Perspectives from Sustainability Science about Energy Sustainability

Tom Wilbanks ESD/CCSI

CBES Forum

ORNL

March 17, 2011

What I Propose to Do Are to:

First, review the origins and perspectives of "sustainability science"

Then, summarize some of the themes that emerge when these perspectives are applied to issues of energy sustainability

2 Managed by UT-Battelle for the U.S. Department of Energy

Sustainability/Sustainable Development Has Been an Explicit Global Concern for a Quarter of a Century (I):

• Generally traced back to the "Brundtland Report:"

- Commissioned by the UN in 1983 and delivered in 1987, responding to a request for advice about environmental strategies for achieving sustainable development
- Particular attention to limitations of existing technologies and institutions for meeting current and future needs
- Followed by the 1992 UN Conference on Environment and Development in Rio:
 - Aiming to develop principles to guide sustainable development
 - Led to a number of international environmental "conventions:" climate change, biodiversity, desertification, and others
- And later by the "Earth Summit" on Sustainable Development, Johannesburg, 2002 ("Rio + 10)

Sustainability/Sustainable Development Has Been an Explicit Global Concern for a Quarter of a Century (II):

- Followed up in this country by NAS, through a pathbreaking report in 1999: Our Common Journey – A Transition to Sustainability:
 - Asked: How can basic needs of a global population at least half again as large as present be met in 50 years without undermining environmental services on which development depends in the longer run?

Sustainability/Sustainable Development Has Been an Explicit Global Concern for a Quarter of a Century (III):

- Followed up in this country by NAS, through a pathbreaking report in 1999: Our Common Journey – A Transition to Sustainability:
 - Sketched a future in which sustainability is possible – but only with significant advances in basic knowledge, in the social capacity and technological capabilities to utilize it, and in the political will to turn this knowledge and know-how into action.

Sustainability/Sustainable Development Has Been an Explicit Global Concern for a Quarter of a Century (IV):

- The NAS report identified five challenges to action:
 - Stabilizing global population through voluntary actions
 - Accommodating massive urban growth in a sustainable manner
 - <u>Increasing energy and materials services while reducing environmental impacts</u>
 - Restoring degraded ecosystems while conserving biodiversity
 - Reversing declining food production in Africa while sustaining trends elsewhere
- This effort stimulated the development of:
 - An NAS Roundtable on S&T for Sustainability
 - A AAAS Center for Science, Technology, and Sustainability
 - Development of the quasi-discipline of "sustainability science," including major university centers at Arizona State and Harvard (see Kates et al., <u>Science</u>, 2001)
 - Most recently, an on-line "Reader in Sustainability Science and Technology" (http://tinurl.com/sustsci-reader)

Sustainability Science Is Associated with a Distinctive View of the Challenge Both to Knowledge and to Action (I):

- The general perspective is that if continued human progress is going to be possible, including closing gaps between the rich and the poor, development must find pathways that both:
 - Achieve continuing economic and social progress, without major sacrifices by the privileged
 - Find a sustainable balance with a physical environment that is already under stress
- Must be done through political strategies that are equitable between nations and regions now and between current actions and the needs of future generation
- Particular challenges with such nature/society linkages as food, energy services, materials, job creation, and education
- One of the great challenges of our time, where smart people need to find pathways that will both get the job done and *also be palatable to democratic political processes across different sorts of interests*

Over the Years, We Have Learned Some Things about Sustainable Development, Although Progress Has Been Elusive; for Example:

- Sustainability is a *trajectory*, not a state
- Sustainability is rooted in complexities such as:
 - Values, especially potentials for the spread of an "environmental ethic", as contrasted with a consumption ethic
 - Linkages and flows potentials and limitations of system connections (e.g., 2010 MIT Press book on *Linkages of Sustainability*)
 - Diversity of contexts by scale, sector, and parts of the population, e.g.:
 - > The Millennium Ecosystem Assessment (2005)
 - > Adapting to climate change (NAS ACC, 2010)
- Sustainability can take the form of multiple pathways, each associated with winners and losers: who decides?
- Sustainability involves interactions between different scales

An Illustration of How Scale Matters:

2000/02646/tcc

MACROSCALE/MICROSCALE INTERACTIONS IN GLOBAL CHANGE

10 Managed by UT-Battelle for the U.S. Department of Energy

Sustainability Science Is Associated with a Distinctive View of the Challenge Both to Knowledge and to Action (II):

- Priorities for <u>research</u> include integrative, place-based, interdisciplinary science focused on threats and pathways, attention to critical loads and carrying capacities, understanding and monitoring transitions, improving the understanding of consumption behavior, and developing incentives for technological innovation -- *increasing the focus on "usable knowledge,"* e.g.:
 - Linking research programs to societal goals
 - Improving linkages between knowledge development and sustainability problem-solving
- For example, an NAS Sackler Symposium on Linking Knowledge with Action for Sustainable Development, April 2008

Toward Strategies for Multiscale Collaboration:

Sustainability Science Is Associated with a Distinctive View of the Challenge Both to Knowledge and to Action (III):

 Also priorities for <u>action</u>, such as accelerating current trends in fertility reduction; accommodating an expected doubling or tripling of the world's urban population; reversing declining trends in agricultural production in Africa and sustaining historic trends elsewhere; <u>accelerating improvements in the</u> <u>sustainability of energy and materials use</u>; and restoring degraded ecosystems while conserving biodiversity elsewhere

Relating Sustainable Development and <u>Energy</u> Involves Two Related Concerns:

- The sustainability of energy supply and use trajectories themselves:
 - Dimensions from a societal point of view:
 - Adequacy/abundance of services
 - Reliability of services
 - Affordability of services
 - Dimensions from a system design point of view:
 - Sustainability of resource supplies
 - Social consensus about acceptability
 - Effective production and delivery infrastructures
 - Effective science and technology infrastructures for innovation and problem-solving

Relating Sustainable Development and Energy includes Two Related Concerns:

- Relationships between energy trajectories and development goals and pathways:
 - Goals of energy policies for development (WDR, 2010):
 - Sustainable economic growth
 - Increased energy access
 - Enhanced energy security
 - Improved environmental management
 - To which sustainability science would add such sociopolitical dimensions as:
 - Equity in system management and performance
 - Broad-based participation in energy-for-development planning and problem-solving

Issues that Seem to Need Particular Attention Include:

- The path of global energy demand and supply
- The elusiveness of social consensus about desirable/acceptable energy trajectories
- The place of technology innovation and development
- How energy infrastructure transitions work

Regarding the Path of Global Energy Demand and Supply (I):

- The Asian dilemma: global GHG emission growth increasingly driven by China and India, but fossil energy is a key to their development
- Both expected to more than double their energy use between 2004 and 2030 – from 10% of world energy consumption in 1990 to 25% in 2030 (only 40 years)
- Domestic coal projected to supply 80% of electricity in China and 70% in India in 2030

Regarding the Path of Global Energy Demand and Supply (II):

- Realistic alternatives are difficult to find, but they may include:
 - Pushing efficiency improvement and natural gas use in place of coal (but foreign policy implications of possible energy dependence on Russia?)
 - Accelerating innovative energy technological change and demonstrations by industrialized countries: e.g., carbon capture and storage (but time lag)
 - Encouraging development <u>incentives</u> for accelerated technology shifts through partnerships with the region, e.g.:
 - Partnerships, including sharing of intellectual property (IPR obstacles)
 - Market incentives for Asian technology leadership (China and solar energy?)

What Does This Imply For Energy Policy And Technology -- Technology Uses To Stabilize At 550 ppm?

Regarding the Path of Global Energy Demand and Supply (III):

- Other issues include:
 - Oil peaking: a crisis for alternative energy sources sooner rather than later?
 - Prospects for technology breakthroughs (a topic to come...)

Regarding the Elusiveness of Social Consensus:

- Depends not only on characteristics of energy resource and conversion systems but also on the level of societal trust in responsible institutions
- Particular questions about energy alternatives viewed by society as "risky" (ORNL Report, 2009: Generic Lessons Learned about Societal Responses to Emerging Technologies Perceived as Involving Risks, with particular attention to possible concerns about bioenergy technologies associated with genetic engineering)
- Consensus may be enhanced by participative consultation at an early stage: e.g., the Asilomar Conference in 1975 to discuss safety issues raised by DNA manipulation: led to NIH guidelines that defused most major concerns
- Raises questions about prospects for energy sustainability unless new energy technologies can be developed or social values change

Regarding the Place of Technology Innovation and Development (I):

- Accelerating technological change as an essential part of the answer: a need for transformational innovation
 - A recent analysis at ORNL concluded that meeting U.S. goals of both climate protection and energy security requires a high probability of success for <u>all</u> 11 energy technologies considered – a long shot at best: Greene et al., *Energy Policy*, 2010
 - In fact, there is a growing sense of urgency about "transformational" energy technological change – not eventually, but soon: some calls for national commitments comparable to the Apollo mission to the moon or the Manhattan project
 - The issue is how to induce <u>discoveries</u>, not just incremental changes: e.g, the role of DARPA in the IT revolution – ARPA-E???: Wilbanks, *Energy Economics*, forthcoming 2011

Regarding the Place of Technology Innovation and Development (II):

- Accelerating technological change as an essential part of the answer: broadening global engagement in the search
 - Chances of a technology breakthrough are greater if we can reach and mobilize the best talent globally in the discovery process
 - This requires transferring to them what current science and technology knows and does, to be integrated with local knowledge to stimulate distributed discovery and innovation
 - The information technology revolution can be a powerful enabler of access to S&T knowledge, if intellectual property rights obstacles can be overcome: Wilbanks and Wilbanks, *Sustainability*, 2010

Regarding the Place of Technology Innovation and Development (III):

- Accelerating technological change as an essential part of the answer: focusing on critical path constraints, e.g.
 - The focus of DOE's bioenergy centers on liquid fuels from <u>non-food</u> bioenergy sources
 - The disposal of nuclear wastes (and now increased plant safety concerns related to Japan's earthquake damages)
 - Permitting processes for carbon sequestration sites

Issues Regarding How Energy Infrastructure Transitions Work:

- Understanding not only where we want to get with our energy technology options but also understanding how to get there, which shapes the rate and level of market penetrations
- Transitions are nearly always impeded by the inertia of systems already in place, along with vested interests
- Often understudied:
 - Undermined early efforts to deploy solar energy technologies in developing countries such as Mexico
 - Lessons being learned from such recent experiments as the accelerated introduction of CNG vehicles into the public vehicle fleet in New Delhi, India
 - Often enhanced by commitments of government to assure (sometimes to be) markets for emerging transformational technology/resource alternatives
- Usually benefit from wide-ranging stakeholder consultations in order to shape partnerships and explore possible social concerns

- "Sustainability" is an established scientific quasi-discipline, with knowledge bases and centers of excellence
- Efforts to consider energy sustainability are likely to be enhanced by tapping into this body of research and experience and interacting with it
- We have avenues here at ORNL to help build such bridges -especially when sustainability science has from the outset been concerned about energy sustainability in general and technology-related issues in particular

THANK YOU !

Tom Wilbanks

Telephone: (865)-574-5515 E-mail: wilbankstj@ornl.gov

27 Managed by UT-Battelle for the U.S. Department of Energy