intricate details in the hardware arnd software
desigens. The degree of accuracy depends on how much de-.ail is included in the simulator. To
ensure that the simulator accurately reflects the real system (yexto TObe built), the simulator-
must be carefully validated for correct functional as wveil as timing results.

The validation process is carried out primarily by comparing performance data from the
new simulator with known data obtained from previo,.sly validated sources. The validation
process itself can be qjuite tedious and dilflicult, with massive amounts of information that
need to be analyzed. In this paer -we present our approach to validation. The process
inv!olves sequential execution of benchmark programs on the multiprocessor simulator and' a
uniprocessor simula~tor.. comparing results and performance data.

2 Validation Methodology

There are many approaches to the validation of a simulation model !SarS81. The concept 0:
our approach to vallidation is quite simple: comparing new. unve:ri.fied results with previousiy
know-n answvers. The more d'if'cuit tash is the careful conside.-ation of the many d~if~erent
factors tna-t ca_- affiect the results and the degree of thiese ef-rects. The validation process
fo- a compute: s-y.stem simulat~or is bes-z done in a step-w.-se fashion. The ex:act oie!Lais o'.
the necessary-, steps depends on the avail ability o-. the know~n result. or the ~oi.used for
comnDarison.

in this paoer'. the term hose designates the machine on w,,hichh the simulator. is ruzz and
taroct refers -to the compute-. architectureisyste= being simulated'. Validation refers -to the
process o: ensu.=n that the simulator is codied correcuvh and that. it accuraten- models the 0
tar-get.

1L the initial phase, where a paper desior is thne only basis ava~ilable, validation of the
simulator usually consists of:

1.Manually checking for correct coding accorciing to the paper design.

2. Runnin~g the simulator and checking for functional correctness, comparing
the results wi-Ath manually worked out solutions.

3. Manualiy checking the timing of sub-bloclks in the simula-tor.

4.- Running-the simulator- to obtain timing estimates.

5. Running simulator with instrumentation turned on to capture dyna~mic exe-
cution statistics.



The term manually used above refer to the ad hoc approach of eyeballing (for steps 1
and 3). hand calculations (step 2). or writing small, very special purpose software tools to
accomplish the tasks. This approach is very tedious and error prone. but is often the only
possible way at this phase since a paper design is the only available basis. In the last step.
the monitor facility for instrumentation should not affect the timi•.•

Once the initial simulator is validated, it may be used as a basis for validating other
simulation systems. The validation process can now be done with a greater degree of au-

0 tomation. and thus achieving greater elciency. However. great care must still be taken to
understand the factors that cause discrepancies.

The validation process of a multiprocessor system' sim'ulato:" involves the following steps:

* 1. sequential execution on one processor. This is done to test the processor
module of the simulator and the relevant support modules such as assembler
and loader.

2. parallel ezecution on one processor. This is a degenerate case, done to mea-
* sure the overhead of parallel execution.

3. parallel ezecution on two processors. This is a special case for testing in-
terprocessor communication with no interference since there is exactly one
sender and one receiver.

4. parallel ezecution. on three or more processors. This is the general case of
parzale) execution. with potential for interference on shared resources such
as the memory and communication channels. It is also used to test the fu'l
extent of the pa-rallel execution model. As more processors are added to the
configuration, the saturation of shared resources ;'ill occur and bottlenecks
wil appear.

In this paper. we present the application of the first step of validation of a multiprocessor
simulator, using a previously validated uniprocessor simulator as a basis. Since there are
architecture and execution model variations in the two simulators. their results are compared
for proximity, not for exact equality. The folloving sections provide details on the simulators
and the validation approach.

3 Simulator Descriptions

The validation process is demonstrated using two simulators: VPsim and NuSim. Both
simulators provide an abstract machine engine for fast execution of the Prolog language.
VPsim is a previously validated simulator to be used as the basis of comparison for NuSim.

'The term multiprocessor syst em is used to include both the muhtiprocesor architecture and the parallel
execution model

2



3.1 VPsim

VPsim is a register transfer level simulator for the N'LSI-PLM- [ST.N"88I. This chip is a VLSI
in2,Nlemnze2ation of a high performance engine for Prolog. a modified version of the abstract
machine proposed by Warren IWarS31. VPsim is written in 'lie C language. consisting of 45o(10
lines of C. code and 9000 lines of microcode operations (register transfers. CPU operations
and nticrobranches).

To verify N.Psim's functional correctness. a wide variety of Prolog programs were run
on VPsim and coinpared with those obtained from runs on software Prolog enviromme-nts
such as Quintus Prolog. Because VPsim is microcode driven, the microstates auiomatlically
provide accurate timing. with each microstate being executed in exactly one processor cycle.
Gate and transistor level simulations of thbeVLSI-PLM chip are compared against the results
from VPsimn. The fabricated chip has passed an extensive testing process and has successfuliv
executed a number of benchmark programs. Work is in progress to interface the chip with0
a cache and menmory board to be used as a coprocessor for the SUN workstation.

From the perspective of this paper, \Tsim is a solid simulator thwt has been well Tested
and has been verified by the hardware. It is an available resource that can be used as a bas's
for testing other simulation systems.

3.2 NuSim

To carry out ou.- s-tudy in parallel execlation of Prolog. ve need an accurate and flexible too! to
be used as a t~estbed for new ideas. W\e a-)-).oach our study from a systemn designe.- S Do1=1 0:
'--ew,. wor-kizg w.ith the complet~e system fro.-. software execution modell to hardw-are sun=or1
ior high per-formance. We are particulazlv intereste6 in ra~ctical designs that can be buji::
reasonabie time. For these reasons, we ba-se our multiprocessor study on our. knowledge and
exerneence %-.ith sequential execution o.: ?roloe on the VLS]-PLIM. in addition to the Prolo-
sp~ecific instructions, the chip contains a nurnber of 'simple zenera2 purpose instructions azdc
pnimitive support ior sync-hronization. This makes it a zood candidate building block for a
multiprocessor system.

A simulato; can best serve our interest, in hardware support for high performance. The0
result obtained from a simulation run reflects a composite effect of maniy intricate detaiis
that can no-, be easily formulated or calculated. By varying thje parameters of the simnulator.
the effect that each paramete has on overall performance can 'be measured.

W~e have constructed a niew simulation system, called NiuSirri. to facilitate our studies o-.
para-liel execution models and the underlying multiprocessor architectures. This simulator
"rameworl, allows for the complete system simulation: from the instruction set levei to the
memor~y architecture level with caches and coherency protocols. The key feature of this
sim-alatorframework is fiexibility, w.hich allows for extensive instrumentation and continuall
updates and changes. The modula-r design identifies main features of the execution model
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Figure 2: Overviews" of NuSim Simulai.o

*and the a~rchitectures being simulated as cleanly separa.ted modules with ceariv de.fned

rnt.eraces. This allo ws io: ew.v modifications to the individual modules to support ne w"

execution models and architectures.

N.uSi~m is• an eve nt-dr-iven si.m ulator. with the eve nts beinmg m e m~ory accesses ordered

*b:," t:mce. T his tec h.nioue sim uiatzes a. m ultiprocessor ,,•.g •. u processor. 2\uS•:m co ns;.sts

of 16000 li.nes of C. code a..d twvo small machine dependent routi•nes to save and rest.ore t.he
coro u tin e s tac k:s . i t is fa ir ly" p o rtab le . cu .-ren t! y r &ni u n d er 4 .3 BS D U nix on &ne " AX 7E3

and S-z.-, 3. and under System• "V Uni,: on an• Intel 3S6 personal co pute:.

Fi ure 1 sho w-s t'e s t.u c ture o: the ., uS im sim u ll aor. T wo or the m ajor m odutes o f

ahe situhte or are tce proceseso ? m odule and tl e a mnloy-ep a sa t em m odules T bc e processor

module emulat.es ahe oVLSI-?L M inst-ucmti o set. and is thus comparables to \."Tsim. The

m em o .y s y Lst e -sim ulates a muti IB e lS 5] m e smor y urc.hec ,u e.e - ith eac h processor havi ng

a local cache an0d aof cacd hes co m u nica e wi.te man m em o ', via a sin ave bus. T h re c cthes

are kept co nsise nt via a ha prdware co nsiste nc" protocol. IU the co ntex of this p Ape:. these

o modues I om oth rec of the simulator \ io which the v alidamio n process is mpp oied. The

question ema and th: how" wel does tNuSim simulatet a VLSI-PLhm?
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3.3 Simulator Differences 0

Ahlj]uc12 lbotf NuSirn and \Tsin essentiall. smulate the \iLSi-PLM c',,ip. they wNer-e cre-
?.tea for very" different purposes. VPsini was designed as a sinnulator io.- a very stpecinc
microarcihitecture of a Prolog processor. Details of the \LEI-?LML rnjcroh:chiTectur'e are
Thard-wired" into thje microcode. in ternis of what micro-operations aie possible aic~d the

constraints in packing the inicro-operations Into a micro-state. On the other hand. NuSim
was conceived as a more general purpose m-uhliprocessor simulator for system integroatioir..
dealing at all levels from hardware architecture to software execution mnodel. It wi.ll be used
to exp~erimenlt with differen- architectures and execution model tradeoffs. 0

B-cause of the different goals in creating the simulators. there are a number of differences
between them. These diFferences are identified to help us understand the diffferences in per-
fo,-manic- numbers. The followi-ng are some differen~ces between VPsim and NuSim- (running
seciuenzial code):'

*simulation level. NVPstm ;s a register-transfer--level. cvcle-hv,-cN-cie simula-
tion. wvhile NuSinn is an event driveni simiulator which step by memory access.
The clock o-f \Tsina is incremented eacl; cycle, while t.*e clocký of NuSim is
incremented' by a value obt.-ained from ta~ble lookcup.

0 Cdr-coding. V~s-rm uses cdr-codl.c. wzti21e NuSimr does not. C.d-coding is
a comnpressed representatioz for list elements sztored in consecutive memory-
locations, it, requires a bi-, to Indicat~e if the nex-t location is the car, o: the
next element. Cdr-c~odize is eliminated because its comznniexi:v. has caused
manmy snobtle bugs in the microcode whille contriouzin.- hztte to the overarl
per orta~nce iDo J

* instruction fetch. 'NuSim. does instruction fetch on demand. and accounts
,ime for al! fetch'es. \TPsim does premechmng. wzich- does no, charge time for
a12 fetchies.. b-at may spezd time to fetch unnecessanlv.

* memory s'st~ena. N*u s iz has a cache/memory s-ystem withL rezalistic vallues
for memory access time. Ii. accounts time for cache misses azd block transfers
from memory. VPsiin hass single (processor) cycle memory.

* Prolog builtins. N*Psint treats somea Prolog builzinm (language prederined
routines) as external functions. and ships data outside the VL*TSI-PLM\ Pro-
cessor for processing by the host. A a-rying amount of .:zne is charged for
the data sh~ipment (3 to 10 cycles),.u no time is cnazged for executing
the exte=nal functio:.. NVPsim allso im.-Dements some Prolog Wwhntns in the
library using V'LSI-PLM\,j assembly code. NuSim. oz the other hand. executes
all Prolog 'builtins inside the p.rocesso:. and charges time fAo: them as normal
instructions. In NuSim. all 'builzins are written in C codie.



4 The Validation Example

In this section. we will compare the performance results of NuSim to those of VPsim to see
bow closely NtiSiin simulates a NLSI-PLM processor. Many benchmarks were run on bothi
iNuSim and N*Psim. and their execution outputs were compared for functional correctniess.
A group of benchmarks were chosen for closer timing evaluation. These benichmarks differ
widely in static code size and dyna-mic memory usage and execution time.

W~e have identified a number of measurements for comparison. They are: static code size.
cYcle count. simulation overhead. operation count. and memory access count. Each type of

meaureentproidea different p)erspective ofl the simulation resls hling to understand

the similarity and differences between the two simulators and at the same time validating
* t~he results of NuSim.

_____________Table 1: Be-nchm-ark -Code Sizes and Desc~i-tioti7.5
Benchnmar: INS code I VP code I 'NS.!\T [Description

bintree 1 S2 I96 0.91 build a 6-node binaryi Lree
compile:Jr-lin tree 22409 12488S 0.91 COMpilin- the bintree prograrn

compiiernplint 11613 127-50 0.91 com~iling oto-ftecmie
hani S 2 1.11 towers of hanoi for 8 disks

mumath 2G2 25 2 .04- Hofsta~dter s MUMZath problem for nuiuu
4 ~~~newchat. 801 8.4 0.95 parsing sentences wittech prr

nrevI 164- 109 1.50 naive reverse a 30-element List
palin215 290 2459 1 .12 palindrome for a 25-chaxacter string
puzzle 2138 2019 2-.10 solve a puzzle

0s4 2 49 i63 !.53 ouicksort on 50 numbers
*c4-meia 4 48 397 2.23 P2rolo- meta interprete.-r u.'nai as-:

cueensS 295 304 0.9S7 &-queens probiemn
reducer- 20271 2020 2.00 a griaph reducer for T-cornornatons

sdda 2663 i 636 1 .02 staicata aevenoencvý ananvsis

ta: 977 0 .90 solves a recursively defned function
* co21 52 416 1.13 concatenation of 3- and *--element lists)

con6 55 4E 2.215 pairwise partition of a 5-element list
__________ 72 69 1.03 compute 5:.h fibonacci number

0 4.1 Static Code Size

Ta~ble I showrs the descriptions and the static code sizes (in number of lines) for the same
benchmar: compiled using" different options for execution under N~uSi= (INS) and V'PsIM

4 (WP). The three smalliest benchmarks (con',. con6. and filbo) are listed separately% at the
bottom. The ratios NS/VP show that static NNS code and VP code are for the most part
well within 10%, of one another. The ones Thet show big variances are due to the lack of

6



cdr-coding in NuSim. which requires two instructions to build an element (car and cdr) of a
list. For example. nrevl builds a list o' 30 elements before reversing it and qsý builds a list
of 50 elements before quick-sortiug it.

4.2 Cycle Count (Simulated Time) 0

Columns VP cycles and NS/VP cycles of Table 2 show the cycle count of \'Psim and the
ratio of NuSim/VPsim cycles. respectively. The hit ratio column showvs results for NuSiim
configured to a 4-way associative, 64K byte cache with a block size of 16 bytes.

From these columns. we observe that:

9 Simulated time of NuSim is quite comparable to VPsim (column NS/VP
cycle,, value is approximately !) for the large benchmarks (compilerbintree. 0
compile-..plml. newchat. queensE. reducer. and tak).

* Nusim cycle count is worse than VPsim in the small benchmarks due to low
hit ratio (cache cold start). For example. coni. con6. and fibo have the lowest
it ratios among the benchmarks. measuring at 88.7%. 95.7%. and 95.67..

respectively.

Non-cda coded lists also contributes a little to the degradation in De.ifo.rMance
fo: a small benchmark such as nrev! which has a decent hit ratio of 9S.3/L.

4.3 Simulation Overhead

Although the time that the simulators require to run is lar.elv independent od the correctness
of the results, it is interesting to compare simulation overhead of the two simulators because
they simuiate at two different levels and follow diferent simulation methodologies.

The following explanations refer to Table 2:

* Column VP systime provides the system simulation time (the time taiken to
run the simulator on the host in seconds)., and column NS/VP sstime pro-
vides the NuSim to VPsim ratio. These numbers are obtained from rnning
simulations on a SUN 3/60 with 16MB of memory. These values give a feel
for the response time of the simulators. ranging from .5 sec to 5920 secs (or 0
1.64 hours).

* The overhead columns are provided as the ratio of, cycle count (discussed
in section 4.2) to system simulation time. assuming lOOns cycle time for the
NuSim processor and the VLSI-PL.M chip. For example, a value su•ch as 2000
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Table 2: Cycle Count and Simrudation Time
4 VP NS/VP NS VP NS/VP VP NS/VP

* Benchmark cvcles cycles hit ratio systime systime overhd overhd
bintree 9875 1.30 97.8 3.5 1.43 3544 1.10

compiler-bintree 2208006 0.99 99.5 529.5 0.87 2398 0.67
•compilerplml 5997896 0.89 99.6 1426.4 0.75 2378 0.85

hanoi 78884 1.50 99.9 21.4 1.17 2713 0.78
* mumath 96907 1.26 99.8 26.2 0.92 2704 0.73

newchat 6911008 1.09 99.9 1315.9 1.01 1904 0.92
nrevl 21192 1.38 98.3 6.1 1.31 2878 0.95

palin25 25026 1.08 98.6 7.4 1.08 2957 1.00
puzzle 39456475 0.G7 99.9 5920.2 0.43 1500 0.65

qs4 43190 0.98 98.9 11.9 0.92 2755 0.94
qs4_meta 348051 1.17 98.9 113.6 0.65 3264 0.56

queens8 19759942 1.04 100.0 3354.2 1.18 1697 1.13
reducer 2543554 1.07 99.5 439.8 1.11 1729 1.04

sdda 85382 1.14 98.5 28.0 0.93 3279 0.82
tak 9398259 0.96 99.2 2461.5 0.G2 2619 0.65

conl 256 2.96 88.7 0.5 6.00 19531 2.03
con6 1307 1.52 95.7 0.7 4.29 5356 2.82
fibo 2225 1.-4 95.6 1.2 2.50 5393 1.73

in these columns means that it took 2000 seconds of the SUN 3/60 time to
simulate I second of the VLSI-PLM.

The worst numbers in the overhead columns appear in the three smallest
benchmarks con1. con6. and iRbo. This is due to the initial overhead of start-
ing up the simulators. Also in the three smallest benchmarks. the overhead
of NuSim is much higher than VPsim (1.73 to 2.82 times worse). This is
because NuSim takes more time to startup. being a multiprocessor simulat.or
and having to assemble the benchmark into assembly code. For the large:
benchmarks, the NuSim is more efcient than VPsim. Excluding the three
smallest benchmarks. the average overheads of NuSim and "VPsim are 2203
and 2555, respectively. Thus .Nusim is 16% more efcient.

* Even though NuSim simulates the VLSI-PLM a, a slightly higher level than
the register-transfer level of VPsim. it is not that much more eficient be-
cause VPsim microcode is "fiat' while NuSim C-routines are hierarchical-.y
structured. The cost of structured code depends on the effciency of the code
generated by the C compiler for subroutine calls and retums.

Simulation of the VLSI-PLM on a SUN 3/60 is more than 2000 times slower than actual
execution on a VLSI-PLM because of the following reasons:

-- " • •• • m = m8



e Data and control transfers are processed sequentially. In a real machine. it 0
would be done in parallel. The VLSI-PLM has a two stage pipeline, with
the data unit and microsequencer executing in parallel. The VLS]-PLM data
unit is also capable of doing 8 simultaneous transfers in one cycle.

* The host processor is less powerful than the target processor for symbolic
computation and the host memory access time is slower than the target
memory access time. The SUN 3/60 that we use has a 20MHz MCGS020
and 16MB of main memory (300ns access time). There is no cache. The
VLSI-PLM is a complex processor with tag processing capability.

e The code generated by the C compiler affects the execution time of the host.
For -example. inefficient subroutine calls and returns penalize the hierarchical
structure of NuSim C code.

o The presence of extensive instrumentation code in the simulators for extract-
ing performance results slows down execution on the host.

, The operating system characteristic of the host can greatly affect, perfor-
mance. The SUN 3/60 runs 4.3 BSD Unix and virtual memory. The CPU
accesses a shared file server connected via Ethernet. and thus pagefaults are
"very expensive.

The factors above blend together in the real uniprocesso: system and it is di,'icuh , to
measure them separately. This is the reason why a simuiator is needed for ex.pe-imentazion
with individual sysstem parameters. For simulating a mui-.processor coznfiguratio=. the e-,ent
dcven approach of 'NuSim may be accelerated by use o: a faste: uniprocesso:. or a muhi-
processor host. as demonstrated by IWiIS7. JonSGI. For the greatest e,-ciencv in sinmuatio".
a direct execution approach such as the one proposed by Fujimoto JFCSSý may be used.
where the benchmark is compiled into code directly execumable by the host. instrumenta'ion
counters are inserted by the compiler into the code to measure performance for the tazeet
machine.

4.4 Operation Count

In Prolog. the metric Logical Inferences Per Second in units of 1000 (KLIPS) is often used for
measuring the performance of, Prolor engines. A logical inference can be defined as a Prolog
function ca1, which include VLSI-PLM instructions calis, ezecutes. and escapes for Prolog
buihins. This metric is quite inaccurate since the logical inie.ence can not be measured
exactly. The amount of work done by a Prolog function call depends on the numoer and
type of arguments in Prolog. For parallel execution. the KLIPS measurement has, even less
significance. Multiprocessors may do more work but do not necessarily achieve the final
result any faste:. if the additional computations do not contribute directly to the result.

0



Table 3: Looical Inference Covtri,
INS NS NS VP VP VP NS/VP

0 Benchmark calls escapes KLIPS calls escapes KLIPS KLIPS
bintree 77 151 177 128 101 232 0.76

compiler-bintree 15113 7186 102 208S6 2539 10G 0.96
compiler-plml 42597 22318 122 67060 3992 118 1.03

hanoi 767 765 129 1022 511 194 0.67
mumatb 1211 82 106 1221 73 134 0.79
newchat 66905 60 89 66911 55 97 0.92

nrevl 497 2 171 497 3 236 0.72
palin25 228 97 121 323 3 130 0.93

* puzzle 19796 6018 10 21800 4015 7 1.50
qs4 381 231 144 610 3 142 1.02

qs4.meta 2694 720 84 3795 3 109 0.77
queensS 76457 151736 111 228009 185 115 0.96
reducer 15091 6305 7S 18815 2491 $4 0.94

sdda 552 408 99 715 249 113 0.87
tak 63609 111317 195 !74924 3 186 1.05

conl 4 2 79 4 3 273 0.29
con6 6 30 181 6 31 283 0.64
fibo 15 23 118 36 3 275 0.68

Table 3 shows the number of normal calls/executes and Prolog builtin invocations (or
escapes). Since VPsim does calls to librazy routines for some of the buihins, it has a much
higher calls count and fewer escape count than N.uSim. In order for KLIPS to be a useful
measure. the condition ,VSr, + 5 S,.• • 1 *Prt, - I "P,, should bold true. The iollowing
results show that this condition does no- hold, due to the implementation variations of
NuSim and VPsim (described in section 3.3).

Each of the KLIPS columns is calculated by

call,, -- cscapes
1 10000

cycles

where cycle.s is obtained from Table 2. The unit for calLs and escape¢s is the logical inference.
The constant factor of 10000 comes from the KLIPS unit conversion:

109 nsec I cycle 1 1K72 ELIP = - , - *1 sec 100 nsec 1000

The NS KLIPS and VP KLIPS columns differ widely, showing once again the problem with
this metric. For comparison purpose, the timing information in table 2 is much more useful
than this metric.

10



4.5 Memory Accesses 0

Table 4 compares the number of memory accesses made in running the simulations on NuSim
and the VPsim. VP tot-refi, gives the total count of memory references to give a sense of the
order of magnitude of memory accesses. which range from about 100 to ore:- 12 million. The
next 4 columns show the ratios of accesses between -NuSim and VPsim for total references.
instruction fetches, reads, and writes.

Table 4: Mcm.oru References
VNP NS/NP VP NS/VP VP _NS/VP VP NS/VP 0

Benclihnaxk totarefs refs ifetch ifet ch reads reads writes writes
bintree GO0I 1.19 2527 1.03 i50S 1.80 1500 0.82

compiler-bintree 1259778 1.07 470404 1.18 420110 1.00 303204 0.93
compiler-phnl 3511904 0.90 1380790 0.95 1101595 1.04 969513 0.8$

haaoi 5ISlI 1.3S 22442 1.C5 13776 1.20 10594 1.12
murnatb 53052 1.29 1825S 1.7S 1SG39 1.03 10155 1.03
newcha.t 3695155 1.16 1376937 1.50 115S50G 0.95 1159712 0.97

nrevI 8473 1.51 4812 1.97 2017 0.81 1044 1.00

nalin25 12759 1.10 5695 1.31 4114 0.89 2950 0.99
puzzle 21600.44& 0.82 772251 1.59 9498054 0.72 1330541 0.99

as4 24302 0.93 11241 i.04 5509 0.87 7652 0.79
qs4..meza 197469 1.13 70542 !.42 61071 0.97 65256 0.9G
queensS 12354397 1.09 5220239 1.25 4248014 0.99 28855-44 0.96
reducer 13G705S 1.14 402255 1.46 507144 0.99 397659 0.971

sdda 4S313 1.13 17831 1.33 10752 1.08 13730 0.95
tal: 597923S 0.83 3291700 0.66 2033G43 2.S8 1653S35 0.90 0

conl 94 2.S2 55 2.07 27 2.4 22 2.55
conG 499 1.58 163 1.64 170 i.S6 266 1.04
fibo 1207 1.10 46 2.:3 2S5 1.24 3-.4 0.95

We observe the followinr: •

"* NuSim fetches instructions on demand. while VPsim does prefet ching. NuSimn
instructions are encoded in word streams, with the opcode and each operand
taLing up one 32-bit word. VPsim has the code stored in string tables. but
the microcode generates prefetch signals to simulate an encoding of S-bit •
opcode and 32-bit arguments.

" The total reference ratios are for most benchma-rks are about 1. The big van.-
wtions are for coni (2.11). con6 (1.58). axd nrevl (1.51). The variations are
perfect examples of. worst case perfo-mance without cdir-coding (in NuSim). 0
which would require more instruction ietches. reads and writes. For the larger
benchmarks, cdt-coding makes little diference.

"* The ifetch ratios show that the word-encoding of INuSim require more fetches,
as expected. However. for tab, NuSim fetches much less (ifetch ratio of 0.66) 0

.... .1,



because mnany subtractions are done and NuSiAn use the builtin instruction
is/2, while VPsim does a call to the library routine sub/3 which require a
longer sequence of simpler instructions.

5 Discussion

Simulation is an important part of system integration. In this paper, we have shown a

methodology for validating the simulator of a multiprocessor system. We applied this scheme
to validate the processor and the memory module of a multiprocessor simulator (NuSim)
by comparing it with a previously validated uniprocessor simulator (VPsim). Benchmarks
of various sizes were executed sequentially. on both simulators. and different performance
measurements were evaluated and compared against one another.

Because the simulation result is a composite result of many factors, we chose a num-
ber of measurements for comparison to obtain different perspectives on performance and to
understand the reasons of the variations. The chosen measurements were: code size. cycle
count. simulation overhead, operation count. and memory access counts. The different mea-
suremnents indicate that the variations are significant only for the small benchmarks, where
star-tup time and slight model differences are a big percentage of total execution time. For
large programs. NuSim is within 10% of the VLSI.PLM timing. Perhaps more imporzant].y
all variations can be accounted for. We can thus conclude that NuSi.m is representative of a
VLSI-PLM in a multiprocessor system. With NuSim. we can continue our study of imple-
mentable multiprocessor systems for parallel execution of numeric and symbolic programs,
usi.ng logic programming. We also bebieve that the chosen measurements can be used in
validating other simulation systems.
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