

Center for BioEnergy Sustainability

Sustainable Bioenergy from Production to Use in a series of <u>Three Slides in Five Minutes</u>

- Modeling Biodiversity in the Arkansas-White-Red River Basin
- Biomass Preprocessing as a Supply Chain Component
- Sustainable Energy Production Using Biological Fuel Cells
- Observations on Corn Ethanol Production and Distribution Infrastructure
- Hydrological and Geochemical Transformation of Nitrogen and Organic C in the Subsurface beneath Agricultural and Forested Ecosystems
- Logistics for a Biomass Economy

Aquatic Biodiversity in the Arkansas-White-Red River Basin

Henriette Jager (PI, ESD), Latha Baskaran (ESD), Craig Brandt (BSD) and Peter Schweizer (ESD, ORISE)

Landscapes with dedicated energy crops

POLYSYS

- Land change projections
 - % area agriculture replaced by switchgrass

SWAT

- Integrates land change
 - Projects water quality
 - Stream discharge
 - Nutrient levels

Project biodiversity under future bioenergy landscape

Water quality parameter from SWAT Integrates land cover changes

Poisson regression and information theoretic approach for model selection

Best-fit model r = 0.92 in validation subset candidate set performed similarly well

Applications

Project species richness in future energy crop landscape(s)

N-Species projected for energy crop landscape

- N-Species in present landscape
- = anticipated changes in biodiversity

Evolution and Optimization of the Biofuel Supply Chain

Michael Hilliard, Ingrid Busch, Randy Curlee, Mike Schultze, Rebecca Hartman-Baker, Neil Thomas, Ike Patterson

for the U.S. Department of Energy

5200-Evolution and Optimization of the Biofuel Supply Chai

PreProcessing as a Supply Chain Step

Wet Herbaceous Residues and Energy Crops Dr

Dry Herbaceous Residues and Energy Crops

Uniform-Format Solid Feedstock Supply System: A Commodity-Scale Design to Produce an Infrastructure-Compatible Bulk Solid from Lignocellulosic Biomass. April 2009

Supply Chain Model

- Two new types of locations/processes
- Transportation cost structures for biomass in multiple forms
- Refinery costs and economies of scale using pre-processed vs. "raw" biomass
- "Solutions" have unique configurations

A Potential High-performance Computing Approach to Analysis

Raw biomass transport Cost

- Solutions are configurations not single numbers
- Goal: Insight, identification of critical factors
- Run multiple to provide a 3-D (or higher) environment for visualizing relationships
- Identify change points in the parameter space

Sustainable Energy Production Using Biological Fuel Cells

Abhijeet P. Borole

Biosciences Division Oak Ridge National Laboratory, Oak Ridge, TN

Biological fuel cells

- Microbial fuel/electrolysis cells
- Electricity or hydrogen production
- Sustainability
 - Fuel resource: organic waste, biomass
 - Catalyst: Microbes, enzymes (no Pt, metal), regenerable
 - Electrodes : Graphitebased (plentiful)
 - Product: CO₂ (C neutral), water

¹ Borole, et.al., 2009, **J. Power Sciences**., Integrating Engineering Design Improvements with Exoelectrogen Enrichment Process to Increase Power Output from Microbial Fuel Cells, 191, p520.

MFC/MEC Technology

Increase in power density from 1 to 2000 mW/m² in 5 years.

- Discovery of biological nanowires and concept of direct electron transfer.
- Deployment of MFCs for harvesting power from sea-floor *First application*.
- Current interest
 - Improving power densities (at larger scale) and energy conversion efficiency
 - Conversion of complex organic matter, e.g., wastewater
 - Understanding direct electron transfer mechanism and microbeelectrode interactions
 - Diversification into multiple areas of 'bioelectrochemical systems', e.g. Electro-fuels production.
- Work at ORNL
 - Biocatalyst and engineering optimization

Integration of MFC engineering design parameters and biological enrichment process:

Power density > 5000 mW/m² (0.5 kW/m³)

² Borole, et.al., 2009, **Biochem. Engg**. J., Improving power production from acetatefed microbial fuel cells via enrichment of exoelectrogenic organisms in continuous flow systems, 48, 71-80.

Biorefineries

Need significant volume of water (Water: EtOH = 10:1)

- Impact of MFCs on ability to reuse water, specifically for high solids loading (> 20% solids) cellulosic biochemical conversion process.
- Results:
 - Demonstrated removal of furfural, HMP, phenolics, acetate, and residual sugars to enable water recycle.
 - Estimated amount of electricity production = 2.5 MW (70 million gallon plant)³.
 - Improving energy recovery from biomass and conversion efficiency.
- 650 biorefinery plants by 2022 DOE mandate
- 21 billion gallons of biofuels

Other applications:

- Energy production from organic waste, e.g., food industry wastewater Produced water treatment
- Bioelectrochemical power with simultaneous environmental remediation.

³ Borole, et.al., 2009, **Biotechnol for Biofuels**., Controlling accumulation of fermentation inhibitors in biorefinery process water using Microbial Fuel Cells, April 2009, on line.

Acknowledgements: ORNL LDRD Program for funding.

Treated recycle water

Observations on Corn Ethanol Production and Distribution Infrastructure

Steven Peterson

Geographic Information Sciences and Technology Group

Infrastructure Interface

Geographic Information Science and Technology= Transload Terminals 0 Ethanol Plants Active Refined Product Pipeline **DAK**

The Problem

Geographic Information Science and Technology

- For biofuels/bioenergy, distribution and transportation systems are critical
- For distribution and transportation systems, biofuels/bioenergy are not critical
 - Energy is critical for transportation systems
 - As fuel for diesel-electric locomotives, maritime vessels, barges and trucks
 - As cargo
 - Oil is often transported by pipelines and then on/off-loaded to/from ships
 - Coal provides the largest source of tonnage shipped by railroads and accounts for 25-30% of revenue for the largest (Class I) railroads
 - Project cargo for wind energy production often moves by rail
 - Power plant equipment, especially nuclear, often moves by rail and barge
 - Ethanol is a small component (less than 1% of volume) but was the fastest growing business segment – either as agricultural product, energy, or chemical

14 Managed by UT-Battelle for the U.S. Department of Energy

Data Gaps and Analytical Needs

Geographic Information Science and Technology

- Network routing analysis
- Specific, validated geolocations of distribution infrastructure elements
 - Connections between rail/barge systems and the pipeline system
- Determination of
 - Spatial patterns of production and distribution
 - Market linkages
 - Infrastructure and potential critical vulnerabilities

Hydrological and geochemical transformation of nitrogen and organic C in the subsurface beneath agricultural and forested ecosystems

Melanie Mayes Oak Ridge National Laboratory

Regional Scale Assessment of Passive Soil Potential

Sorption of Dissolved Organic C (DOC)

Root

respiration

Passive

> 100 yr

10-50%

Mineral-

stabilized

carbon

CO₂

Microbial Biomass (months)

Intermediate

years - decades

40-80%

Refractory

components of litter,

easilv decomposed components of litter

mg/kg

Additional DOC

1000

800 sorbed 600

400

200

Areal Coverage of Soil Database Great Groups

Soil Properties relate to DOC Sorption Capacity

100

Trumbore, 1997 weakly sorbed C

Katherine Heal me Craig Brandt

Soil Water Quality beneath Switchgrass

SCIENCE

1/1/2008 5/1/2008 9/1/2008 1/1/2009 5/1/2009 9/1/2009 1/1/201

DOC Mobility in Forested Ecosystem

Long-term Monitoring of Instrumented Pedons at Walker Branch and Melton Branch, ORNL

Urea Fertilizer

Jana Phillips Jonathan Reagan

Logistics for a Biomass Economy

Examples of our projects:

Inbound Travel Mapping Cellulosic Sites North America Outbound Markets

www.stratag.org

Logistics for a Biomass Economy

Ideas for the future:

Strategic SRWC

Closed-loop Systems

Electrified Short-Line Rail

www.stratag.org

Logistics for a Biomass Economy

About StrataG:

Services

- Business
- Engineering
- Science
- Technology
- Waste Mgt. & Transportation

Locations

2027 Castaic Lane Knoxville, TN 37932

Core Values

- We Care
- Integrity
- Service
- Quality
- Safety
- Innovation
- Attitude
- Outreach

www.stratag.org

