

| Doc. No.   | ENG-RCAL-028                    | _ Rev. 1 Project No. 772030/171         | Page _ | <u>1</u> of <u>62</u> |
|------------|---------------------------------|-----------------------------------------|--------|-----------------------|
| Subject: T | ransportation Risk Assessment f | or the Shipment of Unirradiated Uranium |        |                       |
| Preparer:  | J. L. Boles                     | -                                       | Date   | 5/31/00               |
| Checker:   | B. B. Peters                    |                                         | Date   | 5/31/00               |

# **1.0 OBJECTIVE**

The objective of this transportation risk assessment is to determine the impacts of the transportation of unirradiated uranium in the form of metallic billets,  $UO_3$  powder, and finished and unfinished N Reactor fuel elements from the Hanford Site, Washington, to Portsmouth, Ohio. The radiological risk is determined for both incident-free transport and transport involving potential accidents. The toxicological consequences are determined for the case in which a credible accident is assumed to occur, without regard for the frequency, and thus the risk, of such an accident.

# 2.0 REFERENCES

- ANS, 1991, Neutron and Gamma-Ray Fluence-to-Dose Factors, ANSI/ANS-6.1.1-1991, American Nuclear Society, La Grange Park, Illinois.
- Craig, D.K., 1999, *ERPGs and TEELs for Chemicals of Concern: Rev. 15 Abbreviated (January* 4, 1999), WSMS-SAE-99-0001, Westinghouse Safety Management Solutions, Aiken, SC.
- DOE, 1994, Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear Facilities, DOE-HDBK-3010-94, U. S. Department of Energy, Washington, D. C.
- DOE, 1994b, *Primer on Spontaneous Heating and Pyrophoricity*, DOE-HDBK-1081-94, U. S. Department of Energy, Washington, D. C.
- DOE, 1997, *Introduction to the Emergency Management Guide*, *Volume I*, DOE-G-151.1-1, U. S. Department of Energy, Washington, D. C.
- FDH, 1999, Safety Analysis Report for Packaging, Steel Banded Wooden Shipping Containers, HNF-SD-TP-SARP-019, Rev. K, Fluor Daniel Hanford, Richland, Washington.
- Ferrell, P. C., 1999, Personal Communication, 8/17/99.
- Green, J. R., 1995, *Transportation Impact Analysis for the Shipment of Low Specific Activity Nitric Acid*, WHC-SD-TP-RPT-015, Westinghouse Hanford Company, Richland, WA.
- Herrmann, O. W., and R. M. Westfall, 1997, ORIGEN-S: Scale System Module to Calculate Fuel Depletion, Actinide Transmutation, Fission Product Buildup and Decay, and Associated Radiation Source Terms, NUREG/CR-0200, Rev. 5, U.S. Nuclear Regulatory Commission, Washington, D.C.



| Doc. No    | ENG-RCAL-028                    | Rev. <u>1</u> Project No   | 772030/171 Page | <u>2</u> of <u>62</u> |
|------------|---------------------------------|----------------------------|-----------------|-----------------------|
| Subject: T | ransportation Risk Assessment f | or the Shipment of Unirrad | iated Uranium   |                       |
| Preparer:  | J. L. Boles                     | -                          | Date            | 5/31/00               |
| Checker:   | B. B. Peters                    |                            | Date            | 5/31/00               |

- Hey, B. E., 1993a, *GXQ Program Users' Guide*, WHC-SD-GN-SWD-30002, Rev. 0, Westinghouse Hanford Company, Richland, Washington.
- Hey, B. E., 1993b, *GXQ Program Verification and Validation*, WHC-SD-GN-SWD-30003, Rev. 0, Westinghouse Hanford Company, Richland, Washington.
- ICRP, 1991, "1990 Recommendations of the International Commission on Radiological Protection," ICRP Publication 60, *Annals of the ICRP*, 21 (1-3), Pergamon Press, New York, N. Y.
- Johnson, P.E., D.S. Joy, D.B. Clarke, and J.M. Jacob, 1992, *INTERLINE 5.0 An Expanded Railroad Routing Model: Program Description, Methodology, and Revised User's Manual*, ORNL/TM-12090, Oak Ridge National Laboratory, Oak Ridge, Tenn.
- Johnson, P.E., D.S. Joy, D.B. Clarke, and J.M. Jacob, 1993, *HIGHWAY 3.1 An Expanded Highway Routing Model: Program Description, Methodology, and Revised User's Manual*, ORNL/TM-12124, Oak Ridge National Laboratory, Oak Ridge, Tenn.
- Lawson, K.A., 1987, *T-Hopper Shipping Container Handling Procedures and Container Criteria*, FMPC-2066, Feed Materials Production Center, Cincinnati, Ohio.
- Lide, D. R., Ed., 1993, CRC Handbook of Chemistry and Physics, 74<sup>th</sup> Ed., CRC Press, Boca Raton, Fla.
- McCoy, J. C., 1998, *WMNW Computer Program Verification for SCALE 4.3*, EBU-SQA-002, Revision 1, Waste Management Federal Services, Inc., Northwest Operations, Richland, Wash.
- Neuhauser, K. S. and F. L. Kanipe, 1989, *RADTRAN 4: Volume 2 Technical Manual*, SAND89-2370, Sandia National Laboratories, Albuquerque, New Mexico.
- Neuhauser, K. S. and F. L. Kanipe, 1992, *RADTRAN 4: Volume 3 User's Guide*, SAND89-2370, Sandia National Laboratories, Albuquerque, New Mexico.
- NRC, 1977, Final Environmental Statement on the Transportation of Radioactive Material by Air and Other Modes, Volume 1, NUREG-0170, U. S. Nuclear Regulatory Commission, Washington, DC.
- NRC, 1982, Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants, Regulatory Guide 1.145, U.S. Nuclear Regulatory Commission, Washington, D.C.



| Doc. No.        | ENG-RCAL-028             | Rev. <u>1</u> Project N  | No. 772030/171     | Page _ | <u>3</u> of <u>6</u> | 2 |
|-----------------|--------------------------|--------------------------|--------------------|--------|----------------------|---|
| Subject: Transp | portation Risk Assessmen | t for the Shipment of Un | irradiated Uranium | _      |                      |   |
| Preparer:       | J. L. Boles              | -                        |                    | Date   | 5/31/00              |   |
| Checker:        | B. B. Peters             |                          |                    | Date   | 5/31/00              |   |

- NRC, 1987, Shipping Container Response to Severe Highway and Railway Accident Conditions Main Report, NUREGCR-4829-V1, U. S. Nuclear Regulatory Commission, Washington, DC.
- Rittmann, P. D., 1995, *ISO-PC Version 1.98 User's Guide*, WHC-SD-WM-UM-030, Westinghouse Hanford Company, Richland, Wash.
- Rittmann, P. D., 1996, "Summary of Changes to ISO-PC Version 2.1," CCC-636, *ISO-PC 2.1: Kernel Integration Code System for General Purpose Isotope Shielding Analyses*, Radiation Safety Information Computational Center, Oak Ridge, Tenn.
- Saricks C. and T. Kvitek, 1994, Longitudinal Review of State-Level Accident Statistics for Carriers of Interstate Freight, ANL/ESD/TM-68, Argonne National Laboratory, Argonne, IL.
- UO-555-001, 1985, *Plant Operating Procedure, Load T-Hopper onto Flatbed Rail Car*, Rockwell Hanford Operations, Richland, Wash.
- WHC, 1992, Finished Fuel Assembly Shipping Package Safety Analysis Report for Packaging (Onsite), WHC-SD-NR-SARP-001, Westinghouse Hanford Company, Richland, Wash.

# 3.0 ASSUMPTIONS, RESULTS, AND CONCLUSIONS

The following assumptions were made in the risk calculations for all payloads.

- Risk calculations were made with the computer code RADTRAN version 4.0.19.SI (Neuhauser and Kanipe 1989 and 1992). Assumptions for specific parameters in the RADTRAN code are given in Section 4.0. Input files are given in Section 5.0.
- Routes were obtained using the computer code Highway version 3.3 (Johnson et al. 1993) for the truck routes, and the computer code Interline version 5.0 (Johnson et al. 1992) for the rail routes. Output files are given in Section 5.0
- Mileage through each zone of population density (rural, suburban, and urban) was aggregated along the entire route, and national average accident rates from Saricks and Kvitek (1994) were applied to each zone.
- Eight accident severity categories and the corresponding severity fractions for truck and rail transport were taken from NRC (1977).
- The shipments were exclusive use based on calculated dose rates.

The following assumptions were made specifically in the risk calculations for the uranium billets.



| Doc. No.   | ENG-RCAL-028                  | Rev. 1 Project No. 772030/171            | Page | 4_of_6  | 2 |
|------------|-------------------------------|------------------------------------------|------|---------|---|
| Subject: T | ransportation Risk Assessment | for the Shipment of Unirradiated Uranium | 1    |         |   |
| Preparer:  | J. L. Boles                   | -                                        | Date | 5/31/00 |   |
| Checker    | B B Peters                    |                                          | Date | 5/31/00 |   |

- Release fractions for Category 1 accident severity were assumed to be zero, and 1.0 for Categories 2 through 8. The Category 2 and 3 release fractions are conservative by a factor of 100 and 10, respectively, compared to values for Type A containers given in NRC (1977).
- Aerosol fractions and respirable fractions were taken from DOE (1994a) for the complete oxidation of uranium metal in a fire.
- The conveyance was a truck, with a trailer of width 3 m.
- The container was assumed to be the G-4255 Wooden Box (FDH 1999), with interior dimensions 8 in. x 24.125 in. x 30.75 in.
- A total of 75 shipments for the campaign of billets was used, based on a total of 234 MTU, 175 kg U per billet, 3 billets per box, 6 boxes per shipment.
- A dose rate of 0.086 mrem/h at 1 m from the edge of the conveyance was used based on the shielding calculation included in the Appendix in Section 5.1.

The following assumptions were made specifically in the risk calculations for the UO<sub>3</sub> powder.

- Release fractions for Category 1 accident severity were assumed to be zero, 0.1 for Category 2, and 1.0 for Categories 3 through 8. The Category 2 and 3 release fractions are conservative by a factor of 10 compared to values for Type A containers given in NRC (1977).
- Aerosol fractions and respirable fractions were taken from DOE (1994a) for powder with particle diameter less than 2 mm in metal containers.
- Both truck and rail conveyances were modeled.
- Two routes were considered, a direct route and an indirect route through Paducah, Kentucky.
- The container was assumed to be the T-Hopper (Lawson 1987), a cone-shaped container enclosed in a 5 ft x 5 ft x 6 ft steel frame.
- A total of 5 shipments for the campaign of powder via rail were modeled, based on a total of 147 T-Hoppers, 10 T-Hoppers per rail car, 3 rail cars per shipment.
- A total of 49 shipments for the campaign of powder via truck were modeled, based on 3 T-Hoppers per truck.
- A dose rate of 0.73 and 0.44 mrem/h at 1 m from the edge of the railcar and truck trailer, respectively, was used based on decay and shielding calculations. A discussion of the shielding calculation is included in the Appendix in Section 5.1.

The following assumptions were made specifically in the risk calculations for the finished and unfinished fuel elements.

- Release fractions for boxes of finished fuel were those recommended for Type A containers. For unfinished fuel, the release fractions were the same as for the UO<sub>3</sub>.
- Aerosol and respirable fractions were the same as for the billets.
- Only a direct route by truck was modeled.



| Doc. No.   | ENG-RCAL-028                    | Rev. 1_ Project No. 772030/17          | <u>71</u> Page | <u>5</u> of <u>62</u> |
|------------|---------------------------------|----------------------------------------|----------------|-----------------------|
| Subject: T | ransportation Risk Assessment f | or the Shipment of Unirradiated Uraniu | um             |                       |
| Preparer:  | J. L. Boles                     | -                                      | Date           | 5/31/00               |
| Checker:   | B. B. Peters                    |                                        | Date           | 5/31/00               |

- The container was assumed to be the G-4214 Wooden Box (FDH 1999), with interior dimensions 30 in. x 14.125 in. x 8.375 in.
- The campaign of finished fuel was assumed to require a total of 537 shipments; 94 shipments for the campaign of unfinished fuel. Note that these numbers are based on preliminary, unpublished criticality-based shipment limits (Ferrell 1999) for each <sup>235</sup>U enrichment content.
- Dose rates at 1 m from the vehicle edge of 0.023 0.052 mrem/h for the various <sup>235</sup>U enriched fuels were calculated based on an assumed box arrangement, assumed box loadings, box capacity, and shipment limits. The shielding calculation is addressed in Section 5.1.

A small amount of  $UO_2$  is also to be transported. The  $UO_2$  consists of 4.86 metric tons uranium enriched in <sup>235</sup>U to levels between 0.2 and 4.31%, with a weighted average of 1.12%. Because a shipping container for this material has not been identified, this payload is not analyzed.

Table 1 gives the total radiological risks from the shipping campaigns of the billets, powder, and fuel payloads. The total radiological risk is broken into contributions from incident free transport, i.e., during which no accidents occur, and from accidents during transport, which account for the probabilities and content releases of accidents of various severity. The total detriment is the number of fatal cancers, non-fatal cancers, and severe hereditary effects weighted by the severity of that effect. Fatal cancers are given the maximum weight of 1.

Table 2 gives the toxicological consequences from a potential accident involving a single shipment. As these values are consequences rather than risk, they cannot be compared directly to the radiological risk values in Table 1, because a risk assessment weights the consequences by the frequency (or probability) of occurrence of the release.



| Doc. No.     | ENG-RCAL-028               | Rev. 1 Project No. 772030/171              | Page | <u>6</u> of <u>62</u> |  |
|--------------|----------------------------|--------------------------------------------|------|-----------------------|--|
| Subject: Tra | nsportation Risk Assessmen | t for the Shipment of Unirradiated Uranium | -    |                       |  |
| Preparer:    | J. L. Boles                |                                            | Date | 5/31/00               |  |
| Checker:     | B. B. Peters               |                                            | Date | 5/31/00               |  |

| Table 1 Radiological Risk from Uranium Shipmer | nts |
|------------------------------------------------|-----|
|------------------------------------------------|-----|

|                                 | Incident Free Transportation |          |          | Accident in | Total        |
|---------------------------------|------------------------------|----------|----------|-------------|--------------|
| Payload Description             |                              |          |          | Transport   | Radiological |
|                                 | Worker                       | Public   | Total    | Total       | Risk         |
| Billets Hanford to Portsmouth - | - Truck                      |          |          |             |              |
| Total Dose (person-rem)         | 0.084                        | 0.092    | 0.176    | 0.103       | 0.279        |
| Latent Cancer Fatalities        | 3.36E-05                     | 4.60E-05 | 7.96E-05 | 5.15E-05    | 1.31E-04     |
| Total Detriment                 | 4.71E-05                     | 6.71E-05 | 1.14E-04 | 7.52E-05    | 1.89E-04     |
| UO3 Powder                      |                              |          |          |             |              |
| Hanford to Portsmouth Rail      |                              |          |          |             |              |
| Total Dose (person-rem)         | 0.092                        | 0.429    | 0.521    | 0.033       | 0.554        |
| Latent Cancer Fatalities        | 3.70E-05                     | 2.14E-04 | 2.51E-04 | 1.64E-05    | 2.68E-04     |
| Total Detriment                 | 5.17E-05                     | 3.13E-04 | 3.65E-04 | 2.39E-05    | 3.89E-04     |
| Hanford to Portsmouth Truch     | ĸ                            |          |          |             |              |
| Total Dose (person-rem)         | 0.372                        | 0.354    | 0.726    | 0.059       | 0.785        |
| Latent Cancer Fatalities        | 1.49E-04                     | 1.77E-04 | 3.26E-04 | 2.94E-05    | 3.55E-04     |
| Total Detriment                 | 2.08E-04                     | 2.58E-04 | 4.67E-04 | 4.29E-05    | 5.10E-04     |
| Hanford to Paducah to Portsmo   | outh Rail                    |          |          |             |              |
| Total Dose (person-rem)         | 0.106                        | 0.445    | 0.551    | 0.041       | 0.592        |
| Latent Cancer Fatalities        | 4.24E-05                     | 2.23E-04 | 2.65E-04 | 2.05E-05    | 2.85E-04     |
| Total Detriment                 | 5.94E-05                     | 3.25E-04 | 3.84E-04 | 2.99E-05    | 4.14E-04     |
| Hanford to Paducah to Portsmo   | outh Truck                   |          |          |             |              |
| Total Dose (person-rem)         | 0.422                        | 0.400    | 0.822    | 0.069       | 0.891        |
| Latent Cancer Fatalities        | 1.69E-04                     | 2.00E-04 | 3.69E-04 | 3.43E-05    | 4.03E-04     |
| Total Detriment                 | 2.36E-04                     | 2.92E-04 | 5.28E-04 | 5.01E-05    | 5.78E-04     |
| Fuel Hanford to Portsmouth 7    | ſruck                        |          |          |             |              |
| Total Dose (person-rem)         | 0.524                        | 0.081    | 0.605    | 0.141       | 0.746        |
| Latent Cancer Fatalities        | 2.10E-04                     | 4.05E-05 | 2.50E-04 | 7.04E-05    | 3.21E-04     |
| Total Detriment                 | 2.94E-04                     | 5.92E-05 | 3.53E-04 | 1.03E-04    | 4.56E-04     |

Table 2 Toxicological Consequences from an Accident

| Receptor  | Fuel/Billet      | s, 0.045 g/s                     | release rate | T-Hopper Shipments, 4.1 g total release |                                  |          |  |
|-----------|------------------|----------------------------------|--------------|-----------------------------------------|----------------------------------|----------|--|
| Location, | χ/Q',            | Concentration, mg/m <sup>3</sup> |              | $\chi/Q, m^{-3}$                        | Concentration, mg/m <sup>3</sup> |          |  |
| m         | s/m <sup>3</sup> |                                  |              |                                         |                                  |          |  |
| 100       | 3.76E-3          | 0.170                            | < TEEL-1     | 3.14E-4                                 | 1.27                             | < TEEL-3 |  |
| 200       | 9.68E-4          | 0.0439                           | < TEEL-0     | 4.74E-5                                 | 0.192                            | < TEEL-1 |  |
| 1000      | 6.63E-5          | 3.01E-3                          | < TEEL-0     | 7.10E-7                                 | 2.88E-03                         | < TEEL-0 |  |
| 100, rare | 2.85E-2          | 1.29                             | < TEEL-3     | 2.65E-3                                 | 10.7                             | > TEEL-3 |  |
| case      |                  |                                  |              |                                         |                                  |          |  |



| Doc. No.         | ENG-RCAL-028                | Rev. 1    | Project No.    | 772030/171     | _ Page _ | <u>7</u> of | 62 |
|------------------|-----------------------------|-----------|----------------|----------------|----------|-------------|----|
| Subject: Transpo | rtation Risk Assessment for | the Shipm | ent of Unirrad | diated Uranium | -        |             |    |
| Preparer:        | J. L. Boles                 | -         |                |                | Date     | 5/31/00     | )  |
| Checker:         | B. B. Peters                |           |                |                | Date     | 5/31/00     | )  |

# 4.0 EVALUATION

## 4.1 Methodology

The RADTRAN 4 computer code (Neuhauser and Kanipe 1992) was used to analyze the risks of transporting unirradiated uranium in the form of metallic billets, UO<sub>3</sub> powder, and N Reactor fuel elements from the Hanford Site in Washington State to the DOE site near Portsmouth, Ohio. RADTRAN was originally developed by Sandia National Laboratories (SNL) in conjunction with the preparation of NUREG-0170, *Final Environmental Statement on the Transportation of Radioactive Material by Air and Other Modes* (NRC 1977). Since then the code has been expanded and refined several times.

# 4.2 Source Term

Three forms of uranium are considered in this analysis: metallic billets,  $UO_3$  powder, and finished and unfinished N Reactor fuel. The uranium is unirradiated and slightly enriched in <sup>235</sup>U. The source terms used in this analysis are listed in Tables 3-5, respectively.

234 metric tons of uranium are in the form of forged billets, each about 175 kg and containing 1.25% <sup>235</sup>U. Billets of this enrichment are in the shape of an annular cylinder, 17.73 cm OD, 7.1 cm ID, and 40.64 cm long (FDH 1999). The billets are shipped by truck in the Model G-4255 wooden box, which has a capacity of 3 billets and, when loaded with 1.25% <sup>235</sup>U billets, may be shipped six at a time (FDH 1999). This gives a total of 75 shipments [75 shipments = 234,000 kg / (175 kg/billet x 3 billets/box x 6 boxes/shipment)].

669 metric tons of uranium are in the form of UO<sub>3</sub> powder, enriched to 0.87%  $^{235}$ U. The powder is currently stored in 147 T-Hoppers, each of which has a capacity of 4.5 metric tons of uranium. T-Hoppers are to be shipped either by truck three at a time or by rail, ten per railcar, three railcars per shipment. This would require a total of 49 shipments by truck or 5 shipments by rail.

| Isotone           | Weight    | kg isotope | Ci/Billet | Ci/Box    |
|-------------------|-----------|------------|-----------|-----------|
| Isotope           | Fraction  | /Billet    |           | CI/DOX    |
| <sup>234</sup> U  | 1.34E-04  | 2.35E-02   | 1.459E-01 | 4.376E-01 |
| <sup>235</sup> U  | 1.256E-02 | 2.20E+00   | 4.836E-03 | 1.451E-02 |
| <sup>236</sup> U  | 1.00E-03  | 1.75E-01   | 1.132E-02 | 3.397E-02 |
| <sup>238</sup> U  | 9.88E-01  | 1.73E+02   | 5.809E-02 | 1.743E-01 |
| <sup>241</sup> Pu | 4.14E-11  | 7.25E-09   | 7.245E-04 | 2.174E-03 |
| <sup>99</sup> Tc  | 2.58E-05  | 4.52E-03   | 7.721E-02 | 2.316E-01 |
| <sup>90</sup> Sr  | 1.56E-10  | 2.73E-08   | 3.849E-03 | 1.155E-02 |

 Table 3
 Source Term for the Billets



| Doc. No. ENG-RCAL-028 Rev. 1 Project No. 772030/171                              | _ Page | <u>8</u> of <u>62</u> |  |
|----------------------------------------------------------------------------------|--------|-----------------------|--|
| Subject: Transportation Risk Assessment for the Shipment of Unirradiated Uranium | -      |                       |  |
| Preparer: J. L. Boles                                                            | Date   | 5/31/00               |  |
| Checker: B. B. Peters                                                            | Date   | 5/31/00               |  |

| Isotope          | Wt %   | kg isotope<br>/T-Hopper | Ci/T-Hopper |
|------------------|--------|-------------------------|-------------|
| <sup>234</sup> U | 0.0080 | 0.36                    | 2.239E+00   |
| <sup>235</sup> U | 0.87   | 39.15                   | 8.613E-02   |
| <sup>236</sup> U | 0.069  | 3.105                   | 2.009E-01   |
| <sup>238</sup> U | 99.06  | 4457.7                  | 1.498E+00   |

Table 4Source Term for the T-Hoppers

The N Reactor fuel consists of finished and unfinished inner and outer fuel elements of five different <sup>235</sup>U enrichments. Both elements are annular cylinders, the outer element has dimensions of about 2.4 in. OD, 1.8 in. ID; the inner element is about 1.2 in. OD, 0.5 in. ID, with lengths varying between 15 and 26 in. (WHC 1992). A total of 957.3 metric tons of uranium as fuel are to be shipped in the Model G-4214 wooden box, which has a capacity of 544 kg. The unfinished fuel elements are differentiated from the finished fuel in that they do not have the end caps welded on. The enrichment levels of <sup>235</sup>U consist of 0.71, 0.95, 1.03, 1.15, and 1.25%. Due to the possibility of forming a critical configuration in the event of an accident, preliminary limits on the total uranium mass in a shipment of the 0.95% and 1.25% enriched fuel have been derived (Ferrell 1999). Mass limits for the 1.03 and 1.15% enriched fuel were interpolated from these limits. The fuel with a <sup>235</sup>U content of 0.71% is considered to be natural uranium and is not considered to be fissile material. The criticality based shipment mass limits, total mass of both finished and unfinished fuel to be shipped, and calculated number of shipments of fuel of each <sup>235</sup>U content are included in Table 5.



| Doc. No.        | ENG-RCAL-028                 | Rev. 1    | Project No.    | 772030/171     | Page _ | <u>9</u> of <u>6</u> | 2 |
|-----------------|------------------------------|-----------|----------------|----------------|--------|----------------------|---|
| Subject: Transp | ortation Risk Assessment for | the Shipm | nent of Unirra | diated Uranium | -      |                      |   |
| Preparer:       | J. L. Boles                  |           |                |                | Date   | 5/31/00              |   |
| Checker:        | B. B. Peters                 |           |                |                | Date   | 5/31/00              |   |

| <sup>235</sup> U | Isotopo <sup>a</sup> | Weight    | ka/Shinmont  | Ci/Shinmont  | Shipment      | Total Mass           | #                 |
|------------------|----------------------|-----------|--------------|--------------|---------------|----------------------|-------------------|
| Content          | Isotope              | Fraction  | kg/Sinpinent | Ci/Sinpineit | Limit (kg)    | (kg)                 | Shipments         |
|                  | <sup>234</sup> U     | 5.50E-05  | 1.80E-01     | 1.12E+00     | 3264 based on |                      |                   |
| 0.710/           | <sup>235</sup> U     | 7.10E-03  | 2.32E+01     | 5.10E-02     | 544 kg/box, 6 | $65,300^{f}$         | $20^{\mathrm{f}}$ |
| 0.71%            | <sup>236</sup> U     | 3.00E-04  | 9.79E-01     | 6.34E-02     | boxes/        | 8,600 <sup>u</sup>   | 3 <sup>u</sup>    |
|                  | <sup>238</sup> U     | 9.93E-01  | 3.24E+03     | 1.09E+00     | shipment      |                      |                   |
|                  | <sup>234</sup> U     | 1.33E-04  | 2.17E-01     | 1.347E+00    |               |                      |                   |
| 0.05%            | <sup>235</sup> U     | 9.56E-03  | 1.56E+01     | 3.424E-02    | 1.629         | 611,800 <sup>f</sup> | 376 <sup>f</sup>  |
| 0.95%            | <sup>236</sup> U     | 1.00E-03  | 1.63E+00     | 1.053E-01    | 1628          | 113,500 <sup>u</sup> | 70 <sup>u</sup>   |
|                  | <sup>238</sup> U     | 9.91E-01  | 1.61E+03     | 5.421E-01    | -             |                      |                   |
|                  | <sup>234</sup> U     | 1.33E-04  | 1.83E-01     | 1.137E+00    |               |                      |                   |
| 1.020/           | <sup>235</sup> U     | 1.106E-02 | 1.52E+01     | 3.346E-02    | 1275          | o soof               | 7                 |
| 1.03%            | <sup>236</sup> U     | 1.00E-03  | 1.38E+00     | 8.896E-02    | 13/5          | 9,800                | /                 |
|                  | <sup>238</sup> U     | 9.89E-01  | 1.36E+03     | 4.569E-01    | -             |                      |                   |
|                  | <sup>234</sup> U     | 1.33E-04  | 1.32E-01     | 8.240E-01    |               |                      |                   |
| 1 1 5 0/         | <sup>235</sup> U     | 1.11E-02  | 1.10E+01     | 2.423E-02    | 007           | 122 700f             | 124               |
| 1.15%            | <sup>236</sup> U     | 1.00E-03  | 9.96E-01     | 6.444E-02    | 996           | 133,700              | 134               |
|                  | <sup>238</sup> U     | 9.89E-01  | 9.85E+02     | 3.310E-01    | -             |                      |                   |
|                  | <sup>234</sup> U     | 1.34E-04  | 9.11E-02     | 5.668E-01    |               |                      |                   |
| 1.250/           | <sup>235</sup> U     | 1.256E-02 | 8.54E+00     | 1.879E-02    |               | 14 COO <sup>U</sup>  | 22                |
| 1.25%            | <sup>236</sup> U     | 1.00E-03  | 6.80E-01     | 4.400E-02    | 680           | 14,600               | 22                |
|                  | <sup>238</sup> U     | 9.88E-01  | 6.72E+02     | 2.257E-01    | 1             |                      |                   |

## Table 5Source Term for the Fuel

<sup>a</sup> Three trace isotopes are assumed to be present in the enriched fuels: <sup>241</sup>Pu at 4.14E-11, <sup>99</sup>Tc at 2.58E-5, and <sup>90</sup>Sr at 1.56E-10 weight fractions.

<sup>f</sup> Finished fuel

<sup>u</sup> Unfinished fuel

<sup>234</sup>U and <sup>236</sup>U were not included in RADTRAN's library of radionuclides, so the isotopes were defined in the input file. These isotopic definitions were taken from RADTRAN input files in Green (1995), which used the sources referenced in RADTRAN (Neuhauser and Kanipe 1992) to obtain the required isotopic properties.

# 4.3 Incident-Free Transportation

The RADTRAN 4 User Guide (Neuhauser and Kanipe 1992) defines incident-free transportation as transportation during which no accident, packaging or handling abnormality, or malevolent attack occurs. The consequence due to incident-free transportation is the dose received by people in the vicinity of the package due to external exposure. These people may include passengers, transportation workers (crew, inspectors, etc.), handlers, population off-link,



| Doc. No.       | ENG-RCAL-028              | Rev. <u>1</u> Project No.      | 772030/171     | Page _ | <u>10</u> of | 62 |
|----------------|---------------------------|--------------------------------|----------------|--------|--------------|----|
| Subject: Trans | sportation Risk Assessmer | nt for the Shipment of Unirrad | diated Uranium |        |              | _  |
| Preparer:      | J. L. Boles               | -                              |                | Date   | 5/31/00      |    |
| Checker:       | B. B. Peters              |                                |                | Date   | 5/31/00      |    |

population on-link, population during stops, and population during storage. The probability of the afore-mentioned consequences is always set to unity, as the probability of an accident is much less than unity. Thus, the risk due to incident-free transportation is numerically equal to the consequences.

Table 6 lists the input parameters common to all shipments made by truck or rail that are used by RADTRAN 4 in the calculation of population dose for incident-free transportation. Many of the values used for these parameters are defaults recommended by the RADTRAN User Guide (Neuhauser and Kanipe 1992). Others are either calculated or assumed and are discussed below. Parameters dependent on the package transported are listed in Table 7.

| Parameter Description                                             | Truck                              | Rail               |
|-------------------------------------------------------------------|------------------------------------|--------------------|
| Number of crew members <sup>a</sup>                               | 2                                  | 5                  |
| Number of handlings per shipment <sup>a</sup>                     | 0                                  | 2                  |
| Stop time per km (hr/km)                                          | 0                                  | 0.033 <sup>a</sup> |
| Minimum stop time per trip (hr)                                   | 10.84 - Direct<br>12.20 - Indirect | 10 <sup>a</sup>    |
| Distance-independent stop time per rail trip (hr) <sup>a</sup>    | NA                                 | 60                 |
| Minimum number of rail inspections <sup>a</sup>                   | NA                                 | 2                  |
| Number people exposed during a stop <sup>a</sup>                  | 50                                 | 100                |
| Average exposure distance during stops <sup>a</sup>               | 20                                 | 20                 |
| Storage time per shipment <sup>a</sup>                            | 0                                  | 4                  |
| Number of persons exposed during storage <sup>a</sup>             | 100                                | 100                |
| Average exposure distance during storage <sup>a</sup>             | 100                                | 100                |
| Number of people per vehicle<br>(on-link population) <sup>a</sup> | 2                                  | 3                  |
| Velocity in rural zone <sup>a</sup>                               | 88.49                              | 64.37              |
| Velocity in suburban zone <sup>a</sup>                            | 40.25                              | 40.25              |
| Velocity in urban zone <sup>a</sup>                               | 24.16                              | 24.16              |
| Fraction of urban travel during rush hour                         | 0                                  | 0                  |
| Fraction of urban travel on city streets                          | 0                                  | 1                  |
| Fraction of rural and suburban travel on                          | 1                                  | 0                  |
| freeways                                                          | 1                                  | 0                  |
| One-way hourly traffic count, Rural zone <sup>a</sup>             | 470                                | 1                  |
| One-way hourly traffic count, Suburban zone <sup>a</sup>          | 780                                | 5                  |
| One-way hourly traffic count, Urban zone <sup>a</sup>             | 2,800                              | 5                  |

 Table 6 Input Parameters for Incident Free Transport by Truck and Rail

<sup>a</sup> Default values taken from RADTRAN 4 User Guide (Neuhauser and Kanipe, 1992)

Table 7 Package-Specific Input Parameters for Incident Free Transport



| Doc. No.         | ENG-RCAL-028                | Rev. 1    | Project No.   | 772030/171     | Page | <u>11</u> of | 62 |
|------------------|-----------------------------|-----------|---------------|----------------|------|--------------|----|
| Subject: Transpo | rtation Risk Assessment for | the Shipm | ent of Unirra | diated Uranium | -    |              | _  |
| Preparer:        | J. L. Boles                 | -         |               |                | Date | 5/31/00      |    |
| Checker:         | B. B. Peters                |           |               |                | Date | 5/31/00      |    |

| Parameter                                                | Billets - Truck | UO <sub>3</sub> - Truck | UO <sub>3</sub> - Rail | Fuel - Truck                                                                                                                                                                                                    |
|----------------------------------------------------------|-----------------|-------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description                                              |                 |                         |                        |                                                                                                                                                                                                                 |
| Exclusive use?                                           | YES             | YES                     | YES                    | YES                                                                                                                                                                                                             |
| Number of shipments                                      | 75              | 49                      | 5                      | 632                                                                                                                                                                                                             |
| Dose rate at one<br>meter from vehicle<br>edge (mrem/hr) | 0.086           | 0.44                    | 0.73                   | $\begin{array}{c} 0.71\% \ ^{235}{\rm U:} \ 0.052 \\ 0.95\% \ ^{235}{\rm U:} \ 0.034 \\ 1.03\% \ ^{235}{\rm U:} \ 0.034 \\ 1.15\% \ ^{235}{\rm U:} \ 0.023 \\ 1.25\% \ ^{235}{\rm U:} \ 0.023 \end{array}$      |
| Characteristic<br>package dimension<br>(CPD) (m)         | 3.91            | 4.57                    | 15.24                  | $\begin{array}{c} 0.71\% \ ^{235} \text{U:} \ 2.50 \\ 0.95\% \ ^{235} \text{U:} \ 1.08 \\ 1.03\% \ ^{235} \text{U:} \ 1.08 \\ 1.15\% \ ^{235} \text{U:} \ 0.72 \\ 1.25\% \ ^{235} \text{U:} \ 0.72 \end{array}$ |
| Source-to-crew<br>distance (m)                           | 8.27            | 7.71                    | 152.4 <sup>a</sup>     | 3.10 <sup>a</sup>                                                                                                                                                                                               |

<sup>a</sup> Default values taken from RADTRAN 4 User Guide (Neuhauser and Kanipe, 1992)

One of the calculated parameters in Table 7 is the characteristic package dimension (CPD). This is usually the largest dimension of the package. However, when arrays of similar packages are shipped, the RADTRAN User Guide (Neuhauser and Kanipe 1992) suggests treating the array as a single package. The CPD selected for the array of six G-4255 wooden boxes transporting billets was the length of the array, i.e., six box widths, calculated to be 3.91 m (= 6 x 25.625 in.). The lengths of the array of three T-Hoppers by truck, 4.57 m (= 3 x 5 ft), and of the array of ten T-Hoppers by rail, 15.24 m (=10 x 5 ft), were used as the CPD for the powder shipments. The CPD for the G-4214 wooden boxes used to transport the fuel was a multiple of the box width, 16.375 in., and the number of boxes depended on box capacity and the mass limit imposed by criticality constraints for each enrichment. Schematics of the wooden boxes and T-Hopper are included in Section 5.13.

Another parameter in Table 7, the source to crew distance, is calculated for the transport of billets and T-Hoppers by truck. RADTRAN calculates dose rates to the crew by extrapolating the dose rate at the side of the array, without accounting for the fact that the crew is not at the side of the array but at the head of the conveyance. Because the dose rates on the side are larger than at the head of the array, the crew dose rate is overestimated. The RADTRAN User Guide (Neuhauser and Kanipe 1992) suggests fixing this by inflating the source to crew distance. The shielding calculation in Section 5.1 determined the dose rate from the various package arrays for an estimated source to crew spacing of 3.1 m. The equation for the dose rate to the crew given in the RADTRAN Technical Manual (Neuhauser and Kanipe 1989) is



| Doc. No          | ENG-RCAL-028                | Rev. 1    | Project No.     | 772030/171     | Page | <u>12</u> of | 62 |
|------------------|-----------------------------|-----------|-----------------|----------------|------|--------------|----|
| Subject: Transpo | rtation Risk Assessment for | the Shipm | nent of Unirrad | diated Uranium | -    |              | _  |
| Preparer:        | J. L. Boles                 |           |                 |                | Date | 5/31/00      |    |
| Checker:         | B. B. Peters                |           |                 |                | Date | 5/31/00      |    |

$$DR_{c} = \frac{(PPS)(DR_{p})(1+0.5d_{e})^{2}}{r_{c}^{2}}$$

where  $DR_c$  = dose rate in the crew compartment  $r_c$  = source to crew distance, (m) PPS = number of packages per shipment  $DR_p$  = dose rate at 1 m, and  $d_e$  = effective package dimension =  $\begin{cases} CPD; & \text{if } CPD < 4 \text{ m} \\ 2 \cdot (1+0.5CPD)^{0.75} - 0.55; & \text{if } CPD \ge 4 \text{ m} \end{cases}$ 

The effective package dimension is a function of the characteristic package dimension (CPD). The CPD of the array of 6 G-4255 boxes is less than 4 m, so  $d_e$  is equal to the CPD. The CPD of the array of 3 T-Hoppers is greater than 4 m, so the  $d_e$  is calculated to be 4.33 m using the above formula.

Rearranging for the effective source to crew distance gives

$$r_c = (1 + 0.5d_e) \sqrt{PPS \frac{DR_p}{DR_c}}$$

The parameter values and resulting effective source to crew distances are

| Array          | de   | PPS | $DR_p$ | $DR_c$ | r <sub>c</sub> |
|----------------|------|-----|--------|--------|----------------|
| 6 G-4255 boxes | 3.91 | 1   | 0.086  | 0.011  | 8.27           |
| 3 T-Hoppers    | 4.33 | 1   | 0.44   | 0.074  | 7.71           |

An effective source to crew distance was not calculated for the array of T-Hoppers transported by rail, as the RADTRAN default value for rail shipments is sufficiently large to account for the massive shielding provided by the locomotive. Shipments of fuel also did not require a calculation of the effective source to crew distance, as more of a square footprint was assumed for the arrays of fuel enriched to 0.95 and 1.25% <sup>235</sup>U. Consequently, the use of the lateral dose rate was not overly conservative.

Two other parameters in Table 6 for which derived values were used are the stop time per kilometer traveled and the minimum stop time per trip. The computer code HIGHWAY (Johnson et al. 1993) assumes that a two-person truck driving team will move for 4 hr and then stop for a 0.5 hr break, repeating this cycle until the destination is reached. This approach is considered more realistic than the defaults provided in the RADTRAN 4 User Guide (Neuhauser and Kanipe 1992), in which the drivers are assumed to stop for an hour after every 90 km.



| Doc. No.   | ENG-RCAL-028                  | Rev1_ Project No772030/171               | Page_  | <u>13</u> of _ | 62 |
|------------|-------------------------------|------------------------------------------|--------|----------------|----|
| Subject: T | ransportation Risk Assessment | for the Shipment of Unirradiated Uranium |        |                | _  |
| Preparer:  | J. L. Boles                   | -                                        | Date _ | 5/31/00        |    |
| Checker:   | B. B. Peters                  |                                          | Date   | 5/31/00        |    |

However, to be conservative, the stop time using the HIGHWAY approach is multiplied by a factor of 2. The HIGHWAY output files in Section 5.0 give a total road time of 43.3 hr by the direct route and 48.8 hr by the indirect route. The stopover time in Paducah in the indirect route is not included in the total stop time, as the T-Hoppers are removed from the transport vehicle for maintenance. Thus, the total stopover time is  $10.8 \text{ hr} (= 43.3 / 4 \times 0.5 \times 2)$  by the direct route and  $12.2 \text{ hr} (= 48.8 / 4 \times 0.5 \times 2)$  by the indirect route.

# 4.4 Transportation Accidents

Accidents occurring during transportation may cause damage to the package's shielding or cause a release of radioactive material from the package. The consequence of an accident during transportation is the dose received by the nearby population from this release by any of six potential exposure pathways considered in RADTRAN. These pathways are direct external irradiation, cloudshine, inhalation, groundshine, resuspension, and ingestion (Neuhauser and Kanipe 1989). The probability of an accident is based on the total distance traveled and on tabulated accident frequencies per unit distance. Thus, knowledge of the transportation route is required for calculating the risks from transportation accidents.

The truck transportation routes between the Hanford Site in Washington and the Portsmouth Site in Ohio were generated using the computer code HIGHWAY 3.3 (Johnson et al. 1993) via the TRANSNET network at Sandia National Laboratories. Two distinct truck transport routes were calculated. One route, which stops in Paducah, Kentucky, is used for the shipment of the T-Hopper packages. All other packages will be shipped via a direct route between the origin and destination. The rail transportation route was generated using the computer code INTERLINE version 5.0 (Johnson et al. 1992), again via TRANSNET. As before, a direct route and an indirect route were obtained. Weighted population densities in the rural, suburban, and urban zones were calculated by HIGHWAY and INTERLINE for the specific routes traveled and used in the RADTRAN input files. The total distance and fraction of distance traveled in each population zone are given in Table 8 for the rail and truck routes. Maps of the routes obtained from HIGHWAY and INTERLINE are included in the Appendix in Section 5.13.

| Route and       | Total Distance | Fraction of Total Distance in Each Zone |          |        |  |  |
|-----------------|----------------|-----------------------------------------|----------|--------|--|--|
| Mode            | (km)           | Rural                                   | Suburban | Urban  |  |  |
| Direct, Truck   | 3870.4         | 0.8783                                  | 0.1116   | 0.0101 |  |  |
| Indirect, Truck | 4391.8         | 0.8625                                  | 0.1266   | 0.0109 |  |  |
| Direct, Rail    | 3981.2         | 0.8590                                  | 0.1138   | 0.0272 |  |  |
| Indirect, Rail  | 4747.0         | 0.8520                                  | 0.1240   | 0.0240 |  |  |

Table 8 Population Breakdown of the Truck and Rail Routes



| Doc. No.       | ENG-RCAL-028              | Rev. <u>1</u> Project No. <u>772030/171</u> | Page _ | <u>14</u> of | 62 |
|----------------|---------------------------|---------------------------------------------|--------|--------------|----|
| Subject: Trans | sportation Risk Assessmer | t for the Shipment of Unirradiated Uranium  | -      |              |    |
| Preparer:      | J. L. Boles               |                                             | Date   | 5/31/00      |    |
| Checker:       | B. B. Peters              |                                             | Date   | 5/31/00      |    |

Nationwide average accident rates were taken from Saricks and Kvitek (1994) for truck and rail shipments. The accident rates per km for rural and urban/suburban truck shipments are 2.03E-7 and 3.58E-7, respectively. The accident rate on mainline railroads per km per railcar is 2.66E-8. Because three railcars will be transported at a time, that rate is multiplied by three. The mainline accident rate is used since the vast majority of the distance traveled is on mainline routes.

Because accidents may vary in terms of their severity, an accident severity classification scheme is required that groups accidents of similar severity together. A scheme of eight severity categories of increasingly severe accidents, defined in terms of mechanical and thermal (fire) loads, for different transportation modes is provided in NUREG-0170 (NRC 1977). Also reported in NUREG-0170 are the fractional occurrences of accidents in each severity category, further subdivided by the fractional occurrence in each of three zones of population density. Accidents of Category 1 are defined to be less serious than the accident performance capabilities of a Type A packaging and are not expected to result in the release of the radioactive material. Similarly, a Type B packaging is expected to survive a Category 2 accident with no release. The probabilities of occurrence of accidents of each severity category and in each population zone are given in Table 9 for truck and rail transportation. Table 10 gives the same data after normalizing the accidents according to population density zone.

 

 Table 9 Fractional Occurrences for Rail and Truck Accidents by Accident Severity Category and by Population Density Zone

| Accident | Fractional  | Fractional  | Fractional Occurrences According to |               |              |  |
|----------|-------------|-------------|-------------------------------------|---------------|--------------|--|
| Severity | Occurrences | Occurrences | Popula                              | ation Density | Zones*       |  |
| Category | via Rail    | via Truck   | Low (rural)                         | Medium        | High (urban) |  |
|          |             |             |                                     | (suburban)    | _            |  |
| 1        | 0.50        | 0.55        | 0.1                                 | 0.1           | 0.8          |  |
| 2        | 0.30        | 0.36        | 0.1                                 | 0.1           | 0.8          |  |
| 3        | 0.18        | 0.07        | 0.3                                 | 0.4           | 0.3          |  |
| 4        | 0.018       | 0.016       | 0.3                                 | 0.4           | 0.3          |  |
| 5        | 0.0018      | 0.0028      | 0.5                                 | 0.3           | 0.2          |  |
| 6        | 1.3E-4      | 0.0011      | 0.7                                 | 0.2           | 0.1          |  |
| 7        | 6.0E-5      | 8.5E-5      | 0.8                                 | 0.1           | 0.1          |  |
| 8        | 1.0E-5      | 1.5E-5      | 0.9                                 | 0.05          | 0.05         |  |

\* These values are the same for truck and rail transportation. (NRC 1977)



| Doc. No.   | ENG-RCAL-028                    | Rev. <u>1</u> Proje | ct No. 772030/1    | <u>71</u> Page | <u>15</u> of | 62 |
|------------|---------------------------------|---------------------|--------------------|----------------|--------------|----|
| Subject: T | ransportation Risk Assessment f | or the Shipment of  | Unirradiated Urani | um             |              | _  |
| Preparer:  | J. L. Boles                     | -                   |                    | Date           | 5/31/00      |    |
| Checker:   | B. B. Peters                    |                     |                    | Date           | 5/31/00      |    |

Table 10 Fractional Occurrences for Rail and Truck Accidents Normalized to Population Zone

| Accident |          | Rail     |          |          | Truck    |          |
|----------|----------|----------|----------|----------|----------|----------|
| Category | Rural    | Suburban | Urban    | Rural    | Suburban | Urban    |
| 1        | 3.56E-01 | 3.13E-01 | 5.72E-01 | 4.62E-01 | 4.35E-01 | 5.83E-01 |
| 2        | 2.14E-01 | 1.88E-01 | 3.43E-01 | 3.02E-01 | 2.85E-01 | 3.82E-01 |
| 3        | 3.84E-01 | 4.51E-01 | 7.72E-02 | 1.76E-01 | 2.21E-01 | 2.78E-02 |
| 4        | 3.84E-02 | 4.51E-02 | 7.72E-03 | 4.03E-02 | 5.06E-02 | 6.36E-03 |
| 5        | 6.41E-03 | 3.38E-03 | 5.14E-04 | 1.18E-02 | 6.64E-03 | 7.42E-04 |
| 6        | 6.48E-04 | 1.63E-04 | 1.86E-05 | 6.47E-03 | 1.74E-03 | 1.46E-04 |
| 7        | 3.42E-04 | 3.76E-05 | 8.57E-06 | 5.71E-04 | 6.72E-05 | 1.13E-05 |
| 8        | 6.41E-05 | 3.13E-06 | 7.15E-07 | 1.13E-04 | 5.93E-06 | 9.94E-07 |

With the total distance and the frequency of accidents occurring in each severity category known, the probability of an accident occurring is established. The other half of the risk equation, the consequences of an accident, must now be determined.

The response of a package to an accident of a particular severity is given by the release fraction parameter in RADTRAN 4. The release fraction as used in RADTRAN is the amount of material available for dispersal or exposure in an accident expressed as a fraction of the amount of radioactivity present in the package. NUREG-0170 (NRC 1977) recommends the following release fraction model for Type A containers and LSA drums: 0 release for Category 1, 0.01 for Category 2, 0.1 for Category 3, and 1.0 for Categories 4-8. The Model G-4255 and G-4214 wooden boxes are certified Type AF packagings (FDH 1999), and the T-Hopper is a strong, tight packaging used since the 1950s to transport LSA quantities of materials; therefore, the use of the release fractions in NUREG-0170 is justified. This analysis uses the recommended release fractions for Categories 1 and 4-8 for all payloads. However, to be conservative, larger release fractions are used for Categories 2 and 3 for the billets, powder, and unfinished fuel pavloads. The recommended release fractions for all categories are used for the finished fuel payload, as this fuel has a zirconium cladding as an additional containment boundary. For the G-4255 box containing billets, a value of 1.0 is conservatively used for categories 2 and 3. For the T-Hopper and the G-4214 box containing unfinished fuel, release fractions of 0.1 and 1.0 are used for Categories 2 and 3, respectively. Although a detailed structural and thermal evaluation of the various accident scenarios could justify the use of lower fractional releases within Categories 2 through 8, it was not felt to merit the additional time required.

Once the material is released from the container and available for dispersal, it must be in the form of an aerosol to present an inhalation hazard. An accident, such as an impact or fire, will cause a fraction of the contents to form particulate material. This fraction is known as the aerosol fraction. The particulate material that is less than 10  $\mu$ m aerodynamic equivalent diameter (AED) is assumed to be capable of being inhaled into the human respiratory system.



| Doc. No          | ENG-RCAL-028                 | Rev. 1   | Project No.    | 772030/171     | Page | 16   | _of _ | 62 |
|------------------|------------------------------|----------|----------------|----------------|------|------|-------|----|
| Subject: Transpo | ortation Risk Assessment for | the Ship | ment of Unirra | diated Uranium | -    |      |       | _  |
| Preparer:        | J. L. Boles                  | -        |                |                | Date | 5/31 | 1/00  |    |
| Checker:         | B. B. Peters                 |          |                |                | Date | 5/3  | 1/00  |    |

This fraction is known as the respirable fraction. The aerosol and respirable fractions depend on the severity of the accident and the physical characteristics of the material. The respirable fraction should not be less than the respirable fraction of the pre-accident material. The release, aerosol, and respirable fractions used for the billets, powder, and fuel payloads are summarized in Table 11.

| Parameter Descripti | ion                         | Billets | Powder | Fuel |
|---------------------|-----------------------------|---------|--------|------|
| Release Fraction    | elease Fraction Acc. Cat. 1 |         | 0      | 0    |
|                     | Acc. Cat. 2                 | 1       | 0.1    | 0.1  |
|                     | Acc. Cat. 3 - 8             | 1       | 1      | 1    |
| Aerosol Fraction    | Acc. Cat. 1                 | 0       | 0      | 0    |
|                     | Acc. Cat. 2                 | 1E-4    | 3E-4   | 1E-4 |
|                     | Acc. Cat. 3 - 8             | 1E-3    | 3E-2   | 1E-3 |
| Respirable          | Acc. Cat. 1                 | 0       | 0      | 0    |
| Fraction            | Acc. Cat. 2                 | 1       | 1E-2   | 1    |
|                     | Acc. Cat. 3 - 8             | 1       | 1E-2   | 1    |

Table 11 Release, Aerosol, and Respirable Fractions for Accident Conditions

The aerosol and respirable fractions are set to zero for Category 1 accidents because no release is anticipated. The fractions for Category 2 accidents are conservatively based on the maximum credible accident scenarios discussed in the toxicological consequence assessment in Sections 4.6.1 and 4.6.2. The aerosol fractions used for Categories 3 through 8 are a factor of 10 higher than for Category 2 for the billets payload; these values represent bounding values from DOE (1994) for the billets payload in the fire scenario described in Section 4.6.1. The aerosol fractions used for Categories 3 through 8 are a factor of 10 higher than Category 2 for the billets payload; these values represent bounding values from DOE (1994) for the billets payload in the fire scenario described in Section 4.6.1. The aerosol fractions used for Categories 3 through 8 are a factor of 100 higher than Category 2 for the powder payload; these values are conservatively higher than the bounding values for the powder in the impact scenario described in Section 4.6.2. Because the fuel is in the same physiochemical form as the billets, the same aerosol and respirable fractions are used for both payloads.

# 4.5 Health Effects

Deleterious health effects ranging from minor to severe arise from exposure of individuals and populations to ionizing radiation. These effects have been correlated to doses by the International Commission on Radiological Protection (ICRP) based on historical exposures and summarized in conversion factors that consider both the probability of occurrence and a judgment of the severity of that effect (ICRP 1991). Values are given in ICRP for the estimated probabilities of a fatal cancer, of a non-fatal cancer, and of a severe hereditary effect per unit



| Doc. No.    | ENG-RCAL-028                 | Rev. 1 Project No.          | 772030/171     | Page | <u>17</u> of | 62 |
|-------------|------------------------------|-----------------------------|----------------|------|--------------|----|
| Subject: Tr | ansportation Risk Assessment | for the Shipment of Unirrad | diated Uranium | -    |              |    |
| Preparer:   | J. L. Boles                  |                             |                | Date | 5/31/00      |    |
| Checker:    | B. B. Peters                 |                             |                | Date | 5/31/00      |    |

effective dose. The total detriment is the sum of these three probabilities. These values are listed in Table 12.

|                                         | Worker | Public |
|-----------------------------------------|--------|--------|
| Latent Cancer Fatality (per person-rem) | 4.0E-4 | 5.0E-4 |
| Total Detriment (per person-rem)        | 5.6E-4 | 7.3E-4 |

| Table 12 H | lealth Effect | Conversion | Factors ( | ICRP | 1991) |
|------------|---------------|------------|-----------|------|-------|
|------------|---------------|------------|-----------|------|-------|

4.5.1 Results of the Radiological Risk Assessment

Table 13 lists the results of the radiological risk analysis. These results are for the total number of shipments made of a particular payload. Four different shipping scenarios were considered in the shipment of UO<sub>3</sub> powder: the combinations of rail vs. truck, and direct route vs. indirect. The risk from each fuel type, i.e., unfinished vs. finished, for each <sup>235</sup>U enrichment, is listed separately, as well as a summed risk from all fuel types. The values given for incident-free transportation are the consequences that result from the normal shipment of these radioactive materials. Because the probability of incident-free transportation is unity, the risks of these shipments are also the consequences in person-rem, number of latent cancer fatalities, and total detriment. The values given for accidents in transportation are risk values, as they are the product of the radiological consequences and the probability of occurrence for accidents of various severity. The sum of the risks from incident-free transportation and from accidents in transportation represent the total radiological risk. The summed risk for the entire shipping campaign of all payloads, assuming the worst-case scenario for shipping the UO<sub>3</sub> powder, is 1.92 person-rem, 8.55E-4 latent cancer fatalities, and 1.22E-3 total detriment.



| Doc. No.         | ENG-RCAL-028                | Rev. 1    | Project No.   | 772030/171     | Page | <u>18</u> of | 62 |
|------------------|-----------------------------|-----------|---------------|----------------|------|--------------|----|
| Subject: Transpo | rtation Risk Assessment for | the Shipm | ent of Unirra | diated Uranium | -    |              |    |
| Preparer:        | J. L. Boles                 | -         |               |                | Date | 5/31/00      |    |
| Checker:         | B. B. Peters                |           |               |                | Date | 5/31/00      |    |

# Table 13 Radiological Risks from Uranium Shipments (2 sheets total)

|                                      | Incident Free Transportation |                     |          | Accident in    | Total        |
|--------------------------------------|------------------------------|---------------------|----------|----------------|--------------|
| Payload Description                  | Worker                       | Dublia              | Total    | Transportation | Radiological |
| Total of all shipmonts of hillsts, w | worker                       | worker Fublic Total |          |                | KISK         |
| Total of all shipments of billets, w | orst-case powde              |                     | 1.50     | 0.010          | 1.00         |
| Total Dose (person-rem)              | 1.03                         | 0.57                | 1.60     | 0.312          | 1.92         |
| Latent Cancer Fatalities             | 4.12E-04                     | 2.86E-04            | 6.99E-04 | 1.56E-04       | 8.55E-04     |
| Total Detriment                      | 5.77E-04                     | 4.18E-04            | 9.95E-04 | 2.28E-04       | 1.22E-03     |
| Billets Hanford to Portsmouth -      | - Truck                      |                     |          |                |              |
| Total Dose (person-rem)              | 0.084                        | 0.092               | 0.176    | 0.103          | 0.279        |
| Latent Cancer Fatalities             | 3.36E-05                     | 4.60E-05            | 7.96E-05 | 5.15E-05       | 1.31E-04     |
| Total Detriment                      | 4.71E-05                     | 6.71E-05            | 1.14E-04 | 7.52E-05       | 1.89E-04     |
| UO3 Powder                           |                              |                     |          |                |              |
| Hanford to Portsmouth Rail           |                              |                     |          |                |              |
| Total Dose (person-rem)              | 0.092                        | 0.429               | 0.521    | 0.033          | 0.554        |
| Latent Cancer Fatalities             | 3.70E-05                     | 2.14E-04            | 2.51E-04 | 1.64E-05       | 2.68E-04     |
| Total Detriment                      | 5.17E-05                     | 3.13E-04            | 3.65E-04 | 2.39E-05       | 3.89E-04     |
| Hanford to Portsmouth Truch          | ĸ                            |                     |          |                |              |
| Total Dose (person-rem)              | 0.372                        | 0.354               | 0.726    | 0.059          | 0.785        |
| Latent Cancer Fatalities             | 1.49E-04                     | 1.77E-04            | 3.26E-04 | 2.94E-05       | 3.55E-04     |
| Total Detriment                      | 2.08E-04                     | 2.58E-04            | 4.67E-04 | 4.29E-05       | 5.10E-04     |
| Hanford to Paducah to Portsmo        | outh Rail                    |                     |          |                |              |
| Total Dose (person-rem)              | 0.106                        | 0.445               | 0.551    | 0.041          | 0.592        |
| Latent Cancer Fatalities             | 4.24E-05                     | 2.23E-04            | 2.65E-04 | 2.05E-05       | 2.85E-04     |
| Total Detriment                      | 5.94E-05                     | 3.25E-04            | 3.84E-04 | 2.99E-05       | 4.14E-04     |
| Hanford to Paducah to Portsmo        | outh Truck                   |                     |          |                |              |
| Total Dose (person-rem)              | 0.422                        | 0.400               | 0.822    | 0.069          | 0.891        |
| Latent Cancer Fatalities             | 1.69E-04                     | 2.00E-04            | 3.69E-04 | 3.43E-05       | 4.03E-04     |
| Total Detriment                      | 2.36E-04                     | 2.92E-04            | 5.28E-04 | 5.01E-05       | 5.78E-04     |



| Doc. No.         | ENG-RCAL-028                | Rev. 1    | Project No.   | 772030/171     | Page _ | <u>19</u> of | 62 |
|------------------|-----------------------------|-----------|---------------|----------------|--------|--------------|----|
| Subject: Transpo | rtation Risk Assessment for | the Shipm | ent of Unirra | diated Uranium |        |              | -  |
| Preparer:        | J. L. Boles                 |           |               |                | Date   | 5/31/00      |    |
| Checker:         | B. B. Peters                |           |               |                | Date   | 5/31/00      |    |

# Table 13 Radiological Risks from Uranium Shipments (continued)

|                                | Incide    | ent Free Transpor | Accident in | Total          |              |
|--------------------------------|-----------|-------------------|-------------|----------------|--------------|
| Payload Description            |           | F                 | <br>        | Transportation | Radiological |
|                                | Worker    | Public            | Total       | Total          | Risk         |
| Fuel Hanford to Portsmouth 7   | Truck     |                   |             |                |              |
| Total All Fuel Types and Enric | hments    |                   |             |                |              |
| Total Dose (person-rem)        | 0.524     | 0.081             | 0.605       | 0.141          | 0.746        |
| Latent Cancer Fatalities       | 2.10E-04  | 4.05E-05          | 2.50E-04    | 7.04E-05       | 3.21E-04     |
| Total Detriment                | 2.94E-04  | 5.92E-05          | 3.53E-04    | 1.03E-04       | 4.56E-04     |
| Unfinished Fuel Assemblies, 1  | .25% 235U |                   |             |                |              |
| Total Dose (person-rem)        | 9.97E-03  | 1.53E-03          | 1.15E-02    | 5.81E-03       | 0.017        |
| Latent Cancer Fatalities       | 3.99E-06  | 7.65E-07          | 4.75E-06    | 2.91E-06       | 7.66E-06     |
| Total Detriment                | 5.58E-06  | 1.12E-06          | 6.70E-06    | 4.24E-06       | 1.09E-05     |
| Unfinished Fuel Assemblies, 0  | .95% 235U |                   | •           |                |              |
| Total Dose (person-rem)        | 6.01E-02  | 9.30E-03          | 6.94E-02    | 4.38E-02       | 0.113        |
| Latent Cancer Fatalities       | 2.40E-05  | 4.65E-06          | 2.87E-05    | 2.19E-05       | 5.06E-05     |
| Total Detriment                | 3.37E-05  | 6.79E-06          | 4.04E-05    | 3.20E-05       | 7.24E-05     |
| Unfinished Fuel Assemblies, 0  | .71% 235U | I                 | I           |                |              |
| Total Dose (person-rem)        | 8.41E-03  | 1.30E-03          | 9.71E-03    | 2.45E-03       | 0.012        |
| Latent Cancer Fatalities       | 3.36E-06  | 6.50E-07          | 4.01E-06    | 1.23E-06       | 5.24E-06     |
| Total Detriment                | 4.71E-06  | 9.49E-07          | 5.66E-06    | 1.79E-06       | 7.45E-06     |
| Finished Fuel Assemblies, 1.15 | 5% 235U   |                   |             |                |              |
| Total Dose (person-rem)        | 6.07E-02  | 9.40E-03          | 7.01E-02    | 1.49E-02       | 0.085        |
| Latent Cancer Fatalities       | 2.43E-05  | 4.70E-06          | 2.90E-05    | 7.45E-06       | 3.64E-05     |
| Total Detriment                | 3.40E-05  | 6.86E-06          | 4.09E-05    | 1.09E-05       | 5.17E-05     |
| Finished Fuel Assemblies, 1.03 | 3% 235U   |                   | •           |                |              |
| Total Dose (person-rem)        | 6.01E-03  | 9.30E-04          | 6.94E-03    | 1.07E-03       | 0.008        |
| Latent Cancer Fatalities       | 2.40E-06  | 4.65E-07          | 2.87E-06    | 5.35E-07       | 3.40E-06     |
| Total Detriment                | 3.37E-06  | 6.79E-07          | 4.04E-06    | 7.81E-07       | 4.83E-06     |
| Finished Fuel Assemblies, 0.95 | 5% 235U   |                   | •           |                |              |
| Total Dose (person-rem)        | 3.23E-01  | 5.00E-02          | 3.73E-01    | 6.80E-02       | 0.441        |
| Latent Cancer Fatalities       | 1.29E-04  | 2.50E-05          | 1.54E-04    | 3.40E-05       | 1.88E-04     |
| Total Detriment                | 1.81E-04  | 3.65E-05          | 2.17E-04    | 4.96E-05       | 2.67E-04     |
| Finished Fuel Assemblies, 0.71 | % 235U    |                   | •           |                |              |
| Total Dose (person-rem)        | 5.61E-02  | 8.60E-03          | 6.47E-02    | 4.73E-03       | 0.069        |
| Latent Cancer Fatalities       | 2.24E-05  | 4.30E-06          | 2.67E-05    | 2.37E-06       | 2.91E-05     |
| Total Detriment                | 3.14E-05  | 6.28E-06          | 3.77E-05    | 3.45E-06       | 4.11E-05     |

# 4.6 Toxic Chemical Consequence Assessment

This section evaluates the consequences due to the chemical toxicity of uranium that could result from an accidental release during transport of the metallic billets,  $UO_3$  powder, and the worst-



| Doc. No.   | ENG-RCAL-028                  | _ Rev. 1 Project No. 772030/171         | Page | <u>20</u> of | 62 |
|------------|-------------------------------|-----------------------------------------|------|--------------|----|
| Subject: T | ransportation Risk Assessment | or the Shipment of Unirradiated Uranium | -    |              | _  |
| Preparer:  | J. L. Boles                   | -                                       | Date | 5/31/00      |    |
| Checker:   | B. B. Peters                  |                                         | Date | 5/31/00      |    |

case shipment of fuel. The toxicological consequences are given in terms of the concentrations of airborne uranium particulates at various receptor locations. The calculated concentrations are then compared to various exposure limits to evaluate the effects of the release on the public.

According to DOE (1994), for natural or depleted uranium or uranium enriched < 10% in  $^{235}$ U, the toxicity of uranium as a heavy metal is of greater concern than the radiological hazard. The toxicological hazard results from the accumulation of uranium in the kidneys due to the transport of inhaled, soluble uranium compounds or non-soluble particulates. For non-soluble materials to be an inhalation hazard, the size of the particles/aggregates must be 10 µm AED (more probably 3 µm AED) or less (DOE 1994).

The maximum credible release depends on the physical and chemical form of the payload. Powder and large solid masses respond differently to a given accident scenario; the same applies to oxides and metals. The maximum credible accident scenario for the UO<sub>3</sub> powder is an energetic impact event which damages the T-Hopper container and nearly instantaneously creates a puff of particulates that is released to the atmosphere and transported downwind. On the other hand, an impact event is not expected to significantly damage the solid metal billets or fuel. A fire event is postulated as the maximum credible accident scenario for the billets and fuel, which are engulfed in flames due to the combustion of an external fuel, e.g., the diesel fuel from the truck's fuel tank. The duration of the fire is assumed to last 2 hours. The billets and N Reactor fuel elements are treated together, as they are both uranium metal.

# 4.6.1 Uranium Billets/Fuel Release Rate

According to DOE (1994), no significant airborne release is postulated for solid metal in an impact event; however, particulates are released during the oxidation of the metal in a fire. Therefore, the maximum credible release is calculated for a fire event.

Massive uranium metal is difficult to ignite, as large amounts of external heat must be supplied and serious heat loss prevented (DOE 1994). This external heat is assumed to arise from the combustion of diesel fuel from the transportation vehicle. DOE (1994, p. 4-3) provides median values of 1E-4 for the airborne release fraction and 1.0 for the respirable fraction for uranium metal subjected to a fire. These values correspond to the complete oxidization of the metal; experimental values reported for a 2 hour burn produced smaller release fractions. Thus, the use of the median release fractions is conservative.

An additional conservatism is introduced by using the two hour fire duration as the duration for the release. Although the uranium will likely not completely oxidize in two hours, assuming this smaller release time increases the release rate. Regardless of the speed at which uranium oxidizes, it is likely that the fuel source will be exhausted before that time. The efforts of



| Doc. No.    | ENG-RCAL-028                  | Rev. 1_ Project No. 772030           | <u>/171</u> Page | 21_of_ <u>62</u> |
|-------------|-------------------------------|--------------------------------------|------------------|------------------|
| Subject: Tr | ransportation Risk Assessment | for the Shipment of Unirradiated Ura | nium             |                  |
| Preparer:   | J. L. Boles                   | -                                    | Date             | 5/31/00          |
| Checker:    | B. B. Peters                  |                                      | Date             | 5/31/00          |

emergency responders in mitigating a fire during the assumed burn time is also conservatively neglected.

This analysis conservatively does not consider any removal mechanisms of the particulates, e.g., washout, gravitational settling, or removal through contact with vegetation or buildings. This assumption maximizes the airborne concentration and is conservative. Because the molecular weight of uranium oxide is an order of magnitude greater than air, significant settling would be expected, as DOE (1994b) states that in the absence of strong drafts, uranium oxide smoke tends to deposit in the immediate area of the burning metal.

The worst-case shipment of fuel consists of  $0.71\%^{235}$ U unfinished fuel, as this gives the largest uranium loading. The zirconium cladding on the sides of the unfinished fuel is neglected. The entire truckload of 18 billets or 3264 kg U of fuel is assumed to be engulfed in the fire. A 0.044 g/s release rate of aerosolized, respirable particles from burning uranium billets is calculated. Using the same logic for the fuel gives a 0.045 g/s release rate.

 $0.044 \text{ g/s} = (10^{-4})(175 \text{ kg/billet})(1000 \text{ g/kg})(3 \text{ billets/box})(6 \text{ boxes/truck}) / (2 \text{ hr} (3600 \text{ s/hr}))$  $0.045 \text{ g/s} = (10^{-4})(3264 \text{ kg/shipment})(1000 \text{ g/kg}) / (2 \text{ hr} (3600 \text{ s/hr}))$ 

For simplicity, the 0.045 g/s release rate will be used for both fuel and billets.

# 4.6.2 UO<sub>3</sub> Powder Release Rate

Powder can be made airborne by either a fire or an impact event. The airborne release of powder during a fire is due to entrainment caused by the air turbulence induced by the fire. Similarly, during an impact, powder entrainment may be caused by the mechanical disturbance during the dynamics of the impact. Both stresses are considered in the accident scenario involving the T-Hoppers.

The maximum credible accident considered for the  $UO_3$  powder transported by truck is expected to arise from an impact due to a collision. The impact is assumed to cause moderate damage, consisting of rupture of the wall and failure of the gasket, to all the T-Hoppers on the trailer.

For rail transport, the maximum credible accident is due to a collision with a vehicle at a crossing. This scenario would most likely cause considerable damage to the offending vehicle, while the train would sustain minimal damage. However, this analysis conservatively considers the more unlikely scenario in which a vehicle rams the side of a rail car transporting the T-Hoppers. Although the offending vehicle is still likely to sustain the majority of the damage incurred in this accident, the same release rate as calculated for the truck accident is used for simplicity.



| Doc. No.   | ENG-RCAL-028                    | _ Rev. <u>1</u> Project No. <u>772030/171</u> | Page | <u>22</u> of | 62 |
|------------|---------------------------------|-----------------------------------------------|------|--------------|----|
| Subject: T | ransportation Risk Assessment f | r the Shipment of Unirradiated Uranium        | _    |              | _  |
| Preparer:  | J. L. Boles                     |                                               | Date | 5/31/00      |    |
| Checker:   | B. B. Peters                    |                                               | Date | 5/31/00      |    |

DOE (1994, p. 4-87) provides values for the airborne release of powder contained in metal enclosures. The release fractions are dependent on the particle size of the powder. The fraction of the  $UO_3$  powder as a function of particle diameter is not yet known, but it can be assumed that the powder contains particles greater than 0.5 mm in diameter. Experimental measurements involving an impact on steel cans without lids containing powder less than 2 mm in diameter produced an airborne release fraction of 3E-4 and a respirable fraction of 1E-2. If the respirable fraction of the original powder is less than this value, the respirable fraction of the source powder should be used (DOE 1994).

The leakage of aerosolized powder is inhibited by the damaged T-Hopper. Although the rupture from the impact event provides an escape route for the powder, the bulk of the container still encloses the contents. Thus, the amount airborne is reduced by a factor representing the presence of the damaged container. This factor is the leak path factor. This analysis assumes that 10% of the surface area of the container has been compromised in the impact event; thus, 90% of the aerosol undergoes filtration and deposition by the damaged T-Hopper.

The total release of aerosolized, respirable UO<sub>3</sub> particulates is then 4.1 g.

4.1 g = 3\*(4.5E6 g U)\*(3E-4)\*(1E-2)\*(0.1)

# 4.6.3 Concentration Calculation

The concentration is related to the release rate in the fire event, or total release in the impact event, by the atmospheric dispersion parameter,  $\chi/Q$ . This parameter is a function of the receptor location, wind speed, and atmospheric turbulence.  $\chi/Q$  is normalized either to the release rate of a sustained release (in which case the Q is primed Q') or to the total release of a nearly instantaneous "puff" release. This analysis will determine the uranium airborne concentration at three downwind receptor locations: 100 m, 200 m, and 1000 m. The 100 m distance was assumed to be a reasonable estimate of the distance between an interstate highway and the nearest resident, while the further distances show how the concentration falls off.

Two sets of meteorological conditions are examined. The first consists of worst case conditions of wind speed (1 m/s) and atmospheric turbulence (Pasquill stability class F) that cause a maximum concentration. These conditions tend to disperse the released material very slowly, resulting in the highest possible downwind concentrations. However, these conditions are rarely encountered, except perhaps for night conditions, and tend to overstate the actual impacts. The second case consists of more likely, but still relatively rare, conditions of a wind speed of 2 m/s and neutral stability (Pasquill stability class D). The latter set of conditions will be used to calculate the worst-case conditions at the shortest distance (100 m).



| Doc. No.   | ENG-RCAL-028                    | Rev1_ Project No           | 772030/171     | Page_  | 23 of   | 62 |
|------------|---------------------------------|----------------------------|----------------|--------|---------|----|
| Subject: T | ransportation Risk Assessment f | or the Shipment of Unirrac | liated Uranium | -      |         | _  |
| Preparer:  | J. L. Boles                     | -                          |                | Date _ | 5/31/00 |    |
| Checker:   | B. B. Peters                    |                            |                | Date _ | 5/31/00 |    |

Green (1995) calculated  $\chi/Q'$  for the weather conditions and receptor locations described above using the methods of NRC (1982). These values are given below.

- 2.85E-2 s/m<sup>3</sup>:  $\chi/Q'$  for 100 m receptor, Pasquill F, and 1 m/s wind speed
- $3.76\text{E-3 s/m}^3$ :  $\chi/Q'$  for 100 m receptor, Pasquill D, and 2 m/s wind speed
- 9.68E-4 s/m<sup>3</sup>:  $\chi/Q'$  for 200 m receptor, Pasquill D, and 2 m/s wind speed
- 6.63E-5 s/m<sup>3</sup>:  $\chi/Q'$  for 1000 m receptor, Pasquill D, and 2 m/s wind speed

The computer code GXQ version 4.0 (Hey 1993, 1994) was used to calculate  $\chi/Q$  for the puff releases for the same meteorological conditions as for the sustained releases. These values are given below. The GXQ output file is given in the appendix.

- 2.65E-3 m<sup>-3</sup>:  $\chi/Q$  for 100 m receptor, Pasquill F, and 1 m/s wind speed
- 3.14E-4 m<sup>-3</sup>:  $\chi/Q$  for 100 m receptor, Pasquill D, and 2 m/s wind speed
- 4.74E-5 m<sup>-3</sup>:  $\chi/Q$  for 200 m receptor, Pasquill D, and 2 m/s wind speed
- 7.10E-7 m<sup>-3</sup>:  $\chi/Q$  for 1000 m receptor, Pasquill D, and 2 m/s wind speed

The release rate from the billets in the fire event is multiplied by  $\chi/Q'$  to obtain the downwind uranium concentration. Similarly, the total release from the UO<sub>3</sub> powder in the impact event is multiplied by  $\chi/Q$ . Table 14 summarizes the results of the toxic chemical consequence analysis.

| Receptor  | Fuel/Billets     | s, 0.045 g/s release rate T-Hopper Shipments, 4.1 g tota |                            |                  |          | 1.1 g total release       |
|-----------|------------------|----------------------------------------------------------|----------------------------|------------------|----------|---------------------------|
| Location, | χ/Q',            | Concent                                                  | tration, mg/m <sup>3</sup> | $\chi/Q, m^{-3}$ | Concent  | ration, mg/m <sup>3</sup> |
| m         | s/m <sup>3</sup> |                                                          |                            |                  |          |                           |
| 100       | 3.76E-3          | 0.170                                                    | 0.28·TEEL-1                | 3.14E-4          | 1.27     | 2.12 TEEL-2               |
|           |                  |                                                          |                            |                  |          | 0.13·TEEL-3               |
| 200       | 9.68E-4          | 0.0439                                                   | 0.88·TEEL-0                | 4.74E-5          | 0.192    | 0.32·TEEL-1               |
| 1000      | 6.63E-5          | 3.01E-3                                                  | 0.06·TEEL-0                | 7.10E-7          | 2.88E-03 | 0.06·TEEL-0               |
| 100, rare | 2.85E-2          | 1.29                                                     | 2.15·TEEL-2                | 2.65E-3          | 10.7     | 1.07·TEEL-3               |
| case      |                  |                                                          | 0.13·TEEL-3                |                  |          |                           |

Table 14 Uranium Concentrations at Downwind Locations During Accident Conditions

The results in Table 14 are then compared with Temporary Emergency Exposure Limits (TEELs) for uranium oxide established by the Department of Energy Subcommittee on Consequence Assessment and Protective Actions (SCAPA) (Craig 1999). Uranium oxide is used because the billets and fuel will oxidize during the fire; also, the limits for oxide are the same or more conservative than for metal. The DOE Emergency Management Guide (DOE 1997) calls for the use of TEELs when Emergency Response Planning Guidelines (ERPGs) are not available. Although ERPGs are the standard community exposure limits approved by the



| Doc. No          | ENG-RCAL-028                 | Rev. 1   | Project No.    | 772030/171     | _ Page | 24   | _of _ | 62 |
|------------------|------------------------------|----------|----------------|----------------|--------|------|-------|----|
| Subject: Transpo | ortation Risk Assessment for | the Ship | ment of Unirra | diated Uranium | -      |      |       | _  |
| Preparer:        | J. L. Boles                  | -        |                |                | Date   | 5/31 | 1/00  |    |
| Checker:         | B. B. Peters                 |          |                |                | Date   | 5/3  | 1/00  |    |

American Industrial Hygiene Association, less than 100 chemicals have been assigned ERPGs, and none of those include compounds of uranium. The definitions of the TEEL limits are as follows:

- TEEL-0: The threshold concentration below which most people will experience no appreciable risk of health effects. The TEEL-0 for uranium oxide (insoluble compound) is 0.05 mg/m<sup>3</sup>.
- TEEL-1: The maximum concentration in air below which it is believed nearly all individuals could be exposed without experiencing other than mild transient health effects or perceiving a clearly defined objectionable odor. The TEEL-1 is 0.6 mg/m<sup>3</sup>.
- TEEL-2: The maximum concentration in air below which it is believed nearly all individuals could be exposed without experiencing or developing irreversible or other serious health effects or symptoms that could impair their abilities to take protective action. The TEEL-2 is 0.6 mg/m<sup>3</sup>.
- TEEL-3: The maximum concentration in air below which it is believed nearly all individuals could be exposed without experiencing or developing life-threatening health effects. The TEEL-3 is 10 mg/m<sup>3</sup>.

Using these definitions and the results in Table 14, at distances of 200 m and greater from an accident involving any payload, the results are either mild transient health effects (TEEL-1) or nothing at all (TEEL-0). At a distance of 100 m, an accident involving powder could result in an airborne concentration at which irreversible or other serious health effects could occur (twice the TEEL-2). This is about 13% of the level at which most people could be exposed without experiencing life-threatening health effects. At the same distance involving an accident with the fuel or billets payload, only mild transient health effects are expected to occur (TEEL-1). It should be noted that for the very rare weather conditions at 100 m, the TEEL-3 limit is exceeded for an accident involving powder, while for the billets and fuel payloads under the same worst-case meteorological conditions, the downwind concentrations do not exceed TEEL-1.

Table 14 also indicates the dilution of the uranium aerosol with distance. The airborne concentrations of uranium drop by about an order of magnitude from 100 to 200 m, and again from 200 to 1000 m. Although the concentrations at 100 and 200 m are about an order of magnitude less for the fuel or billets payloads than for the powder payload, the concentrations are nearly equal at 1000 m, despite the difference in the releases.

Note that these values are the consequences from an accident, and do not reflect the frequency of occurrence of an accident or the assumed meteorological conditions. As such, they cannot be compared directly to the radiological risk values in Table 1. A risk assessment weights the consequences by the frequency (or probability) of occurrence of the release. The toxicological consequences have not been weighted by the probability of the release.



| Doc. No.        | ENG-RCAL-028            | Rev. <u>1</u> Project No       | 772030/171     | Page _ | <u>25</u> of | 62 |
|-----------------|-------------------------|--------------------------------|----------------|--------|--------------|----|
| Subject: Transp | portation Risk Assessme | nt for the Shipment of Unirrad | diated Uranium | _      |              |    |
| Preparer:       | J. L. Boles             | -                              |                | Date   | 5/31/00      | )  |
| Checker:        | B. B. Peters            |                                |                | Date   | 5/31/00      | )  |

# **5.0 APPENDIX**

5.1 Dose Rate Calculations for Billets, UO<sub>3</sub> Powder, and N Reactor Fuel

The RADTRAN v. 4 computer code requires as input the dose rate at 1 m from the vertical planes projected by the outer lateral surfaces of the transportation vehicle for exclusive use shipments. This dose rate is then used to extrapolate the dose rate at further distances using the method described in Neuhauser and Kanipe (1992). Shielding calculations were done to estimate the dose rates at 1 m from the outer lateral surfaces of the transportation vehicle loaded with the Model G-4255 Wooden Box, the Model G-4214 Wooden Box, and the T-Hopper.

The billets are transported in the G-4255 wooden box. Six boxes are shipped by truck per shipment, each holding three 175 kg billets in an unknown arrangement. For simplicity, the billets were assumed to be smeared over the entire interior volume of the box. The interior dimensions of the wooden box are taken from FDH (1999), consisting of 30.75 in. L x 24.125 in. W x 8 in. D interior, with a minimum plywood thickness of 0.75 in. A schematic of the box is shown in Section 5.13. The box rests on top of support skids attached to its largest side, while a smaller side faces the lateral surface of the transport vehicle, assumed to be 3 m wide. For this calculation it was assumed that the 30.75 in. x 8 in. side faced the front of the trailer, and the 24.125 in. x 8 in. side faced the lateral side. The six boxes were assumed to be aligned one behind the other, neglecting the shielding between boxes. The dose rate was calculated at 1 m from the edge of the transport vehicle at the midpoint of the lateral surface of the array.

The UO<sub>3</sub> powder is transported in T-Hoppers. An array of three T-Hoppers is shipped by truck, while an array of ten is shipped by rail. The T-Hopper consists of a frame that encloses a conical structure that is widest at the bottom. A schematic of the T-Hopper is shown in Section 5.13. The dose rate was calculated at 1 m from the lateral surface of the transport vehicle, assumed to be 3 m wide. The UO<sub>3</sub> powder is contained in the cone-shaped structure, with a 5 ft diameter cylindrical base at the bottom. This geometry was approximated for simplicity as a cylinder of the height of the T-Hopper (6 ft), with a radius calculated from the powder mass *m*, density *r*, and height *h*. Using the equations for density and volume, the radius *r* was calculated as

$$r = \sqrt{\frac{m}{rph}}$$

The density of  $UO_3$  powder is 7.29 g/cm<sup>3</sup> (Lide 1993). Assuming the interstitial void space of the powder results in a packing fraction of 0.68, the bulk density of the powder is 4.96 g/cm<sup>3</sup>. For a powder mass of 5454.5 kg, the calculated radius is 43.75 cm.

The fuel elements are transported in the Model G-4214 Wooden Box. The interior dimensions of the wooden box are taken from FDH (1999), consisting of 30 in. L x 14.125 in. W x 8.375 in. H



| Doc. No.     | ENG-RCAL-028                 | Rev1_ Project No772030/171               | Page | <u>26</u> of | 62 |
|--------------|------------------------------|------------------------------------------|------|--------------|----|
| Subject: Tra | ansportation Risk Assessment | for the Shipment of Unirradiated Uranium | -    |              |    |
| Preparer:    | J. L. Boles                  | -                                        | Date | 5/31/00      | )  |
| Checker:     | B. B. Peters                 |                                          | Date | 5/31/00      | )  |

interior, with a minimum thickness of the plywood container of 0.75 in. A schematic of the box is shown in Section 5.13. To prevent the formation of a critical configuration in the event of an accident, limits on the total uranium mass in a shipment of the 0.95% and 1.25% enriched fuel have been derived (Ferrell 1999). Mass limits for the 1.03 and 1.15% enriched fuel were interpolated from these limits. These limits are 1628, 1375, 996, and 680 kg, for fuel containing 0.95, 1.03, 1.15, and 1.25% <sup>235</sup>U, respectively. The number of boxes per shipment was assumed based on these criticality based shipment mass limits and the 544 kg capacity of the boxes. Fuel containing 0.71% <sup>235</sup>U, the same amount found in natural uranium, is not limited by criticality, in which case 6 boxes per shipment were assumed. The array was assumed to be arranged in a similar fashion as the array of boxes containing billets, i.e., the side with the skids on bottom, the largest lateral face of the box toward the front, and the boxes of the array adjacent to each other centered on the trailer. The dose rate was calculated at 1 m from the lateral sides of the vehicle edge.

The source terms for the billets and fuel are taken from Table 5.2.1-1 of FDH (1999), which gives the photon production in eighteen energy groups at a decay of 1 year. Because of the similarity between the source terms for the 0.95%, 1.10%, and 1.25% <sup>235</sup>U enriched fuels, the same source term is used for each enrichment. There are a couple of small differences in the source terms in Table 5.2.1-1 of FDH (1999), reproduced in Table 15; the source term used in the calculations conservatively took the highest photon production of each energy group of the source term of the three enrichments.

| Average  | Photo    | on Production rate | $e(s^{-1})$ |
|----------|----------|--------------------|-------------|
| Energy   |          | 235U enrichment    |             |
| (MeV)    | 0.95%    | 1.10%              | 1.25%       |
| 0.01     | 1.55E+04 | 1.54E+04           | 1.55E+04    |
| 0.025    | 1.72E+03 | 1.70E+03           | 1.72E+03    |
| 0.0375   | 1.02E+03 | 1.02E+03           | 1.02E+03    |
| 0.0575   | 2.02E+03 | 2.03E+03           | 2.02E+03    |
| 0.085    | 1.84E+03 | 1.82E+03           | 1.84E+03    |
| 1.25E-01 | 7.76E+02 | 7.58E+02           | 7.76E+02    |
| 0.225    | 1.32E+03 | 1.26E+03           | 1.32E+03    |
| 0.375    | 3.39E+02 | 3.39E+02           | 3.39E+02    |
| 0.575    | 1.82E+02 | 1.82E+02           | 1.82E+02    |
| 0.85     | 1.14E+02 | 1.14E+02           | 1.14E+02    |
| 1.25     | 7.92E+01 | 7.93E+01           | 7.92E+01    |
| 1.75     | 1.21E+01 | 1.21E+01           | 1.21E+01    |
| 2.25     | 3.50E-03 | 3.50E-03           | 3.50E-03    |
| 2.75     | 1.99E-03 | 1.99E-03           | 1.99E-03    |

Table 15 Billets and Fuel Source Term from FDH (1999)



| Doc. No.    | ENG-RCAL-028                 | Rev. 1 Project No. 772030/171            | Page _ | <u>27</u> of <u>62</u> |  |
|-------------|------------------------------|------------------------------------------|--------|------------------------|--|
| Subject: Tr | ansportation Risk Assessment | for the Shipment of Unirradiated Uranium | -      |                        |  |
| Preparer:   | J. L. Boles                  | -                                        | Date   | 5/31/00                |  |
| Checker:    | B. B. Peters                 |                                          | Date   | 5/31/00                |  |

| 3.5   | 1.78E-03 | 1.78E-03 | 1.78E-03 |
|-------|----------|----------|----------|
| 5     | 7.63E-04 | 7.64E-04 | 7.63E-04 |
| 7     | 8.78E-05 | 8.79E-05 | 8.78E-05 |
| 9.5   | 1.01E-05 | 1.01E-05 | 1.01E-05 |
| Total | 2.49E+04 | 2.47E+04 | 2.49E+04 |

The source term for the powder is derived from Table 4, decayed 10 years using the computer code ORIGEN-S (Hermann and Westfall 1997) of the SCALE v. 4.3 code package (McCoy 1998). This decay time allows some buildup of daughter products that are part of the long decay chains of uranium and is a conservative estimate of the time since the powder was processed. The most important daughter product in this inventory from a shielding standpoint is <sup>234m</sup>Pa, with several low-intensity, high-energy gamma rays and a 2.28 MeV endpoint energy beta particle at 98.6% intensity. The very short-lived daughter products <sup>210</sup>Po, <sup>211</sup>Po, <sup>212</sup>Po, <sup>215</sup>Po, <sup>216</sup>Po, <sup>218</sup>Po, and <sup>223</sup>Fr included in the ORIGEN-S output are not included in ISO-PC's data library, but all are of very low activity, energy, or intensity, and so have no effect on the shielding analysis.

The computer code ISO-PC version 2.1 (Rittmann 1995, 1996) was used to calculate the dose rates, summarized in Table 16. Dose rates were calculated at 1 m and 2 m from the vertical plane projected by the outer lateral surface of the transportation vehicle, and at the crew location, assumed to be 3.1 m from the front of the array, which is the RADTRAN default value for trucks (Neuhauser and Kanipe 1992). The anterior-to-posterior flux-to-dose-rate conversion factors from ANS (1991) were used, which are the most conservative and represent radiation entering the front of the body. Buildup was calculated in the uranium source material for all shipments.

| Payload                                 | Lateral - 1 m | Lateral - 2 m | Crew Location |
|-----------------------------------------|---------------|---------------|---------------|
| Array of 6 Boxes of Billets             | 0.086         | 0.045         | 0.011         |
| Array of 3 T-Hoppers                    | 0.44          | 0.24          | 0.074         |
| Array of 10 T-Hoppers                   | 0.73          | 0.47          | 0.074         |
| Array of 6 Boxes of 0.71% enriched fuel | 0.052         | 0.025         | 9.5E-3        |
| Array of 3 Boxes of 0.95% enriched fuel | 0.034         | 0.016         | 0.011         |
| Array of 3 Boxes of 1.03% enriched fuel | 0.034         | 0.016         | 0.011         |
| Array of 2 Boxes of 1.15% enriched fuel | 0.023         | 0.011         | 0.011         |
| Array of 2 Boxes of 1.25% enriched fuel | 0.023         | 0.011         | 0.011         |

Table 16 Dose Rates (mrem/h) from Uranium Payloads



| Doc. No.   | ENG-RCAL-028                  | Rev. 1 Project No. 772030/171            | Page | <u>28</u> of <u>6</u> | 2 |
|------------|-------------------------------|------------------------------------------|------|-----------------------|---|
| Subject: T | ransportation Risk Assessment | for the Shipment of Unirradiated Uranium | า    |                       |   |
| Preparer:  | J. L. Boles                   | ·                                        | Date | 5/31/00               |   |
| Checker:   | B. B. Peters                  |                                          | Date | 5/31/00               |   |

#### The ISO-PC input files for the billets boxes, the T-Hopper, and the fuel boxes follow.

```
3 Billets - Uranium TRA - TI Calc
0
Array of 6 boxes: 1 m and 2 m from vhcl edge
&Input Next=1, Option=0, Ispec=3, Dunit=1, Iconc=0, Ntheta=30, Npsi=20,
Igeom=10, T=78.11, 1.905, X=289.05, 389.05, Y=20.32, Slth=367.67,
Nshld=2, Jbuf=1, Weight(31)=3.15E6,
                    1.55E+04 0.01
Source(1,1) =
                                       0
                     1.72E+03 0.025
                                       0
                     1.02E+03 0.0375 0
                     2.02E+03 0.0575 0
                     1.84E+03 0.085
                                      0
                     7.76E+02 0.125
                                       0
                     1.32E+03 0.225
                                      0
                     3.39E+02 0.375
                                      0
                     1.82E+02 0.575
                                      0
                     1.14E+02 0.85
                                       0
                     7.92E+01 1.25
                                       0
                     1.21E+01 1.75
3.50E-03 2.25
                                      0
                                      0
                     1.99E-03 2.75
                                      0
                     1.78E-03 3.5
                                      0
                     7.63E-04 5
                                       0
                     8.78E-05 7
                                      0
                     1.01E-05 9.5
                                       <u>3</u> 0
       15 5.398
U
wood-C 6
                    0.25
1wood-0 23
                   0.25
Crew location, 3.1 m from front of array
&Input Next=2, T=367.67, 1.905, X=679.58, Slth=78.11 &
End of Input
&Input Next=6 &
  772030/171 - Update NLO Box SARP.
  Source is per gram of 1.25% U235 taken from Table 5.2.1-1 of
   HNF-SD-TP-SARP-019, Rev. K, and is based on (wt%): 1.34E-4 234U,
    1.256E-2 235U, 1.00E-3 236U, 9.88E-1 238U, 4.14E-11 241Pu, 2.58E-5 99Tc,
    and 1.56E-10 90Sr, decayed 1 year.
  Weight(31) scales the photon source groups; 3.15E6 is the weight (g) of the
    U in 6 boxes, 3 billets smeared per box, 175 kg per billet.
  Dimensions of box taken from HNF-SD-TP-SARP-019, Fig. 1.2.1-4, G-4255:
    30.75" L x 24.125" W x 8" D interior, 0.75" thick minimum plywood shld.
  U bulk density = 3 billets/box * 175 kg/billet / InteriorVolume
 Dose pt is at the vehicle edge, assuming the array of 6 boxes is aligned
   on the longitudinal centerline, with the 30.75"x8" face facing the front,
   the 30.75"x24.125" face facing the bottom. The dose point is at the
   center of the 24.125"x8"x6boxes array, at vhcl edge.
  C:\My Documents\isopc\Urisk\billet2a.in
0
          2 T-Hopper - Uranium TRA - TI Calc - ORIGENS Weights
6 ft H cyl; Odd-Centered; 1 m and 2 m from vhcl edge
&Input Igeom=7, SLTH=182.88, Y=91.44, T=43.75, 0.47, X=250., 350,
Ntheta=30, Npsi=20, Ispec=3, Dunit=1, Option=0, Iconc=0, Nshld=2,
Jbuf=1,
                 2.61E-06 ,
WEIGHT(332) =
                              WEIGHT(485) =
                                              4.45E-07 ,
               9.38E-12 ,
                            WEIGHT(488) =
                                              4.15E-11 ,
WEIGHT(414) =
                4.27E-08 ,
WEIGHT(508) =
                              WEIGHT(487) =
                                              2.62E-06 ,
                            WEIGHT(487) - 2.022
WEIGHT(436) = 4.15E-11,
WEIGHT(341) = 2.62E-06,
WEIGHT(524) = 2.61E-11,
                            WEIGHT(364) =
                                             2.59E-06 ,
WEIGHT(510) = 4.45E-07, WEIGHT(442) =
                                             2.61E-11 ,
```



| reparer: J. L. Boles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date <u>5/31/00</u> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| hecker: B. B. Peters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date <u>5/31/00</u> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |
| $t_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| WEIGHI(403) = 4.27E-00, $WEIGHI(510) = 2.00E-04$ ,<br>WEIGHT(337) = 2.62E-06 WEIGHT(450) = 8.61E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| WEIGHT(525) = 2.61E-11, $WEIGHT(431) = 9.91E-11$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| WEIGHT(511) = 4.45E-07, $WEIGHT(530) = 1.50E+00$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| WEIGHT(512) = 4.45E-07, $WEIGHT(371) = 1.82E-05$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| WEIGHT(351) = 2.62E-06 , WEIGHT(533) = 1.50E+00 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| WEIGHT(523) = 2.61E-11 , WEIGHT(441) = 1.95E-03 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| WEIGHT(514) = 4.45E-07, $WEIGHT(520) = 2.24E+00$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| WEIGHT(362) = 2.62E-06 , WEIGHT(476) = 8.61E-02 , WEIGHT(560) = 0.61E-01 , WEIGHT(560) = 0.61E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
| WEIGHT(522) = 2.61E-11, $WEIGHT(398) = 2.01E-01$ ,<br>WEIGHT(522) = 1.60E+00,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| WEIGHI(526) - 1.50E+00 &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| 0 23 0.832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| 1Fe 9 7.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| Contribution from nearest neighbors (odd-centered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| &Input Next=2, X=292.79, 381.74 &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| Contribution from 2nd nearest neighbors (odd-centered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
| &Input X=394.21, 464.12 &<br>Contribution from 2nd nonvoct noighbourg (add contered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| CONCLEDUCION IION SIG NEAREST NEIGNBORS (OGG-CENTEREG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
| Contribution from 4th nearest neighbors (odd-centered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
| &Input X=658.87, 702.93 &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| Contribution from last nearest neighbor (odd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| &Input X=801.96, 838.54 &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| Even-Centered; 1 m and 2 m from vhcl edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| &Input X=261.36, 358.20 &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| Contribution from nearest neighbors (even-centered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| «Input A=338.70, 418.04 «<br>Contribution from 2nd nearest neighbors (even-centered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| &The second real second regime is the second reg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| Contribution from 3rd nearest neighbors (even-centered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| &Input X=589.08, 637.98 &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| Contribution from 4th nearest neighbors (even-centered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| &Input X=729.95, 769.95 &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| Crew location - 3.1 m from front of array                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| &Input X=386.2 &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| Ena<br>Alpout Next-6 &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
| 772030/167 - Radtran analysis to support II shipments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
| Inventory is per 1 T-Hopper, decayed 10 years using ORIGENS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
| Case 1 assumed a cylinder of height 6 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| with radius calculated from mass, density, and height.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
| rho=4.96 g/cc = 7.29 g/cc * 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| UO3 den ^^^ powder packing factor assu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | umed                |
| $V=pi*r^2*h=m/rho> r = SQRT(m/rho/pi/h),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| m=5454.5 Kg UU3<br>Wall thigknogg of 2/16" taken from Dwg $47X_{-}5500_{-}M_{-}00006$ "T-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hoppor              |
| Ass'v" Westinghouse Matils Co. of Obio 1986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | норрег              |
| Width of conveyance assumed 3 m. pkg on centerline of convey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | vance.              |
| Case 2, et al, accounts for contribution of adjacent T-Hoppe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | er. The distance    |
| to the dose pt is calc from a rt triangle: X=SQRT((5ft)^2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2+(250cm)^2)        |
| Case 7 is centered on an array of 10, whereas Case 1 is cent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ered on an          |
| array of 9. Hence the names even and odd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| Other distances: T-Hpr edge, vhcl edge, 1 m from T-Hpr: 76.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2, 150., 176.2,     |
| Utner case:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| Smeared over cage volume; same dose pt distances<br>Simput Next-1 Ideom-10 STTU-152 / V-102 00 T-151 02 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47                  |
| αιμραι Next-1, 19e0m-10, SLIH=152.4, 1=162.68, 1=151.93,0.<br>x=152 03 226 73 252 4 226 73 ε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I/,                 |
| $\frac{1}{15} = \frac{1}{15} $ |                     |
| 0 23 0.225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |
| IFE 9 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |



| Doc. No.   | ENG-RCAL-028 Rev. 1 Project No. 772030/171                              | Page <u>30</u> of <u>62</u> |
|------------|-------------------------------------------------------------------------|-----------------------------|
| Subject: ] | Transportation Risk Assessment for the Shipment of Unirradiated Uranium |                             |
| Preparer:  | J. L. Boles                                                             | Date 5/31/00                |
| Checker:   | B. B. Peters                                                            | Date 5/31/00                |
| -          |                                                                         |                             |
|            |                                                                         |                             |
| 1          | 1) 1.25% 235U, 2 boxes: 1 m and 2 m from vhcl edge                      |                             |
| 8          | Input Next=1, Option=0, Ispec=3, Dunit=1, Iconc=0, Sfact=1.,            |                             |
|            | Igeom=10, Nshld=2, Jbuf=1, Ntheta=30, Npsi=20,                          |                             |
|            | T=76.2, 1.905, X=288.1, 388.1, Y=21.27, Slth=71.76,                     |                             |
|            | Weight $(31)=0.680E6$ ,                                                 |                             |
|            | Source= 1.55E+04 0.01 0                                                 |                             |
|            | 1.72E+03 0.025 0                                                        |                             |
|            | 1.02E+03 0.0375 0                                                       |                             |
|            | 2.03E+03 0.0575 0                                                       |                             |
|            | 1.84E+03 0.085 0                                                        |                             |
|            | 7.76E+02 0.125 0                                                        |                             |
|            | 1.32E+03 0.225 0                                                        |                             |
|            | 3.39E+02 0.375 0                                                        |                             |
|            | 1.82E+02 0.575 0                                                        |                             |
|            | 1.14E+02 0.85 0                                                         |                             |
|            | 7.93E+01 1.25 0                                                         |                             |
|            | 1.21E+01 $1.75$ $0$                                                     |                             |
|            | $1.90 \text{ m}_{-03} 2.25 \text{ 0}$                                   |                             |
|            | 1.79E-02.25                                                             |                             |
|            | 7.64F-04.5                                                              |                             |
|            | 8 79E-05 7 0                                                            |                             |
|            | 1.01E-05 9.5 0 &                                                        |                             |
|            | U 15 5.847                                                              |                             |
|            | wood-C 6 0.25                                                           |                             |
| 1          | wood-0 23 0.25                                                          |                             |
| 2          | 2) Crew location, 3.1 m from front of array                             |                             |
| 8          | Input Next=2, T=71.76, 1.905, X=383.66, Slth=76.2 &                     |                             |
| 3          | 3) 0.95% 235U, 3 boxes: 1 m and 2 m from vhcl edge                      |                             |
| 8          | Input Next=1, T=76.2, 1.905, X=288.1, 388.1, Y=21.27, Slth=107.63,      |                             |
|            | Weight(31)=1.628E6 &                                                    |                             |
|            | U 15 9.333                                                              |                             |
|            | wood-C 6 0.25                                                           |                             |
| 1          | wood-0 23 0.25                                                          |                             |
| 4          | H) Crew location, 3.1 m from front of array                             |                             |
| ۵<br>۲     | (Input Next=2, T=107.63, 1.905, X=419.54, Sitn=76.2 &                   |                             |
| 5          | 37 1.038 2350, 3 DOXES, 1 III and 2 III From Vict edge                  |                             |
| c          | $M_{1} = 1, 1 = 1, 1 = 1, 2, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$ |                             |
|            | II = 15, 7, 882                                                         |                             |
|            | wood-C 6 0.25                                                           |                             |
| 1          | wood-0 23 0.25                                                          |                             |
| 4          | A) Crew location, 3.1 m from front of array                             |                             |
| 8          | Input Next=2, T=107.63, 1.905, X=419.54, Slth=76.2 &                    |                             |
| e          | 5) 1.15% 235U, 2 boxes: 1 m and 2 m from vhcl edge                      |                             |
| 8          | Input Next=1, T=76.2, 1.905, X=288.1, 388.1, Y=21.27, Slth=71.76,       |                             |
|            | Weight(31)=0.996E6 &                                                    |                             |
|            | U 15 8.563                                                              |                             |
| -          | wood-C 6 0.25                                                           |                             |
|            | 1 wood = 0.23 $0.25$                                                    |                             |
| 4          | 2) Crew location, 3.1 m from front of array                             |                             |
| C<br>T     | 211put Next-2, 1-71.70, 1.905, A-363.00, Sitil-70.2 &                   |                             |
| 1          | Thout Next=6 &                                                          |                             |
| C          | 772030/171 - Update NLO Box SARP.                                       |                             |
|            | Source is per gram of 0.95, 1.10, or 1.25% U235 taken from Table 5      | .2.1-1 of                   |
|            | HNF-SD-TP-SARP-019, Rev. K, and is based on (wt fraction): 1.00E        | -3 236U,                    |
|            | 4.14E-11 241Pu, 2.58E-5 99Tc, and 1.56E-10 90Sr, for all enrichm        | ients, and                  |
|            | 1.33E-4 234U, 9.56E-3 235U, 9.91E-1 238U, for 0.95% enriched,           | -                           |
|            | 1.33E-4 234U, 1.106E-2 235U, 9.89E-1 238U, for 1.10% enriched, a        | nd                          |
|            | 1.34E-4 234U, 1.256E-2 235U, 9.88E-1 238U, for 1.25% enriched.          |                             |
|            | These activities are decayed 1 year in Table 5.2.1-1.                   |                             |
|            | Because the three fuels produce similar photon source terms, the        | highest                     |
|            | production rate for each energy group from the three fuels is us        | sed.                        |



| Doc. No.    | ENG-RCAL-028                 | Rev. 1 Project No. 772030/171            | Page | <u>31</u> of | 62 |
|-------------|------------------------------|------------------------------------------|------|--------------|----|
| Subject: Tr | ansportation Risk Assessment | for the Shipment of Unirradiated Uranium | -    |              | _  |
| Preparer:   | J. L. Boles                  | ·                                        | Date | 5/31/00      |    |
| Checker:    | B. B. Peters                 |                                          | Date | 5/31/00      |    |

| weight(31) scales the photon source groups, which are given per gram;          |
|--------------------------------------------------------------------------------|
| 1.628E6 is the weight (g) of the 0.95% 2350 fuel in 3 boxes;                   |
| 1.375E6 is the weight (g) of the 1.03% 235U fuel in 3 boxes;                   |
| 0.996E6 is the weight (g) of the 1.15% 235U fuel in 3 boxes;                   |
| 0.680E6 is the weight (g) of the 1.25% 235U fuel in 3 boxes;                   |
| Inventory is per shipment based on criticality.                                |
| Dimensions of box taken from HNF-SD-TP-SARP-019, Fig. 1.2.1-4, G-4214:         |
| 30" L x 14.125" W x 8.375" D interior, 0.75" thick minimum plywood shld,       |
| 544 kg per box maximum payload weight.                                         |
| Case 1 is 1.25% 235U payload.                                                  |
| 2 boxes per shipment, 680 kg/shipment.                                         |
| 5.847  g/cc = 680E3  g / (2x35.88x76.2x21.27)  cc                              |
| Case 2,4 is to check Radtran's assumption that crew dose rate will not be      |
| greater than 2 mrem/h.                                                         |
| Case 3 is 0.95% 235U payload.                                                  |
| 3 boxes per shipment, 1628 kg/shipment.                                        |
| 9.333  g/cc = 1628E3  g / (3x35.88x76.2x21.27)  cc                             |
| Dose pt is at the vehicle edge, assuming the array of 3 boxes is aligned       |
| on the longitudinal centerline, with the 30"x8" face facing the front,         |
| the 30"x14.125" face facing the bottom. The dose point is at the               |
| center of the 14,125"x8,375"x3boxes array, at 1 and 2 m from ybcl edge.        |
| Case 5 is 1.03% 235U pavload                                                   |
| 3 hoves per shipment, 1375 kg/shipment,                                        |
| 7 882 a/cc = 137583 a / (3x35 88x76 2x21 27) cc                                |
| Case 6 is 1 15% 23511 fuel                                                     |
| 2 hoves per shipment 906 kg/shipment                                           |
| 2 boxed per bingmente, $y > x + y - x + y + z + z + z + z + z + z + z + z + z$ |
| C: My Degumental jacob Mrick fuel 2 in                                         |
| C · / MA DOCAMETICE / TEODO / OT TEV / TAGTS · TH                              |

The ORIGEN-S input file for the T-Hopper source term

```
#ORIGENS
0$$ E T
DECAY CASE
3$$ 21 1 1 0 A16 4 A33 0 E T
35$$ 0 T
56$$ A2 4 A6 1 A10 0 A13 4 A14 5 A15 3 E
57** 0 E T
THOPPER
THOPPER
60** .3 1 3 10
61** F1E-18
65$$
'GRAM-ATOMS GRAMS CURIES WATTS-ALL WATTS-GAMMA
 21Z
3Z 3Z 1 0 0 3Z 3Z 6Z
 21Z
73$$92234092235092236092238074**2.2398.613E-22.009E-11.498
75$$ 2 2 2 2 T
56$$ F0 T
END
```

(this page reserved for shielding check sheet)



| Doc. No.   | ENG-RCAL-028                      | _ Rev. 1 Project No. 772030/171        | Page | <u>32</u> of 0 | 62 |
|------------|-----------------------------------|----------------------------------------|------|----------------|----|
| Subject: T | ransportation Risk Assessment for | r the Shipment of Unirradiated Uranium |      |                |    |
| Preparer:  | J. L. Boles                       |                                        | Date | 5/31/00        |    |
| Checker:   | B. B. Peters                      |                                        | Date | 5/31/00        |    |

## 5.2 RADTRAN Input File for Billets

```
&& RADTRAN 4 - Unirradiated Uranium EA - Billets
&& J.L. Boles, May 25 2000, 772030/171
&& Accident Severity Categories and Probabilities derived from NUREG-0170 (1977),
&& Table 5-3.
&& Accident Rates taken from Saricks and Kvitek (1994), US Average, Interstates.
&& Release fraction is 0 for Cat 1, 1 for Cat 2-8.
&& Aerosol and Respirable Fractions are median values for Cat 2, bounding
&& for Cat 3-8.
&& 75 shipments = 234 MTU / 175 kg/billet / 3 billets/box / 6 boxes/shipment
&& TI = 0.086 from ISO-PC shldg calc, 3/16" Fe wall, src from Table 5.2.1-1,
&& HNF-SD-TP-SARP-019, Rev. K, at 1 m from the edge of the vehicle carrying
   an array of 6 boxes.
&&
&& Crew-source distance DNORML(8)= 8.27 m based on ISO-PC calc crew dose rate
&& and Eq. 12 of Technical Manual (N&K 1989).
&& Minimum stop time = twice that calculated by Highway code
&& Neutron dose rate negligible
&& CPD = 3.9053 m = length of single layer of 6 boxes/shipment
&& Exclusive use truck shipment
TITLE Uranium EA - Billets - Direct Route - Truck
FORM UNIT
DIMEN 7 8 1 10 18
PARM 1 3 2 1 0
          5.9 334.1 2173.7
POPDEN
PACKAGE
  LABGRP
      BILLET
SHIPMENT
   LABISO
      U234 U235 U236 U238 PU241 TC99
                                                       SR90
NORMAL
   NMODE=1
       8.783E-01 1.116E-01 1.010E-02 8.849E+01 4.025E+01 2.416E+01
       2.000E+00 8.270E+00 0.000E+00 0.000E+00 1.084E+01 0.000E+00
       0.000E+00 5.000E+01 2.000E+01 0.000E+00 1.000E+02 1.000E+02
2.000E+00 0.000E+00 0.000E+00 1.000E+00 4.700E+02 7.800E+02
       2.800E+03
ACCIDENT
   ARATMZ
    NMODE=1
                 2.03E-07 3.58E-07 3.58E-07
   SEVFRC
     NPOP=1
      NMODE = 1
       4.62E-01 3.02E-01 1.76E-01 4.03E-02 1.18E-02 6.47E-03 5.71E-04 1.13E-04
     NPOP=2
       NMODE=1
       4.35E-01 2.85E-01 2.21E-01 5.06E-02 6.64E-03 1.74E-03 6.72E-05 5.93E-06
     NPOP=3
       NMODE = 1
       5.83E-01 3.82E-01 2.78E-02 6.36E-03 7.42E-04 1.46E-04 1.13E-05 9.94E-07
RELEASE
   RFRAC
      GROUP=1
      0.0 7*1.0E+0
   AERSOL
      DISP=2
       0.0 1.E-4 6*1.0E-3
   RESP
      DISP=2
      0.0 7*1.
DEFINE U234
      8.93E+07 1.73E-03 2.43E-05 1.30E+08 2.60E+05 0.00E+00
```



 Doc. No.
 ENG-RCAL-028
 Rev. 1
 Project No.
 772030/171
 Page 33
 of 62

 Subject:
 Transportation Risk Assessment for the Shipment of Unirradiated Uranium
 Preparer:
 Date 5/31/00

 Preparer:
 J. L. Boles
 Date 5/31/00

 Checker:
 B. B. Peters
 Date 5/31/00

```
0.00E+00 1.00E-02 3.00E+00 8.20E+07 6.50E+04
DEFINE U236
     8.54E+09 1.57E-03 1.92E-05 6.70E+06 2.50E+05 0.00E+00
     0.00E+00 1.00E-02 3.00E+00 7.70E+07 6.10E+04
EOF
ISOTOPES -1 75 1 0.086 1. 0. BOXARRAY
       U234
                2.625E+00 BILLET 2
       11235
                 8.704E-02 BILLET 2
       U236
                 2.038E-01 BILLET
                                  2
                 1.046E+00 BILLET 2
       11238
                1.304E-02 BILLET 2
       PU241
       TC99
                 1.390E+00 BILLET 2
                 6.929E-02 BILLET 2
       SR90
PKGSIZ
     BOXARRAY 3.9053
DISTKM
     NMODE=1 3870.4
EOF
EOT
```

5.3 Radtran Input File for UO<sub>3</sub> Powder via Direct Route Truck

```
&& RADTRAN 4 - Unirradiated Uranium EA - UO3 Powder - Truck - Direct
&& J.L. Boles, Aug. 31 1999, 772030/167
&& Accident Severity Categories and Probabilities derived from NUREG-0170
&& (1977), Table 5-3.
&& Accident Rates taken from Saricks and Kvitek (1994), US Average.
&& Release fraction is 0 for Cat 1, 0.1 for Cat 2, and 1 for Cat 3-8.
&& Aerosol and Respirable Fractions are median values for Cat 2, bounding
&& for Cat 3-8.
&& 49 shipments = 147 T Hoppers / 3 T Hoppers per truck
&& TI = 0.44 from ISO-PC shidg calc, 3/16" Fe wall, src decayed 10 yrs
&& Crew-source distance DNORML(8)= 7.71 m based on ISO-PC calc crew dose rate
&& and Eq. 12 of Technical Manual (N&K 1989).
&& Minimum stop time = twice that calculated by Highway code
&& Neutron dose rate negligible;
&& 4.572 m CPD = length of array;
&& Exclusive Use truck shipment
TITLE Uranium EA - Direct Route Truck UO3 powder
FORM UNIT
DIMEN 4 8 1 10 18
PARM 1 3 2 1 0
POPDEN
                5.9
                       334.1 2173.7
PACKAGE
   LABGRP
     POWDER
SHIPMENT
   LABISO
      U234
                U235 U236
                                U238
NORMAL
   NMODE=1
       8.783E-01 1.116E-01 1.010E-02 8.849E+01 4.025E+01 2.416E+01
2.000E+00 7.710E+00 0.000E+00 0.000E+00 1.084E+01 0.000E+00
       0.000E+00 5.000E+01 2.000E+01 0.000E+00 1.000E+02 1.000E+02
       2.000E+00 0.000E+00 0.000E+00 1.000E+00 4.700E+02 7.800E+02
       2.800E+03
ACCIDENT
   ARATMZ
     NMODE=1 2.03E-7
                               3.58E-7
                                               3.58E-7
   SEVERC
```



| Doc. No.   | ENG-RCAL-028 Rev. 1 Project No. 772030/171                                                            | Page 34 of 62 |
|------------|-------------------------------------------------------------------------------------------------------|---------------|
| Subject: 1 | ransportation Risk Assessment for the Shipment of Unirradiated Uranium                                |               |
| Preparer:  | J. L. Boles                                                                                           | Date 5/31/00  |
| Checker:   | B. B. Peters                                                                                          | Date 5/31/00  |
| <u>-</u>   |                                                                                                       |               |
|            |                                                                                                       |               |
|            | NPOP=1                                                                                                |               |
|            | NMODE=1                                                                                               |               |
|            | 4.62E-01 3.02E-01 1.76E-01 4.03E-02 1.18E-02 6.47E-03 5.71E-0                                         | )4 1.13E-04   |
|            | NPOP=2                                                                                                |               |
|            | NMODE=1                                                                                               |               |
|            | 4.35E-01 2.85E-01 2.21E-01 5.06E-02 6.64E-03 1.74E-03 6.72E-0                                         | )5 5.93E-06   |
|            | NPOP=3                                                                                                |               |
|            | NMODE=1                                                                                               |               |
|            | 5.83E-01 3.82E-01 2.78E-02 6.36E-03 7.42E-04 1.46E-04 1.13E-0                                         | )5 9.94E-07   |
| F          | RELEASE                                                                                               |               |
|            | RFRAC                                                                                                 |               |
|            | GROUP=1                                                                                               |               |
|            | 0. 0.1 6*1.0                                                                                          |               |
|            | AERSOL                                                                                                |               |
|            | DISP=5                                                                                                |               |
|            | 0. 3.E-4 6*3.E-2                                                                                      |               |
|            | RESP                                                                                                  |               |
|            | DISP=5                                                                                                |               |
| F          |                                                                                                       |               |
| L          |                                                                                                       |               |
|            | 0.95E+07 I.75E-05 Z.45E-05 I.50E+06 Z.60E+05 0.00E+00<br>0.00E+00 1.00E-02 2.00E+00 9.20E+07 6.50E+04 |               |
| г          | 0.00E+00 1.00E-02 3.00E+00 8.20E+07 0.30E+04                                                          |               |
| L          | 8 54 F±N0 1 57 F±N3 1 92 F±N5 6 70 F±N6 2 50 F±N5 0 00 F±00                                           |               |
|            | $0.011 \pm 0.011 \pm 0.0111 \pm 0.0111111111111$                                                      |               |
| म          | OF                                                                                                    |               |
| I          | SOTOPES -1 49 1 0.44 1. 0. THOPARRAY                                                                  |               |
|            | U234 6.718E+00 POWDER 5                                                                               |               |
|            | U235 2.584E-01 POWDER 5                                                                               |               |
|            | U236 6.027E-01 POWDER 5                                                                               |               |
|            | U238 4.493E+00 POWDER 5                                                                               |               |
| L          | DISTKM                                                                                                |               |
|            | NMODE=1 3870.4                                                                                        |               |
| F          | KGSIZ                                                                                                 |               |
|            | THOPARRAY 4.572                                                                                       |               |
| E          | OF                                                                                                    |               |
| E          | IOI                                                                                                   |               |

### 5.4 Radtran Input File for UO<sub>3</sub> Powder via Direct Route Rail

```
&& RADTRAN 4 - Unirradiated Uranium EA - UO3 Powder - Rail - Direct
&& J.L. Boles, Aug. 31 1999, 772030/167
&& Accident Severity Categories and Probabilities derived from NUREG-0170 (1977),
&& Table 5-3.
&& Accident Rates from Saricks and Kvitek (1994), US Mainline Average,
&& multiplied by 3 (3 railcars/shipment).
&& Release fraction is 0 for Cat 1, 0.1 for Cat 2, and 1 for Cat 3-8.
&& Aerosol and Respirable Fractions are median values for Cat 2, bounding
&& for Cat 3-8.
&& 5 shipments = 147 T Hoppers / 10 T Hoppers per rail car / 3 cars/shipment
&& TI = 0.73 from ISO-PC shldg calc, 3/16" Fe wall, src decayed 10 yrs
&& Neutron dose rate negligible;
&& 15.24 m CPD = length of array;
&& Exclusive Use rail shipment
TITLE Uranium EA - Direct Route Rail UO3 powder
FORM UNIT
DIMEN 4 8 1 10 18
PARM 1 3 2 1 0
POPDEN
         6.900 388.900 2210.000
PACKAGE
```



| Doc. No. ENG-RCAL-028 Rev. 1 Project No. 772030/171<br>Subject: Transportation Risk Assessment for the Shipment of Unirradiated Uranium | Page <u>35</u> of <u>62</u> |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Preparer: J. L. Boles                                                                                                                   | Date 5/31/00                |
| Checker: B. B. Peters                                                                                                                   | Date 5/31/00                |
|                                                                                                                                         |                             |
|                                                                                                                                         |                             |
| LABGRP                                                                                                                                  |                             |
| POWDER                                                                                                                                  |                             |
| LARISO                                                                                                                                  |                             |
| U234 U235 U236 U238                                                                                                                     |                             |
| NORMAL                                                                                                                                  |                             |
| NMODE=2                                                                                                                                 |                             |
| 8.590E-01 1.138E-01 2.720E-02 6.437E+01 4.025E+01 2.416                                                                                 | E+01                        |
| 5.000E+00 1.524E+02 2.000E+00 3.300E-02 1.000E+01 6.000<br>2.000E+00 1.000E+02 2.000E+01 4.000E+00 1.000E+02 1.000                      | E+U1<br>E+02                |
| 3.000E+00 0.000E+02 2.000E+01 4.000E+00 1.000E+02 1.000                                                                                 | E+02<br>E+00                |
| 5.000E+00                                                                                                                               |                             |
| ACCIDENT                                                                                                                                |                             |
| ARATMZ                                                                                                                                  |                             |
| NMODE=2 7.98E-08 7.98E-08 7.98E-08                                                                                                      |                             |
| NDOD=1                                                                                                                                  |                             |
| NMODE=2                                                                                                                                 |                             |
| 3.56E-01 2.14E-01 3.84E-01 3.84E-02 6.41E-03 6.48E-04 3.42E-                                                                            | 04 6.41E-05                 |
| NPOP=2                                                                                                                                  |                             |
| NMODE=2                                                                                                                                 |                             |
| 3.13E-UI 1.88E-UI 4.51E-UI 4.51E-UZ 3.38E-U3 1.63E-U4 3.76E-<br>NDOD-2                                                                  | U5 3.13E-06                 |
| NMODE=2                                                                                                                                 |                             |
| 5.72E-01 3.43E-01 7.72E-02 7.72E-03 5.14E-04 1.86E-05 8.57E-                                                                            | 06 7.15E-07                 |
| RELEASE                                                                                                                                 |                             |
| RFRAC                                                                                                                                   |                             |
| GROUP=I                                                                                                                                 |                             |
| AFRSOL                                                                                                                                  |                             |
| DISP=5                                                                                                                                  |                             |
| 0. 3.E-4 6*3.E-2                                                                                                                        |                             |
| RESP                                                                                                                                    |                             |
| DISP=5                                                                                                                                  |                             |
| U. /^1.E-2                                                                                                                              |                             |
| 8.93E+07 1.73E-03 2.43E-05 1.30E+08 2.60E+05 0.00E+00                                                                                   |                             |
| 0.00E+00 1.00E-02 3.00E+00 8.20E+07 6.50E+04                                                                                            |                             |
| DEFINE U236                                                                                                                             |                             |
| 8.54E+09 1.57E-03 1.92E-05 6.70E+06 2.50E+05 0.00E+00                                                                                   |                             |
| 0.00E+00 1.00E-02 3.00E+00 7.70E+07 6.10E+04                                                                                            |                             |
| ISOTOPES -2 5 3 0.73 1.000 0.000 THOPARRAY                                                                                              |                             |
| U234 2.239E+001 POWDER 5                                                                                                                |                             |
| U235 8.613E-001 POWDER 5                                                                                                                |                             |
| U236 2.009E-000 POWDER 5                                                                                                                |                             |
| U238 1.498E+001 POWDER 5                                                                                                                |                             |
| DISTRM<br>NIMODE=2 3981 2                                                                                                               |                             |
| PKGSIZ                                                                                                                                  |                             |
| THOPARRAY 15.24                                                                                                                         |                             |
| EOF                                                                                                                                     |                             |
| EOI                                                                                                                                     |                             |

5.5 Radtran Input File for UO<sub>3</sub> Powder via Truck through Paducah, KY

&& RADTRAN 4 - Unirradiated Uranium EA - UO3 Powder - Truck - Indirect && J.L. Boles, Aug. 31 1999, 772030/167 && Accident Severity Categories and Probabilities derived from NUREG-0170 && (1977), Table 5-3.



 Doc. No.
 ENG-RCAL-028
 Rev. 1
 Project No.
 772030/171
 Page 36
 of 62

 Subject:
 Transportation Risk Assessment for the Shipment of Unirradiated Uranium
 Preparer:
 Date 5/31/00

 Preparer:
 J. L. Boles
 Date 5/31/00

 Checker:
 B. B. Peters
 Date 5/31/00

```
&& Accident Rates taken from Saricks and Kvitek (1994), US Average.
&& Release fraction is 0 for Cat 1, 0.1 for Cat 2, and 1 for Cat 3-8.
&& Aerosol and Respirable Fractions are median values for Cat 2, bounding
&& for Cat 3-8.
&& 49 shipments = 147 T Hoppers / 3 T Hoppers per truck
&& TI = 0.44 from ISO-PC shidg calc, 3/16" Fe wall, src decayed 10 yrs
&& Crew-source distance DNORML(8)= 7.71 m based on ISO-PC calc crew dose rate
&& and Eq. 12 of Technical Manual (N&K 1989).
&& Minimum stop time = twice that calculated by Highway code
&& Neutron dose rate negligible;
&& 4.572 m CPD = length of array;
&& Exclusive Use truck shipment
TITLE Uranium EA - Truck Route Via Paducah, KY UO3 powder
FORM UNIT
DIMEN 4 8 1 10 18
PARM 1 3 2 1 0
POPDEN 7.7 338.4 2112.9
PACKAGE
   LABGRP
     POWDER
SHIPMENT
   LABISO
               U235
                     U236
     U234
                               U238
NORMAL
   NMODE=1
       8.783E-01 1.116E-01 1.010E-02 8.849E+01 4.025E+01 2.416E+01
2.000E+00 7.710E+00 0.000E+00 0.000E+00 1.220E+01 0.000E+00
       0.000E+00 5.000E+01 2.000E+01 0.000E+00 1.000E+02 1.000E+02
       2.000E+00 0.000E+00 0.000E+00 1.000E+00 4.700E+02 7.800E+02
       2.800E+03
ACCIDENT
   ARATMZ
     NMODE=1 2.03E-7
                              3.58E-7
                                              3.58E-7
   SEVFRC
    NPOP=1
       NMODE=1
       4.62E-01 3.02E-01 1.76E-01 4.03E-02 1.18E-02 6.47E-03 5.71E-04 1.13E-04
    NPOP=2
       NMODE=1
       4.35E-01 2.85E-01 2.21E-01 5.06E-02 6.64E-03 1.74E-03 6.72E-05 5.93E-06
    NPOP=3
      NMODE=1
       5.83E-01 3.82E-01 2.78E-02 6.36E-03 7.42E-04 1.46E-04 1.13E-05 9.94E-07
RELEASE
   RFRAC
      GROUP=1
      0. 0.1 6*1.0
   AERSOL
      DISP=5
       0. 3.E-4 6*3.E-2
   RESP
      DISP=5
      0. 7*1.E-2
DEFINE U234
      8.93E+07 1.73E-03 2.43E-05 1.30E+08 2.60E+05 0.00E+00
      0.00E+00 1.00E-02 3.00E+00 8.20E+07 6.50E+04
DEFINE U236
      8.54E+09 1.57E-03 1.92E-05 6.70E+06 2.50E+05 0.00E+00
      0.00E+00 1.00E-02 3.00E+00 7.70E+07 6.10E+04
EOF
ISOTOPES -1 49 1 0.44 1. 0. THOPARRAY
       U234
                  6.718E+00 POWDER 5
        U235
                  2.584E-01 POWDER 5
        11236
                  6.027E-01 POWDER 5
```



 Doc. No.
 ENG-RCAL-028
 Rev. 1
 Project No.
 772030/171
 Page 37
 of
 62

 Subject:
 Transportation Risk Assessment for the Shipment of Unirradiated Uranium

 Preparer:
 J. L. Boles
 Date
 5/31/00

| Preparer: | J. L. Boles  | Date | 5/31/00 |
|-----------|--------------|------|---------|
| Checker:  | B. B. Peters | Date | 5/31/00 |
|           |              |      |         |

```
U238 4.493E+00 POWDER 5
DISTKM
NMODE=1 4391.8
PKGSIZ
THOPARRAY 4.572
EOF
EOI
```

#### 5.6 Radtran Input File for UO<sub>3</sub> Powder via Rail through Paducah, KY

```
&& RADTRAN 4 - Unirradiated Uranium EA - UO3 Powder - Rail - Indirect
&& J.L. Boles, Aug. 31 1999, 772030/167
&& Accident Severity Categories and Probabilities derived from NUREG-0170 (1977),
&& Table 5-3.
&& Accident Rates from Saricks and Kvitek (1994), US Mainline Average,
&& multiplied by 3 (3 railcars/shipment).
&& Release fraction is 0 for Cat 1, 0.1 for Cat 2, and 1 for Cat 3-8.
&& Aerosol and Respirable Fractions are median values for Cat 2, bounding
&& for Cat 3-8.
&& 5 shipments = 147 T Hoppers / 10 T Hoppers per rail car / 3 cars/shipment
&& TI = 0.73 from ISO-PC shldg calc, 3/16" Fe wall, src decayed 10 yrs
&& ASSUMPTIONS
&& neutron dose rate negligible;
     15.24 m CPD = length of array;
&&
&& Exclusive Use rail shipment
TITLE Uranium EA - Indirect Route Rail via Paducah UO3 powder
FORM UNIT
DIMEN 4 8 1 10 18
PARM 1 3 2 1 0
            8.100 380.100
                                      2068.600
POPDEN
PACKAGE
   LABGRP
      POWDER
SHIPMENT
   LABISO
     U234 U235 U236 U238
NORMAL
   NMODE=2
       8.520E-01 1.240E-01 2.400E-02 6.437E+01 4.025E+01 2.416E+01
       5.000E+00 1.524E+02 2.000E+00 3.300E-02 1.000E+01 6.000E+01
       2.000E+00 1.000E+02 2.000E+01 4.000E+00 1.000E+02 1.000E+02
3.000E+00 0.000E+00 1.000E+00 0.000E+00 1.000E+00 5.000E+00
       5.000E+00
ACCIDENT
   ARATMZ
                  7.98E-08 7.98E-08 7.98E-08
    NMODE = 2
   SEVFRC
     NPOP=1
       NMODE = 2
       3.56E-01 2.14E-01 3.84E-01 3.84E-02 6.41E-03 6.48E-04 3.42E-04 6.41E-05
     NPOP=2
       NMODE = 2
       3.13E-01 1.88E-01 4.51E-01 4.51E-02 3.38E-03 1.63E-04 3.76E-05 3.13E-06
     NPOP=3
       NMODE = 2
       5.72E-01 3.43E-01 7.72E-02 7.72E-03 5.14E-04 1.86E-05 8.57E-06 7.15E-07
RELEASE
   RFRAC
      GROUP=1
       0. 0.1 6*1.0
```



| Doc. No. | ENG-RCAL-028                   | Rev1         | Project No.   | 772030/171     | Page | <u>38</u> of | 62 |
|----------|--------------------------------|--------------|---------------|----------------|------|--------------|----|
| Subject: | Transportation Risk Assessment | or the Shipm | ent of Unirra | diated Uranium | _    |              | _  |
| Preparer | J. L. Boles                    | •            |               |                | Date | 5/31/00      |    |
| Checker: | B. B. Peters                   |              |               |                | Date | 5/31/00      |    |

```
AERSOL
      DISP=5
      0. 3.E-4 6*3.E-2
   REGD
      DISP=5
      0. 7*1.E-2
DEFINE U234
      8.93E+07 1.73E-03 2.43E-05 1.30E+08 2.60E+05 0.00E+00
0.00E+00 1.00E-02 3.00E+00 8.20E+07 6.50E+04
DEFINE U236
      8.54E+09 1.57E-03 1.92E-05 6.70E+06 2.50E+05 0.00E+00
      0.00E+00 1.00E-02 3.00E+00 7.70E+07 6.10E+04
FOF
ISOTOPES
          -2 5 3 0.73 1.000 0.000 THOPARRAY
                2.239E+001 POWDER 5
        11234
        11235
                   8.613E-001 POWDER
                                      5
        U236
                  2.009E-000 POWDER 5
        11238
                  1.498E+001 POWDER 5
DISTKM
      NMODE=2 4747.0
PKGSIZ
       THOPARRAY 15.24
EOF
EOT
```

#### 5.7 Representative Radtran Input File for Fuel

```
&& RADTRAN 4 - Unirradiated Uranium EA - Finished Fuel, 0.95% U235
&& J.L. Boles, May 31 2000, 772030/171
&& Accident Severity Categories and Probabilities derived from NUREG-0170 (1977),
&& Table 5-3.
&& Accident Rates taken from Saricks and Kvitek (1994), US Average.
&& Release fractions are Type A defaults from NUREG-0170.
&& Aerosol and Respirable Fractions are median values for Cat 2, bounding
&& for Cat 3-8 for burning uranium metal.
&& 376 shipments = 611.8 MTU / 1628 kgU/shipment
&& TI = 0.034 from ISO-PC shldg calc, src from SARP-019, Rev. K, Table 5.2.1-1,
&& at 1 m from the edge of the vehicle carrying an array of 3 boxes.
&& Source-to-crew distance [DNORML(8)] is default of 3.1 m.
&& Minimum stop time = twice that calculated by Highway code
&& Neutron dose rate negligible
&& CPD = 1.08 m = length of single layer of 3 boxes/shipment
&& Exclusive use truck shipment
TITLE Uranium EA - Billets - Direct Route - Truck
FORM UNIT
DIMEN 7 8 1 10 18
PARM 1 3 2 1 0
POPDEN
          5.9
                  334.1 2173.7
PACKAGE
   LABGRP
      BILLET
SHIPMENT
   LABISO
      U234 U235 U236 U238 PU241 TC99
                                                          SR90
NORMAL
   NMODE=1
       8.783E-01 1.116E-01 1.010E-02 8.849E+01 4.025E+01 2.416E+01
       2.000E+00 3.100E+00 0.000E+00 0.000E+00 1.084E+01 0.000E+00
       0.000E+00 5.000E+01 2.000E+01 0.000E+00 1.000E+02 1.000E+02
2.000E+00 0.000E+00 0.000E+00 1.000E+00 4.700E+02 7.800E+02
```



ENG-RCAL-028 Doc. No. Rev. 1 Project No. 772030/171 \_\_\_ Page <u>39</u> of <u>62</u> Subject: Transportation Risk Assessment for the Shipment of Unirradiated Uranium Date 5/31/00 Preparer: J. L. Boles Checker: B. B. Peters Date 5/31/00 2.800E+03 ACCIDENT ARATMZ 2.03E-07 3.58E-07 3.58E-07 NMODE=1 SEVFRC NPOP=1 NMODE=1 4.62E-01 3.02E-01 1.76E-01 4.03E-02 1.18E-02 6.47E-03 5.71E-04 1.13E-04 NPOP=2 NMODE = 14.35E-01 2.85E-01 2.21E-01 5.06E-02 6.64E-03 1.74E-03 6.72E-05 5.93E-06 NPOP=3 NMODE=1 5.83E-01 3.82E-01 2.78E-02 6.36E-03 7.42E-04 1.46E-04 1.13E-05 9.94E-07 RELEASE RFRAC GROUP=1 0.0 0.01 0.1 5\*1. AERSOL DISP=2 0.0 1.E-4 6\*1.0E-3 REGD DISP=2 0.0 7\*1. DEFINE U234 8.93E+07 1.73E-03 2.43E-05 1.30E+08 2.60E+05 0.00E+00 0.00E+00 1.00E-02 3.00E+00 8.20E+07 6.50E+04 DEFINE U236 8.54E+09 1.57E-03 1.92E-05 6.70E+06 2.50E+05 0.00E+00 0.00E+00 1.00E-02 3.00E+00 7.70E+07 6.10E+04 EOF ISOTOPES -1 376 1 0.034 1. 0. BOXARRAY 1.347E+00 BILLET 2 11234 3.424E-02 BILLET 2 U235 1.053E-01 BILLET 2 U236 11238 5.421E-01 BILLET 2 6.740E-03 BILLET 2 7.182E-01 BILLET 2 PU241 тС99 3.581E-02 BILLET 2 SR90 PKGSIZ BOXARRAY 1.08 DISTKM NMODE=1 3870.4 EOF EOT



| Doc. No.     | ENG-RCAL-028                 | Rev. 1 Project No. 772030/171              | Page _ | <u>40</u> of | 62 |
|--------------|------------------------------|--------------------------------------------|--------|--------------|----|
| Subject: Tra | ansportation Risk Assessment | t for the Shipment of Unirradiated Uranium | -      |              |    |
| Preparer:    | J. L. Boles                  | ·                                          | Date   | 5/31/00      |    |
| Checker:     | B. B. Peters                 |                                            | Date   | 5/31/00      |    |

### 5.8 Highway Output File for Direct Route from Hanford, WA, to Portsmouth, OH

\* HIGHWAY 3.3 Highway Routine Program \*
 \* Oak Ridge National Laboratory \*

HIGHWAY 3.3

Portions of this System are licensed for use by the United States Government and its contractors under copyrights claimed by Rand McNally-TDM, Inc. Use of this program for day-to-day operational purposes by commercial concerns for other than governmental purposes incidental to the transport of nuclear and other hazardous materials is prohibited.

```
Data base version is HW-94.1
```

| From: HANFORD                                                                                                                                          |                                                                                                           | WA                        |                      | Leav          | ing :          | 6/21/9           | 99 at 11              | :11 PDT              |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------|----------------------|---------------|----------------|------------------|-----------------------|----------------------|-----------|
| to : PORTSMOUTH GI                                                                                                                                     | OP                                                                                                        | OH                        |                      | Arri          | ving:          | 6/23/9           | 99 at 9               | :31 EDT              |           |
| Route type: Q with<br>Time bias: 1.00                                                                                                                  | 2 driver(s)<br>Mile bias:                                                                                 | .00                       | Toll                 | l bia:        | s: 1.          | Total<br>00 To   | road ti<br>otal mil   | ime: 43:<br>.es: 240 | 21<br>5.0 |
| The following const<br>1 - Links prohibit<br>6 - HM-164/State p<br>7 - Avoid ferry c:<br>11 - Nonintersection<br>Weighting used with<br>State mileage: | traints are in o<br>ting truck use<br>preferred routes<br>rossings<br>ng Interstate A<br>n preferred high | effe<br>s<br>cces<br>nway | ect:<br>ss<br>7s: 10 | 0.0           |                |                  |                       |                      |           |
| OH 168.0 IN 16<br>ID 274.0 OR 209                                                                                                                      | 8.0 IL 229.0<br>9.0 WA 46.0                                                                               | IA                        | 302                  | .0 NI         | E 459          | .0 WY            | 402.0                 | UT 14                | 8.0       |
| Mileage by highway<br>Interstate: 23<br>County:<br>Mileage by highway                                                                                  | sign type:<br>30.0 U.S.:<br>.0 Local:<br>lane type:                                                       | 64.(<br>4.(               | ) Sta<br>) Otł       | ate:<br>ner:  | 7.0<br>.0      | Turn             | pike:                 | .0                   |           |
| Limited Access                                                                                                                                         | Multilane: 233                                                                                            | 2.0                       | Lim                  | ited .        | Access         | Singl            | e Lane:               | .0                   |           |
| Multilar<br>Principal Hight                                                                                                                            | ne Divided: 6<br>way: 7.0                                                                                 | 2.0<br>Thro               | ough 1               | M<br>Highw    | ultila<br>ay:  | ne Und.          | ivided:<br>Other:     | .0<br>4.0            |           |
|                                                                                                                                                        |                                                                                                           |                           |                      |               |                |                  |                       |                      |           |
| From: HANFORD<br>to : PORTSMOUTH GI                                                                                                                    | DP                                                                                                        | WA<br>OH                  |                      | Leav:<br>Arri | ing :<br>ving: | 6/21/9<br>6/23/9 | 99 at 11<br>99 at - 9 | :11 PDT<br>:31 EDT   |           |
|                                                                                                                                                        |                                                                                                           |                           |                      |               |                |                  |                       |                      |           |
| Routing through:                                                                                                                                       |                                                                                                           |                           |                      |               |                |                  |                       |                      |           |
| .0                                                                                                                                                     | HANFORD                                                                                                   |                           |                      |               | WA             | .0               | 0:00                  | 6/21 @               | 11:11     |
| 1.0 LR4S                                                                                                                                               | NORTH RICHLAND                                                                                            |                           | LR10                 | LR4S          | WA             | 1.0              | 0:02                  | 6/21 @               | 11:13     |
| 3.0 LR4S                                                                                                                                               | RICHLAND                                                                                                  | Ν                         | S240                 | LR4S          | WA             | 4.0              | 0:08                  | 6/21 @               | 11:19     |
| 1.0 S240                                                                                                                                               | RLD AIRPORT                                                                                               |                           |                      |               | WA             | 5.0              | 0:10                  | 6/21 @               | 11:21     |
| 4.0 S240                                                                                                                                               | RICHLAND                                                                                                  |                           |                      |               | WA             | 9.0              | 0:18                  | 6/21 @               | 11:29     |
| 2.0 S240                                                                                                                                               | RICHLAND                                                                                                  | SE                        | I182                 | X5            | WA             | 11.0             | 0:22                  | 6/21 @               | 11:33     |
| 5.0 I182                                                                                                                                               | WEST RICHLAND                                                                                             | S                         | I182                 | I82           | WA             | 16.0             | 0:27                  | 6/21 @               | 11:39     |
| 10.0 182                                                                                                                                               | KENNEWICK                                                                                                 | SW                        | I82                  | X113          | WA             | 26.0             | 0:37                  | 6/21 @               | 11:49     |
| 19.0 182                                                                                                                                               | PLYMOUTH                                                                                                  |                           | I82                  | X131          | WA             | 45.0             | 0:56                  | 6/21 @               | 12:08     |
| 2.0 182                                                                                                                                                | UMATILLA                                                                                                  |                           | I82                  | X1            | OR             | 47.0             | 0:58                  | 6/21 @               | 12:09     |
| 10.0 182                                                                                                                                               | HERMISTON                                                                                                 | SW                        | I82                  | I84           | OR             | 57.0             | 1:08                  | 6/21 @               | 12:19     |
| 9.0 184                                                                                                                                                | STANFIELD                                                                                                 | SE                        | I84                  | X188          | OR             | 66.0             | 1:16                  | 6/21 @               | 12:27     |
| 19.0 I84                                                                                                                                               | PDT AIRPORT                                                                                               |                           | I84                  | X207          | OR             | 85.0             | 1:33                  | 6/21 @               | 12:44     |



| DOC. NO.    |        | ENG-F      | RCAL-0         | <u>28</u> Rev.     | 1        | _ Proj     | ect No      | )     | <u>772030/1</u> | 71           | _ Page _ | <u>_41_</u> of <u>_62</u> |  |
|-------------|--------|------------|----------------|--------------------|----------|------------|-------------|-------|-----------------|--------------|----------|---------------------------|--|
| Subject: Tr | anspor | tation     | <u>Risk As</u> | sessment for the S | hipr     | nent o     | of Unir     | radia | ated Urani      | um           |          |                           |  |
| Preparer:   |        | J. L. B    | oles           |                    |          |            |             |       |                 |              | _ Date _ | 5/31/00                   |  |
| Checker:    |        | B. B. F    | Peters         |                    |          |            |             |       |                 |              | Date     | 5/31/00                   |  |
|             |        |            |                |                    |          |            |             |       |                 |              |          |                           |  |
|             |        |            |                |                    |          |            |             |       |                 |              |          |                           |  |
|             | 2 0    | т84        |                |                    |          | т 84       | x209        | OR    | 87 0            | 1:35         | 6/21 a   | 12:46                     |  |
|             | 52 0   | т84        |                | LA GRANDE          |          | т84        | x261        | OR    | 139 0           | 2:23         | 6/21 @   | 13:34                     |  |
|             | 41 0   | т84        |                | BAKER CITY         | NF       | T84        | X302        | OR    | 180 0           | 3:01         | 6/21 @   | 14:12                     |  |
|             | 54 0   | 101<br>184 |                | UINTINCTON         | CL.      | 104<br>T84 | X356        | OR    | 234 0           | 3.51         | 6/21 @   | 15·02                     |  |
|             | 10 0   | 101<br>101 |                | ONTARTO            | M        | 101<br>101 | x27/        | OR    | 254.0           | 1.00         | 6/21 @   | 16.18                     |  |
|             | 2 0    | 101<br>101 |                | ONTARIO            | 5        | 101<br>101 | X276        | OR    | 252.0           | 4.00         | 6/21 @   | 16.51                     |  |
|             | 4 0    | 101<br>184 |                | FRITTLAND          | C E      | 104<br>T84 | x3          | TD    | 258 0           | 4.43         | 6/21 @   | 16.54                     |  |
|             | 24 0   | 101<br>101 |                |                    | D        | 101<br>101 | x 20        | TD    | 200.0           |              | 6/21 @   | 17.16                     |  |
|             | 24.0   | 104<br>104 |                | NAMDA              | NT       | 104<br>101 | A20<br>V2E  |       | 202.0           | 5.00         | 6/21 @   | 17.24                     |  |
|             | 14 0   | 104<br>104 |                | NAMPA              | IN       | 104<br>101 | 701         |       | 290.0           | 5.12         | 6/21 @   | 2 17·24                   |  |
|             | 14.0   | 104<br>704 |                | TTADOALY TOA       | 51       | T 0 1      | VE2         |       | 304.0           | 5.20         | 6/21 @   | 2 17·37                   |  |
|             | 4.0    | 104<br>104 |                | BOI AIRPORI        | c        | 104<br>104 | ADD<br>VEA  |       | 308.0           | 5.30         | 6/21 @   | 2 17.41                   |  |
|             | 11 0   | 104<br>704 |                | DUISE<br>MTN UOME  | NE       | 104<br>TQ1 | VQE         |       | 309.0           | 5.31<br>6.10 | 6/21 @   | 2 17.42<br>19.01          |  |
|             | 41.0   | 104<br>104 |                | MIN HOME           | INE      | 104<br>104 | A95<br>V1/1 |       | 350.0           | 6.20         | 6/21 @   | 2 10.21                   |  |
|             | 40.0   | 104<br>104 |                | TEDOME             | T.7      | 104<br>104 | V16E        |       | 420.0           | 7.15         | 6/21 @   | 2 19.04                   |  |
|             | 24.0   | 104        |                | UEROME             | NV<br>DT | 104        | A105        |       | 420.0           | 7.13         | 6/21 @   | 2 19.20                   |  |
|             | 25.0   | 104        |                | IWIN FALLS         | IN<br>NT | 104        | X1/3        | TD    | 428.0           | 7.55         | 6/21 @   | 2 19.33                   |  |
|             | 35.0   | 184        |                | BURLEI             | IN<br>OT | 184        | X2U8        |       | 403.0           | 1.55         | 6/21 @   | 20.06                     |  |
|             | 9.0    | 184        |                | RUPERI             | SE       | 184        | XZI0        |       | 4/2.0           | 8.03         | 6/21 @   | 20.14                     |  |
|             | 5.0    | 184        |                | RAFT RIVER         | W        | 184        | 186         | 10    | 4//.0           | 8:08         | 6/21 @   | 20:18                     |  |
|             | 57.0   | 184        |                | SNOWVILLE          | W        | 184        | X5          | 0'I'  | 534.0           | 9:30         | 6/21 @   | 21:41                     |  |
|             | 35.0   | I84        |                | TREMONTON          | W        | I15        | I84         | UT    | 569.0           | 10:04        | 6/21 @   | 22:15                     |  |
|             | 18.0   | I15        | 184            | BRIGHAM CITY       | SW       | I15        | X364        | UT    | 587.0           | 10:21        | 6/21 @   | 22:32                     |  |
|             | 19.0   | I15        | 184            | OGDEN              | W        | I15        | X344        | UT    | 606.0           | 10:40        | 6/21 @   | 22:51                     |  |
|             | 2.0    | I15        | I84            | OGDEN              | S        | I15        | I84         | UT    | 608.0           | 10:42        | 6/21 @   | 22:53                     |  |
|             | .7.0   | I84        |                | UINTAH             |          | I84        | X8./        | UT    | 615.0           | 10:48        | 6/21 @   | 22:59                     |  |
|             | 32.0   | I84        |                | ECHO               |          | 180        | I84         | UΤ    | 647.0           | 11:18        | 6/21 @   | 23:29                     |  |
|             | 48.0   | 180        |                | EVANSTON           | NE       | 180        | X18         | WY    | 695.0           | 12:02        | 6/22 @   | 0:13                      |  |
|             | 48.0   | I80        |                | LITTLE AMERICA     | W        | I80        | X66         | WY    | 743.0           | 12:46        | 6/22 @   | 0:57                      |  |
|             | 26.0   | 180        |                | GREEN RIVER        | Е        | 180        | X91         | WY    | 769.0           | 13:10        | 6/22 @   | 1:21                      |  |
|             | 7.0    | 180        |                | ROCK SPRINGS       | SW       | I80        | X99         | WY    | 776.0           | 13:47        | 6/22 @   | 1:58                      |  |
|             | 5.0    | I80        |                | ROCK SPRINGS       | Ν        | I80        | X104        | WY    | 781.0           | 13:52        | 6/22 @   | 2:02                      |  |
|             | 7.0    | I80        |                | ROCK SPRINGS       | Е        | 180        | X111        | WY    | 788.0           | 13:58        | 6/22 @   | 2:09                      |  |
|             | 76.0   | I80        |                | CRESTON JCT        | NE       | 180        | X187        | WY    | 864.0           | 15:08        | 6/22 @   | 3:19                      |  |
|             | 25.0   | I80        |                | RAWLINS            | W        | 180        | X211        | WY    | 889.0           | 15:31        | 6/22 @   | 3:42                      |  |
|             | 4.0    | I80        |                | RAWLINS            | Е        | 180        | X215        | WY    | 893.0           | 15:35        | 6/22 @   | 3:46                      |  |
|             | 19.0   | 180        |                | WALCOTT            | S        | I80        | X235        | WY    | 912.0           | 15:52        | 6/22 @   | 4:03                      |  |
|             | 76.0   | I80        |                | LARAMIE            | W        | 180        | X311        | WY    | 988.0           | 17:03        | 6/22 @   | 5:13                      |  |
|             | 2.0    | I80        |                | LARAMIE            | S        | 180        | X313        | WY    | 990.0           | 17:04        | 6/22 @   | 2 5:15                    |  |
|             | 46.0   | I80        |                | CHEYENNE           | SW       | I25        | I80         | WY    | 1036.0          | 17:47        | 6/22 @   | p 5:58                    |  |
|             | 3.0    | I80        |                | CHEYENNE           | S        | I80        | X362        | WY    | 1039.0          | 18:20        | 6/22 @   | 6:30                      |  |
|             | 60.0   | I80        |                | KIMBALL            | S        | 180        | X20         | NE    | 1099.0          | 19:15        | 6/22 @   | 7:26                      |  |
|             | 35.0   | I80        |                | SIDNEY             | SW       | I80        | X55         | NE    | 1134.0          | 19:47        | 6/22 @   | 2 7:58                    |  |
|             | 4.0    | I80        |                | SIDNEY             | SE       | I80        | X59         | NE    | 1138.0          | 19:51        | 6/22 @   | 8:02                      |  |
|             | 43.0   | I80        |                | BIG SPRINGS        | SW       | I76        | I80         | NE    | 1181.0          | 20:31        | 6/22 @   | 8:41                      |  |
|             | 24.0   | I80        |                | OGALLALA           | S        | I80        | X126        | NE    | 1205.0          | 20:53        | 6/22 @   | 9:04                      |  |
|             | 51.0   | I80        |                | NORTH PLATTE       | S        | I80        | X177        | NE    | 1256.0          | 21:40        | 6/22 @   | 9:51                      |  |
|             | 61.0   | I80        |                | LEXINGTON          | S        | I80        | X237        | NE    | 1317.0          | 22:36        | 6/22 @   | 11:47                     |  |
|             | 19.0   | I80        |                | ELM CREEK          | S        | I80        | X257        | NE    | 1336.0          | 23:24        | 6/22 @   | 12:34                     |  |
|             | 16.0   | I80        |                | KEARNEY            | S        | I80        | X272        | NE    | 1352.0          | 23:39        | 6/22 @   | 12:49                     |  |
|             | 39.0   | I80        |                | DONIPHAN           | Ν        | I80        | X312        | NE    | 1391.0          | 24:15        | 6/22 @   | 13:25                     |  |
|             | 20.0   | I80        |                | AURORA             | S        | I80        | X332        | NE    | 1411.0          | 24:33        | 6/22 @   | 13:44                     |  |
|             | 21.0   | I80        |                | YORK               | S        | I80        | X353        | NE    | 1432.0          | 24:52        | 6/22 @   | 14:03                     |  |
|             | 26.0   | I80        |                | SEWARD             | S        | I80        | X379        | NE    | 1458.0          | 25:16        | 6/22 @   | 14:27                     |  |
|             | 18.0   | I80        |                | LINCOLN            | W        | I80        | X396        | NE    | 1476.0          | 25:33        | 6/22 @   | 14:44                     |  |
|             | .0     | I80        |                | LINCOLN            | W        | I80        | X397        | NE    | 1476.0          | 25:33        | 6/22 @   | 14:44                     |  |
|             | 2.0    | I80        |                | LNK AIRPORT        |          | I80        | X399        | NE    | 1478.0          | 25:35        | 6/22 @   | 14:45                     |  |
|             | 2.0    | I80        |                | LINCOLN            | Ν        | I180       | I80         | NE    | 1480.0          | 25:37        | 6/22 @   | 14:48                     |  |
|             | 5.0    | I80        |                | LINCOLN            | NE       | I80        | X405        | NE    | 1485.0          | 25:42        | 6/22 @   | 14:52                     |  |
|             | 4.0    | I80        |                | WAVERLY            | SW       | I80        | X409        | NE    | 1489.0          | 25:45        | 6/22 @   | 14:56                     |  |
|             | 30.0   | I80        |                | PAPILLION          | W        | I80        | X440        | NE    | 1519.0          | 26:13        | 6/22 a   | 15:24                     |  |
|             | 4.0    | I80        |                | OMAHA              | SW       | I80        | x445        | NE    | 1523.0          | 26:18        | 6/22 @   | 15:28                     |  |
|             | 1.0    | I80        |                | OMAHA              | SW       | I680       | 180         | NE    | 1524.0          | 26:19        | 6/22 a   | 15:29                     |  |
|             | 12.0   | I680       |                | OMAHA              | NW       | I680       | x12         | NE    | 1536.0          | 26:32        | 6/22 a   | 15:42                     |  |
|             | 1.0    | 1680       |                | OMAHA              | N        | I680       | X13         | NE    | 1537.0          | 27:03        | 6/22 @   | 16:13                     |  |



| Doc. No     |        | <u>ENG-F</u> | RCAL-0     | <u>28</u> Rev.        | 1          | _ Proj       | ect No     | )          | <u>772030/1</u> | 71             | _ Page _ | <u>42</u> of _ | 62 |
|-------------|--------|--------------|------------|-----------------------|------------|--------------|------------|------------|-----------------|----------------|----------|----------------|----|
| Subject: Tr | anspor | tation       | Risk As    | sessment for the S    | hipr       | nent c       | of Uniri   | radia      | ated Urani      | um             |          |                |    |
| Preparer:   | -      | J. L. B      | oles       |                       | -          |              |            |            |                 |                | Date     | 5/31/00        | _  |
| Checker:    |        | RRF          | Peters     |                       |            |              |            |            |                 |                | Date     | 5/31/00        |    |
| Checkel.    |        | D. D. I      | 61613      |                       |            |              |            |            |                 |                |          | 5/51/00        |    |
|             |        |              |            |                       |            |              |            |            |                 |                |          |                |    |
|             |        |              |            |                       |            |              |            |            |                 |                |          |                |    |
|             | 4.0    | I680         |            | CRESCENT              | W          | I29          | I680       | IA         | 1541.0          | 27:07          | 6/22 @   | 16:18          |    |
|             | 10.0   | I29          | I680       | LOVELAND              | SW         | I29          | I680       | IA         | 1551.0          | 27:16          | 6/22 @   | 16:27          |    |
|             | 16.0   | I680         |            | MINDEN                | NW         | I680         | I80        | IA         | 1567.0          | 27:31          | 6/22 @   | 16:42          |    |
|             | 13.0   | I80          |            | AVOCA                 | Ν          | I80          | X40        | IA         | 1580.0          | 27:43          | 6/22 @   | 16:54          |    |
|             | 20.0   | I80          |            | BRAYTON               | S          | I80          | X60        | IA         | 1600.0          | 28:02          | 6/22 @   | 17:12          |    |
|             | 50.0   | I80          |            | DE SOTO               | NW         | I80          | X110       | IA         | 1650.0          | 28:48          | 6/22 @   | 17:58          |    |
|             | 13.0   | I80          |            | DES MOINES            | W          | I235         | I35        | IA         | 1663.0          | 29:00          | 6/22 @   | 18:10          |    |
|             | 4.0    | I35          | I80        | URBANDALE             | NW         | I80          | X127       | IA         | 1667.0          | 29:04          | 6/22 @   | 18:14          |    |
|             | 10.0   | I35          | I80        | DES MOINES            | Ν          | I235         | I35        | IA         | 1677.0          | 29:15          | 6/22 @   | 18:25          |    |
|             | 5.0    | I80          |            | ALTOONA               | NW         | I80          | X142       | IA         | 1682.0          | 29:19          | 6/22 @   | 18:30          |    |
|             | 13.0   | I80          |            | COLFAX                | Ν          | I80          | X155       | IA         | 1695.0          | 29:31          | 6/22 @   | 18:42          |    |
|             | 9.0    | I80          |            | NEWTON                | SW         | I80          | X164       | IA         | 1704.0          | 29:40          | 6/22 @   | 18:50          |    |
|             | 27.0   | I80          |            | MALCOM                | S          | I80          | X191       | IA         | 1731.0          | 30:05          | 6/22 @   | 19:15          |    |
|             | 29.0   | I80          |            | WILLIAMSBURG          | N          | I80          | X220       | IA         | 1760.0          | 30:31          | 6/22 @   | 19:42          |    |
|             | 5.0    | I80          |            | HOMESTEAD             | SW         | 180          | x225       | IA         | 1765.0          | 30:36          | 6/22 @   | 19:46          |    |
|             | 14.0   | т80          |            | TIFFIN                | E          | T380         | т80        | TA         | 1779.0          | 30:49          | 6/22 @   | 19:59          |    |
|             | 7.0    | T80          |            | TOWA CITY             | NE         | т80          | x246       | ТА         | 1786.0          | 30:57          | 6/22 @   | 20:07          |    |
|             | 44 0   | т <u>80</u>  |            | DAVENPORT             | NW         | T280         | т80        | ТΔ         | 1830 0          | 31:37          | 6/22 @   | 20:47          |    |
|             | 7 0    | T280         |            | DAVENDORT             | SM         | T280         | 100<br>X6  | тΔ         | 1837 0          | 32:14          | 6/22 @   | 21:24          |    |
|             | 1 0    | 1200         |            | DAVENIORI             | CW         | 1200         | v11        | <u>т</u> т | 10/1 0          | 22.10          | 6/22 @   | 21.21          |    |
|             | 4.0    | 1200         |            | RUCK ISLAND           | 5W<br>D    | 1200         | V1E        | 111<br>TT  | 1041.0          | 32•10<br>22•22 | 6/22 @   | 21.20          |    |
|             | 4.0    | 1280         |            | MILLAN<br>MIT ATDDODU | Ľ          | 1280         | A15<br>774 | ᅶᄔ         | 1040.0          | 32.23          | 6/22 @   | 21.33          |    |
|             | 3.0    | 1280         |            | MLI AIRPORI           |            | 1280         | 1/4        | ᅶᄔ         | 1040.0          | 32.20          | 6/22 @   | 21.30          |    |
|             | 9.0    | 1/4          |            | GREEN ROCK            | SE         | 1/4          | 180        | ᅶᄔ         | 1857.0          | 32:30          | 6/22 @   | 21:46          |    |
|             | 32.0   | 1/4          |            | GALESBURG             | NE         | 1/4          | X46        | ᅶᄔ         | 1889.0          | 33:11          | 6/22 @   | 22:21          |    |
|             | 8.0    | 1/4          |            | KNOXVILLE             | NE         | 1/4          | X54        | ᅶᇈ         | 1897.0          | 33:19          | 6/22 @   | 22:30          |    |
|             | 18.0   | 174          |            | BRIMFIELD             | NW         | 174          | X71        | 11         | 1915.0          | 33:39          | 6/22 @   | 22:49          |    |
|             | 15.0   | I'/4         |            | PEORIA                | NW         | I474         | I'/4       | IL         | 1930.0          | 33:55          | 6/22 @   | 23:06          |    |
|             | 5.0    | I4'/4        |            | PIA AIRPORT           |            | I4'/4        | X5         | IL         | 1935.0          | 34:01          | 6/22 @   | 23:11          |    |
|             | 2.0    | I474         |            | BARTONVILLE           |            | I474         | X6         | IL         | 1937.0          | 34:03          | 6/22 @   | 23:13          |    |
|             | 3.0    | I474         |            | CREVE COEUR           |            | I474         | X9         | IL         | 1940.0          | 34:06          | 6/22 @   | 23:16          |    |
|             | 5.0    | I474         |            | EAST PEORIA           | SE         | I474         | I74        | IL         | 1945.0          | 34:12          | 6/22 @   | 23:22          |    |
|             | 2.0    | I74          |            | MORTON                | NW         | I155         | I74        | IL         | 1947.0          | 34:14          | 6/22 @   | 23:24          |    |
|             | 27.0   | I74          |            | NORMAL                | NW         | I55          | I74        | IL         | 1974.0          | 34:43          | 6/22 @   | 23:53          |    |
|             | 7.0    | I55          | I74        | BLOOMINGTON           | SW         | I55          | I74        | IL         | 1981.0          | 34:51          | 6/23 @   | 0:01           |    |
|             | 2.0    | I74          |            | RANDOLPH              | Ν          | I74          | X135       | IL         | 1983.0          | 34:53          | 6/23 @   | 0:03           |    |
|             | 17.0   | I74          |            | LEROY                 | SE         | I74          | X152       | IL         | 2000.0          | 35:12          | 6/23 @   | 0:22           |    |
|             | 7.0    | I74          |            | FARMER CITY           | Е          | I74          | X159       | IL         | 2007.0          | 35:19          | 6/23 @   | 0:29           |    |
|             | 13.0   | I74          |            | MAHOMET               | NE         | I74          | X172       | IL         | 2020.0          | 35:33          | 6/23 @   | 0:44           |    |
|             | 7.0    | I74          |            | CHAMPAIGN             | NW         | I57          | I74        | IL         | 2027.0          | 36:11          | 6/23 @   | 1:21           |    |
|             | 2.0    | I74          |            | CHAMPAIGN             | Ν          | I74          | X181       | IL         | 2029.0          | 36:13          | 6/23 @   | 1:23           |    |
|             | 5.0    | I74          |            | URBANA                | NE         | I74          | X185       | IL         | 2034.0          | 36:19          | 6/23 @   | 1:29           |    |
|             | 25.0   | I74          |            | DANVILLE              | W          | I74          | X210       | IL         | 2059.0          | 36:46          | 6/23 @   | 1:56           |    |
|             | 4.0    | I74          |            | DANVILLE              | S          | I74          | X215       | IL         | 2063.0          | 36:50          | 6/23 @   | 2:00           |    |
|             | 10.0   | I74          |            | COVINGTON             | W          | I74          | x4         | IN         | 2073.0          | 37:01          | 6/23 @   | 2:11           |    |
|             | 11.0   | т74          |            | VEEDERSBURG           | NE         | т74          | x15        | TN         | 2084.0          | 37:12          | 6/23 @   | 2:22           |    |
|             | 19.0   | т74          |            | CRAWFORDSVILLE        | N          | т74          | x34        | TN         | 2103.0          | 37:31          | 6/23 @   | 2:41           |    |
|             | 5.0    | т74          |            | SMARTSBURG            | E          | т74          | x39        | TN         | 2108.0          | 37:36          | 6/23 @   | 2:46           |    |
|             | 35 0   | т74          |            | SPEEDWAY              | NW         | т465         | т74        | TN         | 2143 0          | 38:11          | 6/23 @   | 3:21           |    |
|             | 3 0    | T465         | т74        |                       | т.<br>Г    | T465         | x13        | TN         | 2146 0          | 38.15          | 6/23 @   | 3.25           |    |
|             | 2 0    | T465         | т74        | TND ATPDOPT           | Ц          | T465         | x11        | TN         | 2148 0          | 38.17          | 6/23 @   | 3.23           |    |
|             | 2.0    | T465         | T74        | TNDTANADOLTS          | GM         | T465         | T70        | TN         | 2150.0          | 38.19          | 6/23 @   | 3.20           |    |
|             | 2.0    | 140J         | 1/4<br>T7/ | UNITEV MILLO          | -SW<br>-TT | 140J         | 170<br>V0  |            | 2150.0          | 30.19          | 6/23 @   | 3.29           |    |
|             | 1.0    | 1405<br>T465 | 1/4<br>T7/ | VALLEI MILLS          | NE         | 1405<br>T465 | A0<br>V/   | TN         | 2151.0          | 20.20          | 6/23 @   | 2.24           |    |
|             | 4.0    | 1405         | 1/4        | GLENNS VALLEI         | N          | 1405         | A4<br>TCE  | TN         | 2155.0          | 30.24          | 6/23 @   | 3.34           |    |
|             | 4.0    | 1405         | 1/4        | INDIANAPOLIS          | 2          | 1405         | 105        |            | 2159.0          | 38.29          | 6/23 @   | 3.39           |    |
|             | 5.0    | 1465         | 1/4        |                       | SE         | 1465         | 1/4        | TIN        | 2164.0          | 38:34          | 6/23 @   | 3:44           |    |
|             | 2.0    | 1465         |            | JULIETA               | W          | 1465         | X4'/       | LΝ         | 2166.0          | 38:36          | 6/23 @   | 3:46           |    |
|             | 4.0    | 1465         |            | INDIANAPOLIS          | Е          | 1465         | I./0       | IN         | 2170.0          | 38:41          | 6/23 @   | 3:51           |    |
|             | 14.0   | 170          |            | GREENFIELD            | Ν          | 170          | X104       | IN         | 2184.0          | 38:55          | 6/23 @   | 4:05           |    |
|             | 20.0   | I70          |            | SPICELAND             | NE         | I70          | X123       | IN         | 2204.0          | 39:15          | 6/23 @   | 4:25           |    |
|             | 26.0   | I70          |            | RICHMOND              | NW         | I70          | X149       | IN         | 2230.0          | 39:41          | 6/23 @   | 4:51           |    |
|             | 2.0    | I70          |            | RICHMOND              | Ν          | I70          | X151       | IN         | 2232.0          | 39:43          | 6/23 @   | 4:53           |    |
|             | 5.0    | I70          |            | RICHMOND              | Е          | I70          | X156       | IN         | 2237.0          | 39:48          | 6/23 @   | 4:58           |    |
|             | 2.0    | I70          |            | NEW WESTVILLE         | NE         | I70          | X1         | OH         | 2239.0          | 39:50          | 6/23 @   | 6:00           |    |
|             | 8.0    | I70          |            | LEWISBURG             | W          | I70          | X10        | OH         | 2247.0          | 39:59          | 6/23 @   | 6:09           |    |



| Doc. No<br>Subject:_] | ENG-RCAL-028                | Revent for the | v. <u>1</u> Projec<br>Shipment of L | t No. <u>7</u><br>Inirradiat | 72030/171<br>ted Uranium | _ Page _ | <u>43</u> of _ | 62 |
|-----------------------|-----------------------------|----------------|-------------------------------------|------------------------------|--------------------------|----------|----------------|----|
| Preparer:             | J. L. Boles                 |                |                                     |                              |                          | Date     | 5/31/00        |    |
| Checker:              | B. B. Peters                |                |                                     |                              |                          | Date     | 5/31/00        |    |
| -                     |                             |                |                                     |                              |                          |          |                |    |
|                       | 14.0 I70 CLAYI              | ON             | 170 X2                              | 24 ОН                        | 2261.0 40:14             | 6/23 @   | 6:24           |    |
|                       | 2.0 I70 CLAYI               | ON             | E 170 X2                            | 26 OH                        | 2263.0 40:46             | 6/23 @   | 6:56           |    |
|                       | 6.0 I70 VANDA               | LIA            | SW 170 X                            | 32 OH                        | 2269.0 40:53             | 6/23 @   | 7:03           |    |
|                       | 2.0 I70 VANDA               | LIA            | S I70 I                             | 75 OH                        | 2271.0 40:55             | 6/23 @   | 7:05           |    |
|                       | 7.0 I70 SULPH               | UR GROVE       | E 170 X4                            | 41 OH                        | 2278.0 41:02             | 6/23 @   | 7:12           |    |
|                       | 3.0 I70 FAIRE               | ORN            | N 1675 I                            | 70 OH                        | 2281.0 41:06             | 6/23 @   | 7:16           |    |
|                       | 4.0 I70 ENON                |                | I70 X4                              | 17 OH                        | 2285.0 41:10             | 6/23 @   | 7:20           |    |
|                       | 5.0 I70 BEATT               | Y              | NW I70 X                            | 52 OH                        | 2290.0 41:16             | 6/23 @   | 7:25           |    |
|                       | 19.0 I70 SUMME              | RFORD          | NW 170 X                            | 72 OH                        | 2309.0 41:36             | 6/23 @   | 7:46           |    |
|                       | 6.0 I70 LAFAY               | ETTE           | NE 170 X                            | 79 OH                        | 2315.0 41:43             | 6/23 @   | 7:53           |    |
|                       | 2.0 I70 LAFAY               | ETTE           | E 170 X8                            | 30 OH                        | 2317.0 41:45             | 6/23 @   | 7:55           |    |
|                       | 5.0 I70 WEST                | JEFFERSO       | N N I70 X8                          | 35 OH                        | 2322.0 41:50             | 6/23 @   | 8:00           |    |
|                       | 8.0 I70 COLUM               | BUS            | W I270 I                            | 70 OH                        | 2330.0 41:59             | 6/23 @   | 8:09           |    |
|                       | 9.0 I270 COLUM              | BUS            | SW I270 I                           | 71 OH                        | 2339.0 42:09             | 6/23 @   | 8:19           |    |
|                       | 2.0 1270 SHADE              | VILLE          | N I270 X                            | 52 OH                        | 2341.0 42:11             | 6/23 @   | 8:21           |    |
|                       | 3.0 U23 SHADE               | VILLE          | U23 S                               | 317 OH                       | 2344.0 42:14             | 6/23 @   | 8:24           |    |
|                       | 16.0 U23 CIRCL              | EVILLE         | W U22 U2                            | 23 OH                        | 2360.0 42:32             | 6/23 @   | 8:42           |    |
|                       | 18.0 U23 CHILL              | ICOTHE         | NE U23 U3                           | 35 OH                        | 2378.0 42:52             | 6/23 @   | 9:01           |    |
|                       | 1.0 U23 U35 CHILL           | ICOTHE         | E U23 U                             | 50 OH                        | 2379.0 42:53             | 6/23 @   | 9:02           |    |
|                       | 1.0 U23 U35 CHILL           | ICOTHE         | SE U23 U3                           | 35 OH                        | 2380.0 42:54             | 6/23 @   | 9:04           |    |
|                       | 22.0 U23 PIKET              | ON             | S U23 S                             | 32 OH                        | 2402.0 43:18             | 6/23 @   | 9:28           |    |
|                       | 3.0 U23 PORTS               | MOUTH GD       | P                                   | OH                           | 2405.0 43:21             | 6/23 @   | 9:31           |    |
|                       | Population Density from     | HANFORI        | )<br>UTH GDP                        |                              | WA                       |          |                |    |
|                       |                             |                |                                     |                              |                          |          |                |    |
|                       |                             | Mil            | eage within                         | Density                      | Levels                   |          |                |    |
|                       | <0.0 5.                     | 0 22.7         | 59.7 139                            | 326                          | 821 1861 332             | 6 5815   |                |    |
|                       | St Miles 0 -5.0 -22.        | / -59./        | -139 -326                           | -821 -                       | -1861 -3326 -581         | .5 -9996 | >9996          |    |
|                       |                             |                |                                     |                              |                          |          |                |    |
|                       | OH 168.0 11.8 10.0 27.      | 9 28.6         | 31.7 24.2                           | 15.7                         | 6.9 4.4 4.               | 7 1.5    | .5             |    |
|                       | IN 168.0 11.3 20.0 33.      | 7 36.5         | 18.7 14.5                           | 10.0                         | 10.9 7.7 2.              | 9 1.9    | .0             |    |
|                       | IL 229.0 17.3 56.2 56.      | 3 25.8         | 22.4 18.9                           | 14.7                         | 9.5 5.2 2.               | 0.5      | .1             |    |
|                       | IA 302.0 40.3 97.6 89.      | 6 33.2         | 13.3 13.2                           | 8.8                          | 4.3 1.6 .                | 2.0      | .0             |    |
|                       | NE 459.0 48.8 207.1 130.    | 0 31.5         | 12.0 10.9                           | 6.5                          | 2.9 5.1 3.               | 1 1.1    | .0             |    |
|                       | WY 402.0 78.8 253.4 30.     | 8 12.5         | 4.6 6.7                             | 6.1                          | 4.7 3.1 .                | 5.7      | .0             |    |
|                       | UT 148.0 32.1 73.4 11.      | 4 6.2          | 11.9 5.0                            | 2.3                          | 2.2 2.2 .                | 9.5      | .0             |    |
|                       | ID 274.0 43.9 97.4 53.      | 6 45.5         | 10.0 9.3                            | 4.3                          | 4.6 3.5 1.               | 6.2      | .0             |    |
|                       | OR 209.0 11.1 132.4 31.     | 5 13.8         | 10.8 4.0                            | 1.4                          | 3.0.7.                   | 4 .0     | .0             |    |
|                       | WA 46.0 3.7 21.1 5.         | 0 2.4          | 3.0 1.1                             | 2.3                          | 2.2 4.2 .                | 7.4      | .0             |    |
|                       | Totala                      |                |                                     |                              |                          |          |                |    |
|                       | 2405.0299.0 968.7 469.      | 7 236.2        | 138.5 107.7                         | 72.1                         | 51.1 37.5 16.            | 9 6.7    | .6             |    |
|                       | Percentages<br>12 4 40 3 19 | 5 9 8          | 5845                                | 3 0                          | 21 16                    | 7 3      | 0              |    |
|                       | Basis: 1990 Census          |                | 510 110                             | 510                          |                          |          | ••             |    |
|                       | RADTRAN Input Data          | Rural          | Suburban                            | Urban                        |                          |          |                |    |
|                       | Weighted Population         |                |                                     |                              |                          |          |                |    |
|                       | People/sq. mi.              | 15.3           | 865.2                               | 5630.0                       |                          |          |                |    |
|                       | People/sq. km.              | 5.9            | 334.1                               | 2173.7                       |                          |          |                |    |
|                       | Distance                    |                |                                     |                              | Total                    |          |                |    |
|                       | Miles                       | 2112.1         | 268.4                               | 24.3                         | 2405.0                   |          |                |    |
|                       | Kilometers                  | 3398.9         | 432.0                               | 39.0                         | 3870.4                   |          |                |    |
|                       | Percentage                  | 87.8           | 11.2                                | 1.0                          |                          |          |                |    |
|                       | Basis (people/sq. mi.       | ) <139         | 139-3326                            | >3326                        | 1990 Census              |          |                |    |

Note: Due to rounding, the sum of the mileages in the individual population categories may not equal the total mileage shown



| Doc. No.   | ENG-RCAL-028                  | Rev. 1 Project No. 772030/17             | 1 Page | <u>44</u> of | 62 |
|------------|-------------------------------|------------------------------------------|--------|--------------|----|
| Subject: T | ransportation Risk Assessment | for the Shipment of Unirradiated Uraniur | m      |              |    |
| Preparer:  | J. L. Boles                   | ·                                        | Date   | 5/31/00      |    |
| Checker:   | B. B. Peters                  |                                          | Date   | 5/31/00      |    |

on this report.

# 5.9 Highway Output File for Indirect Route through Paducah, KY

\* HIGHWAY 3.3 Highway Routine Program \*
 \* Oak Ridge National Laboratory \*

HIGHWAY 3.3

Portions of this System are licensed for use by the United States Government and its contractors under copyrights claimed by Rand McNally-TDM, Inc. Use of this program for day-to-day operational purposes by commercial concerns for other than governmental purposes incidental to the transport of nuclear and other hazardous materials is prohibited.

Data base version is HW-94.1

| From: HANFORD<br>to : PADUCAH GDP                                                                                                                                                                         | WA<br>KY                                                 |                     | Leavi<br>Arriv: | ng :<br>ing: | 6/22/<br>6/24/ | 99 at<br>99 at | 9:35 PD<br>2:34 CD | Г<br>Г  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------|-----------------|--------------|----------------|----------------|--------------------|---------|
| Route type: Q with 2 drives                                                                                                                                                                               | c(s)                                                     | - 11                |                 | . 1          | Total          | road           | time: 39           | :01     |
| Time blas: 1.00 Mile bla                                                                                                                                                                                  | as: .00                                                  | TOIT                | blas            | : 1.         | 00 1           | otal mi        | Lles: 218          | 30.0    |
| The following constraints a:<br>1 - Links prohibiting truck<br>6 - HM-164/State preferred<br>7 - Avoid ferry crossings<br>11 - Nonintersecting Interse<br>Weighting used with preferred<br>State mileage: | re in effe<br>cuse<br>routes<br>tate Acces<br>ed highway | ect:<br>ss<br>s: 10 | .0              |              |                |                |                    |         |
| KY 16.0 IL 178.0 MO                                                                                                                                                                                       | 250.0 KS                                                 | 432.                | 0 CO            | 260          | .0 WY          | 367.0          | ) UT 14            | 48.0    |
| ID 274.0 OR 209.0 WA                                                                                                                                                                                      | 46.0                                                     |                     |                 |              |                |                |                    |         |
| Mileage by highway sign type                                                                                                                                                                              | e:                                                       |                     |                 |              |                |                |                    |         |
| Interstate: 2158.0 U.S                                                                                                                                                                                    | 5.: 8.0                                                  | Sta                 | ite:            | 7.0          | ) Turn         | pike:          | .0                 |         |
| County: .0 Loca                                                                                                                                                                                           | al: 7.0                                                  | Oth                 | er:             | .0           |                |                |                    |         |
| Mileage by highway lane type                                                                                                                                                                              | 3:                                                       |                     |                 |              |                | _              |                    |         |
| Limited Access Multilane                                                                                                                                                                                  | e: 2158.0                                                | Limi                | ted A           | ccess        | s Singl        | e Lane         | : .0               |         |
| Multilane Divideo                                                                                                                                                                                         | a: .0                                                    | uch II              | Mu              | 1t118<br>    | ane Und        | other          | · .0               |         |
| Principal Highway. 15                                                                                                                                                                                     | .0 11110                                                 | лады н              | ilgiiwa         | y•           | .0             | Other          | . 7.0              |         |
| From: HANFORD                                                                                                                                                                                             | WA                                                       |                     | Leavi           | ng :         | 6/22/          | 99 at          | 9:35 PD            | Г       |
| to : PADUCAH GDP                                                                                                                                                                                          | КY                                                       |                     | Arriv           | ing:         | 6/24/          | 99 at          | 2:34 CD            | Г       |
| Routing through:                                                                                                                                                                                          |                                                          |                     | ī               | NΆ           | . 0            | 0:00           | 6/22 (             | D 9:35  |
| 4.0 LR4S RICHLAND                                                                                                                                                                                         | N                                                        | S240                | LR4S V          | ٨W           | 4.0            | 0:08           | 6/22 @             | 9:43    |
| 7.0 S240 RICHLAND                                                                                                                                                                                         | SE                                                       | I182                | X5 1            | ΝA           | 11.0           | 0:22           | 6/22 @             | 9:57    |
| 5.0 I182 WEST RICH                                                                                                                                                                                        | HLAND S                                                  | I182                | 182 V           | ΝA           | 16.0           | 0:27           | 6/22 0             | ■ 10:02 |
| 41.0 I82 HERMISTON                                                                                                                                                                                        | J SW                                                     | I82                 | I84 (           | OR           | 57.0           | 1:08           | 6/22 @             | 0 10:42 |
| 512.0 I84 TREMONTON                                                                                                                                                                                       | W V                                                      | I15                 | 184 U           | JT           | 569.0          | 10:04          | 6/22 0             | 20:38   |
| 39.0 I15 I84 OGDEN                                                                                                                                                                                        | S                                                        | I15                 | 184 U           | JT           | 608.0          | 10:42          | 6/22 0             | 21:16   |
| 39.0 I84 ECHO                                                                                                                                                                                             |                                                          | I80                 | I84 1           | JT           | 647.0          | 11:18          | 6/22 @             | 21:52   |



| Doc. No.  | ENG-RCAL-028                      | Rev.           | <u>1</u> Projec        | t No. <u>7</u> | 72030/171       | _ Page _  | <u>45</u> of <u>62</u> |
|-----------|-----------------------------------|----------------|------------------------|----------------|-----------------|-----------|------------------------|
| Subject:  | Transportation Risk Assessme      | nt for the S   | Shipment of            | Unirradiat     | ted Uranium     |           |                        |
| Preparer: | J. L. Boles                       |                |                        |                |                 | _ Date    | 5/31/00                |
| Checker:  | B. B. Peters                      |                |                        |                |                 | _ Date    | 5/31/00                |
|           |                                   |                |                        |                |                 |           |                        |
|           |                                   | DID            |                        | 0.0 1.77       | 1026 0 17.47    | C ( ) ) O | 4.01                   |
|           | 389.0 180 CHEYEI                  | NNE<br>OF OTTV | SW 125 1               | 80 WY<br>76 CO | 1036.0 1/:4/    | 6/23 @    | 4:21                   |
|           | 1 0 176 COMMEN                    | RCE CITY       | NW 125 1               | 76 CO          | 1127.0 19:44    | 6/23 @    | 6:20                   |
|           | 5.0 1270 DENVER                   | 2              | NE 1270 I              | 70 CO          | 1133.0 19:51    | 6/23 @    | 6:25                   |
|           | 526.0 I70 TOPEKA                  | ł              | W I470 I               | 70 KS          | 1659.0 29:01    | 6/23 @    | 16:35                  |
|           | 7.0 I470 TOPEKA                   | A              | S I335 I               | 470 KS         | 1666.0 29:15    | 6/23 @    | 16:49                  |
|           | 5.0 I470\$ TKST\$ TOPEKA          | 7              | E I470 I               | 70 KS          | 1671.0 29:25    | 6/23 @    | 16:59                  |
|           | 42.0 I70 \$ TKST\$ BONNER         | R SPRINGS      | N 170 X                | 224 KS         | 1713.0 30:04    | 6/23 @    | 17:38                  |
|           | 4.0 I70 KANSAS                    | 5 CITY         | W 1435 I               | 70 KS          | 1717.0 30:08    | 6/23 @    | 17:41                  |
|           | 31.0 1435 KANSAS                  | S CLLA         | SE 1435 1              | 70 MO          | 1748.0 30:41    | 6/23 @    | 18:15                  |
|           | 224.0 170 SI LO<br>22 0 1270 FDWD | JIS            | NW 1270 1<br>SW 1255 1 | 270 TT.        | 1972.0 34.40    | 6/23 @    | 22.14                  |
|           | 11 0 T255 WASHT                   | JGTON PK       | SE 1255 I              | 64 TT.         | 2005 0 35:16    | 6/23 @    | 22:50                  |
|           | 67.0 I64 MT VE                    | RNON           | NW 157 I               | 64 IL          | 2072.0 36:59    | 6/24 @    | 0:33                   |
|           | 5.0 I57 I64 MT VE                 | RNON           | SW 157 I               | 64 IL          | 2077.0 37:05    | 6/24 @    | 0:38                   |
|           | 48.0 I57 PULLEY                   | YS MILL        | W 124 I                | 57 IL          | 2125.0 37:57    | 6/24 @    | 1:30                   |
|           | 44.0 I24 PADUC                    | AH             | W 124 X                | 4 KY           | 2169.0 38:45    | 6/24 @    | 2:18                   |
|           | 8.0 UGO KEVIL                     |                | E U60 L                | OCL KY         | 2177.0 38:55    | 6/24 @    | 2:28                   |
|           | 3.0 LOCAL PADUCA                  | AH GDP         |                        | КY             | 2180.0 39:01    | 6/24 @    | 2:34                   |
|           |                                   |                |                        |                |                 |           |                        |
|           | Population Density from:          | HANFORD        |                        |                |                 |           |                        |
|           | to :                              | PADUCAH        | GDP                    |                | KY              |           |                        |
|           |                                   | 1112001111     | 021                    |                |                 |           |                        |
|           |                                   | Mile           | age within             | Density        | / Levels        |           |                        |
|           | <0.0 5.0                          | 22.7           | 59.7 139               | 326            | 821 1861 33     | 26 5815   |                        |
|           | St Miles 0 -5.0 -22.              | 7 -59.7        | -139 -326              | -821 -         | -1861 -3326 -58 | 15 -9996  | >9996                  |
|           |                                   |                |                        |                |                 |           |                        |
|           | KY 160 19 0 24                    | 1 4            | 88 17                  | 2              | 6 0             | 0 0       | 0                      |
|           | IL 178.0 27.4 44.1 34.2           | 2 31.6         | 14.1 10.9              | 7.8            | 4.6 1.7 1       | .05       | .0                     |
|           | MO 250.0 20.5 43.0 74.5           | 5 22.1         | 15.2 10.4              | 17.6           | 22.4 12.7 7     | .5 3.0    | 1.0                    |
|           | KS 432.0 25.3 206.9 93.           | 7 43.8         | 18.7 15.3              | 9.3            | 8.9 3.9 4       | .9 .8     | .2                     |
|           | CO 260.0 34.3 134.6 33.3          | 3 17.9         | 14.3 12.0              | 4.5            | 4.3 1.9 2       | .4 .3     | .0                     |
|           | WY 367.0 69.3 239.7 23.2          | 2 12.3         | 4.2 5.3                | 5.6            | 4.3 2.5         | .1 .5     | .0                     |
|           | UT 148.0 32.1 73.4 11.4           | 1 6.2          | 11.9 5.0               | 2.3            | 2.2 2.2         | .9.5      | .0                     |
|           | ID 274.0 43.9 97.4 53.0           | 5 45.5         | 10.0 9.3               | 4.3            | 4.6 3.5 1       | .6 .2     | .0                     |
|           | OR 209.0 11.1 132.4 31.5          | 5 13.8         | 10.8 4.0               | 1.4            | 3.0 .7          | .4 .0     | .0                     |
|           | WA 46.0 3.7 21.1 5.0              | 2.4            | 3.0 1.1                | 2.3            | 2.2 4.2         | .7.4      | .0                     |
|           | Totals                            |                |                        |                |                 |           |                        |
|           | 2180.0269.5 992.7 362.8           | 3 195.9 1      | 11.0 75.0              | 55.3           | 57.1 33.2 19    | .6 6.2    | 1.1                    |
|           | Percentages                       |                | ,                      |                |                 |           |                        |
|           | 12.4 45.5 16.6                    | 5 9.0          | 5.1 3.4                | 2.5            | 2.6 1.5         | .9.3      | .1                     |
|           | Basis: 1990 Census                |                |                        |                |                 |           |                        |
|           |                                   |                | _                      |                |                 |           |                        |
|           | RADTRAN Input Data                | Rural          | Suburban               | Urban          |                 |           |                        |
|           | Noightod Dopulation               |                |                        |                |                 |           |                        |
|           | People/sa mi                      | 12 0           | 960 2                  | 5566 2         |                 |           |                        |
|           | People/sq. km                     | ±3.0<br>5.3    | 370.7                  | 2149 1         |                 |           |                        |
|           | - COPIC/ DQ. Mar.                 | 5.5            | 5,0.1                  |                |                 |           |                        |
|           | Distance                          |                |                        |                | Total           |           |                        |
|           | Miles                             | 1932.0         | 220.6                  | 26.9           | 2180.0          |           |                        |
|           | Kilometers                        | 3109.1         | 355.0                  | 43.3           | 3508.3          |           |                        |
|           | Percentage                        | 88.6           | 10.1                   | 1.2            |                 |           |                        |
|           |                                   |                | 100 0000               |                | 1000 -          |           |                        |
|           | Basis (people/sq. mi.             | ) <139         | 139-3326               | >3326          | 1990 Census     |           |                        |
|           | Note: Due to rounding             | the cur        | of the mt              | leages -       | n the individu  | -1        |                        |
|           | More. Due to rounding,            | , the sum      | or the mi              | reages 1       |                 | ar        |                        |

population categories may not equal the total mileage shown on this report.



| . No. <u></u> | ENG-RCAL-028                                           | Rev. 1 Project No. 772030/171                                | Page <u>46</u> of <u>62</u>  |
|---------------|--------------------------------------------------------|--------------------------------------------------------------|------------------------------|
| ject:         | Transportation Risk Assessment for t                   | ne Shipment of Unirradiated Uranium                          |                              |
| arer:         | J. L. Boles                                            |                                                              | Date <u>5/31/00</u>          |
| cker.         | B. B. Peters                                           |                                                              | Date <u>5/31/00</u>          |
|               |                                                        |                                                              |                              |
|               |                                                        |                                                              |                              |
|               | From: PADUCAH GDP                                      | KY Leaving : 6/22/99 at 9:                                   | 36 CDT                       |
|               | to : PORTSMOUTH GDP                                    | OH Arriving: 6/22/99 at 20:                                  | 22 EDT                       |
|               | Route type: O with 2 driver(s                          | ) Total road tim                                             | e: 9:47                      |
|               | Time bias: 1.00 Mile bias:                             | .00 Toll bias: 1.00 Total miles                              | s: 549.0                     |
|               |                                                        |                                                              |                              |
|               | I - Links prohibiting truck u                          | IN EIIECT:                                                   |                              |
|               | 6 - HM-164/State preferred ro                          | utes                                                         |                              |
|               | 7 - Avoid ferry crossings                              |                                                              |                              |
|               | 11 - Nonintersecting Interstat                         | e Access                                                     |                              |
|               | Weighting used with preferred                          | highways: 10.0                                               |                              |
|               | OH 20.0 KY 452.0 TN 77                                 | .0                                                           |                              |
|               | Mileage by highway sign type:                          |                                                              |                              |
|               | Interstate: 478.0 U.S.:                                | 68.0 State: .0 Turnpike:                                     | .0                           |
|               | County: .0 Local:<br>Mileage by highway lane type:     | 3.0 Other: .0                                                |                              |
|               | Limited Access Multilane:                              | 478.0 Limited Access Single Lane:                            | . 0                          |
|               | Multilane Divided:                                     | 60.0 Multilane Undivided:                                    | . 0                          |
|               | Principal Highway: 8.0                                 | Through Highway: .0 Other:                                   | 3.0                          |
|               |                                                        |                                                              |                              |
|               | From: PADUCAH GDP                                      | KY Leaving : 6/22/99 at 9:                                   | 36 CDT                       |
|               | to : PORTSMOUTH GDP                                    | OH Arriving: 6/22/99 at 20:                                  | 22 EDT                       |
|               |                                                        |                                                              |                              |
|               | Routing through:                                       |                                                              |                              |
|               | .0 PADUCAH GDE                                         | KY .0 0:00                                                   | 6/22 @ 9:36                  |
|               | 3.0 LOCAL KEVIL                                        | E U60 LOCL KY 3.0 0:06                                       | 6/22 @ 9:42                  |
|               | 8.0 U60 PADUCAH                                        | W I24 X4 KY 11.0 0:16                                        | 6/22 @ 9:51                  |
|               | 157.0 124 INGLEWOOD                                    | W 124 105 IN 146.0 2.20<br>SW 1265 165 KY 303 0 5:17         | 6/22 @ 11:50<br>6/22 @ 15:52 |
|               | 15.0 I265 MIDDLETOWN                                   | SE 1265 164 KY 318.0 5:31                                    | 6/22 @ 16:06                 |
|               | 55.0 164 LEXINGTON                                     | N 164 175 KY 373.0 6:22                                      | 6/22 @ 16:58                 |
|               | 7.0 I64 I75 LEXINGTON                                  | E 164 175 KY 380.0 6:30                                      | 6/22 @ 17:05                 |
|               | 60.0 U23 PORTSMOUTH                                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | 6/22 @ 18:46<br>6/22 @ 20:22 |
|               |                                                        |                                                              | 0,22 0 20 22                 |
|               |                                                        |                                                              |                              |
|               | Population Density from: PADUC                         | AH GDP KY<br>MOUTTH GDP OH                                   |                              |
|               |                                                        |                                                              |                              |
|               | N                                                      | ileage within Density Levels                                 |                              |
|               | <0.0 5.0 22.                                           | 7 59.7 139 326 821 1861 3326                                 | 5815                         |
|               | St Miles 0 -5.0 -22.7 -59.                             | / -139 -320 -821 -1801 -3320 -5815                           | -9996 >9996                  |
|               |                                                        |                                                              |                              |
|               | OH 20.0 1.6 3.5 2.2 5.                                 | 0 3.6 .9 1.8 .5 .8 .1                                        | .0 .0                        |
|               | NI 452.U 14.6 44.4 59.6 122.<br>TN 77 0 8 2 4 2 8 9 12 | 5 111.4 53.3 21.1 11.8 10.7 2.3<br>2 18 1 10 3 4 6 7 8 1 3 3 | .0 .0                        |
|               | 1. 11.0 0.2 1.2 0.7 13.                                |                                                              | .0 .0                        |
|               | Totals                                                 |                                                              |                              |
|               | 549.0 24.4 52.1 70.7 140.                              | 7 133.2 64.4 27.6 20.1 12.8 2.8                              | .0 .0                        |
|               | Percentages                                            | 6 24 3 11 7 50 27 22 5                                       | 0 0                          |
|               | 4.5 9.5 12.9 25.<br>Basis: 1990 Census                 | U 27.3 II./ 3.U 3./ 2.3 .5                                   | .0 .0                        |
|               |                                                        |                                                              |                              |
|               | RADTRAN Input Data Run                                 | al Suburban Urban                                            |                              |
|               | Weighted Donulation                                    |                                                              |                              |
|               | People/sa. mi. 45                                      | .8 728.5 4570.5                                              |                              |
|               | People/sq. km. 18                                      | .5 281.3 1764.7                                              |                              |



 Doc. No.
 ENG-RCAL-028
 Rev. 1
 Project No.
 772030/171
 Page 47
 of 62

 Subject:
 Transportation Risk Assessment for the Shipment of Unirradiated Uranium

 Preparer:
 J. L. Boles
 Date 5/31/00

| Preparer: | J. L. Boles  | Date | 5/31/00 |  |
|-----------|--------------|------|---------|--|
| Checker:  | B. B. Peters | Date | 5/31/00 |  |
|           |              |      |         |  |

| Distance               |        |         |       | Total       |
|------------------------|--------|---------|-------|-------------|
| Miles                  | 421.2  | 124.9   | 2.8   | 549.0       |
| Kilometers             | 677.8  | 201.0   | 4.5   | 883.5       |
| Percentage             | 76.7   | 22.8    | .5    |             |
| Basis (people/sq. mi.) | <139 1 | 39-3326 | >3326 | 1990 Census |

Note: Due to rounding, the sum of the mileages in the individual population categories may not equal the total mileage shown on this report.

### 5.10 Interline Output File from Hanford, WA, to Portsmouth, OH, via Rail

| ROUTE   | FROM:<br>TO: | USG<br>NS | 16215-нд<br>3170-ро | ANFORD<br>ORTSMOU | WORKS<br>TH | WA<br>OH | LEI<br>POTENI | NGTH:<br>FIAL: | 2473.9<br>3745.0 | MILES |
|---------|--------------|-----------|---------------------|-------------------|-------------|----------|---------------|----------------|------------------|-------|
| MILEAGE | SUMMA        | RY BY     | RAILROAI            | )                 | A-M         | B-M      | A-BR          | B-BR           | OTHER            |       |
|         |              |           | BN                  | 1966.8            | 1966.8      | .0       | .0            | .0             | .0               |       |
|         |              |           | NS                  | 449.1             | 449.1       | .0       | .0            | .0             | .0               |       |
|         |              |           | UP                  | 8.6               | .0          | .0       | 6.0           | 2.6            | .0               |       |
|         |              |           | IHB                 | 24.0              | 24.0        | .0       | .0            | .0             | .0               |       |
|         |              |           | USG                 | 25.4              | .0          | .0       | .0            | 25.4           | .0               |       |
|         |              |           | WCRC                | .0                | .0          | .0       | .0            | .0             | .0               |       |
|         |              |           |                     |                   |             |          |               |                |                  |       |
|         |              |           | TOTAL               | 2473.9            | 2439.9      | .0       | 6.0           | 28.0           | .0               |       |
| MILEAG  | E SUMM       | ARY BY    | STATE               |                   |             |          |               |                |                  |       |
|         | 101.         | 0-ID      | 183.2-              | -IL               | 156.3-IN    | 279      | .8-MN         | 672            | .0-MT            |       |
|         | 385.         | 0-ND      | 290.8-              | -OH               | 203.8-WA    | 202      | .0-WI         |                |                  |       |
|         |              |           |                     |                   |             |          |               |                |                  |       |

| RR   | NODE                 | STATE | DIST  |   |   |   |   |          |
|------|----------------------|-------|-------|---|---|---|---|----------|
| USG  | 16215-HANFORD WORKS  | WA    | 0.    |   |   |   |   |          |
| USG  | 13941-RICHLAND       | WA    | 25.   |   |   |   |   |          |
|      |                      |       |       | - | - | - | - | TRANSFER |
| UP   | 13941-RICHLAND       | WA    | 25.   |   |   |   |   |          |
| UP   | 13964-KENNEWICK      | WA    | 34.   |   |   |   |   |          |
|      |                      |       |       | - | - | - | - | TRANSFER |
| WCRC | 13964-KENNEWICK      | WA    | 34.   |   |   |   |   |          |
|      |                      |       |       | - | - | - | - | TRANSFER |
| BN   | 13964-KENNEWICK      | WA    | 34.   |   |   |   |   |          |
| BN   | 13890-PASCO          | WA    | 35.   |   |   |   |   |          |
| BN   | 13828-SPOKANE        | WA    | 187.  |   |   |   |   |          |
| BN   | 13300-SANDPOINT      | ID    | 250.  |   |   |   |   |          |
| BN   | 13089-SHELBY         | MT    | 587.  |   |   |   |   |          |
| BN   | 13168-HAVRE          | MT    | 688.  |   |   |   |   |          |
| BN   | 15740-WILLISTON      | ND    | 1007. |   |   |   |   |          |
| BN   | 10936-MINOT          | ND    | 1119. |   |   |   |   |          |
| BN   | 10935-SURREY         | ND    | 1125. |   |   |   |   |          |
| BN   | 11134-CASSELTON      | ND    | 1340. |   |   |   |   |          |
| BN   | 11132-FARGO          | ND    | 1360. |   |   |   |   |          |
| BN   | 11131-MOORHEAD       | MN    | 1363. |   |   |   |   |          |
| BN   | 9663-STAPLES         | MN    | 1477. |   |   |   |   |          |
| BN   | 9671-SAUK RAPIDS     | MN    | 1542. |   |   |   |   |          |
| BN   | 9826-COON CREEK      | MIN   | 1592. |   |   |   |   |          |
| BN   | 9798-NORTHTOWN       | MN    | 1597. |   |   |   |   |          |
| BN   | 15603-EAST MINNEAPOL | ISMN  | 1603. |   |   |   |   |          |
| BN   | 9793-SOO LINE JCT    | MIN   | 1610. |   |   |   |   |          |
| BN   | 9830-ST PAUL         | MN    | 1612. |   |   |   |   |          |
| BN   | 5736-LA CROSSE       | WI    | 1734. |   |   |   |   |          |



| Ker:         E.B. Peters         Date         5/31/0           EN         4327-EAST DUBUQUE         IL         1845.           EN         4317-SAVANNA         IL         185.           EN         4130-AURORA         IL         1976.           EN         4170-LA GRANGE         IL         2001.           IHB         4170-LA GRANGE         IL         2001.           IHB         4170-LA GRANGE         IL         2005.           IHB         4170-LA GRANGE         IL         2005.           IHB         4160-HAMMOND         IN         2025.           NS         4064-HOBART         N2003.           NS         3004-COLUMEUS (4TH STOH         2334.           NS         3004-COLUMBUS (4TH STOH         2374.           NS         3162-CHILLICOTHE         0H         2425.           NS         3162-CHILLICOTHE         0H         2474.           POPULATION DENSITY FROM:         USG         16215-HANFORD WORKS         WA           CO:         NS         3170-PORTSMOUTH         OH         2474.           POPULATION DENSITY FROM:         USG         16215-HANFORD WORKS         WA           TO:         NS         3170-PORTSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                            | <u>J. L</u>                                                                                                                                                                                                                        | . Bol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | es                                                                                                                                                                                                                                 |                                                                                                                                                                 |                                                                                                                                                        |                                                                                                                                                           |                                                                                                                                                                     |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                      | [                                                                                               | Date                                                                                  | 5/31/00                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| <pre>EN 4327-EAST DUBUQUE IL 1845.<br/>EN 4317-SAVANNA IL 1885.<br/>EN 4100-AURORA IL 1976.<br/>EN 4170-LA GRANGE IL 2001.<br/>IHE 4170-LA GRANGE IL 2001.<br/>IHE 4170-LA GRANGE IL 2005.<br/>IHE 4163-BLUE SLAND IL 2017.<br/>IHE 4163-BLUE SLAND IL 2017.<br/>INS 4028-BURHAM / CALUMEIL 2025.<br/>NS 4076-HMAMKORD IN 2027.<br/>NS 4064-HOBART IN 2043.<br/>NS 4064-HOBART IN 2043.<br/>NS 3002-FOSTORIA OH 2285.<br/>NS 3162-CHILLOTHE OH 2285.<br/>NS 3162-CHILLOTHE OH 2285.<br/>NS 3162-CHILLOTHE OH 2285.<br/>NS 3162-CHILLOTHE OH 2285.<br/>St Miles 0 -5.0 22.7 59.7 139 326 821 1861 3326 5815<br/>St Miles 0 -5.0 -22.7 59.7 -139 -326 -821 -1861 -3326 -5815 -9996 &gt;9996<br/>JD 101.0 14.8 22.4 36.5 10.0 8.9 4.1 1.9 1.2 6 6 6 0.0 0<br/>IL 183.2 10.5 34.7 44.7 22.6 14.9 8.8 6.4 8.4 10.6 14.1 5.7 1.8<br/>IN 156.3 7.2 16.0 24.7 59.7 -139 -326 -821 -1861 -3326 -5815 -9996 &gt;9996<br/>JD 101.0 14.8 22.4 36.5 10.0 8.9 4.1 1.9 1.2 6 6 6 0 0.0 0<br/>IL 183.2 10.5 34.7 44.7 22.6 14.9 8.8 6.4 8.4 10.6 14.1 5.7 1.8<br/>IN 156.3 7.2 16.0 24.2 36.1 31.2 18.1 6.5 16.4 4.8 2.2 4.4<br/>MM 272.5 15.7 49.1 58.6 47.4 31.2 11.2 8.1 6.5 16.4 4.8 2.2 4.4<br/>IN 272.5 15.7 49.1 58.6 47.4 31.7 18.3 18.9 15.5 15.1 5.1 1.9 1.1<br/>MT 672.2 536.5 42.3 12.9 7.9 6.3 5.5 2.2 4.9 1.7 .2 0.0<br/>OH 230.8 10.3 74.5 50.6 3.7 6.7 4.7 11.9 7.3 6.7 7.0 5 0.0<br/>NM 285.0 31.6 247.5 56.3 12.9 7.9 6.3 5.5 2.2 4.9 1.7 7.0 5 0.0<br/>NM 203.8 10.3 74.5 50.6 3.7 6.7 4.7 11.9 7.3 6.7 7.0 2 0.0<br/>NM 203.8 10.3 74.5 50.6 3.7 6.7 4.7 11.9 7.3 6.7 7.0 2 0.0<br/>NM 203.8 10.3 74.5 50.6 3.7 6.7 4.7 11.9 7.3 6.7 7.0 2 0.0<br/>NM 203.8 10.3 74.5 50.6 3.12.6 7.6 5.3 5.5 0.5 6.1 47.7 13.8 5.8<br/>Percentage 5.6 42.8 18.1 11.2 7.1 4.0 2.9 2.2 2.3 1.9 .6 2.2<br/>Basis: 1990 Census data<br/>RADTRAN INPUt Data Rural Suburban Urban<br/>Weighted Population<br/>People/sqt. mi. 17.8 1007.2 5723.8<br/>People/sqt. mi. 5.9 388.9 2210.0<br/>Distance Total<br/>Miles 2124.3 281.6 67.4 2473.9<br/>Miles 2124.3 281.6 67.4 2473.9<br/>Miles 2124.3 281.6 67.4 2473.9<br/>Miles 2124.3 281.6 67.4 2473.9<br/>Miles 2124.3 281.6 67.4 2473.9<br/>Miles</pre> | ker:                                                                                                                                       | B. B                                                                                                                                                                                                                               | B. Pet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ters                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                        |                                                                                                                                                           |                                                                                                                                                                     |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                      | [                                                                                               | Date                                                                                  | 5/31/00                                                                                    |
| <pre>BN 4327-EAST DUBUQUE IL 1845.<br/>EN 4317-SAVANNA IL 1885.<br/>EN 4170-LA GRANGE IL 2001.<br/>IHE 4170-LA GRANGE IL 2001.<br/>IHE 4172-ARGO IL 2005.<br/>IHE 4172-ARGO IL 2005.<br/>IHE 4172-ARGO IL 2017.<br/>IHE 4172-ARGO IL 2025.<br/></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                            |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                        |                                                                                                                                                           |                                                                                                                                                                     |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                      |                                                                                                 |                                                                                       |                                                                                            |
| <pre>BN 437-EAST DUBQUE 1L 1885.<br/>BN 4300-AURORA 1L 1885.<br/>BN 4130-AURORA 1L 1976.<br/>BN 4170-LA GRANCE 1L 2001.<br/>THE 4170-LA GRANCE 1L 2001.<br/>THE 4170-LA GRANCE 1L 2001.<br/>THE 4170-LA GRANCE 1L 2007.<br/>THE 4163-BLUE ISLAND IL 2017.<br/>THE 4228-BURNHAM / CALUMEIL 2025.<br/>NS 4006-HORART IN 2027.<br/>NS 4064-HORART IN 2043.<br/>NS 4064-HORART IN 2043.<br/>NS 4064-HORART IN 2043.<br/>NS 4040-AUROS IN 2166.<br/>NS 3548-FORT WAYNE IN 2165.<br/>NS 3002-FOSTORIA 0H 2254.<br/>NS 3002-FOSTORIA 0H 2254.<br/>NS 3042-COLUMEUS (4TH STOH 2374.<br/>NS 3162-CHLLICOTHE 0H 2425.<br/>NS 3170-PORTSMOUTH 0H 2474.<br/>POPULATION DENSITY FROM: USG 16215-HANFORD WORKS WA<br/>TO: NS 3170-PORTSMOUTH 0H 2474.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                          |                                                                                                                                                                                                                                    | 42.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                        | TT 10                                                                                                                                                     | 4 5                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                      |                                                                                                 |                                                                                       |                                                                                            |
| <pre>BN 4130-ALKORA 1L 1083.<br/>BN 4130-ALKORA 1L 1083.<br/>BN 4100-LA GRANGE 1L 2001.<br/></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E                                                                                                                                          | 3N<br>N                                                                                                                                                                                                                            | 432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | / – EASI                                                                                                                                                                                                                           | DUBUÇ                                                                                                                                                           | <u>jor</u>                                                                                                                                             | LL 18<br>TT 10                                                                                                                                            | 45.<br>or                                                                                                                                                           |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                      |                                                                                                 |                                                                                       |                                                                                            |
| BN       110-LA GRANGE       112-10-1         FN       4170-LA GRANGE       112-2001.         IH       4170-LA GRANGE       112-2001.         IH       4170-LA GRANGE       112-2001.         IH       4170-LA GRANGE       112-2007.         IH       4132-BURNHAM / CALUMEIL 2025.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E                                                                                                                                          | SIN<br>TAC                                                                                                                                                                                                                         | 431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                        | LL 18<br>TT 10                                                                                                                                            | 65.<br>76                                                                                                                                                           |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                      |                                                                                                 |                                                                                       |                                                                                            |
| BN       1100-LA GRANGE       111       2001.       - TRANSFER         IHB       4170-LA GRANGE       IL       2005.         IHB       4163-BLUE ISLAND       IL       2017.         IHB       4163-BLUE ISLAND       IL       2025.         IHB       4228-BURNHAM / CALIMELL       2025.         NS       4076-HAMMOND       IN       2027.         NS       4064-HOBART       IN       2043.         NS       4020-ARGOS       IN       2106.         NS       3548-FORM WAYNE       N       2165.         NS       3022-FOSTORIA       OH       2234.         NS       3024-COLUMBUS (4TH STOH 2374.       NS       3162-CHILLICOTHE         NS       3170-FORTSMOUTH       OH       2474.         MILEAGE MITHIN DENSITY LEVELS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L<br>T                                                                                                                                     |                                                                                                                                                                                                                                    | 4190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -TAORC                                                                                                                                                                                                                             | RA                                                                                                                                                              |                                                                                                                                                        | TT 20                                                                                                                                                     | /0.<br>01                                                                                                                                                           |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                      |                                                                                                 |                                                                                       |                                                                                            |
| <pre>HB 4170-LA GENNEE IL 2001.<br/>HB 4172-ARGO IL 2005.<br/>HB 4163-BLUE ISLAND IL 2017.<br/>HB 41228-BURNHAM / CALUMEIL 2025.<br/>NS 4228-BURNHAM / CALUMEIL 2025.<br/>NS 4064-HOBART IN 2043.<br/>NS 4064-HOBART IN 2043.<br/>NS 40620-ARGOS IN 21066.<br/>NS 3548-FORT WAYNE IN 2165.<br/>NS 3002-FOSTORIA OH 2254.<br/>NS 3904-COLUMEUS (4TH STOH 2374.<br/>NS 3162-CHILLICOTHE OH 2425.<br/>NS 3170-PORTSMOUTH OH 2474.<br/>POPULATION DENSITY FROM: USG 16215-HANFORD WORKS WA<br/>TO: NS 3170-PORTSMOUTH OH 2474.<br/>POPULATION DENSITY FROM: USG 16215-HANFORD WORKS WA<br/>TO: NS 3170-PORTSMOUTH OH 2474.<br/>POPULATION DENSITY FROM: USG 16215-HANFORD WORKS WA<br/>CO. 5.0 22.7 59.7 139 326 821 1861 3326 5815<br/>St Miles 0 -5.0 -22.7 -59.7 -139 -326 821 1861 3326 5815<br/>St Miles 0 -5.0 22.7 38. 31.1 1.2 8.1 6.5 6.4 4.8 2.2 4.4<br/>NN 279.8 16.7 49.1 58.6 47.4 30.7 18.3 18.9 16.5 12.5 9.1 1.9 1.1<br/>M 6727.0 21.2 536.5 86.3 31.6 7.4 4.2 3.3 7. 6 0.0 0.0<br/>ND 385.0 33.6 247.5 62.3 12.8 7.9 6.3 5.5 2.2 4.9 1.7 2. 0<br/>OH 230.8 12.3 39.3 39.9 69.8 46.3 32.1 16.2 8.3 11.2 8.4 3.1 3.9<br/>MA 203.8 30.3 74.5 50.6 3.7 6.7 4.7 11.9 7.3 6.7 7.0 0.5 0.0<br/>WI 202.0 17.6 38.4 45.4 53.6 24.8 10.2 3.2 4.0 2.6 2.0 .2 0.0<br/>Totals<br/>2473.9164.31058.3 448.3 276.7 176.6 98.0 72.5 55.0 56.1 47.7 13.8 5.8<br/>Percentages 6.6 42.8 18.1 11.2 7.1 4.0 2.9 2.2 2.3 1.9 .6 .2<br/>Basis: 1990 Census data<br/>RADTRAN Input Data Rural Suburban Urban<br/>Weighted Population<br/>People/sq. km. 6.9 388.9 2210.0<br/>Distance Total<br/>M1128 2124.3 281.6 67.4 2473.9<br/>Kilometers 3418.6 453.2 100.4 3981.2<br/>Percentage 85.9 11.4 2.7<br/>Votal</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                          |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                        |                                                                                                                                                           |                                                                                                                                                                     | T                                                                                                                                                         | RANSFR                                                                                                                                                                      | R                                                                                                                    |                                                                                                 |                                                                                       |                                                                                            |
| <pre>HB 4172-ARGO IL 2005.<br/>HB 4163-BLUE ISLAND IL 2017.<br/>HH 4228-BURNHAM / CALUMEIL 2025.<br/>NS 4076-HAMMONN IN 2027.<br/>NS 4020-ARGOS IN 2003.<br/>NS 4020-ARGOS IN 2106.<br/>NS 3548-FORT WAYME IN 2165.<br/>NS 3002-FOSTORIA OH 2254.<br/>NS 3002-FOSTORIA OH 2334.<br/>NS 3002-COLUMBUS (4TH STOH 2374.<br/>NS 3162-CHILLICOTHE OH 2425.<br/>NS 3162-CHILLICOTHE OH 2425.<br/>NS 3170-PORTSMOUTH OH 2474.</pre> POPULATION DENSITY FROM: USG 16215-HANFORD WORKS WA<br>TO: NS 3170-PORTSMOUTH OH<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                          | IHB                                                                                                                                                                                                                                | 4170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )-LA G                                                                                                                                                                                                                             | RANGE                                                                                                                                                           |                                                                                                                                                        | IL 20                                                                                                                                                     | 01.                                                                                                                                                                 | 1                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                      |                                                                                                 |                                                                                       |                                                                                            |
| <pre>HB 4163-BLUE ISLAND IL 2017.<br/>HB 4228-BURNHAM / CALUMEIL 2025.<br/>NS 4228-BURNHAM / CALUMEIL 2025.<br/>NS 4064-HOBART IN 2043.<br/>NS 4064-HOBART IN 2043.<br/>NS 40620-ARGOS IN 21066.<br/>NS 3548-FORT WAYNE IN 2165.<br/>NS 3002-FORTA OH 2254.<br/>NS 3095-BELLEVUE OH 2265.<br/>NS 3162-CHILLICOTHE OH 2474.<br/>POPULATION DENSITY FROM: USG 16215-HANFORD WORKS WA<br/>TO: NS 3170-PORTSMOUTH OH<br/></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                          | IHB                                                                                                                                                                                                                                | 4172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-ARGC                                                                                                                                                                                                                             | )                                                                                                                                                               |                                                                                                                                                        | IL 20                                                                                                                                                     | 05.                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                      |                                                                                                 |                                                                                       |                                                                                            |
| <pre>LHB 4228-BURNHAM / CALUMELL 2025.<br/>NS 4026-BURNHAM / CALUMELL 2025.<br/>NS 4076-HAMMOND IN 2027.<br/>NS 4064-HOBART IN 2043.<br/>NS 4020-ARGOS IN 2106.<br/>NS 3304-FORT WAYNE IN 2165.<br/>NS 3002-FOSTORIA OH 2254.<br/>NS 3002-FOSTORIA OH 2334.<br/>NS 3024-CONTINATION OH 2334.<br/>NS 3162-CHILLICOTHE OH 2425.<br/>NS 3162-CHILLICOTHE OH 2425.<br/>NS 3162-CHILLICOTHE OH 2474.<br/>POPULATION DENSITY FROM: USG 16215-HAMFORD WORKS WA<br/>TO: NS 3170-PORTSMOUTH OH<br/></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                          | IHB                                                                                                                                                                                                                                | 4163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-BLUE                                                                                                                                                                                                                             | ISLAN                                                                                                                                                           | ID                                                                                                                                                     | IL 20                                                                                                                                                     | 17.                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                      |                                                                                                 |                                                                                       |                                                                                            |
| NS       4228-BURNHAM / CALUMEIL 2025.         NS       4076-HAMMOND IN 2027.         NS       4064-HOBART IN 2043.         NS       4020-ARGOS IN 2106.         NS       3002-FOSTORIA OF 2285.         NS       3002-FOSTORIA OF 2285.         NS       3024-COLUMEUS (4TH STOR) 2374.         NS       30394-COLUMEUS (4TH STOR) 2374.         NS       3162-CHILLCOTHE OH 2425.         NS       3170-PORTSMOUTH OH 2474.         POPULATION DENSITY FROM: USG 16215-HANFORD WORKS WA<br>TO: NS 3170-PORTSMOUTH OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                          | IHB                                                                                                                                                                                                                                | 4228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B-BURN                                                                                                                                                                                                                             | IHAM /                                                                                                                                                          | CALUME                                                                                                                                                 | IL 20                                                                                                                                                     | 25.                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                      |                                                                                                 |                                                                                       |                                                                                            |
| NS 4228-BURNHAM / CALUMEIL 2025.<br>NS 4076-HAMMOND IN 2027.<br>NS 4064-HOBART IN 2043.<br>NS 4020-ARGOS IN 2106.<br>NS 3548-FORT WAYNE IN 2165.<br>NS 3002-FOSTORIA OH 2254.<br>NS 3002-FOSTORIA OH 2334.<br>NS 3094-COLUMBUS (4TH STOH 2374.<br>NS 3162-CHILLICOTHE OH 2425.<br>NS 3170-FORTSMOUTH OH 2474.<br>POPULATION DENSITY FROM: USG 16215-HANFORD WORKS WA<br>TO: NS 3170-FORTSMOUTH OH 2474.<br>POPULATION DENSITY FROM: USG 16215-HANFORD WORKS WA<br>CO. 5.0 22.7 59.7 139 326 821 1861 3326 5815<br>St Miles 0 -5.0 -22.7 -59.7 -139 -326 -821 -1861 -3326 -5815 -9996 >9996<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                          |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                        |                                                                                                                                                           |                                                                                                                                                                     | T                                                                                                                                                         | RANSFE                                                                                                                                                                      | IR                                                                                                                   |                                                                                                 |                                                                                       |                                                                                            |
| NS 4076-HAMMOND IN 2027.<br>NS 4064-HOBART IN 2043.<br>NS 4020-ARGOS IN 2106.<br>NS 3548-FORT WANNE IN 2165.<br>NS 3002-FOSTORIA OH 2284.<br>NS 2995-BELLEVUE OH 2285.<br>NS 3094-COLUMENS (4TH STOH 2374.<br>NS 3162-CHILLICOTHE OH 2425.<br>NS 3170-FORTSMOUTH OH 2474.<br>POPULATION DENSITY FROM: USG 16215-HANFORD WORKS WA<br>TO: NS 3170-FORTSMOUTH OH<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                          | NS                                                                                                                                                                                                                                 | 4228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-BURN                                                                                                                                                                                                                             | IHAM /                                                                                                                                                          | CALUME                                                                                                                                                 | IL 20                                                                                                                                                     | 25.                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                      |                                                                                                 |                                                                                       |                                                                                            |
| NS 4064-HOBART IN 2043.<br>NS 4020-ARGOS IN 2106.<br>NS 3548-FORT WANNE IN 2165.<br>NS 2095-BELLEVUE OH 2285.<br>NS 3004-COLUMBUS (4TH STOH 2374.<br>NS 3162-CHILLICOTHE OH 2425.<br>NS 3170-FORTSMOUTH OH 2474.<br>POPULATION DENSITY FROM: USG 16215-HANFORD WORKS MA<br>TO: NS 3170-FORTSMOUTH OH<br>MILEAGE WITHIN DENSITY LEVELS<br>MILEAGE WITHIN DENSITY LEVELS<br>MILEAGE WITHIN DENSITY LEVELS<br>MILEAGE WITHIN DENSITY LEVELS<br>MILEAGE WITHIN DENSITY LEVELS<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                          | NS                                                                                                                                                                                                                                 | 4076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5-HAMM                                                                                                                                                                                                                             | IOND                                                                                                                                                            |                                                                                                                                                        | IN 20                                                                                                                                                     | 27.                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                      |                                                                                                 |                                                                                       |                                                                                            |
| NS 4020-ARGOS IN 2106.<br>NS 3548-FORT WAYNE IN 2165.<br>NS 3002-FOSTORIA OH 2254.<br>NS 2995-BELLEVUE OH 2285.<br>NS 3094-COLUMBUS (4TH STOH 2374.<br>NS 3102-COLUMBUS (4TH STOH 2425.<br>NS 3170-PORTSMOUTH OH 2474.<br>POPULATION DENSITY FROM: USG 16215-HANFORD WORKS WA<br>TO: NS 3170-PORTSMOUTH OH<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                          | NS                                                                                                                                                                                                                                 | 4064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-HOBA                                                                                                                                                                                                                             | RT                                                                                                                                                              |                                                                                                                                                        | IN 20                                                                                                                                                     | 43.                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                      |                                                                                                 |                                                                                       |                                                                                            |
| NS 3548-FORT WAYNE IN 2165.<br>NS 3022-FOSTORIA OH 2254.<br>NS 3402-MARION OH 2334.<br>NS 3042-CULDMEUS (4TH STOH 2374.<br>NS 3162-CHILLICOTHE OH 2425.<br>NS 3170-PORTSMOUTH OH 2474.<br>POPULATION DENSITY FROM: USG 16215-HANFORD WORKS WA<br>TO: NS 3170-PORTSMOUTH OH<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                          | NS                                                                                                                                                                                                                                 | 4020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )-ARGC                                                                                                                                                                                                                             | )S                                                                                                                                                              |                                                                                                                                                        | IN 21                                                                                                                                                     | 06.                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                      |                                                                                                 |                                                                                       |                                                                                            |
| NS 3002-FOSTORIA OH 2285.<br>NS 3402-MARION OH 2334.<br>NS 3042-CULMEUS (4TH STOH 2374.<br>NS 3162-CHILLICOTHE OH 2425.<br>NS 3170-PORTSMOUTH OH 2474.<br>POPULATION DENSITY FROM: USG 16215-HANFORD WORKS OH<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                          | NS                                                                                                                                                                                                                                 | 3548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-FORT                                                                                                                                                                                                                             | ' WAYNE                                                                                                                                                         | 1                                                                                                                                                      | IN 21                                                                                                                                                     | 65.                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                      |                                                                                                 |                                                                                       |                                                                                            |
| NS 2995-BELLEVUE OH 2285.<br>NS 3094-COLUMBUS (4TH STOH 2374.<br>NS 3162-CHILLICOTHE OH 2425.<br>NS 3170-PORTSMOUTH OH 2474.<br>POPULATION DENSITY FROM: USG 16215-HANFORD WORKS WA<br>TO: NS 3170-PORTSMOUTH OH<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                          | NS                                                                                                                                                                                                                                 | 3002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-FOST                                                                                                                                                                                                                             | ORIA                                                                                                                                                            |                                                                                                                                                        | OH 22                                                                                                                                                     | 54.                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                      |                                                                                                 |                                                                                       |                                                                                            |
| NS 3402-MARION OH 2334.<br>NS 304-COLUMBUS (4TH STOH 2334.<br>NS 3162-CHILLICOTHE OH 2425.<br>NS 3170-PORTSMOUTH OH 2474.<br>POPULATION DENSITY FROM: USG 16215-HANFORD WORKS WA<br>TO: NS 3170-PORTSMOUTH OH<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                          | NS                                                                                                                                                                                                                                 | 2995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D-BELL                                                                                                                                                                                                                             | LEVUE                                                                                                                                                           |                                                                                                                                                        | OH 22                                                                                                                                                     | 85.                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                      |                                                                                                 |                                                                                       |                                                                                            |
| NS 31994-COLUMBOS (41H SIGH 2425.<br>NS 3170-PORTSMOUTH OH 2425.<br>NS 3170-PORTSMOUTH OH 2474.<br>POPULATION DENSITY FROM: USG 16215-HANFORD WORKS WA<br>TO: NS 3170-PORTSMOUTH OH<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                          | NS<br>IG                                                                                                                                                                                                                           | 3402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                    | .ON                                                                                                                                                             | 4.000                                                                                                                                                  | OH 23                                                                                                                                                     | 34.                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                      |                                                                                                 |                                                                                       |                                                                                            |
| NS 3162-CHILLICOTHE OH 2425.<br>NS 3170-PORTSMOUTH OH 2474.<br>POPULATION DENSITY FROM: USG 16215-HANFORD WORKS WA<br>TO: NS 3170-PORTSMOUTH OH<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r                                                                                                                                          | 10                                                                                                                                                                                                                                 | 3094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                    | MBUS (                                                                                                                                                          | 4IH SI                                                                                                                                                 | JH 23                                                                                                                                                     | /4.<br>05                                                                                                                                                           |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                      |                                                                                                 |                                                                                       |                                                                                            |
| NS       STRUE-FORTSMOUTH       OH       2474.         POPULATION DENSITY FROM: USG 16215-HANFORD WORKS NA<br>TO: NS       WA<br>3170-PORTSMOUTH       WA<br>OH         MILEAGE WITHIN DENSITY LEVELS<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r                                                                                                                                          | NS<br>10                                                                                                                                                                                                                           | 3102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-CHIL                                                                                                                                                                                                                             |                                                                                                                                                                 | 1 <u>5</u><br>T                                                                                                                                        | JH 24                                                                                                                                                     | 23.<br>74                                                                                                                                                           |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                      |                                                                                                 |                                                                                       |                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                          | GN                                                                                                                                                                                                                                 | 3170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | J-PORI                                                                                                                                                                                                                             | SMOUIF                                                                                                                                                          | 1                                                                                                                                                      | JA 24                                                                                                                                                     | /4.                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                      |                                                                                                 |                                                                                       |                                                                                            |
| St Miles       0       -5.0       -22.7       -59.7       -139       -326       -821       -1861       -3326       -5815       -9996       >9996         ID       101.0       14.8       22.4       36.5       10.0       8.9       4.1       1.9       1.2       .6       .6       .0       .0         IL       183.2       10.5       34.7       44.7       22.6       14.9       8.8       6.4       8.4       10.6       14.1       5.7       1.8         IN       156.3       7.2       16.0       24.2       38.1       31.2       11.2       8.1       6.5       6.4       4.8       2.2       .4         MN 279.8       16.7       49.1       58.6       47.4       30.7       18.3       18.9       16.5       12.5       9.1       1.9       .1         MT 672.0       21.2       536.5       86.3       18.7       5.4       2.3       .3       .7       .6       0       0       0       0       0       30.3       3.3       39.9       69.8       46.3       32.1       16.2       8.3       11.2       8.4       3.1       3.6         W1 202.0       17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                            |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                    | -                                                                                                                                                               | .0. 105                                                                                                                                                | 51                                                                                                                                                        | /0-POR                                                                                                                                                              | ISMOUTH                                                                                                                                                   |                                                                                                                                                                             | OF                                                                                                                   | 1                                                                                               |                                                                                       |                                                                                            |
| <pre>ID 101.0 14.8 22.4 36.5 10.0 8.9 4.1 1.9 1.2 .6 .6 .0 .0<br/>IL 183.2 10.5 34.7 44.7 22.6 14.9 8.8 6.4 8.4 10.6 14.1 5.7 1.8<br/>IN 156.3 7.2 16.0 24.2 38.1 31.2 11.2 8.1 6.5 6.4 4.8 2.2 .4<br/>MN 279.8 16.7 49.1 58.6 47.4 30.7 18.3 18.9 16.5 12.5 9.1 1.9 .1<br/>MT 672.0 21.2 536.5 86.3 18.7 5.4 2.3 .3 .7 .6 0 .0 .0<br/>ND 385.0 33.6 247.5 62.3 12.8 7.9 6.3 5.5 2.2 4.9 1.7 .2 .0<br/>OH 290.8 12.3 39.3 39.9 69.8 46.3 32.1 16.2 8.3 11.2 8.4 3.1 3.6<br/>WA 203.8 30.3 74.5 50.6 3.7 6.7 4.7 11.9 7.3 6.7 7.0 .5 .0<br/>WI 202.0 17.6 38.4 45.4 53.6 24.8 10.2 3.2 4.0 2.6 2.0 .2 .0<br/>Totals<br/>2473.9164.31058.3 448.3 276.7 176.6 98.0 72.5 55.0 56.1 47.7 13.8 5.8<br/>Percentages<br/>6.6 42.8 18.1 11.2 7.1 4.0 2.9 2.2 2.3 1.9 .6 .2<br/>Basis: 1990 Census data<br/>RADTRAN Input Data Rural Suburban Urban<br/>Weighted Population<br/>People/sq. mi. 17.8 1007.2 5723.8<br/>People/sq. mi. 6.9 388.9 2210.0<br/>Distance Total<br/>Miles 2124.3 281.6 67.4 2473.9<br/>Kilometers 3418.6 453.2 108.4 3981.2<br/>Percentage 85.9 11.4 2.7</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                            | -                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                    |                                                                                                                                                                 | MI                                                                                                                                                     | LEAGE                                                                                                                                                     | VUTHIN                                                                                                                                                              | DENSIT                                                                                                                                                    | Y LEVE                                                                                                                                                                      | OF<br>ELS<br>1861                                                                                                    | 1<br><br>3326                                                                                   |                                                                                       |                                                                                            |
| ID 101.0 14.8 22.4 36.5 10.0 8.9 4.1 1.9 1.2 .6 .6 .0 .0<br>IL 183.2 10.5 34.7 44.7 22.6 14.9 8.8 6.4 8.4 10.6 14.1 5.7 1.8<br>IN 156.3 7.2 16.0 24.2 38.1 31.2 11.2 8.1 6.5 6.4 4.8 2.2 .4<br>MN 279.8 16.7 49.1 58.6 47.4 30.7 18.3 18.9 16.5 12.5 9.1 1.9 .1<br>MT 672.0 21.2 536.5 86.3 18.7 5.4 2.3 .3 .7 .6 .0 .0 .0<br>ND 385.0 33.6 247.5 62.3 12.8 7.9 6.3 5.5 2.2 4.9 1.7 .2 .0<br>OH 290.8 12.3 39.3 39.9 69.8 46.3 32.1 16.2 8.3 11.2 8.4 3.1 3.6<br>WA 203.8 30.3 74.5 50.6 3.7 6.7 4.7 11.9 7.3 6.7 7.0 .5 .0<br>WI 202.0 17.6 38.4 45.4 53.6 24.8 10.2 3.2 4.0 2.6 2.0 .2 .0<br>Totals<br>2473.9164.31058.3 448.3 276.7 176.6 98.0 72.5 55.0 56.1 47.7 13.8 5.8<br>Percentages<br>6.6 42.8 18.1 11.2 7.1 4.0 2.9 2.2 2.3 1.9 .6 .2<br>Basis: 1990 Census data<br>RADTRAN Input Data Rural Suburban Urban<br>Weighted Population<br>People/sg. mi. 17.8 1007.2 5723.8<br>People/sg. mi. 6.9 388.9 2210.0<br>Distance Total<br>Miles 2124.3 281.6 67.4 2473.9<br>Kilometers 3418.6 453.2 108.4 3981.2<br>Percentage 85.9 11.4 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | St Mi                                                                                                                                      | -<br>iles                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.0<br>-5.0                                                                                                                                                                                                                       | <br>5.0<br>-22.7                                                                                                                                                | MI<br>22.7<br>-59.7                                                                                                                                    | LEAGE<br>59.7<br>-139                                                                                                                                     | WITHIN<br>139<br>-326                                                                                                                                               | DENSIT<br>326<br>-821                                                                                                                                     | Y LEVE<br>821<br>-1861                                                                                                                                                      | OF<br>ELS<br>1861<br>-3326                                                                                           | 1<br><br>3326<br>-5815                                                                          | <br>5815<br>-9996                                                                     |                                                                                            |
| ID 101.0 14.8 22.4 36.5 10.0 8.9 4.1 1.9 1.2 .6 .6 .0 .0<br>IL 183.2 10.5 34.7 44.7 22.6 14.9 8.8 6.4 8.4 10.6 14.1 5.7 1.8<br>IN 156.3 7.2 16.0 24.2 38.1 31.2 11.2 8.1 6.5 6.4 4.8 2.2 .4<br>MN 279.8 16.7 49.1 58.6 47.4 30.7 18.3 18.9 16.5 12.5 9.1 1.9 .1<br>MT 672.0 21.2 536.5 86.3 18.7 5.4 2.3 .3 .7 .6 .0 .0 .0<br>ND 385.0 33.6 247.5 62.3 12.8 7.9 6.3 5.5 2.2 4.9 1.7 .2 .0<br>OH 20.8 12.3 39.3 39.9 69.8 46.3 32.1 16.2 8.3 11.2 8.4 3.1 3.6<br>WA 203.8 30.3 74.5 50.6 3.7 6.7 4.7 11.9 7.3 6.7 7.0 .5 .0<br>WI 202.0 17.6 38.4 45.4 53.6 24.8 10.2 3.2 4.0 2.6 2.0 .2 .0<br>Totals<br>2473.9164.31058.3 448.3 276.7 176.6 98.0 72.5 55.0 56.1 47.7 13.8 5.8<br>Percentages<br>6.6 42.8 18.1 11.2 7.1 4.0 2.9 2.2 2.3 1.9 .6 .2<br>Basis: 1990 Census data<br>RADTRAN Input Data Rural Suburban Urban<br>Weighted Population<br>People/sg. mi. 17.8 1007.2 5723.8<br>People/sg. mi. 6.9 388.9 2210.0<br>Distance Total<br>Miles 2124.3 281.6 67.4 2473.9<br>Kilometers 3418.6 453.2 108.4 3981.2<br>Percentage 85.9 11.4 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | St Mi                                                                                                                                      | -<br>iles                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.0<br>-5.0                                                                                                                                                                                                                       | ) 5.0<br>) -22.7                                                                                                                                                | MI<br>22.7<br>2-59.7                                                                                                                                   | LEAGE<br>59.7<br>-139                                                                                                                                     | WITHIN<br>139<br>-326                                                                                                                                               | DENSIT<br>326<br>-821                                                                                                                                     | Y LEVE<br>821<br>-1861<br>                                                                                                                                                  | OF<br>1861<br>-3326                                                                                                  | 1<br>3326<br>-5815                                                                              | 5815<br>-9996                                                                         | >9996                                                                                      |
| IL 183.2 10.5 34.7 44.7 22.6 14.9 8.8 6.4 8.4 10.6 14.1 5.7 1.8<br>IN 156.3 7.2 16.0 24.2 38.1 31.2 11.2 8.1 6.5 6.4 4.8 2.2 .4<br>MN 279.8 16.7 49.1 58.6 47.4 30.7 18.3 18.9 16.5 12.5 9.1 1.9 .1<br>MT 672.0 21.2 536.5 86.3 18.7 5.4 2.3 .3 .7 .6 .0 .0 .0<br>ND 385.0 33.6 247.5 62.3 12.8 7.9 6.3 5.5 2.2 4.9 1.7 .2 .0<br>OH 290.8 12.3 39.3 39.9 69.8 46.3 32.1 16.2 8.3 11.2 8.4 3.1 3.6<br>WA 203.8 30.3 74.5 50.6 3.7 6.7 4.7 11.9 7.3 6.7 7.0 .5 .0<br>WI 202.0 17.6 38.4 45.4 53.6 24.8 10.2 3.2 4.0 2.6 2.0 .2 .0<br>Totals<br>2473.9164.31058.3 448.3 276.7 176.6 98.0 72.5 55.0 56.1 47.7 13.8 5.8<br>Percentages<br>6.6 42.8 18.1 11.2 7.1 4.0 2.9 2.2 2.3 1.9 .6 .2<br>Basis: 1990 Census data<br>RADTRAN Input Data Rural Suburban Urban<br>Weighted Population<br>People/sq. mi. 17.8 1007.2 5723.8<br>People/sq. km. 6.9 388.9 2210.0<br>Distance Total<br>Miles 2124.3 281.6 67.4 2473.9<br>Kilometers 3418.6 453.2 108.4 3981.2<br>Percentage 8.5.9 11.4 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | St Mi                                                                                                                                      | -<br>iles                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.0<br>-5.0                                                                                                                                                                                                                       | 5.0                                                                                                                                                             | MI<br>22.7<br>-59.7                                                                                                                                    | LEAGE<br>59.7<br>-139                                                                                                                                     | WITHIN<br>139<br>-326                                                                                                                                               | DENSIT<br>326<br>-821                                                                                                                                     | Y LEVE<br>821<br>-1861                                                                                                                                                      | OF<br>1861<br>-3326                                                                                                  | 1<br>3326<br>-5815                                                                              | 5815<br>-9996                                                                         | >9996                                                                                      |
| IN 156.3 7.2 16.0 24.2 38.1 31.2 11.2 8.1 6.5 6.4 4.8 2.2 .4<br>MN 279.8 16.7 49.1 58.6 47.4 30.7 18.3 18.9 16.5 12.5 9.1 1.9 .1<br>MT 672.0 21.2 536.5 86.3 18.7 5.4 2.3 .3 .7 .6 .0 .0 .0<br>ND 385.0 33.6 247.5 62.3 12.8 7.9 6.3 5.5 2.2 4.9 1.7 .2 .0<br>OH 290.8 12.3 39.3 39.9 69.8 46.3 32.1 16.2 8.3 11.2 8.4 3.1 3.6<br>WA 203.8 30.3 74.5 50.6 3.7 6.7 4.7 11.9 7.3 6.7 7.0 .5 .0<br>WI 202.0 17.6 38.4 45.4 53.6 24.8 10.2 3.2 4.0 2.6 2.0 .2 .0<br>Totals<br>2473.9164.31058.3 448.3 276.7 176.6 98.0 72.5 55.0 56.1 47.7 13.8 5.8<br>Percentages<br>6.6 42.8 18.1 11.2 7.1 4.0 2.9 2.2 2.3 1.9 .6 .2<br>Basis: 1990 Census data<br>RADTRAN Input Data Rural Suburban Urban<br>Weighted Population<br>People/sq. mi. 17.8 1007.2 5723.8<br>People/sq. km. 6.9 388.9 2210.0<br>Distance Total<br>Miles 2124.3 281.6 67.4 2473.9<br>Kilometers 3418.6 453.2 108.4 3981.2<br>Percentage 85.9 11.4 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | St Mi<br><br>ID 10                                                                                                                         | -<br>iles<br>                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.0<br>-5.0<br>22.4                                                                                                                                                                                                               | ) 5.0<br>-22.7<br>36.5                                                                                                                                          | MI<br>) 22.7<br>2 -59.7<br>                                                                                                                            | LEAGE<br>59.7<br>-139<br><br>8.9                                                                                                                          | WITHIN<br>139<br>-326<br><br>4.1                                                                                                                                    | DENSIT<br>326<br>-821<br>1.9                                                                                                                              | Y LEVE<br>821<br>-1861<br>                                                                                                                                                  | ELS<br>1861<br>-3326<br>                                                                                             | 1<br>3326<br>-5815<br>                                                                          | 5815<br>-9996<br>                                                                     | >9996<br>                                                                                  |
| MN 279.8 16.7 49.1 58.6 47.4 30.7 18.3 18.9 16.5 12.5 9.1 1.9 .1<br>MT 672.0 21.2 536.5 86.3 18.7 5.4 2.3 .3 .7 .6 .0 .0 .0<br>ND 385.0 33.6 247.5 62.3 12.8 7.9 6.3 5.5 2.2 4.9 1.7 .2 .0<br>OH 290.8 12.3 39.3 39.9 69.8 46.3 32.1 16.2 8.3 11.2 8.4 3.1 3.6<br>WA 203.8 30.3 74.5 50.6 3.7 6.7 4.7 11.9 7.3 6.7 7.0 .5 .0<br>WI 202.0 17.6 38.4 45.4 53.6 24.8 10.2 3.2 4.0 2.6 2.0 .2 .0<br>Totals<br>2473.9164.31058.3 448.3 276.7 176.6 98.0 72.5 55.0 56.1 47.7 13.8 5.8<br>Percentages<br>6.6 42.8 18.1 11.2 7.1 4.0 2.9 2.2 2.3 1.9 .6 .2<br>Basis: 1990 Census data<br>RADTRAN Input Data Rural Suburban Urban<br>Weighted Population<br>People/sq. mi. 17.8 1007.2 5723.8<br>People/sq. km. 6.9 388.9 2210.0<br>Distance Total<br>Miles 2124.3 281.6 67.4 2473.9<br>Kilometers 3418.6 453.2 108.4 3981.2<br>Percentage 85.9 11.4 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | St Mi<br><br>ID 10<br>IL 18                                                                                                                | -<br>iles<br>01.0 1<br>33.2 1                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.0<br>-5.0<br>22.4<br>34.7                                                                                                                                                                                                       | ) 5.0<br>-22.7<br><br>36.5<br>44.7                                                                                                                              | MI<br>22.7<br>-59.7<br><br>10.0<br>22.6                                                                                                                | LEAGE<br>59.7<br>-139<br><br>8.9<br>14.9                                                                                                                  | WITHIN<br>139<br>-326<br><br>4.1<br>8.8                                                                                                                             | DENSIT<br>326<br>-821<br>                                                                                                                                 | Y LEVE<br>821<br>-1861<br><br>1.2<br>8.4                                                                                                                                    | ELS<br>1861<br>-3326<br>                                                                                             | 1<br>3326<br>-5815<br>                                                                          | .0<br>5.7                                                                             | <br>>99996<br><br>.0<br>1.8                                                                |
| MI 072.0 21.2 336.3 60.3 12.8 7.9 6.3 5.5 2.2 4.9 1.7 .2 .0         ND 385.0 33.6 247.5 62.3 12.8 7.9 6.3 5.5 2.2 4.9 1.7 .2 .0         OH 290.8 12.3 39.3 39.9 69.8 46.3 32.1 16.2 8.3 11.2 8.4 3.1 3.6         WA 203.8 30.3 74.5 50.6 3.7 6.7 4.7 11.9 7.3 6.7 7.0 .5 .0         WI 202.0 17.6 38.4 45.4 53.6 24.8 10.2 3.2 4.0 2.6 2.0 .2 .0         Totals         2473.9164.31058.3 448.3 276.7 176.6 98.0 72.5 55.0 56.1 47.7 13.8 5.8         Percentages         6.6 42.8 18.1 11.2 7.1 4.0 2.9 2.2 2.3 1.9 .6 .2         Basis: 1990 Census data         RADTRAN Input Data       Rural Suburban         Weighted Population         People/sq. mi.       17.8 1007.2 5723.8         People/sq. km.       6.9 388.9 2210.0         Distance       Total         Miles       2124.3 281.6 67.4 2473.9         Kilometers       3418.6 453.2 108.4 3981.2         Percentage       85.9 11.4 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | St Mi<br><br>ID 10<br>IL 18<br>IN 19                                                                                                       | -<br>iles<br>01.0 1<br>33.2 1<br>56.3                                                                                                                                                                                              | 0.4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.0<br>-5.0<br>22.4<br>34.7<br>16.0                                                                                                                                                                                               | 36.5<br>44.7                                                                                                                                                    | MI<br>22.7<br>-59.7<br>10.0<br>22.6<br>2.38.1                                                                                                          | LEAGE<br>59.7<br>-139<br><br>8.9<br>14.9<br>31.2                                                                                                          | WITHIN<br>139<br>-326<br><br>4.1<br>8.8<br>11.2                                                                                                                     | DENSIT<br>326<br>-821<br><br>1.9<br>6.4<br>8.1                                                                                                            | Y LEVF<br>821<br>-1861<br><br>1.2<br>8.4<br>6.5                                                                                                                             | ELS<br>1861<br>-3326<br><br>.6<br>10.6<br>6.4                                                                        | 1<br>3326<br>-5815<br><br>14.1<br>4.8<br>0 1                                                    | 5815<br>-9996<br><br>5.7<br>2.2                                                       | >9996<br><br>1.8<br>.4                                                                     |
| ND 305.0 35.0 247.3 02.3 12.6 7.9 03.3 3.9 20.3 12.0 7.9 03.5 2.2 4.9 1.7 1.2 1.0 0H 290.8 12.3 39.3 39.9 69.8 46.3 32.1 16.2 8.3 11.2 8.4 3.1 3.6 WA 203.8 30.3 74.5 50.6 3.7 6.7 4.7 11.9 7.3 6.7 7.0 .5 .0 WI 202.0 17.6 38.4 45.4 53.6 24.8 10.2 3.2 4.0 2.6 2.0 .2 .0         Totals       2473.9164.31058.3 448.3 276.7 176.6 98.0 72.5 55.0 56.1 47.7 13.8 5.8 Percentages       6.6 42.8 18.1 11.2 7.1 4.0 2.9 2.2 2.3 1.9 .6 .2       0.2 Basis: 1990 Census data         RADTRAN Input Data       Rural Suburban       Urban         Weighted Population       People/sq. mi. 17.8 1007.2 5723.8 People/sq. km. 6.9 388.9 2210.0       Total         Distance       Total         Miles       2124.3 281.6 67.4 2473.9 Kilometers 3418.6 453.2 108.4 3981.2 Percentage         Riles       2124.3 281.6 453.2 108.4 3981.2 Percentage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | St Mi<br>ID 10<br>IL 18<br>IN 19<br>MN 25                                                                                                  | <br>01.0 1<br>33.2 1<br>56.3<br>79.8 1                                                                                                                                                                                             | 0<br>.4.8<br>.0.5<br>7.2<br>.6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.0<br>-5.0<br>22.4<br>34.7<br>16.0<br>49.1                                                                                                                                                                                       | 36.5<br>44.7<br>24.2                                                                                                                                            | <pre> MI 22.7 10.0 22.6 238.1 47.4 187</pre>                                                                                                           | LEAGE<br>59.7<br>-139<br><br>8.9<br>14.9<br>31.2<br>30.7                                                                                                  | WITHIN<br>139<br>-326<br><br>4.1<br>8.8<br>11.2<br>18.3<br>2.2                                                                                                      | DENSIT<br>326<br>-821<br><br>1.9<br>6.4<br>8.1<br>18.9                                                                                                    | Y LEVE<br>821<br>-1861<br><br>1.2<br>8.4<br>6.5<br>16.5                                                                                                                     | ELS<br>1861<br>-3326<br><br>.6<br>10.6<br>6.4<br>12.5                                                                | 1<br>3326<br>-5815<br><br>14.1<br>4.8<br>9.1                                                    | 5815<br>-9996<br>.0<br>5.7<br>2.2<br>1.9                                              | >9996<br><br>1.8<br>.4<br>.1                                                               |
| WA 203.8 30.3 74.5 50.6 3.7 6.7 4.7 11.9 7.3 6.7 7.0 .5 .0         WI 202.0 17.6 38.4 45.4 53.6 24.8 10.2 3.2 4.0 2.6 2.0 .2 .0         Totals         2473.9164.31058.3 448.3 276.7 176.6 98.0 72.5 55.0 56.1 47.7 13.8 5.8         Percentages         6.6 42.8 18.1 11.2 7.1 4.0 2.9 2.2 2.3 1.9 .6 .2         Basis: 1990 Census data         RADTRAN Input Data         Rural Suburban       Urban         Weighted Population         People/sq. mi.       17.8 1007.2 5723.8         People/sq. km.       6.9 388.9 2210.0         Distance       Total         Miles       2124.3 281.6 67.4 2473.9         Kilometers       3418.6 453.2 108.4 3981.2         Percentage       85.9 11.4 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | St Mi<br><br>IL 10<br>IL 10<br>IN 15<br>MN 27<br>MN 27                                                                                     | iles<br><br>01.0 1<br>33.2 1<br>56.3<br>79.8 1<br>72.0 2                                                                                                                                                                           | 0<br>4.8<br>0.5<br>7.2<br>6.7<br>21.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.0<br>-5.0<br>22.4<br>34.7<br>16.0<br>49.1<br>536.5                                                                                                                                                                              | 36.5<br>-22.7<br>36.5<br>44.7<br>24.2<br>58.6<br>86.3                                                                                                           | <pre> MI 22.7 -59.7 10.0 22.6 238.1 47.4 18.7 1.28</pre>                                                                                               | LEAGE<br>59.7<br>-139<br><br>8.9<br>14.9<br>31.2<br>30.7<br>5.4<br>7                                                                                      | WITHIN<br>139<br>-326<br><br>4.1<br>8.8<br>11.2<br>18.3<br>2.3<br>6 3                                                                                               | DENSIT<br>326<br>-821<br><br>1.9<br>6.4<br>8.1<br>18.9<br>.3<br>5 5                                                                                       | Y LEVF<br>821<br>-1861<br><br>1.2<br>8.4<br>6.5<br>16.5<br>.7<br>2 2                                                                                                        | ELS<br>1861<br>-3326<br><br>10.6<br>10.6<br>6.4<br>12.5<br>.6                                                        | 1<br>3326<br>-5815<br><br>14.1<br>4.8<br>9.1<br>.0<br>1 7                                       | 5815<br>-9996<br>.0<br>5.7<br>2.2<br>1.9<br>.0                                        | >9996<br><br>1.8<br>.4<br>.1<br>.0<br>0                                                    |
| WI 202.0 17.6 38.4 45.4 53.6 24.8 10.2 3.2 4.0 2.6 2.0 .2 .0         Totals         2473.9164.31058.3 448.3 276.7 176.6 98.0 72.5 55.0 56.1 47.7 13.8 5.8         Percentages         6.6 42.8 18.1 11.2 7.1 4.0 2.9 2.2 2.3 1.9 .6 .2         Basis: 1990 Census data         RADTRAN Input Data         Weighted Population         People/sq. mi.       17.8 1007.2 5723.8         People/sq. km.       6.9 388.9 2210.0         Distance       Total         Miles       2124.3 281.6 67.4 2473.9         Kilometers       3418.6 453.2 108.4 3981.2         Percentage       85.9 11.4 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | St Mi<br>ID 10<br>IL 18<br>IN 19<br>MN 27<br>MT 67<br>ND 38                                                                                | iles<br>01.0 1<br>33.2 1<br>56.3<br>79.8 1<br>72.0 2<br>35.0 3                                                                                                                                                                     | 0<br>.4.8<br>.0.5<br>7.2<br>.6.7<br>21.2<br>33.6<br>2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.0<br>-5.0<br>22.4<br>34.7<br>16.0<br>49.1<br>536.5<br>247.5                                                                                                                                                                     | ) 5.0<br>-22.7<br>36.5<br>44.7<br>24.2<br>58.6<br>86.3<br>5 62.3                                                                                                | MI<br>) 22.7<br>/ -59.7<br><br>10.0<br>22.6<br>2 38.1<br>47.4<br>18.7<br>3 12.8<br>69.8                                                                | LEAGE<br>59.7<br>-139<br><br>8.9<br>14.9<br>31.2<br>30.7<br>5.4<br>7.9<br>46 3                                                                            | WITHIN<br>139<br>-326<br><br>4.1<br>8.8<br>11.2<br>18.3<br>2.3<br>6.3<br>32                                                                                         | DENSIT<br>326<br>-821<br><br>1.9<br>6.4<br>8.1<br>18.9<br>.3<br>5.5<br>16.2                                                                               | Y LEVF<br>821<br>-1861<br><br>1.2<br>8.4<br>6.5<br>16.5<br>.7<br>2.2<br>8.3                                                                                                 | ELS<br>1861<br>-3326<br><br>10.6<br>6.4<br>12.5<br>.6<br>4.9                                                         | 1<br>-5815<br>-6<br>14.1<br>4.8<br>9.1<br>.0<br>1.7<br>8 4                                      | 5815<br>-9996<br>5.7<br>2.2<br>1.9<br>.0<br>.2<br>2.1                                 | >9996<br><br>1.8<br>.4<br>.1<br>.0<br>.0                                                   |
| Totals<br>2473.9164.31058.3 448.3 276.7 176.6 98.0 72.5 55.0 56.1 47.7 13.8 5.8<br>Percentages<br>6.6 42.8 18.1 11.2 7.1 4.0 2.9 2.2 2.3 1.9 .6 .2<br>Basis: 1990 Census data<br>RADTRAN Input Data Rural Suburban Urban<br>Weighted Population<br>People/sq. mi. 17.8 1007.2 5723.8<br>People/sq. km. 6.9 388.9 2210.0<br>Distance<br>Miles 2124.3 281.6 67.4 2473.9<br>Kilometers 3418.6 453.2 108.4 3981.2<br>Percentage 85.9 11.4 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | St Mi<br>ID 10<br>IL 18<br>IN 19<br>MN 27<br>MT 67<br>ND 38<br>OH 29<br>WA 20                                                              | iles<br><br>33.2 1<br>56.3<br>79.8 1<br>72.0 2<br>35.0 3<br>90.8 1                                                                                                                                                                 | 0<br>4.8<br>0.5<br>7.2<br>6.7<br>21.2<br>33.6<br>2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.0<br>-5.0<br>22.4<br>34.7<br>16.0<br>49.1<br>536.5<br>247.5<br>39.3<br>74 5                                                                                                                                                     | ) 5.0<br>-22.7<br>36.5<br>44.7<br>) 24.2<br>58.6<br>86.3<br>62.3<br>39.9<br>50.6                                                                                | MI<br>22.7<br>59.7<br><br>10.0<br>22.6<br>238.1<br>47.4<br>18.7<br>312.8<br>69.8<br>37                                                                 | LEAGE<br>59.7<br>-139<br><br>8.9<br>14.9<br>31.2<br>30.7<br>5.4<br>7.9<br>46.3<br>67                                                                      | WITHINN<br>139<br>-326<br><br>4.1<br>8.8<br>11.2<br>18.3<br>2.3<br>6.3<br>32.1<br>4 7                                                                               | DENSIT<br>326<br>-821<br><br>6.4<br>8.1<br>18.9<br>.3<br>5.5<br>16.2<br>11 9                                                                              | Y LEVF<br>821<br>-1861<br><br>8.4<br>6.5<br>16.5<br>.7<br>2.2<br>8.3<br>7 3                                                                                                 | CH<br>ELS<br>1861<br>-3326<br>.6<br>10.6<br>6.4<br>12.5<br>.6<br>4.9<br>11.2<br>6 7                                  | 1<br>3326<br>-5815<br>.6<br>14.1<br>4.8<br>9.1<br>.0<br>1.7<br>8.4<br>7 0                       | 5815<br>-9996<br>5.7<br>2.2<br>1.9<br>.0<br>.2<br>3.1                                 | >9996<br><br>1.8<br>.4<br>.1<br>.0<br>3.6<br>0                                             |
| Totals<br>2473.9164.31058.3 448.3 276.7 176.6 98.0 72.5 55.0 56.1 47.7 13.8 5.8<br>Percentages<br>6.6 42.8 18.1 11.2 7.1 4.0 2.9 2.2 2.3 1.9 .6 .2<br>Basis: 1990 Census data<br>RADTRAN Input Data Rural Suburban Urban<br>Weighted Population<br>People/sq. mi. 17.8 1007.2 5723.8<br>People/sq. km. 6.9 388.9 2210.0<br>Distance<br>Miles 2124.3 281.6 67.4 2473.9<br>Kilometers 3418.6 453.2 108.4 3981.2<br>Percentage 85.9 11.4 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | St Mi<br>ID 10<br>IL 18<br>IN 15<br>MN 27<br>MT 67<br>ND 38<br>OH 29<br>WA 20<br>WI 20                                                     | <br>01.0 1<br>33.2 1<br>56.3 1<br>72.0 2<br>35.0 3<br>90.8 1<br>03.8 3<br>02.0 1                                                                                                                                                   | 0<br>4.8<br>0.5<br>7.2<br>6.7<br>21.2<br>33.6<br>2.3<br>30.3<br>7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <pre>&lt;0.0<br/>-5.0<br/>22.4<br/>34.7<br/>16.0<br/>49.1<br/>536.5<br/>247.5<br/>39.3<br/>74.5<br/>38.4</pre>                                                                                                                     | ) 5.0<br>-22.7<br>36.5<br>44.7<br>) 24.2<br>58.6<br>86.3<br>58.6<br>86.3<br>59.9<br>50.6<br>45.4                                                                | MI<br>22.7<br>59.7<br><br>10.0<br>22.6<br>238.1<br>47.4<br>18.7<br>312.8<br>69.8<br>3.7<br>53.6                                                        | LEAGE<br>59.7<br>-139<br><br>8.9<br>14.9<br>31.2<br>30.7<br>5.4<br>7.9<br>46.3<br>6.7<br>24.8                                                             | WITHIN<br>139<br>-326<br><br>4.1<br>8.8<br>11.2<br>18.3<br>2.3<br>6.3<br>32.1<br>4.7<br>10.2                                                                        | DENSIT<br>326<br>-821<br><br>6.4<br>8.1<br>18.9<br>.3<br>5.5<br>16.2<br>11.9<br>3.2                                                                       | Y LEVF<br>821<br>-1861<br>1.2<br>8.4<br>6.5<br>16.5<br>.7<br>2.2<br>8.3<br>7.3<br>4.0                                                                                       | .6<br>10.6<br>10.6<br>6.4<br>12.5<br>.6<br>4.9<br>11.2<br>6.7<br>2.6                                                 | 1<br>3326<br>-5815<br>.6<br>14.1<br>4.8<br>9.1<br>.0<br>1.7<br>8.4<br>7.0<br>2.0                | 5815<br>-9996<br>5.7<br>2.2<br>1.9<br>.0<br>.2<br>3.1<br>.5                           | >9996<br><br>1.8<br>.4<br>.1<br>.0<br>.0<br>3.6<br>.0                                      |
| 2473.9164.31058.3 448.3 276.7 176.6 98.0 72.5 55.0 56.1 47.7 13.8 5.8<br>Percentages<br>6.6 42.8 18.1 11.2 7.1 4.0 2.9 2.2 2.3 1.9 .6 .2<br>Basis: 1990 Census data<br>RADTRAN Input Data Rural Suburban Urban<br>Weighted Population<br>People/sq. mi. 17.8 1007.2 5723.8<br>People/sq. km. 6.9 388.9 2210.0<br>Distance<br>Miles 2124.3 281.6 67.4 2473.9<br>Kilometers 3418.6 453.2 108.4 3981.2<br>Percentage 85.9 11.4 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | St Mi<br>ID 10<br>IL 18<br>IN 19<br>MN 27<br>MT 67<br>ND 38<br>OH 29<br>WA 20<br>WI 20                                                     | <br>01.0 1<br>33.2 1<br>56.3<br>79.8 1<br>72.0 2<br>35.0 3<br>90.8 1<br>03.8 3<br>02.0 1                                                                                                                                           | 0<br>.4.8<br>.0.5<br>7.2<br>.6.7<br>21.2<br>33.6<br>.2.3<br>30.3<br>.7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>&lt;0.0<br/>-5.0<br/>-22.4<br/>34.7<br/>16.0<br/>49.1<br/>536.5<br/>247.5<br/>39.3<br/>74.5<br/>38.4</pre>                                                                                                                    | 36.5<br>44.7<br>24.2<br>58.6<br>86.3<br>59.9<br>50.6<br>45.4                                                                                                    | MI<br>22.7<br>59.7<br><br>10.0<br>22.6<br>238.1<br>47.4<br>18.7<br>3.12.8<br>69.8<br>3.7<br>53.6                                                       | LEAGE<br>59.7<br>-139<br>14.9<br>31.2<br>30.7<br>5.4<br>7.9<br>46.3<br>6.7<br>24.8                                                                        | WITHINN<br>139<br>-326<br><br>4.1<br>8.8<br>11.2<br>18.3<br>2.3<br>6.3<br>32.1<br>4.7<br>10.2                                                                       | DENSIT<br>326<br>-821<br><br>6.4<br>8.1<br>18.9<br>.3<br>5.5<br>16.2<br>11.9<br>3.2                                                                       | Y LEVF<br>821<br>-1861<br>1.2<br>8.4<br>6.5<br>16.5<br>.7<br>2.2<br>8.3<br>7.3<br>4.0                                                                                       | .6<br>10.6<br>10.6<br>6.4<br>12.5<br>.6<br>4.9<br>11.2<br>6.7<br>2.6                                                 | 1<br>3326<br>-5815<br>.6<br>14.1<br>4.8<br>9.1<br>.0<br>1.7<br>8.4<br>7.0<br>2.0                | 5815<br>-9996<br>5.7<br>2.2<br>1.9<br>.0<br>.2<br>3.1<br>.5<br>.2                     | >9996<br><br>1.8<br>.4<br>.1<br>.0<br>.0<br>3.6<br>.0<br>.0                                |
| Percentages<br>6.6 42.8 18.1 11.2 7.1 4.0 2.9 2.2 2.3 1.9 .6 .2<br>Basis: 1990 Census data<br>RADTRAN Input Data Rural Suburban Urban<br>Weighted Population<br>People/sq. mi. 17.8 1007.2 5723.8<br>People/sq. km. 6.9 388.9 2210.0<br>Distance Total<br>Miles 2124.3 281.6 67.4 2473.9<br>Kilometers 3418.6 453.2 108.4 3981.2<br>Percentage 85.9 11.4 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | St Mi<br>ID 10<br>IL 18<br>IN 15<br>MN 27<br>MT 67<br>ND 38<br>OH 29<br>WA 20<br>WI 20<br>Total                                            | iles<br>01.0 1<br>33.2 1<br>56.3<br>79.8 1<br>72.0 2<br>35.0 3<br>90.8 1<br>03.8 3<br>02.0 1<br>1s                                                                                                                                 | 0<br>-4.8<br>-0.5<br>7.2<br>-6.7<br>21.2<br>-33.6<br>-2.3<br>-0.3<br>-7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <pre>&lt;0.0<br/>-5.0<br/>22.4<br/>34.7<br/>16.0<br/>49.1<br/>536.5<br/>247.5<br/>39.3<br/>74.5<br/>38.4</pre>                                                                                                                     | ) 5.0<br>-22.7<br>44.7<br>24.2<br>58.6<br>86.3<br>58.6<br>86.3<br>59.9<br>50.6<br>45.4                                                                          | MI<br>22.7<br>-59.7<br>10.0<br>22.6<br>238.1<br>47.4<br>18.7<br>312.8<br>69.8<br>3.7<br>53.6                                                           | LEAGE<br>59.7<br>-139<br><br>8.9<br>14.9<br>31.2<br>30.7<br>5.4<br>7.9<br>46.3<br>6.7<br>24.8                                                             | WITHIN<br>139<br>-326<br><br>4.1<br>8.8<br>11.2<br>18.3<br>2.3<br>6.3<br>32.1<br>4.7<br>10.2                                                                        | DENSIT<br>326<br>-821<br><br>6.4<br>8.1<br>18.9<br>.3<br>5.5<br>16.2<br>11.9<br>3.2                                                                       | Y LEVF<br>821<br>-1861<br>1.2<br>8.4<br>6.5<br>16.5<br>.7<br>2.2<br>8.3<br>7.3<br>4.0                                                                                       | .6<br>10.6<br>10.6<br>6.4<br>12.5<br>.6<br>4.9<br>11.2<br>6.7<br>2.6                                                 | 1<br>3326<br>-5815<br>.6<br>14.1<br>4.8<br>9.1<br>.0<br>1.7<br>8.4<br>7.0<br>2.0                | 5815<br>-9996<br>5.7<br>2.2<br>1.9<br>.0<br>.2<br>3.1<br>.5<br>.2                     | >9996<br><br>1.8<br>.4<br>.1<br>.0<br>.0<br>3.6<br>.0<br>.0                                |
| 6.6       42.8       18.1       11.2       7.1       4.0       2.9       2.2       2.3       1.9       .6       .2         Basis:       1990 Census data       Rural Suburban       Urban       Urban       Weighted Population       People/sq. mi.       17.8       1007.2       5723.8       People/sq. km.       6.9       388.9       2210.0         Distance       Total       Miles       2124.3       281.6       67.4       2473.9         Kilometers       3418.6       453.2       108.4       3981.2         Percentage       85.9       11.4       2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | St Mi<br>ID 10<br>IL 18<br>IN 15<br>MN 27<br>MT 67<br>ND 38<br>OH 29<br>WA 20<br>WI 20<br>Totai<br>247                                     | iles<br>01.0 1<br>33.2 1<br>56.3<br>79.8 1<br>72.0 2<br>35.0 3<br>90.8 1<br>03.8 3<br>02.0 1<br>1s<br>73.916                                                                                                                       | 0<br>.4.8<br>.0.5<br>7.2<br>.6.7<br>21.2<br>33.6<br>.2.3<br>30.3<br>.7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>&lt;0.0<br/>-5.0<br/>22.4<br/>34.7<br/>16.0<br/>49.1<br/>536.5<br/>247.5<br/>39.3<br/>74.5<br/>38.4<br/>1058.3</pre>                                                                                                          | 36.5<br>44.7<br>24.2<br>58.6<br>86.3<br>59.9<br>50.6<br>45.4<br>448.3                                                                                           | MI<br>22.7<br>                                                                                                                                         | LEAGE<br>59.7<br>-139<br><br>8.9<br>14.9<br>31.2<br>30.7<br>5.4<br>7.9<br>46.3<br>6.7<br>24.8                                                             | WITHIN<br>139<br>-326<br><br>4.1<br>8.8<br>12.2<br>18.3<br>2.3<br>6.3<br>32.1<br>4.7<br>10.2<br>98.0                                                                | DENSIT<br>326<br>-821<br><br>1.9<br>6.4<br>8.1<br>18.9<br>.3<br>5.5<br>16.2<br>11.9<br>3.2<br>72.5                                                        | Y LEVF<br>821<br>-1861<br>1.2<br>8.4<br>6.5<br>16.5<br>.7<br>2.2<br>8.3<br>7.3<br>4.0<br>55.0                                                                               | .6<br>10.6<br>10.6<br>6.4<br>12.5<br>.6<br>4.9<br>11.2<br>6.7<br>2.6<br>56.1                                         | 1<br>3326<br>-5815<br>.6<br>14.1<br>4.8<br>9.1<br>.0<br>1.7<br>8.4<br>7.0<br>2.0<br>47.7        | 5815<br>-9996<br>.0<br>5.7<br>2.2<br>1.9<br>.0<br>.2<br>3.1<br>.5<br>.2<br>13.8       | >9996<br><br>1.8<br>.4<br>.1<br>.0<br>.0<br>3.6<br>.0<br>.0<br>5.8                         |
| Basis: 1990 Census data<br>RADTRAN Input Data Rural Suburban Urban<br>Weighted Population<br>People/sq. mi. 17.8 1007.2 5723.8<br>People/sq. km. 6.9 388.9 2210.0<br>Distance Total<br>Miles 2124.3 281.6 67.4 2473.9<br>Kilometers 3418.6 453.2 108.4 3981.2<br>Percentage 85.9 11.4 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | St Mi<br><br>ID 10<br>IL 18<br>IN 19<br>MN 27<br>MT 67<br>ND 38<br>OH 29<br>WA 20<br>WI 20<br>Total<br>247<br>Perce                        | iles<br>01.0 1<br>33.2 1<br>56.3<br>79.8 1<br>72.0 2<br>35.0 3<br>90.8 1<br>03.8 3<br>02.0 1<br>1s<br>73.916<br>entage                                                                                                             | 0<br>4.8<br>0.5<br>7.2<br>6.7<br>21.2<br>33.6<br>2.3<br>30.3<br>7.6<br>54.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <pre>&lt;0.0<br/>-5.0<br/>22.4<br/>34.7<br/>16.0<br/>49.1<br/>536.5<br/>247.5<br/>39.3<br/>74.5<br/>38.4</pre>                                                                                                                     | ) 5.0<br>-22.7<br>44.7<br>24.2<br>58.6<br>86.3<br>58.6<br>86.3<br>59.9<br>50.6<br>45.4<br>448.3                                                                 | MI<br>22.7<br>                                                                                                                                         | LEAGE<br>59.7<br>-139<br><br>8.9<br>14.9<br>31.2<br>30.7<br>5.4<br>7.9<br>46.3<br>6.7<br>24.8                                                             | WITHIN<br>139<br>-326<br><br>4.1<br>8.8<br>11.2<br>18.3<br>2.3<br>6.3<br>32.1<br>4.7<br>10.2<br>98.0                                                                | DENSIT<br>326<br>-821<br><br>1.9<br>6.4<br>8.1<br>18.9<br>.3<br>5.5<br>16.2<br>11.9<br>3.2<br>72.5                                                        | Y LEVE<br>821<br>-1861<br><br>1.2<br>8.4<br>6.5<br>16.5<br>.7<br>2.2<br>8.3<br>7.3<br>4.0<br>55.0                                                                           | ELS<br>1861<br>-3326<br>10.6<br>6.4<br>12.5<br>.6<br>4.9<br>11.2<br>6.7<br>2.6<br>56.1                               | 1<br>3326<br>-5815<br>-5815<br><br>14.1<br>4.8<br>9.1<br>.0<br>1.7<br>8.4<br>7.0<br>2.0<br>47.7 | 5815<br>-9996<br>.0<br>5.7<br>2.2<br>1.9<br>.0<br>.2<br>3.1<br>.5<br>.2<br>13.8       | >9996<br>.0<br>1.8<br>.4<br>.1<br>.0<br>.0<br>3.6<br>.0<br>.0<br>5.8                       |
| RADTRAN Input Data Rural Suburban Urban<br>Weighted Population<br>People/sq. mi. 17.8 1007.2 5723.8<br>People/sq. km. 6.9 388.9 2210.0<br>Distance Total<br>Miles 2124.3 281.6 67.4 2473.9<br>Kilometers 3418.6 453.2 108.4 3981.2<br>Percentage 85.9 11.4 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | St Mi<br>ID 10<br>IL 18<br>IN 19<br>MN 27<br>MT 67<br>ND 38<br>OH 29<br>WA 20<br>WI 20<br>Total<br>247<br>Perce                            |                                                                                                                                                                                                                                    | 0<br>4.8<br>0.5<br>7.2<br>6.7<br>21.2<br>33.6<br>2.3<br>30.3<br>7.6<br>64.31<br>es<br>64.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <pre>&lt;0.0<br/>-5.0<br/>22.4<br/>34.7<br/>16.0<br/>49.1<br/>536.5<br/>247.5<br/>39.3<br/>74.5<br/>38.4<br/>1058.3<br/>42.8</pre>                                                                                                 | ) 5.0<br>-22.7<br>44.7<br>24.2<br>58.6<br>86.3<br>59.9<br>50.6<br>45.4<br>448.3<br>18.1                                                                         | MI<br>22.7<br>                                                                                                                                         | LEAGE<br>59.7<br>-139<br><br>8.9<br>14.9<br>31.2<br>30.7<br>5.4<br>7.9<br>46.3<br>6.7<br>24.8<br>176.6<br>7.1                                             | WITHIN<br>139<br>-326<br><br>4.1<br>8.8<br>11.2<br>18.3<br>2.3<br>6.3<br>32.1<br>4.7<br>10.2<br>98.0<br>4.0                                                         | DENSIT<br>326<br>-821<br><br>1.9<br>6.4<br>8.1<br>18.9<br>.3<br>5.5<br>16.2<br>11.9<br>3.2<br>72.5<br>2.9                                                 | Y LEVE<br>821<br>-1861<br><br>1.2<br>8.4<br>6.5<br>16.5<br>7<br>2.2<br>8.3<br>7.3<br>4.0<br>55.0<br>2.2                                                                     | CH<br>ELS<br>1861<br>-3326<br>10.6<br>6.4<br>12.6<br>6.7<br>2.6<br>56.1<br>2.3                                       | 1<br>3326<br>-5815<br><br>14.1<br>4.8<br>9.1<br>.0<br>1.7<br>8.4<br>7.0<br>2.0<br>47.7<br>1.9   | 5815<br>-9996<br><br>1.9<br>0<br>.2<br>3.1<br>.5<br>.2<br>13.8<br>.6                  | >9996<br><br>1.8<br>.4<br>.1<br>.0<br>.0<br>3.6<br>.0<br>.0<br>5.8<br>.2                   |
| RADIRAN Input Data       Rural Suburban       Orban         Weighted Population       People/sq. mi.       17.8       1007.2       5723.8         People/sq. km.       6.9       388.9       2210.0         Distance       Total         Miles       2124.3       281.6       67.4       2473.9         Kilometers       3418.6       453.2       108.4       3981.2         Percentage       85.9       11.4       2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | St Mi<br>ID 10<br>IL 18<br>IN 19<br>MN 27<br>MT 67<br>ND 38<br>OH 29<br>WA 20<br>WI 20<br>Total<br>247<br>Perce<br>Basis                   |                                                                                                                                                                                                                                    | 0<br>4.8<br>0.5<br>7.2<br>6.7<br>21.2<br>33.6<br>2.3<br>30.3<br>7.6<br>64.31<br>es<br>64.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <pre>&lt;0.0<br/>-5.0<br/>22.4<br/>34.7<br/>16.0<br/>49.1<br/>536.5<br/>247.5<br/>39.3<br/>74.5<br/>38.4<br/>1058.3<br/>42.8<br/>ensus</pre>                                                                                       | ) 5.0<br>-22.7<br>44.7<br>24.2<br>58.6<br>86.3<br>59.9<br>50.6<br>45.4<br>448.3<br>3 18.1<br>data                                                               | MI<br>22.7<br>                                                                                                                                         | LEAGE<br>59.7<br>-139<br><br>8.9<br>14.9<br>31.2<br>30.7<br>5.4<br>7.9<br>46.3<br>6.7<br>24.8<br>176.6<br>7.1                                             | WITHIN<br>139<br>-326<br><br>4.1<br>8.2<br>18.3<br>2.3<br>6.3<br>32.1<br>4.7<br>10.2<br>98.0<br>4.0                                                                 | DENSIT<br>326<br>-821<br><br>1.9<br>6.4<br>8.1<br>18.9<br>.3<br>5.5<br>16.2<br>11.9<br>3.2<br>72.5<br>2.9                                                 | Y LEVF<br>821<br>-1861<br>-1.2<br>8.4<br>6.5<br>16.5<br>7<br>2.2<br>8.3<br>7.3<br>4.0<br>55.0<br>2.2                                                                        | CH<br>ELS<br>1861<br>-3326<br>10.6<br>6.4<br>12.5<br>.6<br>4.9<br>11.2<br>6.7<br>2.6<br>56.1<br>2.3                  | 1<br>3326<br>-5815<br><br>14.1<br>4.8<br>9.1<br>.0<br>1.7<br>8.4<br>7.0<br>2.0<br>47.7<br>1.9   | 5815<br>-9996<br><br>1.9<br>0<br>.2<br>3.1<br>.5<br>.2<br>13.8<br>.6                  | >9996<br>.0<br>1.8<br>.4<br>.1<br>0<br>.0<br>3.6<br>.0<br>.0<br>5.8<br>.2                  |
| Weighted Population<br>People/sq. mi. 17.8 1007.2 5723.8<br>People/sq. km. 6.9 388.9 2210.0<br>Distance Total<br>Miles 2124.3 281.6 67.4 2473.9<br>Kilometers 3418.6 453.2 108.4 3981.2<br>Percentage 85.9 11.4 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | St Mi<br>ID 10<br>IL 18<br>IN 15<br>MN 27<br>MT 67<br>ND 38<br>OH 29<br>WA 20<br>WI 20<br>Total<br>247<br>Perce<br>Basis                   | iles<br><br>33.2 1<br>56.3 1<br>79.8 1<br>72.0 2<br>35.0 3<br>90.8 1<br>03.8 3<br>02.0 1<br>1s<br>73.916<br>entage<br>s: 199                                                                                                       | 0<br>44.8<br>0.5<br>7.2<br>6.7<br>21.2<br>33.6<br>6.7<br>21.2<br>33.6<br>30.3<br>7.6<br>54.31<br>64.31<br>64.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <pre>&lt;0.0<br/>-5.0<br/>22.4<br/>34.7<br/>16.0<br/>49.1<br/>536.5<br/>247.5<br/>39.3<br/>74.5<br/>38.4<br/>1058.3<br/>42.8<br/>ensus</pre>                                                                                       | ) 5.0<br>-22.7<br>44.7<br>24.2<br>58.6<br>86.3<br>58.6<br>86.3<br>59.9<br>50.6<br>45.4<br>448.3<br>18.1<br>data                                                 | MI<br>22.7<br>                                                                                                                                         | LEAGE<br>59.7<br>-139<br><br>8.9<br>14.9<br>31.2<br>30.7<br>5.4<br>7.9<br>46.3<br>6.7<br>24.8<br>176.6<br>7.1                                             | WITHIN<br>139<br>-326<br><br>4.1<br>8.2<br>18.3<br>2.3<br>6.3<br>32.1<br>4.7<br>10.2<br>98.0<br>4.0                                                                 | DENSIT<br>326<br>-821<br><br>1.9<br>6.4<br>8.1<br>18.9<br>.3<br>5.5<br>16.2<br>11.9<br>3.2<br>72.5<br>2.9                                                 | Y LEVE<br>821<br>-1861<br><br>1.2<br>8.4<br>6.5<br>16.5<br>7<br>2.2<br>8.3<br>7.3<br>4.0<br>55.0<br>2.2                                                                     | ELS<br>1861<br>-3326<br><br>10.6<br>6.4<br>12.5<br>.6<br>4.9<br>11.2<br>6.7<br>2.6<br>56.1<br>2.3                    | 1<br>3326<br>-5815<br><br>14.1<br>4.8<br>9.1<br>.0<br>1.7<br>8.4<br>7.0<br>2.0<br>47.7<br>1.9   | 5815<br>-9996<br><br>1.9<br>0<br>.2<br>3.1<br>.5<br>.2<br>13.8<br>.6                  | >9996<br><br>1.8<br>.4<br>.1<br>.0<br>.0<br>3.6<br>.0<br>.0<br>5.8<br>.2                   |
| People/sq. mi.       17.8       1007.2       5723.8         People/sq. km.       6.9       388.9       2210.0         Distance       Total         Miles       2124.3       281.6       67.4       2473.9         Kilometers       3418.6       453.2       108.4       3981.2         Percentage       85.9       11.4       2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | St Mi<br><br>ID 10<br>IL 18<br>IN 19<br>MN 27<br>MT 67<br>ND 38<br>OH 29<br>WA 20<br>WI 20<br>VI 20<br>Total<br>247<br>Perce<br>Basis      | iles<br>01.0 1<br>33.2 1<br>56.3<br>79.8 1<br>72.0 2<br>35.0 3<br>90.8 1<br>03.8 3<br>02.0 1<br>1s<br>73.916<br>entage<br>s: 199<br>ADTRAN                                                                                         | 0<br>44.8<br>0.5<br>7.2<br>6.7<br>21.2<br>33.6<br>30.3<br>7.6<br>64.31<br>64.31<br>64.31<br>64.31<br>64.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <pre>&lt;0.0<br/>-5.0<br/>22.4<br/>34.7<br/>16.0<br/>49.1<br/>536.5<br/>247.5<br/>39.3<br/>74.5<br/>38.4<br/>1058.3<br/>42.8<br/>ensus<br/>put Da</pre>                                                                            | ) 5.0<br>-22.7<br>44.7<br>24.2<br>58.6<br>86.3<br>58.6<br>86.3<br>59.9<br>50.6<br>45.4<br>448.3<br>318.1<br>data                                                | MI<br>22.7<br>                                                                                                                                         | LEAGE<br>59.7<br>-139<br><br>8.9<br>14.9<br>31.2<br>30.7<br>5.4<br>7.9<br>46.3<br>6.7<br>24.8<br>176.6<br>7.1<br>1 Subu                                   | WITHIN<br>139<br>-326<br><br>4.1<br>8.8<br>11.2<br>18.3<br>2.3<br>6.3<br>32.1<br>4.7<br>10.2<br>98.0<br>4.0<br>rban                                                 | DENSIT<br>326<br>-821<br><br>1.9<br>6.4<br>8.1<br>18.9<br>.3<br>5.5<br>16.2<br>11.9<br>3.2<br>72.5<br>2.9<br>Urban                                        | Y LEVE<br>821<br>-1861<br>-1.2<br>8.4<br>6.5<br>16.5<br>7<br>2.2<br>8.3<br>7.3<br>4.0<br>55.0<br>2.2                                                                        | ELS<br>1861<br>-3326<br>10.6<br>6.4<br>12.5<br>.6<br>4.9<br>11.2<br>6.7<br>2.6<br>56.1<br>2.3                        | 1<br>3326<br>-5815<br>-5815<br><br>1.7<br>8.4<br>7.0<br>2.0<br>47.7<br>1.9                      | 5815<br>-9996<br>.0<br>5.7<br>2.2<br>1.9<br>.0<br>.2<br>3.1<br>.5<br>.2<br>13.8<br>.6 | >9996<br>.0<br>1.8<br>.4<br>.1<br>.0<br>.0<br>3.6<br>.0<br>.0<br>5.8<br>.2                 |
| People/sq. km.       6.9       388.9       2210.0         Distance       Total         Miles       2124.3       281.6       67.4       2473.9         Kilometers       3418.6       453.2       108.4       3981.2         Percentage       85.9       11.4       2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | St Mi<br>ID 10<br>IL 18<br>IN 15<br>MN 27<br>MT 67<br>ND 38<br>OH 29<br>WA 20<br>WI 20<br>Total<br>247<br>Perce<br>Basis<br>RA             | <br>                                                                                                                                                                                                                               | 0<br>4.8<br>0.5<br>7.2<br>6.7<br>21.2<br>33.6<br>6.7<br>21.2<br>33.6<br>2.2<br>3<br>3.6<br>3<br>7.6<br>5<br>4.3<br>1<br>5<br>5<br>6<br>6<br>6<br>0<br>0<br>C<br>6<br>1<br>Ing<br>cod<br>pod<br>pod<br>pod<br>pod<br>pod<br>pod<br>pod<br>pod<br>pod<br>p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>&lt;0.0<br/>-5.0<br/>22.4<br/>34.7<br/>16.0<br/>49.1<br/>536.5<br/>247.5<br/>39.3<br/>74.5<br/>38.4<br/>1058.3<br/>42.8<br/>ensus<br/>put Dates<br/>2014<br/>2014<br/>2014<br/>2014<br/>2014<br/>2014<br/>2014<br/>2014</pre> | ) 5.0<br>-22.7<br>36.5<br>44.7<br>24.2<br>58.6<br>86.3<br>59.9<br>50.6<br>45.4<br>448.3<br>18.1<br>data<br>ita                                                  | MI<br>22.7<br>                                                                                                                                         | LEAGE<br>59.7<br>-139<br><br>8.9<br>14.9<br>31.2<br>30.7<br>5.4<br>7.9<br>46.3<br>6.7<br>24.8<br>176.6<br>7.1<br>1 Subu                                   | WITHIN<br>139<br>-326<br><br>4.1<br>8.2<br>18.3<br>2.3<br>6.3<br>32.1<br>4.7<br>10.2<br>98.0<br>4.0<br>rban                                                         | DENSIT<br>326<br>-821<br><br>1.9<br>6.4<br>8.1<br>18.9<br>.3<br>5.5<br>16.2<br>11.9<br>3.2<br>72.5<br>2.9<br>Urban                                        | Y LEVE<br>821<br>-1861<br><br>1.2<br>8.4<br>6.5<br>16.5<br>7<br>2.2<br>8.3<br>7.3<br>4.0<br>55.0<br>2.2                                                                     | CH<br>ELS<br>1861<br>-3326<br>10.6<br>6.4<br>12.5<br>.6<br>4.9<br>11.2<br>6.7<br>2.6<br>56.1<br>2.3                  | 1<br>3326<br>-5815<br><br>14.1<br>4.8<br>9.1<br>.0<br>1.7<br>8.4<br>7.0<br>2.0<br>47.7<br>1.9   | 5815<br>-9996<br><br>1.9<br>0<br>.2<br>3.1<br>.5<br>.2<br>13.8<br>.6                  | >9996<br><br>1.8<br>.4<br>.1<br>.0<br>.0<br>3.6<br>.0<br>.0<br>5.8<br>.2                   |
| Distance       Total         Miles       2124.3       281.6       67.4       2473.9         Kilometers       3418.6       453.2       108.4       3981.2         Percentage       85.9       11.4       2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | St Mi<br>ID 10<br>IL 18<br>IN 19<br>MN 27<br>MT 67<br>ND 38<br>OH 29<br>WA 20<br>WI 20<br>Total<br>247<br>Perce<br>Basis<br>RA             |                                                                                                                                                                                                                                    | 0<br>4.8<br>0.5<br>7.2<br>6.7<br>21.2<br>33.6<br>2.3<br>30.3<br>7.6<br>54.31<br>64.31<br>64.31<br>64.31<br>64.31<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.7<br>7.6<br>7.7<br>7.6<br>7.7<br>7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <pre>&lt;0.0<br/>-5.0<br/>22.4<br/>34.7<br/>16.0<br/>49.1<br/>536.5<br/>247.5<br/>39.3<br/>74.5<br/>38.4<br/>1058.3<br/>42.8<br/>ensus<br/>put Da<br/>pulat</pre>                                                                  | ) 5.0<br>-22.7<br>36.5<br>44.7<br>24.2<br>58.6<br>86.3<br>59.9<br>50.6<br>45.4<br>448.3<br>18.1<br>data<br>18.1<br>data<br>ita                                  | MI<br>22.7<br>                                                                                                                                         | LEAGE<br>59.7<br>-139<br><br>8.9<br>14.9<br>31.2<br>30.7<br>5.4<br>7.9<br>46.3<br>6.7<br>24.8<br>176.6<br>7.1<br>1 Subu<br>8 10                           | WITHIN<br>139<br>-326<br><br>4.1<br>8.8<br>11.2<br>18.3<br>2.3<br>6.3<br>32.1<br>4.7<br>10.2<br>98.0<br>4.0<br>rban<br>07.2                                         | DENSIT<br>326<br>-821<br><br>1.9<br>6.4<br>8.1<br>18.9<br>.3<br>5.5<br>16.2<br>11.9<br>3.2<br>72.5<br>2.9<br>Urban                                        | Y LEVE<br>821<br>-1861<br><br>1.2<br>8.4<br>6.5<br>16.5<br>7<br>2.2<br>8.3<br>7.3<br>4.0<br>55.0<br>2.2                                                                     | CH<br>ELS<br>1861<br>-3326<br>10.6<br>6.4<br>12.5<br>.6<br>4.9<br>11.2<br>6.7<br>2.6<br>56.1<br>2.3                  | 1<br>3326<br>-5815<br>-5815<br><br>1.7<br>8.4<br>7.0<br>2.0<br>47.7<br>1.9                      | 5815<br>-9996<br><br>1.9<br>0<br>.2<br>3.1<br>.5<br>.2<br>13.8<br>.6                  | >9996<br>.0<br>1.8<br>.4<br>.1<br>0<br>.0<br>3.6<br>.0<br>.0<br>5.8<br>.2                  |
| Distance         Total           Miles         2124.3         281.6         67.4         2473.9           Kilometers         3418.6         453.2         108.4         3981.2           Percentage         85.9         11.4         2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | St Mi<br>ID 10<br>IL 18<br>IN 19<br>MN 27<br>MT 67<br>ND 38<br>OH 29<br>WA 20<br>WI 20<br>Total<br>247<br>Perce<br>Basis<br>RA             |                                                                                                                                                                                                                                    | 0<br>4.8<br>0.5<br>7.2<br>6.7<br>21.2<br>33.6<br>7.6<br>54.31<br>64.31<br>64.31<br>64.31<br>64.31<br>64.31<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.6<br>7.7<br>7.6<br>7.7<br>7.6<br>7.7<br>7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <pre>&lt;0.0<br/>-5.0<br/>22.4<br/>34.7<br/>16.0<br/>49.1<br/>536.5<br/>247.5<br/>39.3<br/>74.5<br/>38.4<br/>1058.3<br/>42.8<br/>ensus<br/>put Da<br/>pulat<br/>e/sq.</pre>                                                        | ) 5.0<br>-22.7<br>36.5<br>44.7<br>24.2<br>58.6<br>86.3<br>59.9<br>50.6<br>45.4<br>448.3<br>39.9<br>50.6<br>45.4<br>448.3<br>318.1<br>data<br>ita<br>ita         | MI<br>22.7<br>                                                                                                                                         | LEAGE<br>59.7<br>-139<br><br>8.9<br>14.9<br>31.2<br>30.7<br>5.4<br>7.9<br>46.3<br>6.7<br>24.8<br>176.6<br>7.1<br>1 Subu<br>8 100<br>9 3                   | WITHIN<br>139<br>-326<br><br>4.1<br>8.8<br>11.2<br>18.3<br>2.3<br>6.3<br>32.1<br>4.7<br>10.2<br>98.0<br>4.0<br>rban<br>07.2<br>88.9                                 | DENSIT<br>326<br>-821<br><br>1.9<br>6.4<br>8.1<br>18.9<br>.3<br>5.5<br>16.2<br>11.9<br>3.2<br>72.5<br>2.9<br>Urban<br>5723.8<br>2210.0                    | Y LEVE<br>821<br>-1861<br>-1.2<br>8.4<br>6.5<br>16.5<br>7<br>2.2<br>8.3<br>7.3<br>4.0<br>55.0<br>2.2                                                                        | CH<br>ELS<br>1861<br>-3326<br>10.6<br>6.4<br>12.5<br>6.4<br>9<br>11.2<br>6.7<br>2.6<br>56.1<br>2.3                   | 1<br>3326<br>-5815<br>-5815<br><br>1.7<br>8.4<br>7.0<br>2.0<br>47.7<br>1.9                      | 5815<br>-9996<br><br>1.9<br>.0<br>.2<br>3.1<br>.5<br>.2<br>13.8<br>.6                 | >9996<br>.0<br>1.8<br>.4<br>.1<br>0<br>.0<br>3.6<br>.0<br>.0<br>5.8<br>.2                  |
| Miles2124.3281.667.42473.9Kilometers3418.6453.2108.43981.2Percentage85.911.42.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | St Mi<br>ID 10<br>IL 18<br>IN 19<br>MN 27<br>MT 67<br>ND 38<br>OH 29<br>WA 20<br>WI 20<br>Tota:<br>247<br>Perce<br>Basis<br>RZ             |                                                                                                                                                                                                                                    | 0<br>4.8<br>0.5<br>7.2<br>6.7<br>21.2<br>33.6<br>2.3<br>33.6<br>2.3<br>37.6<br>6.6<br>6.6<br>6.6<br>00 Ce<br>00 Ce<br>00 Ce<br>00 Ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>&lt;0.0<br/>-5.0<br/>22.4<br/>34.7<br/>16.0<br/>49.1<br/>536.5<br/>247.5<br/>39.3<br/>74.5<br/>38.4<br/>1058.3<br/>42.8<br/>ensus<br/>but Da<br/>pulat<br/>e/sq.<br/>e/sq.</pre>                                              | ) 5.0<br>-22.7<br>36.5<br>44.7<br>24.2<br>58.6<br>86.3<br>59.9<br>50.6<br>45.4<br>448.3<br>18.1<br>data<br>18.1<br>data<br>tta<br>tion<br>mi.<br>km.            | MI<br>22.7<br>99.7<br><br>10.0<br>22.6<br>238.1<br>47.4<br>47.4<br>47.4<br>47.4<br>53.6<br>238.1<br>47.4<br>53.6<br>276.7<br>11.2<br>Rura<br>17.<br>6. | LEAGE<br>59.7<br>-139<br>14.9<br>31.2<br>30.7<br>5.4<br>7.9<br>46.3<br>6.7<br>24.8<br>176.6<br>7.1<br>1 Subu<br>8 10<br>9 3                               | WITHIN<br>139<br>-326<br><br>4.1<br>8.8<br>11.2<br>18.3<br>2.3<br>6.3<br>32.1<br>4.7<br>10.2<br>98.0<br>4.0<br>rban<br>07.2<br>88.9                                 | DENSIT<br>326<br>-821<br><br>1.9<br>6.4<br>8.1<br>18.9<br>.3<br>5.5<br>16.2<br>11.9<br>3.2<br>72.5<br>2.9<br>Urban<br>5723.8<br>2210.0                    | Y LEVF<br>821<br>-1861<br><br>1.2<br>8.4<br>6.5<br>16.5<br>7<br>2.2<br>8.3<br>7.3<br>4.0<br>55.0<br>2.2                                                                     | ELS<br>1861<br>-3326<br>10.6<br>6.4<br>12.5<br>6.7<br>2.6<br>56.1<br>2.3                                             | 1<br>3326<br>-5815<br>-5815<br><br>1.7<br>8.4<br>7.0<br>2.0<br>47.7<br>1.9                      | 5815<br>-9996<br><br>1.9<br>.0<br>.2<br>3.1<br>.5<br>.2<br>13.8<br>.6                 | >9996<br><br>1.8<br>.4<br>.1<br>.0<br>.0<br>3.6<br>.0<br>.0<br>5.8<br>.2                   |
| Kilometers3418.6453.2108.43981.2Percentage85.911.42.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | St Mi<br>ID 10<br>IL 18<br>IN 19<br>MN 27<br>MT 67<br>ND 38<br>OH 29<br>WA 20<br>WI 20<br>Totai<br>247<br>Perce<br>Basis<br>RA<br>We<br>Di |                                                                                                                                                                                                                                    | 0<br>4.8<br>0.5<br>7.2<br>6.7<br>21.2<br>33.6<br>2.3<br>3.6<br>6.6<br>600 Ce<br>600 Ce<br>600 Ce<br>cople<br>cople<br>cople                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <pre>&lt;0.0<br/>-5.0<br/>22.4<br/>34.7<br/>16.0<br/>49.1<br/>536.5<br/>247.5<br/>39.3<br/>74.5<br/>38.4<br/>1058.3<br/>42.8<br/>ensus<br/>but Da<br/>bpulat<br/>e/sq.<br/>e/sq.</pre>                                             | ) 5.0<br>-22.7<br>36.5<br>44.7<br>24.2<br>58.6<br>86.3<br>59.9<br>50.6<br>45.4<br>448.3<br>18.1<br>data<br>18.1<br>data<br>tta<br>tta<br>km.                    | MI<br>22.7<br>2.6<br>2.38.1<br>47.4<br>47.4<br>18.7<br>3.12.8<br>69.8<br>3.7<br>53.6<br>276.7<br>11.2<br>Rura<br>17.<br>6.                             | LEAGE<br>59.7<br>-139<br>14.9<br>31.2<br>30.7<br>5.4<br>7.9<br>46.3<br>6.7<br>24.8<br>176.6<br>7.1<br>1 Subu<br>8 10<br>9 3                               | WITHIN<br>139<br>-326<br><br>4.1<br>8.8<br>11.2<br>18.3<br>2.3<br>6.3<br>32.1<br>4.7<br>10.2<br>98.0<br>4.0<br>rban<br>07.2<br>88.9                                 | DENSIT<br>326<br>-821<br><br>1.9<br>6.4<br>8.1<br>18.9<br>.3<br>5.5<br>16.2<br>11.9<br>3.2<br>72.5<br>2.9<br>Urban<br>5723.8<br>2210.0                    | Y LEVF<br>821<br>-1861<br><br>1.2<br>8.4<br>6.5<br>16.5<br>16.5<br>7<br>2.2<br>8.3<br>7.3<br>4.0<br>55.0<br>2.2                                                             | CH<br>ELS<br>1861<br>-3326<br>10.6<br>6.4<br>12.5<br>6.4<br>9<br>11.2<br>6.7<br>2.6<br>56.1<br>2.3                   | 1<br>3326<br>-5815<br>.6<br>14.1<br>4.8<br>9.1<br>.0<br>1.7<br>8.4<br>7.0<br>2.0<br>47.7<br>1.9 | 5815<br>-9996<br><br>1.9<br>.0<br>.2<br>3.1<br>.5<br>.2<br>13.8<br>.6                 | >9996<br>0<br>1.8<br>.4<br>.1<br>.0<br>.0<br>3.6<br>.0<br>.0<br>5.8<br>.2                  |
| Percentage 85.9 11.4 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | St Mi<br>ID 10<br>IL 16<br>IN 19<br>MN 27<br>MT 67<br>ND 38<br>OH 29<br>WA 20<br>WI 20<br>Totai<br>247<br>Perce<br>Basis<br>RA<br>Wa<br>Di | iles<br>01.0 1<br>33.2 1<br>56.3 7<br>79.8 1<br>79.8 1<br>73.9 2<br>35.0 3<br>90.8 1<br>03.8 3<br>90.8 1<br>13<br>90.8 1<br>13<br>92.0 1<br>13<br>13<br>13<br>13<br>14<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19<br>19 | 0<br>4.8<br>0.5<br>7.2<br>6.7<br>21.2<br>33.6<br>2.3<br>3.6<br>2.3<br>3.7.6<br>6.6<br>600 Ce<br>64.31<br>es<br>6.6<br>600 Ce<br>cople<br>cople<br>cople<br>se<br>les                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>&lt;0.0<br/>-5.0<br/>22.4<br/>34.7<br/>16.0<br/>49.1<br/>536.5<br/>247.5<br/>39.3<br/>74.5<br/>38.4<br/>1058.3<br/>42.8<br/>ensus<br/>but Da<br/>bpulat<br/>e/sq.<br/>e/sq.</pre>                                             | ) 5.0<br>-22.7<br>36.5<br>44.7<br>24.2<br>58.6<br>86.3<br>59.9<br>50.6<br>45.4<br>448.3<br>18.1<br>data<br>18.1<br>data<br>ta<br>tion<br>mi.<br>km.             | MI<br>22.7<br>2.6<br>10.0<br>22.6<br>2.38.1<br>47.4<br>18.7<br>12.8<br>69.8<br>3.7<br>53.6<br>276.7<br>11.2<br>Rura<br>17.<br>6.<br>2124.              | LEAGE<br>59.7<br>-139<br><br>8.9<br>14.9<br>31.2<br>30.7<br>5.4<br>7.9<br>46.3<br>6.7<br>24.8<br>176.6<br>7.1<br>1 Subu<br>8 10<br>9 3<br>3 2             | WITHIN<br>139<br>-326<br><br>4.1<br>8.8<br>11.2<br>18.3<br>2.3<br>6.3<br>32.1<br>4.7<br>10.2<br>98.0<br>4.0<br>rban<br>07.2<br>88.9<br>81.6                         | DENSIT<br>326<br>-821<br><br>1.9<br>6.4<br>8.1<br>18.9<br>3.5<br>16.2<br>11.9<br>3.2<br>72.5<br>2.9<br>Urban<br>5723.8<br>2210.0                          | Y LEVF<br>821<br>-1861<br><br>1.2<br>8.4<br>6.5<br>16.5<br>7<br>2.2<br>8.3<br>7.3<br>4.0<br>55.0<br>2.2                                                                     | CHS<br>1861<br>-3326<br>10.6<br>6.4<br>12.5<br>.6<br>4.9<br>11.2<br>6.7<br>2.6<br>56.1<br>2.3<br>otal<br>23.9        | 1<br>3326<br>-5815<br>14.1<br>4.8<br>9.1<br>.0<br>1.7<br>8.4<br>7.0<br>2.0<br>47.7<br>1.9       | 5815<br>-9996<br><br>1.9<br>0<br>.2<br>3.1<br>.5<br>.2<br>13.8<br>.6                  | >9996<br><br>1.8<br>.4<br>.1<br>.0<br>0<br>3.6<br>.0<br>.0<br>3.6<br>.0<br>.0<br>5.8<br>.2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | St Mi<br>ID 10<br>IL 12<br>IN 12<br>MN 27<br>MT 67<br>ND 38<br>OH 29<br>WA 20<br>WI 20<br>Total<br>247<br>Perce<br>Basis<br>R/<br>Wa<br>Di |                                                                                                                                                                                                                                    | 0<br>44.8<br>0.5<br>7.2<br>6.7<br>21.2<br>33.6<br>2.3<br>30.3<br>7.6<br>64.31<br>55<br>6.6<br>90 Ce<br>90 Ce<br>90<br>Ce<br>90 Ce<br>90 CE | <pre>&lt;0.0<br/>-5.0<br/>-5.0<br/>22.4<br/>34.7<br/>16.0<br/>49.1<br/>536.5<br/>247.5<br/>39.3<br/>74.5<br/>38.4<br/>1058.3<br/>42.8<br/>ensus<br/>put Da<br/>pulat<br/>e/sq.<br/>e/sq.</pre>                                     | ) 5.0<br>-22.7<br>36.5<br>44.7<br>24.2<br>58.6<br>86.3<br>59.9<br>50.6<br>45.4<br>448.3<br>18.1<br>data<br>18.1<br>data<br>tta<br>tion<br>mi.<br>km.            | MI<br>22.7<br>                                                                                                                                         | LEAGE<br>59.7<br>-139<br><br>8.9<br>14.9<br>31.2<br>30.7<br>5.4<br>7.9<br>46.3<br>6.7<br>24.8<br>176.6<br>7.1<br>1 Subu<br>8 10<br>9 3<br>4<br>3 2<br>5 4 | WITHIN<br>139<br>-326<br><br>4.1<br>8.8<br>11.2<br>18.8<br>11.2<br>18.3<br>2.3<br>6.3<br>32.1<br>4.7<br>10.2<br>98.0<br>4.0<br>rban<br>07.2<br>88.9<br>81.6<br>53.2 | DENSIT<br>326<br>-821<br><br>1.9<br>6.4<br>8.1<br>18.9<br>3.5<br>516.2<br>11.9<br>3.2<br>72.5<br>2.9<br>Urban<br>5723.8<br>2210.0<br>67.4<br>108.4        | Y LEVF<br>821<br>-1861<br><br>1.2<br>8.4<br>6.5<br>16.5<br>7.2<br>2.2<br>8.3<br>7.3<br>4.0<br>55.0<br>2.2<br>2.2                                                            | CH<br>ELS<br>1861<br>-3326<br>10.6<br>6.4<br>12.5<br>.6<br>4.9<br>11.2<br>6.7<br>2.6<br>56.1<br>2.3                  | 1<br>3326<br>-5815<br>14.1<br>4.8<br>9.1<br>.0<br>1.7<br>8.4<br>7.0<br>2.0<br>47.7<br>1.9       | 5815<br>-9996<br>.0<br>5.7<br>2.2<br>1.9<br>.0<br>.2<br>3.1<br>.5<br>.2<br>13.8<br>.6 | >9996<br>.00<br>1.8<br>.4<br>.1<br>.0<br>3.6<br>.0<br>.0<br>3.6<br>.0<br>.0<br>5.8<br>.2   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | St Mi<br>ID 10<br>IL 18<br>IN 19<br>MN 27<br>MT 67<br>ND 38<br>OH 29<br>WA 20<br>WI 20<br>Total<br>247<br>Perce<br>Basis<br>RA<br>We<br>Di |                                                                                                                                                                                                                                    | 0<br>44.8<br>0.5<br>7.2<br>6.7<br>21.2<br>33.6<br>2.3<br>3.6<br>2.3<br>3.7.6<br>54.31<br>55<br>6.6<br>90 Ce<br>54.31<br>1 Inp<br>6.6<br>90 Ce<br>1 Inp<br>1 ex<br>1 per less<br>1 longe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <pre>&lt;0.0<br/>-5.0<br/>-5.0<br/>22.4<br/>34.7<br/>16.0<br/>49.1<br/>536.5<br/>247.5<br/>39.3<br/>74.5<br/>38.4<br/>1058.3<br/>42.8<br/>ensus<br/>put Da<br/>pulat<br/>e/sq.<br/>e/sq.<br/>eters<br/>ntage</pre>                 | ) 5.0<br>-22.7<br>36.5<br>44.7<br>24.2<br>58.6<br>86.3<br>50.6<br>45.4<br>448.3<br>50.6<br>448.3<br>318.1<br>data<br>448.3<br>18.1<br>data<br>ion<br>mi.<br>km. | MI<br>22.7<br>                                                                                                                                         | LEAGE<br>59.7<br>-139<br><br>8.9<br>14.9<br>31.2<br>30.7<br>5.4<br>7.9<br>46.3<br>6.7<br>24.8<br>176.6<br>7.1<br>1 Subu<br>8 10<br>9 3<br>3 2<br>9 3      | WITHIN<br>139<br>-326<br><br>4.1<br>8.8<br>11.2<br>18.3<br>2.3<br>6.3<br>32.1<br>4.7<br>10.2<br>98.0<br>4.0<br>rban<br>07.2<br>88.9<br>81.6<br>53.2<br>11.4         | DENSIT<br>326<br>-821<br><br>1.9<br>6.4<br>8.1<br>18.9<br>3.5<br>516.2<br>11.9<br>3.2<br>72.5<br>2.9<br>Urban<br>5723.8<br>2210.0<br>67.4<br>108.4<br>2.7 | Y LEVF<br>821<br>-1861<br><br>1.2<br>8.4<br>6.5<br>16.5<br>.7<br>2.2<br>8.3<br>7.3<br>4.0<br>55.0<br>2.2<br>2.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2<br>.2 | CHS<br>1861<br>-3326<br>10.6<br>6.4<br>12.5<br>.6<br>4.9<br>11.2<br>6.7<br>2.6<br>56.1<br>2.3<br>otal<br>3.9<br>31.2 | 1<br>3326<br>-5815<br>14.1<br>4.8<br>9.1<br>.0<br>1.7<br>8.4<br>7.0<br>2.0<br>47.7<br>1.9       | 5815<br>-9996<br>.0<br>5.7<br>2.2<br>1.9<br>.0<br>.2<br>3.1<br>.5<br>.2<br>13.8<br>.6 | >9996<br><br>1.8<br>.4<br>.1<br>.0<br>0<br>3.6<br>.0<br>.0<br>5.8<br>.2                    |

Note: Due to rounding, the sum of the mileages in the individual population categories may not equal the total mileage shown on this report.



| Doc. No.    | ENG-RCAL-028                 | Rev. 1 Project No. 772030/171            | Page | <u>49</u> of | 62 |
|-------------|------------------------------|------------------------------------------|------|--------------|----|
| Subject: Tr | ansportation Risk Assessment | for the Shipment of Unirradiated Uranium | _    |              | _  |
| Preparer:   | J. L. Boles                  | ·                                        | Date | 5/31/00      |    |
| Checker:    | B. B. Peters                 |                                          | Date | 5/31/00      |    |

# 5.11 Interline Output File for Indirect Route through Paducah, KY

| ROUTE   | FROM:<br>TO: | USG<br>PAL | 16215-ні<br>7075-рі | ANFORD V<br>ADUCAH | VORKS    | WA<br>KY | LEN<br>POTENT | IGTH:<br>'IAL: | 2415.5<br>4002.2 | MILES |
|---------|--------------|------------|---------------------|--------------------|----------|----------|---------------|----------------|------------------|-------|
| MILEAGE | SUMMA        | RY BY      | RAILROAI            | D                  | A-M      | B-M      | A-BR          | B-BR           | OTHER            |       |
|         |              |            | BN                  | 1966.8             | 1966.8   | .0       | .0            | .0             | .0               |       |
|         |              |            | CSXT                | 316.7              | 316.7    | .0       | .0            | .0             | .0               |       |
|         |              |            | UP                  | 8.6                | .0       | .0       | 6.0           | 2.6            | .0               |       |
|         |              |            | IHB                 | 20.0               | 20.0     | .0       | .0            | .0             | .0               |       |
|         |              |            | PAL                 | 78.0               | .0       | 78.0     | .0            | .0             | .0               |       |
|         |              |            | USG                 | 25.4               | .0       | .0       | .0            | 25.4           | .0               |       |
|         |              |            | WCRC                | .0                 | .0       | .0       | .0            | .0             | .0               |       |
|         |              |            |                     |                    |          |          |               | · _ ·          |                  |       |
|         |              |            | TOTAL               | 2415.5             | 2303.5   | 78.0     | 6.0           | 28.0           | .0               |       |
| MILEAG  | E SUMM       | ARY BY     | STATE               |                    |          |          |               |                |                  |       |
|         | 101.         | 0-ID       | 290.9-              | -IL I              | 164.2-IN | 116.     | . 8 – KY      | 279            | . 8 – MIN        |       |
|         | 672.         | 0-MT       | 385.0-              | -ND 2              | 203.8-WA | 202      | .0-WI         |                |                  |       |

| RR<br>USG<br>USG | NODE<br>16215-HANFORD WORKS<br>13941-RICHLAND | STATE<br>WA<br>WA | DIST<br>0.<br>25. |      |          |
|------------------|-----------------------------------------------|-------------------|-------------------|------|----------|
| UP<br>UP<br>UP   | 13941-RICHLAND<br>13964-KENNEWICK             | <br>WA<br>WA      | 25.<br>34.        | <br> | TRANSFER |
| WCRC             | 13964-KENNEWICK                               | WA                | 34.               |      |          |
| BN               | 13964-KENNEWICK                               | <br>WA            | 34.               | <br> | TRANSFER |
| BN               | 13890-PASCO                                   | WA                | 35.               |      |          |
| BN               | 13828-SPOKANE                                 | WA                | 187.              |      |          |
| BN               | 13300-SANDPOINT                               | ID                | 250.              |      |          |
| BN               | 13089-SHELBY                                  | MT                | 587.              |      |          |
| BN               | 13168-HAVRE                                   | MT                | 688.              |      |          |
| BN               | 15740-WILLISTON                               | ND                | 1007.             |      |          |
| BN               | 10936-MINOT                                   | ND                | 1119.             |      |          |
| BN               | 10935-SURREY                                  | ND                | 1125.             |      |          |
| BN               | 11134-CASSELTON                               | ND                | 1340.             |      |          |
| BN               | 11132-FARGO                                   | ND                | 1360.             |      |          |
| BN               | 11131-MOORHEAD                                | MN                | 1363.             |      |          |
| BN               | 9663-STAPLES                                  | MN                | 1477.             |      |          |
| BN               | 9671-SAUK RAPIDS                              | MN                | 1542.             |      |          |
| BN               | 9826-COON CREEK                               | MN                | 1592.             |      |          |
| BN               | 9798-NORTHTOWN                                | MN                | 1597.             |      |          |
| BN               | 15603-EAST MINNEAPOL                          | ISMN              | 1603.             |      |          |
| BN               | 9793-SOU LINE JCT                             | MIN               | 1610.             |      |          |
| BN               | 9830-ST PAUL                                  | MIN               | 1724              |      |          |
| BIN              | 1227 EACE DUDUOUE                             | W L<br>TT         | 1045              |      |          |
| BIN              | 4327-EASI DUBUQUE                             | 11)<br>TT         | 1005              |      |          |
| DIN              | 431/-SAVANNA                                  | 11)<br>TT         | 1076              |      |          |
| BIN              | 4190-AURORA                                   | 11)<br>TT         | 1970.             |      |          |
|                  |                                               |                   | 2001.             | <br> | TDANCEED |
| IHB              | 4170-LA GRANGE                                | IL                | 2001.             |      | TUTIOTER |
| IHB              | 4172-ARGO                                     | IL                | 2005.             |      |          |
| IHB              | 4163-BLUE ISLAND                              | IL                | 2017.             |      |          |
| IHB              | 4223-DOLTON / RIVER                           | DAIL              | 2021.             |      |          |



| <u> 11</u> | ispona  |            | SK ASS              | sessmer           |                | e Shiph         | lent of t         | Juliadia          | aled Un          | anium              |                   | ) oto           | E/21/00 |
|------------|---------|------------|---------------------|-------------------|----------------|-----------------|-------------------|-------------------|------------------|--------------------|-------------------|-----------------|---------|
| 1<br>      | J.<br>  | L. DUI     | es<br>toro          |                   |                |                 |                   |                   |                  |                    | L                 | Date            | 5/31/00 |
| ·          | D.      | . Б. Ге    | leis                |                   |                |                 |                   |                   |                  |                    | L                 |                 | 5/31/00 |
|            |         |            |                     |                   |                |                 |                   |                   |                  |                    |                   |                 |         |
|            |         |            |                     |                   |                |                 |                   | т                 | RANSFE           | IR                 |                   |                 |         |
|            | CSXT    | 422        | 3-DOLT              | FON / R           | IVERDA         | IL 20           | )21.              |                   |                  |                    |                   |                 |         |
|            | CSXT    | 420        | 6-CHI               | CAGO HE           | IGHTS          | IL 20           | 31.               |                   |                  |                    |                   |                 |         |
|            | CSXT    | 463        | 6-WA'I':<br>2-DAM   | SEKA<br>ZTIIE     |                | IL 20<br>TT 21  | 27                |                   |                  |                    |                   |                 |         |
|            | CSXT    | 386        | 2 – DAN<br>3 – TERI | RE HAUT           | Е              | IN 21           |                   |                   |                  |                    |                   |                 |         |
|            | CSXT    | 381        | 2-VIN               | CENNES            |                | IN 22           | 37.               |                   |                  |                    |                   |                 |         |
|            | CSXT    | 383        | 8 – EVAI            | NSVILLE           |                | IN 22           | .87.              |                   |                  |                    |                   |                 |         |
|            | CSXT    | 383        | 9-HENI              | DERSON            |                | КҮ 23           | 00.               |                   |                  |                    |                   |                 |         |
|            | CSXT    | 7059       | 9-MAD               | ISONVIL           | LE             | KY 23           | 38.               | -                 |                  | סי                 |                   |                 |         |
|            | PAL     | 705        | 9-MAD               | ISONVIL           | LE             | <br>ку 23       | 38.               | 1                 | RANGEL           | J.C.               |                   |                 |         |
|            | PAL     | 707        | 5-PADI              | JCAH              |                | КҮ 24           | 16.               |                   |                  |                    |                   |                 |         |
|            |         |            |                     |                   |                |                 |                   |                   |                  |                    |                   |                 |         |
|            |         |            |                     |                   |                |                 |                   |                   |                  |                    |                   |                 |         |
|            | POPUL   | ATION      | DENSI               | LTY FRO           | M: US          | G 162           | 15-HAN            | FORD WO           | RKS              | WZ                 | A                 |                 |         |
|            |         |            |                     | Т                 | O: PA          | L 70            | 75 - PAD          | UCAH              |                  | KY                 | 7                 |                 |         |
|            |         |            |                     |                   | МТ             | TEACE           | NITTUITN          | DENGT             | 1.7 T E177       |                    |                   |                 |         |
|            |         |            | <0.0                | <br>) 5.0         | ™⊥<br>22.7     | 164GE           | WIIHIN<br>139     | 326               | 821              | LS<br>1861         | 3326              | 5815            |         |
| St         | Miles   | 0          | -5.0                | ) -22.7           | -59.7          | -139            | -326              | -821              | -1861            | -3326              | -5815             | -9996           | >9996   |
|            |         |            |                     |                   |                |                 |                   |                   |                  |                    |                   |                 |         |
| тп         | 101 0   | 1/ 0       | <u> </u>            | 1 26 5            | 10 0           | <u> </u>        | 1 1               | 1 0               | 1 2              | 6                  | 6                 | 0               | 0       |
|            | 290.9   | 14.0       | 53.5                | ± 30.5<br>7 64.4  | 44.7           | 30.3            | 16.5              | 13.1              | 14.4             | 13.6               | 18.4              | 5.8             | 1.8     |
| IN         | 164.2   | 5.0        | 14.3                | 3 29.0            | 42.5           | 23.6            | 16.6              | 13.0              | 12.8             | 3.8                | 2.4               | .8              | .1      |
| КY         | 116.8   | 2.5        | 9.9                 | 9 15.7            | 59.8           | 12.3            | 6.6               | 5.3               | 3.3              | 1.2                | .1                | .0              | .0      |
| MN         | 279.8   | 16.7       | 49.1                | L 58.6            | 47.4           | 30.7            | 18.3              | 18.9              | 16.5             | 12.5               | 9.1               | 1.9             | .1      |
| MT         | 672.0   | 21.2       | 536.                | 5 86.3            | 18.7           | 5.4             | 2.3               | .3                | .7               | .6                 | .0                | .0              | .0      |
| ND         | 385.0   | 33.6       | 247.5               | 5 62.3            | 12.8           | 7.9             | 6.3               | 5.5               | 2.2              | 4.9                | 1.7               | .2              | .0      |
| WA<br>WT   | 203.8   | 17.6       | 38.4                | 50.0<br>4 45.4    | 53.6           | 24.8            | 4.7               | 3.2               | 4.0              | 2.6                | 2.0               | .5              | .0      |
|            |         |            |                     |                   |                |                 |                   |                   |                  |                    |                   |                 |         |
| То         | tals    |            |                     |                   |                |                 |                   |                   |                  |                    |                   |                 |         |
| De         | 2415.5  | 155.92     | 1046.3              | 3 448.6           | 293.2          | 150.3           | 85.7              | 73.2              | 62.4             | 46.5               | 41.5              | 9.4             | 2.0     |
| Ре         | rcenta  | 1985<br>65 | 43                  | 3 18 6            | 12 1           | 62              | 35                | 3 0               | 26               | 19                 | 17                | 4               | 1       |
| Ba         | sis: 1  | 990 C      | ensus               | data              | 10.1           | 0.2             | 5.5               | 5.0               | 2.0              | 1.7                | ±• <i>1</i>       | • •             | • -     |
|            |         |            |                     |                   | _              | 1 ~ 1           |                   | 1                 |                  |                    |                   |                 |         |
|            | RADTR   | AN Inj     | put Da              | ata               | Rura           | I Subu          | rban              | Urbar             | 1                |                    |                   |                 |         |
|            | Weigh   | ted P      | opulat              | cion              |                |                 |                   |                   |                  |                    |                   |                 |         |
|            | -       | People     | e/sq.               | mi.               | 17.            | 1 9             | 93.7              | 5366.3            | 3                |                    |                   |                 |         |
|            |         | People     | e/sq.               | km.               | б.             | 6 3             | 83.7              | 2071.9            | )                |                    |                   |                 |         |
|            | Dieta   | nce        |                     |                   |                |                 |                   |                   | T-               | tal                |                   |                 |         |
|            | Dibia   | Miles      |                     |                   | 2094.          | 4 2             | 67.7              | 52.9              | 241              | .5.5               |                   |                 |         |
|            |         | Kilom      | eters               |                   | 3370.          | 54              | 30.8              | 85.1              | 388              | 37.3               |                   |                 |         |
|            |         | Perce      | ntage               |                   | 86.            | 7               | 11.1              | 2.2               | 2                |                    |                   |                 |         |
|            | Basis   | (peop      | ple/so              | q. mi.)           | <13            | 9 139-          | 3326              | >3326             | 5                |                    |                   |                 |         |
|            | NT. 1   |            |                     |                   | +1             |                 |                   | 1                 | 1                |                    |                   |                 |         |
|            | Note:   | popul      | to rou<br>lation    | naing,<br>n categ | tne s<br>ories | um ot<br>may no | the mil<br>t equa | reages<br>1 the t | in the<br>otal r | e indiv<br>nileage | viqual<br>≥ showr | 1               |         |
|            |         | on ti      | his re              | eport.            |                |                 |                   |                   |                  |                    |                   |                 |         |
|            | ₽∩ागण्च | ਸ਼ਾਸ਼ਹਾਅ   | : 170               | . 707             | 5-D7 דזת       | СЛН             |                   | κv                | тт               | יאונייטא           | 524               | 2 MTT           | FS      |
|            |         | TION       | - LUI               | _ /0/             |                |                 |                   | T/ T              | 11               |                    | JJ-1.             | с <u>г</u> идд. |         |



|                                                                                                            | <u>ion Risk Assessmer</u>        | t for the                                                                                      | Shipment of                                                                                                                                                               | <u>Unirradia</u>                                                                                                            | ted Ura                                                                    | anium                                                                                | '                                              | ugo                                     | 01_01_                             |
|------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------|------------------------------------|
| arer: J.                                                                                                   | L. Boles                         |                                                                                                |                                                                                                                                                                           |                                                                                                                             |                                                                            |                                                                                      | [                                              | Date                                    | 5/31/00                            |
| :ker: <u> </u>                                                                                             | B. Peters                        |                                                                                                |                                                                                                                                                                           |                                                                                                                             |                                                                            |                                                                                      | [                                              | Date                                    | 5/31/00                            |
|                                                                                                            |                                  |                                                                                                |                                                                                                                                                                           |                                                                                                                             |                                                                            |                                                                                      |                                                |                                         |                                    |
|                                                                                                            | N                                | S 31                                                                                           | 0.0 123.                                                                                                                                                                  | 0 96.0                                                                                                                      | 91.0                                                                       | .0                                                                                   |                                                | . 0                                     |                                    |
|                                                                                                            | P                                | AL 22-                                                                                         | 4.2 .                                                                                                                                                                     | 0 224.2                                                                                                                     | .0                                                                         | .0                                                                                   | '                                              | .0                                      |                                    |
|                                                                                                            | TOT                              | AL 53                                                                                          | 4.2 123.                                                                                                                                                                  | 0 320.2                                                                                                                     | 91.0                                                                       | .0                                                                                   |                                                | . 0                                     |                                    |
| MILEAG                                                                                                     | GE SUMMARY BY STA<br>427 5-KY 10 | ГЕ<br>6 7-0н                                                                                   |                                                                                                                                                                           |                                                                                                                             |                                                                            |                                                                                      |                                                |                                         |                                    |
|                                                                                                            | 127.0 11 10                      | 017 011                                                                                        |                                                                                                                                                                           |                                                                                                                             |                                                                            |                                                                                      |                                                |                                         |                                    |
|                                                                                                            |                                  |                                                                                                |                                                                                                                                                                           |                                                                                                                             |                                                                            |                                                                                      |                                                |                                         |                                    |
| RR                                                                                                         | NODE                             | STA                                                                                            | TE DIST                                                                                                                                                                   |                                                                                                                             |                                                                            |                                                                                      |                                                |                                         |                                    |
| PAL                                                                                                        | 7075-PADUCAH                     | K                                                                                              | Y 0.                                                                                                                                                                      |                                                                                                                             |                                                                            |                                                                                      |                                                |                                         |                                    |
| PAL                                                                                                        |                                  | K                                                                                              |                                                                                                                                                                           | TI                                                                                                                          | RANSFE                                                                     | R                                                                                    |                                                |                                         |                                    |
| NS                                                                                                         | 7008-LOUISVILLE                  | K                                                                                              | Y 224.                                                                                                                                                                    |                                                                                                                             |                                                                            |                                                                                      |                                                |                                         |                                    |
| NS                                                                                                         | 6850-LEXINGTON                   | K                                                                                              | Y 353.                                                                                                                                                                    |                                                                                                                             |                                                                            |                                                                                      |                                                |                                         |                                    |
| NS                                                                                                         | 3234-IVORYDALE                   | 0                                                                                              | H 434.                                                                                                                                                                    |                                                                                                                             |                                                                            |                                                                                      |                                                |                                         |                                    |
| NS                                                                                                         | 3237-RED BANK                    | 0                                                                                              | H 441.                                                                                                                                                                    |                                                                                                                             |                                                                            |                                                                                      |                                                |                                         |                                    |
| NS                                                                                                         | 3170-PORTSMOUTH                  | 0                                                                                              | н 534.                                                                                                                                                                    |                                                                                                                             |                                                                            |                                                                                      |                                                |                                         |                                    |
|                                                                                                            |                                  |                                                                                                |                                                                                                                                                                           |                                                                                                                             |                                                                            |                                                                                      |                                                |                                         |                                    |
|                                                                                                            |                                  |                                                                                                |                                                                                                                                                                           |                                                                                                                             |                                                                            |                                                                                      |                                                |                                         |                                    |
| POPULA                                                                                                     | ATION DENSITY FROM               | M: PAL                                                                                         | 7075-PAD                                                                                                                                                                  | UCAH                                                                                                                        |                                                                            | KY                                                                                   |                                                |                                         |                                    |
|                                                                                                            |                                  |                                                                                                |                                                                                                                                                                           |                                                                                                                             |                                                                            |                                                                                      |                                                |                                         |                                    |
|                                                                                                            | .1.                              | O: NS                                                                                          | 3170-POR                                                                                                                                                                  | TSMOUTH                                                                                                                     |                                                                            | OH                                                                                   |                                                |                                         |                                    |
|                                                                                                            |                                  | O: NS<br>MIL                                                                                   | 3170-POR<br>EAGE WITHIN                                                                                                                                                   | TSMOUTH                                                                                                                     | Y LEVE                                                                     | OH<br>LS                                                                             |                                                |                                         |                                    |
|                                                                                                            |                                  | O: NS<br>MIL<br>22.7                                                                           | 3170-POR<br>EAGE WITHIN<br>59.7 139                                                                                                                                       | DENSIT                                                                                                                      | Y LEVE<br>821                                                              | OH<br>LS<br>1861                                                                     | 3326                                           | 5815                                    |                                    |
| St Miles                                                                                                   |                                  | O: NS<br>MIL<br>22.7<br>-59.7                                                                  | 3170-POR<br>EAGE WITHIN<br>59.7 139<br>-139 -326                                                                                                                          | DENSIT<br>326<br>-821                                                                                                       | Y LEVE<br>821<br>-1861                                                     | OH<br>LS<br>1861<br>-3326                                                            | 3326<br>-5815                                  | 5815<br>-9996                           | >9996                              |
| St Miles                                                                                                   | <0.0 5.0<br>0 -5.0 -22.7         | O: NS<br>MIL<br>22.7<br>-59.7<br>                                                              | 3170-POR<br>EAGE WITHIN<br>59.7 139<br>-139 -326                                                                                                                          | TSMOUTH<br>DENSIT<br>326<br>-821                                                                                            | Y LEVE<br>821<br>-1861<br>                                                 | OH<br>ILS<br>1861<br>-3326                                                           | 3326<br>-5815                                  | 5815<br>-9996                           | <br>>9996<br>                      |
| St Miles                                                                                                   | <pre></pre>                      | O: NS<br>MIL<br>22.7<br>-59.7<br>                                                              | 3170-POR<br>EAGE WITHIN<br>59.7 139<br>-139 -326<br>                                                                                                                      | 16.4                                                                                                                        | Y LEVE<br>821<br>-1861<br>                                                 | OH<br>1861<br>-3326<br>                                                              | 3326<br>-5815<br>                              | 5815<br>-9996<br>                       | <br>>9996<br>                      |
| St Miles<br><br>KY 427.5<br>OH 106.7                                                                       | <pre></pre>                      | O: NS<br>MIL<br>22.7<br>-59.7<br><br>179.5<br>15.7                                             | 3170-POR<br>EAGE WITHIN<br>59.7 139<br>-139 -326<br><br>64.2 25.6<br>11.0 8.2                                                                                             | 1 DENSIT<br>326<br>-821<br>16.4<br>9.3                                                                                      | Y LEVE<br>821<br>-1861<br><br>13.9<br>7.6                                  | OH<br>1861<br>-3326<br><br>11.8<br>4.3                                               | 3326<br>-5815<br><br>9.7<br>3.8                | 5815<br>-9996<br>2.9<br>.7              | >9996<br><br>.3<br>.0              |
| St Miles<br><br>KY 427.5<br>OH 106.7<br>Totals                                                             | <pre></pre>                      | O: NS<br>MIL<br>22.7<br>-59.7<br><br>179.5<br>15.7                                             | 3170-POR<br>EAGE WITHIN<br>59.7 139<br>-139 -326<br><br>64.2 25.6<br>11.0 8.2                                                                                             | TSMOUTH<br>DENSIT<br>326<br>-821<br>16.4<br>9.3                                                                             | Y LEVE<br>821<br>-1861<br><br>13.9<br>7.6                                  | OH<br>1861<br>-3326<br><br>11.8<br>4.3                                               | 3326<br>-5815<br><br>9.7<br>3.8                | 5815<br>-9996<br><br>2.9<br>.7          | >9996<br><br>.3<br>.0              |
| St Miles<br><br>KY 427.5<br>OH 106.7<br>Totals<br>534.2                                                    | <pre></pre>                      | O: NS<br>MIL<br>22.7<br>-59.7<br>179.5<br>15.7<br>195.2                                        | 3170-POR<br>EAGE WITHIN<br>59.7 139<br>-139 -326<br><br>64.2 25.6<br>11.0 8.2<br>75.2 33.8                                                                                | TSMOUTH<br>DENSIT<br>326<br>-821<br>16.4<br>9.3<br>25.7                                                                     | Y LEVF<br>821<br>-1861<br>13.9<br>7.6<br>21.5                              | OH<br>1861<br>-3326<br><br>11.8<br>4.3<br>16.1                                       | 3326<br>-5815<br>9.7<br>3.8<br>13.5            | 5815<br>-9996<br>2.9<br>.7<br>3.5       | >9996<br>                          |
| St Miles<br><br>KY 427.5<br>OH 106.7<br>Totals<br>534.2<br>Percentag                                       | <pre></pre>                      | O: NS<br>MIL<br>22.7<br>-59.7<br><br>179.5<br>15.7<br>195.2<br>36.5                            | 3170-POR<br>EAGE WITHIN<br>59.7 139<br>-139 -326<br>                                                                                                                      | TSMOUTH<br>DENSIT<br>326<br>-821<br>16.4<br>9.3<br>25.7<br>4.8                                                              | Y LEVF<br>821<br>-1861<br><br>13.9<br>7.6<br>21.5<br>4.0                   | OH<br>LLS<br>1861<br>-3326<br><br>11.8<br>4.3<br>16.1<br>3.0                         | 3326<br>-5815<br>9.7<br>3.8<br>13.5<br>2.5     | 5815<br>-9996<br>2.9<br>.7<br>3.5       | >9996<br>                          |
| St Miles<br><br>KY 427.5<br>OH 106.7<br>Totals<br>534.2<br>Percentag<br>Basis: 19                          | <pre></pre>                      | O: NS<br>MIL<br>22.7<br>-59.7<br>-79.7<br>179.5<br>15.7<br>195.2<br>36.5                       | 3170-POR<br>59.7 139<br>-139 -326<br>                                                                                                                                     | TSMOUTH<br>DENSIT<br>326<br>-821<br>16.4<br>9.3<br>25.7<br>4.8                                                              | Y LEVF<br>821<br>-1861<br>-13.9<br>7.6<br>21.5<br>4.0                      | OH<br>ILS<br>1861<br>-3326<br><br>11.8<br>4.3<br>16.1<br>3.0                         | 3326<br>-5815<br>9.7<br>3.8<br>13.5<br>2.5     | 5815<br>-9996<br>2.9<br>.7<br>3.5<br>.7 | >9996<br>                          |
| St Miles<br><br>KY 427.5<br>OH 106.7<br>Totals<br>534.2<br>Percentas<br>Basis: 19                          | <pre></pre>                      | O: NS<br>MIL<br>22.7<br>-59.7<br><br>179.5<br>15.7<br>195.2<br>36.5                            | 3170-POR<br>EAGE WITHIN<br>59.7 139<br>-139 -326<br><br>64.2 25.6<br>11.0 8.2<br>75.2 33.8<br>14.1 6.3                                                                    | TSMOUTH<br>DENSIT<br>326<br>-821<br>16.4<br>9.3<br>25.7<br>4.8                                                              | Y LEVF<br>821<br>-1861<br><br>13.9<br>7.6<br>21.5<br>4.0                   | OH<br>ILS<br>1861<br>-3326<br><br>11.8<br>4.3<br>16.1<br>3.0                         | 3326<br>-5815<br><br>9.7<br>3.8<br>13.5<br>2.5 | 5815<br>-9996<br>2.9<br>.7<br>3.5<br>.7 | >9996<br>.3<br>.0<br>.3<br>.0      |
| St Miles<br><br>KY 427.5<br>OH 106.7<br>Totals<br>534.2<br>Percentas<br>Basis: 19<br>RADTRA                | <pre></pre>                      | <pre>O: NSMIL _22.7 _59.7179.5 15.7 195.2 36.5 Rural</pre>                                     | 3170-POR<br>EAGE WITHIN<br>59.7 139<br>-139 -326<br><br>64.2 25.6<br>11.0 8.2<br>75.2 33.8<br>14.1 6.3<br>Suburban                                                        | TSMOUTH<br>DENSIT<br>326<br>-821<br>16.4<br>9.3<br>25.7<br>4.8<br>Urban                                                     | Y LEVE<br>821<br>-1861<br><br>13.9<br>7.6<br>21.5<br>4.0                   | OH<br>1861<br>-3326<br><br>11.8<br>4.3<br>16.1<br>3.0                                | 3326<br>-5815<br><br>9.7<br>3.8<br>13.5<br>2.5 | 5815<br>-9996<br>2.9<br>.7<br>3.5<br>.7 | >9996<br>                          |
| St Miles<br><br>KY 427.5<br>OH 106.7<br>Totals<br>534.2<br>Percentas<br>Basis: 19<br>RADTRA<br>Weight      | <pre></pre>                      | <pre>O: NSMIL _22.7 _59.7179.5 15.7 195.2 36.5 Rural</pre>                                     | 3170-POR<br>EAGE WITHIN<br>59.7 139<br>-139 -326<br>                                                                                                                      | TSMOUTH<br>DENSIT<br>326<br>-821<br>16.4<br>9.3<br>25.7<br>4.8<br>Urban                                                     | Y LEVE<br>821<br>-1861<br><br>13.9<br>7.6<br>21.5<br>4.0                   | OH<br>1861<br>-3326<br><br>11.8<br>4.3<br>16.1<br>3.0                                | 3326<br>-5815<br>9.7<br>3.8<br>13.5<br>2.5     | 5815<br>-9996<br>2.9<br>.7<br>3.5<br>.7 | >9996<br>                          |
| St Miles<br><br>KY 427.5<br>OH 106.7<br>Totals<br>534.2<br>Percentag<br>Basis: 19<br>RADTRA<br>Weight      | <pre></pre>                      | <pre>O: NS MIL 22.7 -59.7 179.5 15.7 195.2 36.5 Rural 40.0 </pre>                              | 3170-POR<br>EAGE WITHIN<br>59.7 139<br>-139 -326<br>                                                                                                                      | TSMOUTH<br>DENSIT<br>326<br>-821<br>16.4<br>9.3<br>25.7<br>4.8<br>Urban<br>5332.2                                           | Y LEVE<br>821<br>-1861<br><br>13.9<br>7.6<br>21.5<br>4.0                   | OH<br>1861<br>-3326<br><br>11.8<br>4.3<br>16.1<br>3.0                                | 3326<br>-5815<br>9.7<br>3.8<br>13.5<br>2.5     | 5815<br>-9996<br>2.9<br>.7<br>3.5<br>.7 | >9996<br>.3<br>.0<br>.3<br>.0      |
| St Miles<br><br>KY 427.5<br>OH 106.7<br>Totals<br>534.2<br>Percentag<br>Basis: 19<br>RADTRA<br>Weight<br>F | <pre></pre>                      | <pre>O: NS MIL 22.7 -59.7 179.5 15.7 195.2 36.5 Rural 40.0 15.4</pre>                          | 3170-POR<br>EAGE WITHIN<br>59.7 139<br>-139 -326<br><br>64.2 25.6<br>11.0 8.2<br>75.2 33.8<br>14.1 6.3<br>Suburban<br>959.1<br>370.3                                      | TSMOUTH<br>DENSIT<br>326<br>-821<br>16.4<br>9.3<br>25.7<br>4.8<br>Urban<br>5332.2<br>2058.7                                 | Y LEVE<br>821<br>-1861<br><br>13.9<br>7.6<br>21.5<br>4.0                   | OH<br>2LS<br>1861<br>-3326<br><br>11.8<br>4.3<br>16.1<br>3.0                         | 3326<br>-5815<br>9.7<br>3.8<br>13.5<br>2.5     | 5815<br>-9996<br>2.9<br>.7<br>3.5<br>.7 | >9996<br>                          |
| St Miles<br>                                                                                               | <pre></pre>                      | <pre>O: NS MIL 22.7 -59.7 179.5 15.7 195.2 36.5 Rural 40.0 15.4</pre>                          | 3170-POR<br>59.7 139<br>-139 -326<br>64.2 25.6<br>11.0 8.2<br>75.2 33.8<br>14.1 6.3<br>Suburban<br>959.1<br>370.3                                                         | TSMOUTH<br>DENSIT<br>326<br>-821<br>16.4<br>9.3<br>25.7<br>4.8<br>Urban<br>5332.2<br>2058.7                                 | Y LEVE<br>821<br>-1861<br>7.6<br>21.5<br>4.0                               | OH<br>2LS<br>1861<br>-3326<br><br>11.8<br>4.3<br>16.1<br>3.0                         | 3326<br>-5815<br>9.7<br>3.8<br>13.5<br>2.5     | 5815<br>-9996<br>2.9<br>.7<br>3.5<br>.7 | >99996<br>                         |
| St Miles<br>                                                                                               | <pre></pre>                      | <pre>O: NS MIL 22.7 -59.7 179.5 15.7 195.2 36.5 Rural 40.0 15.4 419.7</pre>                    | 3170-POR<br>59.7 139<br>-139 -326<br>                                                                                                                                     | TSMOUTH<br>DENSIT<br>326<br>-821<br>16.4<br>9.3<br>25.7<br>4.8<br>Urban<br>5332.2<br>2058.7<br>17.3                         | Y LEVE<br>821<br>-1861<br>7.6<br>21.5<br>4.0                               | OH<br>ELS<br>1861<br>-3326<br><br>11.8<br>4.3<br>16.1<br>3.0<br>otal<br>4.2          | 3326<br>-5815<br>9.7<br>3.8<br>13.5<br>2.5     | 5815<br>-9996<br>2.9<br>.7<br>3.5<br>.7 | >9996<br>                          |
| St Miles<br>                                                                                               | <pre></pre>                      | <pre>O: NS MIL 22.7 -59.7 -79.5 179.5 15.7 195.2 36.5 Rural 40.0 15.4 419.7 675.4</pre>        | 3170-POR<br>EAGE WITHIN<br>59.7 139<br>-139 -326<br><br>64.2 25.6<br>11.0 8.2<br>75.2 33.8<br>14.1 6.3<br>Suburban<br>959.1<br>370.3<br>97.1<br>156.2                     | TSMOUTH<br>DENSIT<br>326<br>-821<br>16.4<br>9.3<br>25.7<br>4.8<br>Urban<br>5332.2<br>2058.7<br>17.3<br>27.9                 | Y LEVE<br>821<br>-1861<br>7.6<br>21.5<br>4.0                               | OH<br>ELS<br>1861<br>-3326<br><br>11.8<br>4.3<br>16.1<br>3.0<br><br><br><br><br>     | 3326<br>-5815<br>9.7<br>3.8<br>13.5<br>2.5     | 5815<br>-9996<br>2.9<br>.7<br>3.5<br>.7 | >9996<br>                          |
| St Miles<br>                                                                                               | <pre></pre>                      | <pre>O: NS MIL 22.7 -59.7 -79.5 179.5 15.7 195.2 36.5 Rural 40.0 15.4 419.7 675.4 78.6</pre>   | 3170-POR<br>EAGE WITHIN<br>59.7 139<br>-139 -326<br><br>64.2 25.6<br>11.0 8.2<br>75.2 33.8<br>14.1 6.3<br>Suburban<br>959.1<br>370.3<br>97.1<br>156.2<br>18.2             | TSMOUTH<br>DENSIT<br>326<br>-821<br>-6.4<br>9.3<br>25.7<br>4.8<br>Urban<br>5332.2<br>2058.7<br>17.3<br>27.9<br>3.2          | Y LEVF<br>821<br>-1861<br><br>13.9<br>7.6<br>21.5<br>4.0<br>To<br>53<br>85 | OH<br>ELS<br>1861<br>-3326<br><br>11.8<br>4.3<br>16.1<br>3.0<br><br><br><br><br><br> | 3326<br>-5815<br>9.7<br>3.8<br>13.5<br>2.5     | 5815<br>-9996<br>2.9<br>.7<br>3.5<br>.7 | >99996<br><br>.3<br>.0<br>.3<br>.0 |
| St Miles<br>                                                                                               | <pre></pre>                      | <pre>O: NS MIL 22.7 -59.7 179.5 15.7 195.2 36.5 Rural 40.0 15.4 419.7 675.4 78.6 &lt;139</pre> | 3170-POR<br>EAGE WITHIN<br>59.7 139<br>-139 -326<br><br>64.2 25.6<br>11.0 8.2<br>75.2 33.8<br>14.1 6.3<br>Suburban<br>959.1<br>370.3<br>97.1<br>156.2<br>18.2<br>139-3326 | TSMOUTH<br>DENSIT<br>326<br>-821<br>16.4<br>9.3<br>25.7<br>4.8<br>Urban<br>5332.2<br>2058.7<br>17.3<br>27.9<br>3.2<br>>3326 | Y LEVF<br>821<br>-1861<br><br>13.9<br>7.6<br>21.5<br>4.0<br>Tc<br>53<br>85 | OH<br>1861<br>-3326<br><br>11.8<br>4.3<br>16.1<br>3.0<br>0<br>0<br>11.4<br>2.9<br>7  | 3326<br>-5815<br>9.7<br>3.8<br>13.5<br>2.5     | 5815<br>-9996<br>2.9<br>.7<br>3.5<br>.7 | >9996<br>.3<br>.0<br>.3<br>.0      |

# 5.12 GXQ Output File for Puff Release

Current Input File Name: puffxq.IN



| Doc. No        | ENG-RCAL-028              | Rev. 1 Project No. 772030/171              | Page | <u>52</u> of | 62 |
|----------------|---------------------------|--------------------------------------------|------|--------------|----|
| Subject: Trans | sportation Risk Assessmer | t for the Shipment of Unirradiated Uranium | -    |              |    |
| Preparer:      | J. L. Boles               | ·                                          | Date | 5/31/00      |    |
| Checker:       | B. B. Peters              |                                            | Date | 5/31/00      |    |
|                |                           |                                            |      |              |    |

GXQ Version 4.0 December 19, 1994

General Purpose Atmospheric Dispersion Code Produced by Radiological & Toxicological Analysis Westinghouse Hanford Company Users Guide documented in WHC-SD-GN-SWD-3002 Rev. 1. Validation documented in WHC-SD-GN-SWD-3003 Rev. 1. Code Custodian is Brit E. Hey, WHC, ext. 376-2921. Run Date = 07/26/99Run Time = 15:43:12.70INPUT ECHO: Peak Concentration for Puff Release c GXQ Version 4.0 Input File c mode 2 С c MODE CHOICE: c mode = 1 then X/Q based on Hanford site specific meteorology c mode = 2 then X/Q based on atmospheric stability class and wind speed c mode = 3 then X/Q plot file is created С c LOGICAL CHOICES: c ifox inorm icdf ichk isite ipop Т FFFFF c ifox = t then joint frequency used to compute frequency to exceed X/Q= f then joint frequency used to compute annual average X/Q С c inorm = t then joint frequency data is normalized (as in GENII) = f then joint frequency data is un-normalized С c icdf = t then cumulative distribution file created (CDF.OUT) = f then no cumulative distribution file created С c ichk = t then X/Q parameter print option turned on = f then no parameter print С c isite = t then X/Q based on joint frequency data for all 16 sectors С = f then X/Q based on joint frequency data of individual sectors c ipop = t then X/Q is population weighted = f then no population weighting С С c X/Q AND WIND SPEED ADJUSTMENT MODELS: c ipuff idep isrc iwind 1 0 0 0 c DIFFUSION COEFFICIENT ADJUSTMENT MODELS: c iwake ipm iflow ientr 0 0 0 0 c EFFECTIVE RELEASE HEIGHT ADJUSTMENT MODELS: c (irise igrnd)iwash igrav 0 0 0 0 c ipuff = 1 then X/Q calculated using puff model = 0 then X/Q calculated using default continuous plume model С c idep = 1 then plume depletion model turned on (Chamberlain model) c isrc = 1 then X/Q multiplied by scalar = 2 then X/Q adjusted by wind speed function С c iwind = 1 then wind speed corrected for plume height c isize = 1 then NRC RG 1.145 building wake model turned on = 2 then MACCS virtual distance building wake model turned on С c ipm = 1 then NRC RG 1.145 plume meander model turned on



| Doc. No                                                                                     | ENG-RCAL-                                                                                                                                                                                                               | 028 R                                                                                                                                                                                    | ev. <u>1</u> Project No                                                                                        | b. <u>772030/171</u>                                                     | Page                                           | <u>53</u> of _ | 62 |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------|----------------|----|
| Subject: 11                                                                                 | ransportation Risk A                                                                                                                                                                                                    | ssessment for the                                                                                                                                                                        | e Shipment of Unit                                                                                             | radiated Uranium                                                         | Data                                           | E/21/00        | -  |
| Chockor                                                                                     | J. L. DUIES<br>B. B. Dotoro                                                                                                                                                                                             |                                                                                                                                                                                          |                                                                                                                |                                                                          | Date                                           | 5/31/00        |    |
| 0<br>0<br>0<br>0<br>0                                                                       | = 2 then 5<br>= 3 then s<br>iflow = 1 then s                                                                                                                                                                            | th Power Law p<br>ector average<br>igmas adjusted                                                                                                                                        | lume meander mo<br>model turned on<br>for volume flo                                                           | del turned on<br>w rate                                                  | nmont                                          |                |    |
| 6<br>6<br>6<br>6<br>6<br>6<br>6                                                             | irise = 1 then M<br>= 2 then I<br>igrnd = 1 then M<br>iwash = 1 then s<br>igrav = 1 then g<br>= 0 unless<br>PARAMETER INPUT:                                                                                            | ACCS buoyant p<br>SC2 momentum/b<br>fills buoyant p<br>stack downwash<br>ravitational s<br>specified oth                                                                                 | lume rise model<br>uoyancy plume r<br>lume rise modif<br>model turned on<br>ettling model t<br>erwise, 0 turns | turned on<br>ise model turne<br>ication for gro<br>urned on<br>model off | ed on<br>bund effects                          |                |    |
| С                                                                                           | _                                                                                                                                                                                                                       | reference                                                                                                                                                                                |                                                                                                                | frequency                                                                |                                                |                |    |
| с<br>с<br>с                                                                                 | release<br>height<br>hs(m)                                                                                                                                                                                              | anemometer<br>height<br>ha(m)                                                                                                                                                            | mixing<br>height<br>hm(m)                                                                                      | to<br>exceed<br>Cx(%)                                                    |                                                |                |    |
| c                                                                                           | 0.00000E+00                                                                                                                                                                                                             | 1.00000E+01                                                                                                                                                                              | 1.00000E+03                                                                                                    | 5.00000E-01                                                              |                                                |                |    |
| 0<br>0<br>0<br>0                                                                            | initial<br>plume<br>width<br>Wb(m)                                                                                                                                                                                      | initial<br>plume<br>height<br>Hb(m)                                                                                                                                                      | release<br>duration<br>trd(hr)                                                                                 | deposition<br>velocity<br>vd(m/s)                                        | gravitation<br>settling<br>velocity<br>vg(m/s) | nal            |    |
| c                                                                                           | 0.00000E+00                                                                                                                                                                                                             | 0.00000E+00                                                                                                                                                                              | 0.00000E+00                                                                                                    | 1.00000E-03                                                              | 1.00000E-03                                    | 3              |    |
| 0<br>0<br>0<br>0<br>0                                                                       | ambient<br>temperature<br>Tamb(C)                                                                                                                                                                                       | initial<br>plume<br>temperature<br>TO(C)                                                                                                                                                 | initial<br>plume<br>flow rate<br>V0(m3/s)                                                                      | release<br>diameter<br>d(m)                                              | convective<br>heat releas<br>rate(1)<br>qh(w)  | se             |    |
| c                                                                                           | 2.00000E+01                                                                                                                                                                                                             | 2.20000E+01                                                                                                                                                                              | 1.00000E+00                                                                                                    | 1.00000E+00                                                              | 0.0000E+00                                     | 0              |    |
| 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | (1) If zero then<br>X/Q<br>scaling<br>factor<br>c(?)<br>1.00000E+00<br>RECEPTOR DEPENDE                                                                                                                                 | Wind<br>Speed<br>Exponent<br>a(?)<br>7.80000E-01<br>NT DATA (no li                                                                                                                       | based on plume/<br>ne limit)                                                                                   | ambient tempera                                                          | ture differen                                  | nce.           |    |
| C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | FOR MODE mak<br>1 (site specific<br>2 (by class & wi<br>3 (create plot f                                                                                                                                                | e RECE<br>) sect<br>nd speed) clas<br>ile) clas                                                                                                                                          | PTOR DEPENDENT<br>or distance rec<br>s windspeed dis<br>s windspeed xma                                        | DATA<br>eptor-height<br>tance offset re<br>x imax ymax jma               | ceptor-heigh<br>x xqmin powe:                  | t<br>r         |    |
|                                                                                             | RECEPTOR PARAMET<br>sector = 0, 1, 2<br>distance = recep<br>receptor height<br>class = 1, 2, 3,<br>windspeed = anem<br>offset = offset<br>xmax = maximum of<br>imax = distance<br>ymax = maximum of<br>jmax = offset in | ER DESCRIPTION<br>2 (all, S, S<br>otor distance (<br>= height of re<br>4, 5, 6, 7 (P<br>nometer wind sp<br>from plume cen<br>listance to plot<br>intervals<br>offset to plot<br>ttervals | SW, etc.)<br>m)<br>ceptor (m)<br>-G stability cl<br>eed (m/s)<br>terline (m)<br>ot or calculate<br>(m)         | ass A, B, C, D,<br>to (m)                                                | E, F, G)                                       |                |    |
| C                                                                                           | power = exponent                                                                                                                                                                                                        | in power func                                                                                                                                                                            | tion step size                                                                                                 |                                                                          |                                                |                |    |
| X                                                                                           | /O calculated by                                                                                                                                                                                                        | stability clas                                                                                                                                                                           | s and wind spee                                                                                                | d.                                                                       |                                                |                |    |



| Doc. No.   | ENG-RCAL-028                      | _ Rev. 1 Project No. 772030/171         | Page | <u>54</u> of | 62 |
|------------|-----------------------------------|-----------------------------------------|------|--------------|----|
| Subject: T | ransportation Risk Assessment for | or the Shipment of Unirradiated Uranium |      |              | _  |
| Preparer:  | J. L. Boles                       |                                         | Date | 5/31/00      |    |
| Checker:   | B. B. Peters                      |                                         | Date | 5/31/00      |    |

LOGICAL CHOICES:

MODELS SELECTED: Gaussian puff model selected.

WARNING/ERROR MESSAGES:

Peak Concentration for Puff Release

| ATM.<br>STAB.<br>CLASS | WIND<br>SPEED<br>(m/s) | DISTANCE<br>(m) | OFFSET<br>(m) | RECEPTOR<br>HEIGHT<br>(m) | SCALED<br>X/Q<br>(1/m3) |
|------------------------|------------------------|-----------------|---------------|---------------------------|-------------------------|
| <br>F                  | 1.00                   | 100             | 0             | 0                         | 2.65E-03                |
| D                      | 2.00                   | 100             | 0             | 0                         | 3.14E-04                |
| D                      | 2.00                   | 200             | 0             | 0                         | 4.74E-05                |
| D                      | 2.00                   | 1000            | 0             | 0                         | 7.10E-07                |

5.13 Attachments: Route Maps and Container Schematics



| Doc. No.       | ENG-RCAL-028              | Rev. 1 Project No. 772030/171              | Page _ | <u>55</u> of | 62 |
|----------------|---------------------------|--------------------------------------------|--------|--------------|----|
| Subject: Trans | sportation Risk Assessmen | t for the Shipment of Unirradiated Uranium |        |              |    |
| Preparer:      | J. L. Boles               | · · · · · · · · · · · · · · · · · · ·      | Date   | 5/31/00      |    |
| Checker:       | B. B. Peters              |                                            | Date   | 5/31/00      |    |

(this page reserved for truck direct route)



| Doc. No.   | ENG-RCAL-028                  | Rev. 1 Project No. 772030/171           | Page | <u>56</u> of | 62 |
|------------|-------------------------------|-----------------------------------------|------|--------------|----|
| Subject: T | ransportation Risk Assessment | or the Shipment of Unirradiated Uranium |      |              | _  |
| Preparer:  | J. L. Boles                   | ·                                       | Date | 5/31/00      |    |
| Checker:   | B. B. Peters                  |                                         | Date | 5/31/00      |    |

(this page reserved for truck indirect route)



| Doc. No.   | ENG-RCAL-028                  | Rev. 1 Project No. 772030/171            | Page | <u>57</u> of | 62 |
|------------|-------------------------------|------------------------------------------|------|--------------|----|
| Subject: T | ransportation Risk Assessment | for the Shipment of Unirradiated Uranium | -    |              | _  |
| Preparer:  | J. L. Boles                   | · · · · · · · · · · · · · · · · · · ·    | Date | 5/31/00      |    |
| Checker:   | B. B. Peters                  |                                          | Date | 5/31/00      |    |

(this page reserved for rail direct route)



| Doc. No.   | ENG-RCAL-028                  | Rev. 1 Project No. 772030/171            | Page _ | <u>58</u> of | 62 |
|------------|-------------------------------|------------------------------------------|--------|--------------|----|
| Subject: T | ransportation Risk Assessment | for the Shipment of Unirradiated Uranium | -      |              |    |
| Preparer:  | J. L. Boles                   | •                                        | Date   | 5/31/00      |    |
| Checker:   | B. B. Peters                  |                                          | Date   | 5/31/00      |    |

(this page reserved for rail indirect route)



| Doc. No.   | ENG-RCAL-028                    | Rev. 1_ Project No. 772030/171          | Page | <u>59</u> of | 62 |
|------------|---------------------------------|-----------------------------------------|------|--------------|----|
| Subject: 1 | ransportation Risk Assessment f | or the Shipment of Unirradiated Uranium | -    |              | _  |
| Preparer:  | J. L. Boles                     | · · ·                                   | Date | 5/31/00      | -  |
| Checker:   | B. B. Peters                    |                                         | Date | 5/31/00      |    |

(this page reserved for G-4255 box schematic)



| Doc. No.   | ENG-RCAL-028                    | Rev. 1_ Project No. 772030          | ) <u>/171</u> Page | <u>60</u> of <u>62</u> |  |
|------------|---------------------------------|-------------------------------------|--------------------|------------------------|--|
| Subject: T | ransportation Risk Assessment f | or the Shipment of Unirradiated Ura | anium              |                        |  |
| Preparer:  | J. L. Boles                     | -                                   | Date               | 5/31/00                |  |
| Checker:   | B. B. Peters                    |                                     | Date               | 5/31/00                |  |

(this page reserved for G-4214 box schematic)



| Doc. No.   | ENG-RCAL-028                    | Rev. 1 Project No. 7720         | <u>30/171</u> Page | <u>61</u> of <u>62</u> |
|------------|---------------------------------|---------------------------------|--------------------|------------------------|
| Subject: T | ransportation Risk Assessment f | or the Shipment of Unirradiated | Jranium            |                        |
| Preparer:  | J. L. Boles                     | -                               | Date               | 5/31/00                |
| Checker:   | B. B. Peters                    |                                 | Date               | 5/31/00                |

(this page reserved for T-Hopper schematic)



| Doc. No.   | ENG-RCAL-028                    | _ Rev. 1 Project No. 772030/171         | Page | <u>62</u> of | 62 |
|------------|---------------------------------|-----------------------------------------|------|--------------|----|
| Subject: T | ransportation Risk Assessment f | or the Shipment of Unirradiated Uranium | -    |              | _  |
| Preparer:  | J. L. Boles                     | -                                       | Date | 5/31/00      |    |
| Checker:   | B. B. Peters                    |                                         | Date | 5/31/00      |    |

(this page reserved for Brian's check sheet)