### Lessons from modeling the joint effects of climate and bioenergy policies

Chad Hellwinckel, University of Tennessee Tristram West, ORNL Joint Global Change Research Institute Daniel De La Torre Ugarte, University of Tennessee Robert Perlack, ORNL

> Center for BioEnergy Sustainability University of Tennessee Ocoee Room August 19<sup>th</sup>, 2010

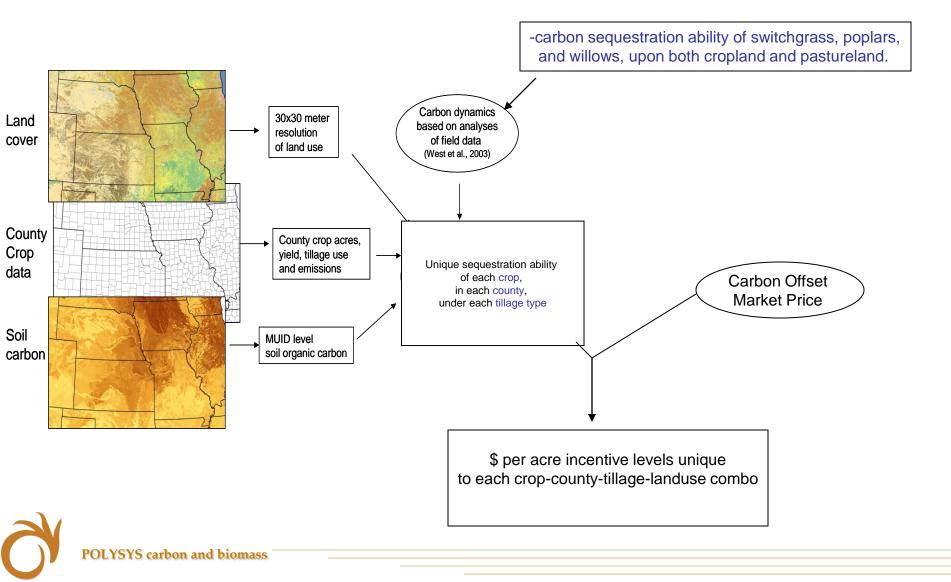




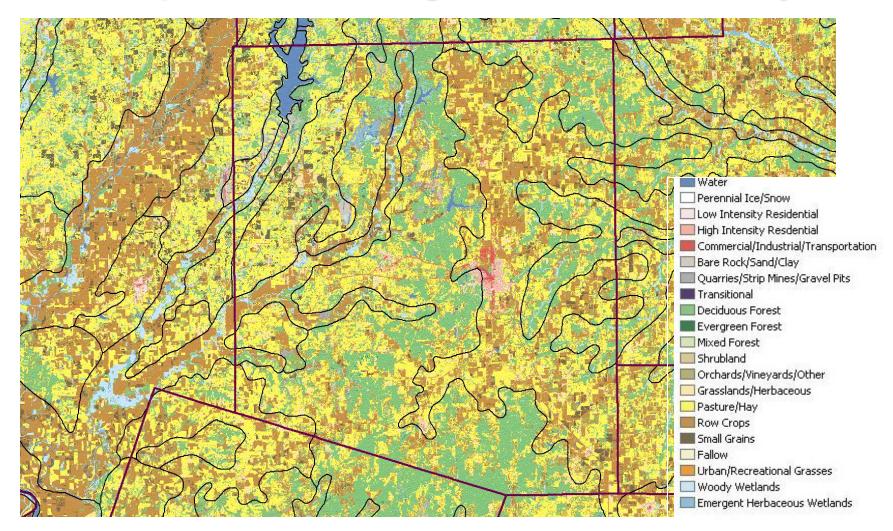
Agricultural Policy Analysis Center






"Send me legislation that places a market-based cap on carbon pollution and drives the production of more renewable energy in America." – President Obama, Joint Session of Congress 2009

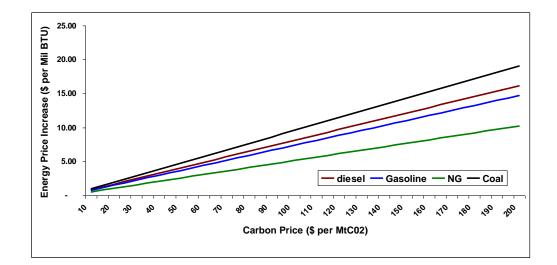
- Carbon legislation could change the landscape of biomass potential:
  - Biomass crops may receive incentives for building soil carbon.
  - Residue harvesters may receive incentives for NOT harvesting residues.
  - Higher input crops will see costs rise relative to lower-input crops.
- Questions:
  - Will ACES help or hinder fulfilling EISA?
  - Will ACES alter the geography of biomass supply potential?
  - Will EISA help or hinder reducing atmospheric carbon?
  - Are there conflicts/synergies between the policies?


# POLYSYS carbon-biomass Model

- Biomass Module
  - Switchgrass, poplars, willows, crop residues, wood residues.
  - County level yields and residue constraints.
  - Given a demand level, module will determine price and location to meet that demand.
  - Pasture can convert if forage made up through intensification.
- Carbon Module
  - Links market carbon price to:
    - local crop and land sequestration rates.
    - actual embodied carbon in crop production inputs.

## **Soil Carbon Incentives**

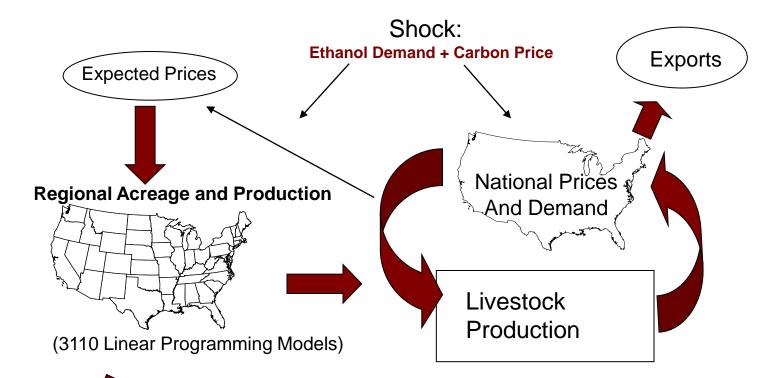



### **Example of actual high resolution overlay**



Counties are outlined in purple, STATSGO soils regions are outlined in black, and NLCD data is displayed at the 30 meter resolution (Randloph County, MO).

## **Embodied Carbon Costs**


- Using CBO and EPA methodology of transferring carbon price to energy price via embodied carbon content.
- Energy prices are linked to the embodied carbon costs by the source energy type of each input.
- Includes operation budgets, embodied energy and carbon for herbaceous grasses and residue harvesting.



#### APAC Embodied Energy and Carbon Budgets: Example Barley in Nebraska

| MachName                             | TractorName                 | Machinery/Implem<br>ent Fuel<br>Consumption | Direct Energy Use | Direct Energy Use, | Use - Fertilizers |               | Pesticides,            | C Emissions from<br>Embodied Energy<br>Use - Herbicides,<br>Pesticides, | Embodied Energy<br>Use - Seeds | C Emissions from<br>Embodied Energy<br>Use - Seeds (MT |
|--------------------------------------|-----------------------------|---------------------------------------------|-------------------|--------------------|-------------------|---------------|------------------------|-------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------|
|                                      |                             | (gallons per acre)                          |                   | MT per acre        | (Btu/ac)          | (MT per acre) | Fungicides<br>(Btu/ac) | Fungicides (MT<br>per acre)                                             | (Btu/ac)                       | per acre)                                              |
| Field Cultivator GE15ft              | Tractor 2wd 100 hp (diesel) |                                             |                   |                    |                   |               |                        |                                                                         |                                |                                                        |
| Moldboard Plow REG 4-6b              | Tractor 2wd 135 hp (diesel) | 0.28                                        | 38,531            | 0.00085            |                   |               |                        |                                                                         |                                |                                                        |
| Culti-mulch Roller LT18ft            | Tractor 2wd 100 hp (diesel) | 2.03                                        | 282,376           | 0.00622            |                   |               |                        |                                                                         |                                |                                                        |
| Dry Fert Spreader (trailer mtd)      | Multiple Operation          | 0.51                                        | 70,640            | 0.00156            |                   |               |                        |                                                                         |                                |                                                        |
| Dry Fert Spreader (trailer mtd)      |                             | 0.00                                        | 0                 | 0.00000            | 120,944           | 0.00300       |                        |                                                                         |                                |                                                        |
| Land plane-Leveler                   | Tractor 2wd 100 hp (diesel) |                                             |                   |                    | 1,970,411         | 0.03107       |                        |                                                                         |                                |                                                        |
| Plain-disc Grain Drill GT14ft        | Tractor 2wd 135 hp (diesel) | 1.44                                        | 200,238           | 0.00441            |                   |               |                        |                                                                         |                                |                                                        |
| Chem Applicator GE30ft (tractor mtd) | Tractor 2wd 100 hp (diesel) | 0.78                                        | 108,161           | 0.00238            |                   |               |                        |                                                                         | 134,109                        | 0.00279                                                |
| Combine-2wd (self-prop)              | Self Propelled              | 0.17                                        | 23,914            | 0.00053            |                   |               | 46,584                 | 0.00088                                                                 |                                |                                                        |

### POLYSYS Simulation Structure and Flow (Annual)



| Year                         | 2009   | 2010   | 2011   | 2012   | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   |
|------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Net carbon flux (NCF) MMtC t | 26.60  | 26.56  | 26.90  | 26.29  | 26.62  | 25.64  | 25.68  | 22.27  | 21.32  | 18.03  |
| Carbon Payments Mil\$        | -      | -      | 94     | 191    | 289    | 398    | 557    | 718    | 879    | 1,081  |
| Carbon Costs                 | -      | -      | 122    | 243    | 365    | 484    | 620    | 661    | 714    | 763    |
| Net Crop Returns(NCR)        | 54,204 | 55,804 | 55,056 | 60,703 | 58,616 | 65,476 | 60,696 | 69,560 | 65,195 | 73,559 |
| Biomass Price (\$/DT)        | 30.00  | 30.00  | 30.00  | 30.00  | 30.00  | 31.00  | 60.00  | 60.00  | 60.00  | 60.00  |

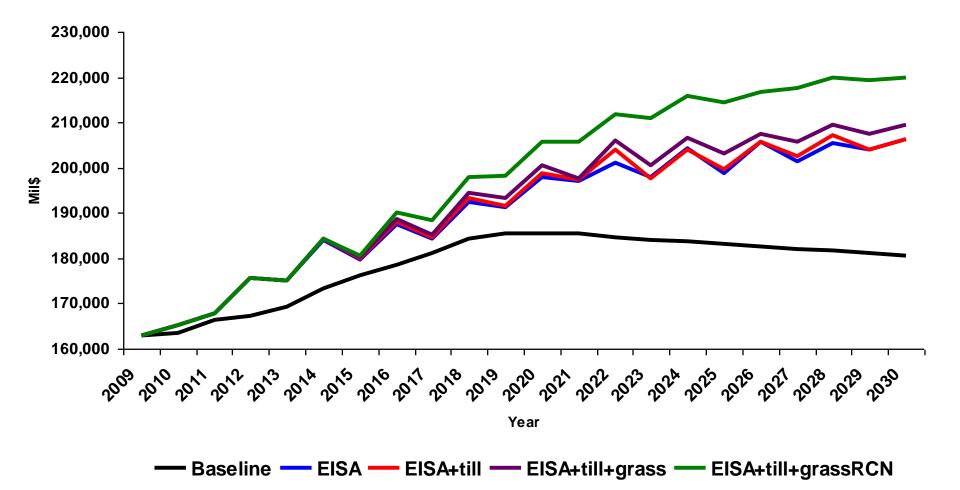
## **Scenarios Evaluated:** EISA and a Carbon Bill (ACES)

- Baseline
  - USDA baseline extended to 2030.
- EISA
  - Meet Energy Independence and Security Act mandate of 36 billion gallons.
- EISA+till
  - Meet EISA.
  - ACES: Carbon offsets to reduction in tillage intensity.

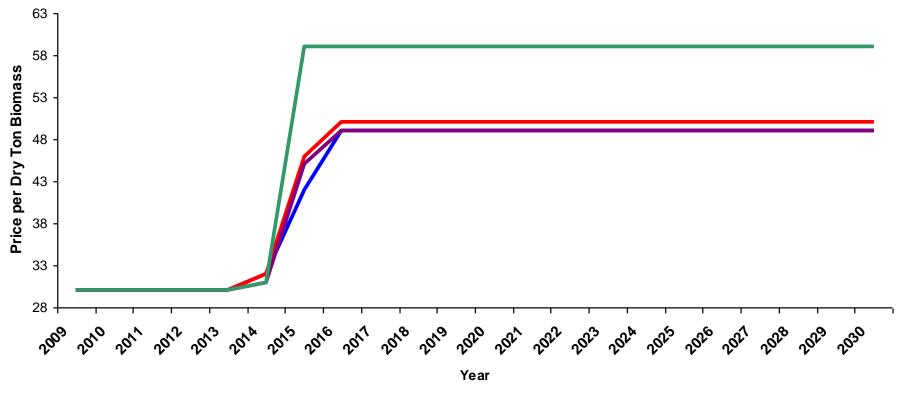
#### EISA+till+grass

- Meet EISA.
- ACES: Carbon offsets to reduction in tillage intensity.
- ACES: Carbon offsets to perennial herbaceous energy crops (switchgrass).

#### EISA+till+grass+RCN


- Meet EISA.
- ACES: Carbon offsets to reduciton in tillage intensity.
- ACES: Carbon offsets to perennial herbacious grasses.
- Residue harvesting constrained to 'carbon neutral' level.

# **Net Carbon Flux**




Residue removal limited to minimum of tolerable erosion or collection efficiency (<40% of total available)

# **Total Net Returns: Crops**

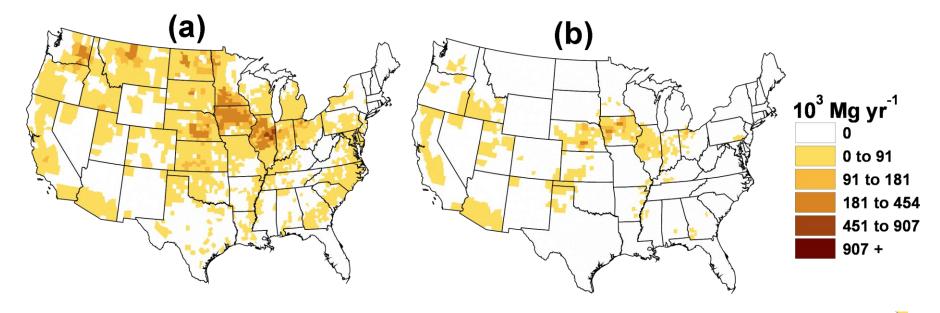


## **Biomass Prices**

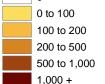


----- Baseline ----- EISA ----- EISA+till ----- EISA+till+grass ----- EISA+till+grassRCN

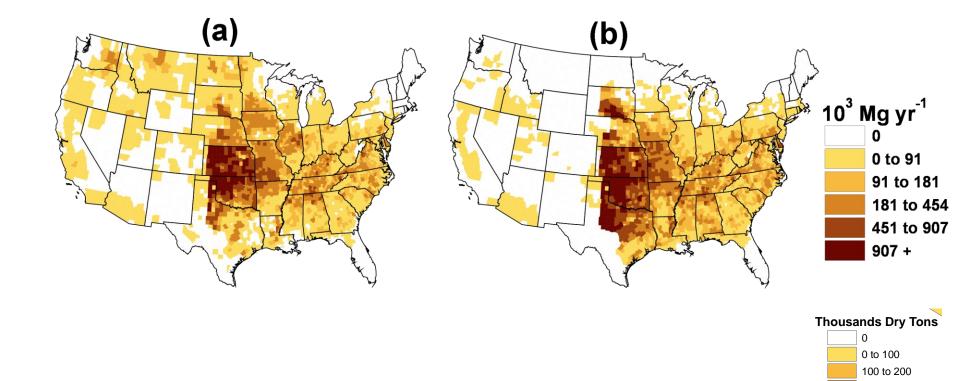
## Ranking under Objectives (Accumulated 2010 – 2030)


#### Objective

|                    | Economic Indicator | Climate Benefits | Cheap Feedstock   |  |  |
|--------------------|--------------------|------------------|-------------------|--|--|
|                    | Ag Net Returns     | Net Carbon Flux  | Max Biomass Price |  |  |
|                    | Bil\$              | MMtCeq           | \$/dt             |  |  |
| Baseline           | 3,759 <b>(5)</b>   | 543 <b>(5)</b>   | 0.00              |  |  |
| EISA               | 4,023 <b>(4)</b>   | 497 <b>(4)</b> * | 49.00 <b>(1)</b>  |  |  |
| EISA+till          | 4,033 <b>(3)</b>   | 436 <b>(3)</b> * | 50.00 <b>(3)</b>  |  |  |
| EISA+till+grass    | 4,064 <b>(2)</b>   | 411 <b>(2*)</b>  | 49.00 <b>(1)</b>  |  |  |
| EISA+till+grassRCN | 4,181 <b>(1)</b>   | 362 (1)          | 59.00 <b>(4)</b>  |  |  |
|                    |                    |                  |                   |  |  |

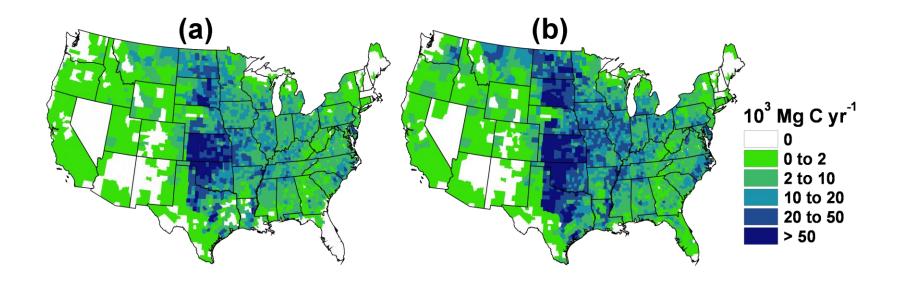

totals from 2010 through 2030 \*not accounting for soil losses from residue remova

#### What will the adopted policy mean for biomass availability, source and location?

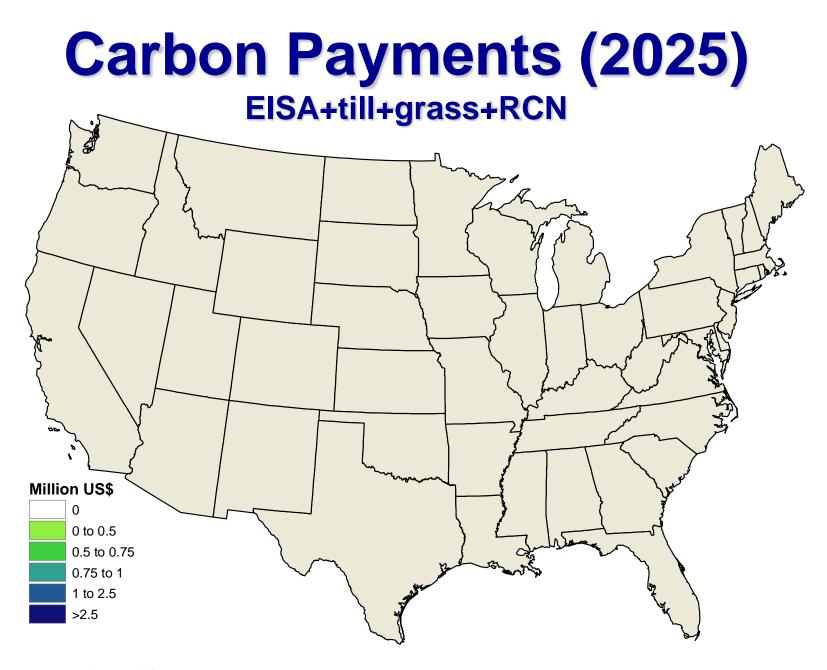

## Change in Residue Production per county in 2025: a) EISA alone b) EISA+till+grass+RCN



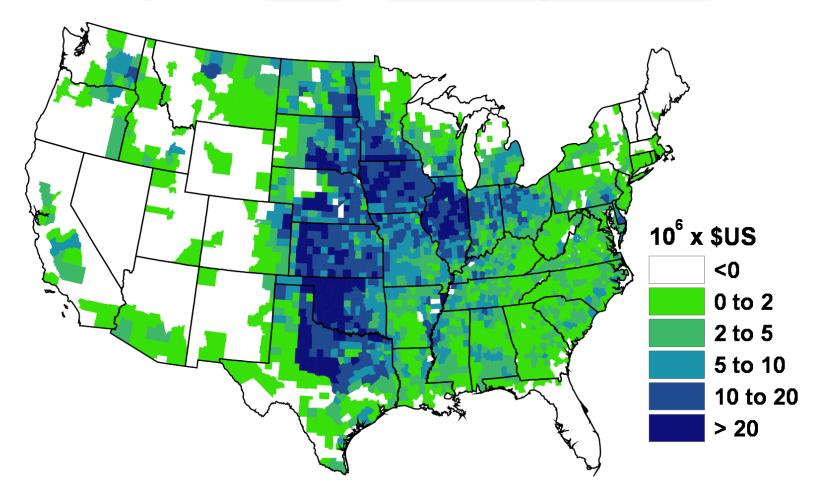
Thousands Dry Tons




### Change in All Biomass Production per county in 2025: a) EISA alone b) EISA+till+grass+RCN




200 to 500 500 to 1,000 1,000 +


## Gain in Soil Carbon per county in 2025: a) EISA alone b) EISA+till+grass+RCN







## **Crop Net Returns (2025)** Change from <u>EISA</u> to <u>EISA+till+grass+RCN</u>



# **Lessons Learned**

- EISA alone could deliver great *carbon* and *net return* benefits.
- Soil carbon offsets to herbaceous biomass enhances both carbon and farmer benefits.
- Restricting residue harvesting to be 'carbon neutral' has a positive impact upon carbon benefits and net returns.
- ACES could alter the geography of feedstock availability (towards herbaceous grasses, away from residues).

# **Future Directions**

### Pasture intensification

- Right now assuming: For every acre of biomass-displaced pasture, 1 acre of additional pasture must be 'intensified' to replace lost forage. This assumes 'intensification' can DOUBLE existing forage yield.
- In future: Add Management Intensive Grazing (MiG) as an 'official' land-use option.
  - Budgets, stocking rates, and sequestration rates will be regional
  - MiG could also qualify for carbon payments
- Residue restrictions to 'carbon neutral' level
  - Right now using: Wilhelm et al. 2007
  - In future: include residue 'carbon curves' indicating how much SOC decreases per unit of residue removed.

# • Tie baseline acreage to new 'Cropland Data Layer' instead of NASS data.

## Conclusion

## Thank you.







