
Implementing a Grants.Gov System-to-System Interface using the
Microsoft .NET Framework

Summary

The National Endowment for the Humanities has developed a Grants.Gov system-to-
system interface that may serve as a low-cost model for other agencies using the
Microsoft .NET Framework (.NET). NEH is publishing this white paper in the hopes that
it will assist other agencies in their efforts to participate in Grants.Gov. If you have any
questions or comments about the materials in this paper, please don't hesitate to contact
us. Also, to view the latest version of this document (and to see sample code), please
see our website at: http://www.neh.gov/whoweare/cio.htm

Contacts

Questions or comments may be directed to:

Beth Stewart, Information Technology Specialist
National Endowment for the Humanities
bstewart@neh.gov

Brett Bobley, Chief Information Officer
National Endowment for the Humanities
bbobley@neh.gov

website: http://www.neh.gov/whoweare/cio.htm

Background Information

The National Endowment for the Humanities (NEH) is a small grant-making agency that
receives approximately 5,000 grant applications annually from both individual and
institutional applicants. With a small number of technical and grant program staff
members and a limited Information Technology budget, NEH decided to develop in-
house a Grants.Gov system-to-system interface using existing servers and applications
known by the agency's IT staff members. A system-to-system interface promised receipt
of grant applications submitted via Grants.Gov with minimal oversight and involvement,
an important requirement since the agency could not add staff members for the handling
of these applications.

With these goals in mind, the system-to-system interface and downloaded applications
would need to be developed and accessed with the following existing tools and utilities:

• Microsoft Visual Studio .NET 2003 with the Visual Basic .NET language
• Microsoft SQL Server 2000
• Microsoft Internet Information Services (IIS)
• Microsoft .NET Framework 1.1
• Microsoft Internet Explorer
• Adobe Acrobat Reader

 1

mailto:bstewart@neh.gov
mailto:bbobley@neh.gov

Though NEH IT staff members recognized the relative challenge of developing a .NET
system-to-system interface instead of a Java-based interface, the project was pursued
because it could be developed with existing tools and managed by system
administrators trained in Microsoft technologies.

During development, the following additional low-cost APIs were obtained:

• aspNetMime by Advanced Intellect, described below;
• DynamicPDF Merger for .NET by ceTe software, used to merge application files

into a single, printer-friendly application file in PDF format; and
• SharpZipLib by ic#code, an open source ZIP library for .NET.

The NEH system-to-system interface entered its production phase with two pilot grant
programs in October 2004. After the conclusion of successful testing, in 2005 all NEH
institutional grant programs have been advertised on Grants.Gov. To achieve our goal
of minimal staff involvement, the interface automatically downloads applications daily
that have a status of "Validated." As applications are downloaded, they become
available immediately to staff members who review applications for eligibility and are
added to the NEH Grants Management System database.

Figure 1. Logical Description of the NEH system-to-system interface

Scheduled
Task

Grants.gov

M
utual

A
uthentication

Download

MIME
parsing

M
IM

E

XML
Raw XML and
Attachments

Holding Tank
Database

Grants Management
System

Staff
Validation

Deserialization by Web
Service client Proxy Classes

Attachments
Merged

 2

Integration with Existing Systems

A web-based application system has been in place at NEH since 2002 for the receipt,
review, and management of applications from individual applicants, whose numbers total
more than half of the applications received by NEH. Because the existing online
application system has been widely adopted by NEH grant programs, Grants.Gov
applications were tightly integrated with the existing system to encourage adoption and
promotion of Grants.Gov as a viable and staff-friendly alternative to NEH online
application forms.

A single grant program accessed online offers the following information to staff
members:

By following the "Go to Grants.Gov Applications" link, the list of applications that were
downloaded via the system-to-system interface is displayed:

 3

A single application consists of a series of separate files and a single file that merges the
application components into a printer-friendly PDF format. This single file simplifies
printing and offers a way to send Grants.Gov applications to reviewers.

 4

Web-based access to Grants.Gov applications has minimized the involvement of IT staff
members in providing copies of applications, as grant programs are able to order copies
and even save locally a grant application.

Technical Challenges

Despite the simple access to Grants.Gov applications enjoyed by NEH grant programs,
development of a .NET system-to-system interface is far from simple for software
developers. Debates over Web Services protocols that split the J2EE and .NET
communities resulted in incompatible protocols for binary data that must be resolved to
author a successful interface. Below, the technical details of the solution adopted by
NEH are described.

SOAP with Attachments vs. WS-Attachments

The SOAP-based specifications of the Web Services world, which depend on the use of
XML, do not provide independently a method for sending binary data. Several solutions
to sending binary data have been proposed, including SOAP Messages with
Attachments (SwA), which has been built into J2EE and by consequence is used by
Grants.Gov, and WS-Attachments using DIME, which is supported by .NET. SwA uses
multipart MIME to send a SOAP envelope, which must be the root MIME part, in addition
to other MIME parts used for transmitting binary data. The following is an example of a
SOAP message that uses SwA from the Grants.Gov Agency Integration Toolkit:

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
start="PrimaryMIMEPart"
Content-Description: an optional message description

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <PrimaryMIMEPart>

<?xml version='1.0'>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2002/12/soap-
envelope/" >
 <SOAP-ENV:Body>
 ..
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: application/pdf
Content-Transfer-Encoding: base64
Content-ID: <Content Id>

... Actual PDF binary data ...

--MIME_boundary

 5

.NET provides no support for SwA, and instead recommends use of WS-Attachments
and DIME at this time. In addition, the January 2005 W3C Recommendation of the
SOAP Message Transmission Optimization Mechanism (MTOM) foretells J2EE and
.NET implementations of the new MTOM specification in the future and not Microsoft
support for SwA. With no promise of .NET support for SwA, .NET implementations of a
Grants.Gov web service client must find a way to handle messages that use SwA
without foregoing entirely .NET support of Web Services.

Accessing the MIME-formatted SOAP message however is problematic because the
default behavior of the .NET Web Services infrastructure assumes that every SOAP
message should be deserialized into objects. These objects are defined by the proxy
classes generated when binding to a WSDL document either by adding a web reference
to a .NET project within the Visual Studio IDE or by using the wsdl.exe utility. When a
.NET web service client receives a MIME-formatted SOAP message, an exception is
thrown because the content-type is not the expected text/xml and deserialization does
not occur.

SOAP Extensions

Two key challenges arise when consuming MIME-formatted SOAP messages. First, the
binary data encapsulated by some of the MIME parts must be extracted and stored
according to an agency's requirements. Second, the SOAP message itself must be
reformatted so that the .NET Web Services infrastructure is able to deserialize the XML.
Both tasks may be accomplished through the use of SOAP Extensions, which have
unique access to the streams containing inbound and outbound SOAP messages. A
SOAP extension can replace the stream containing the message from a Web service
with another to facilitate deserialization, and it can access the stream for logging or, in
the case of MIME, to access the parts of the MIME message. A SOAP extension is
contained in a class that inherits from the
System.Web.Services.Protocols.SoapExtension abstract class and overrides a few of its
members.

There are four points at which a SOAP extension may execute code, and the format of
the SOAP message (XML or objects) varies depending on the selected point. To
manage MIME-formatted SOAP messages, the key stage is BeforeDeserialize, which
occurs when the SOAP message has been received in XML (or MIME) but has not been
deserialized. The ChainStream and ProcessMessage methods are used together to
capture the stream at the appropriate time, as a specific example below demonstrates.
Once the stream has been captured, a MIME parser may be used to identify the parts of
the SOAP message, save binary files, and create a new XML-formatted stream for
deserialization.

A SOAP Extension for the GetApplicationZip() Method

By way of example, we will examine a SOAP extension class that captures and
manipulates the stream sent by Grants.Gov in response to a GetApplicationZip() method
call. The class is called GetApplicationZipExt and does the following:

1. stores the stream received from Grants.Gov,
2. identifies the content type of the SOAP message in the stream to determine

whether it is MIME or text/xml,

 6

3. uses a third-party MIME parser to extract and save binary data to the file system,
and

4. constructs a new SOAP message from the first MIME part, which is deserialized
into object instances of the Web service proxy classes.

Public Class GetApplicationZipExt
 Inherits SoapExtension

 Private networkStream As Stream
 Private newStream As Stream
 Private isResponse As Boolean = False
 Private appID As String

 Public Overrides Function ChainStream(ByVal stream As Stream) As Stream
 If (isResponse) Then
 networkStream = stream
 newStream = New MemoryStream
 Return newStream
 Else
 Return stream
 End If
 End Function

 Public Overrides Sub ProcessMessage(ByVal message As _
 System.Web.Services.Protocols.SoapMessage)

 Select Case message.Stage

 ' Capture the tracking number sent as the parameter
 Case SoapMessageStage.BeforeSerialize
 appID = message.GetInParameterValue(0).Grants_govTrackingNumber

 Case SoapMessageStage.AfterSerialize
 isResponse = True

 Case SoapMessageStage.BeforeDeserialize
 If message.ContentType.StartsWith("text/xml") Then
 ParseXml(message)
 ElseIf message.ContentType.StartsWith("text/html") Then
 ParseHtml(message)
 Else
 ParseMime(message)

 ' Change the content type so that .net will accept the new response
 message.ContentType = "text/xml"
 End If

 Case SoapMessageStage.AfterDeserialize

 Case Else
 Throw New Exception("Invalid Stage")
 End Select
 End Sub
End Class

In the above code sample, the ProcessMessage method sets the isResponse boolean
as True when the AfterSerialize stage is reached. Then, when the ChainStream method
is called again (before the BeforeDeserialize stage is reached), the stream—which now
contains the response from Grants.Gov—is stored as networkStream. Next,
ProcessMessage is called again, and because we have reached the BeforeDeserialize
stage the message will be categorized depending on its content type. A content type of
"text/xml" will indicate that the SOAP message contains a SOAP Fault, "text/html"
indicates a failure to access the Grants.Gov server, and " multipart/related" requires
special MIME parsing. Within each parse method, the stream captured within

 7

ChainStream is used, and a new XML-formatted SOAP message is written to the
newStream.
Within ParseMime, the networkStream stream is parsed by the third-party MIME parsing
software aspNetMime (http://www.advancedintellect.com/product.aspx?mime) and
binary data is saved to the file system.

 Dim soapStream As New MemoryStream
 Dim utf8 As New UTF8Encoding(False, False)

 Dim contentType As Byte() = utf8.GetBytes("Content-type: " + _
 message.ContentType + Chr(13))
 soapStream.Write(contentType, 0, contentType.Length)

 Dim buffer As Byte() = New Byte(1024) {}
 Dim count As Integer = networkStream.Read(buffer, 0, buffer.Length)

 While (count > 0)
 soapStream.Write(buffer, 0, count)
 count = networkStream.Read(buffer, 0, buffer.Length)
 End While

 soapStream.Position = 0

 Dim mime As MimeMessage = _

MimeMessage.ParseStream(soapStream, Encoding.UTF8)
 Dim part As MimePart

 Dim embeddedParts As MimePartCollection = mime.EmbeddedParts
 For Each part In embeddedParts
 mime.GetEmbeddedPart(part.EmbeddedName())

 ' Use the embedded name as the file name
 ' Strip any illegal characters
 Dim eFileName As String
 If (part.EmbeddedName().StartsWith("cid")) Then
 eFileName = New String(part.EmbeddedName().Substring(4))
 Else
 eFileName = New String(part.EmbeddedName())
 End If

 part.SaveAs(eFileName)
 Next

In the above sample, the contents of networkStream are copied into soapStream so that
the stream conforms to a format expected by aspNetMime. Then, the embedded parts
of the message, which contain the binary files, are saved. Meanwhile, the first part of
the MimeMessage is copied into newStream, as it contains the SOAP message
expected by the proxy classes:

 Dim mpc As MimePartCollection = mime.RetrieveAllParts()
 Dim xmlRdr As StreamReader = New StreamReader(mpc(0).DataStream)
 Dim strLast As String = "", strCurr As String = ""
 Dim byCurr As Byte()

 While (strLast <> "</SOAP-ENV:Envelope>")
 Do While (Convert.ToChar(xmlRdr.Peek()) <> ">")
 strCurr += Convert.ToChar(xmlRdr.Read())
 Loop

 ' Read the ">"
 strCurr += Convert.ToChar(xmlRdr.Read())

 ' Copy the xml that can be serialized into newStream
 byCurr = utf8.GetBytes(strCurr)
 newStream.Write(byCurr, 0, byCurr.Length)

 8

http://www.advancedintellect.com/product.aspx?mime

 strLast = Trim(strCurr)
 strCurr = ""
 End While

 ' Reset newStream's position so it is ready for serialization
 newStream.Seek(0, SeekOrigin.Begin)

Complete source code for the GetApplicationZipExt is available, which includes
necessary error handling.

Activating a SOAP Extension

For a SOAP extension to be activated for a particular Web Service method, it is
necessary to also author a custom attribute for the class. Our custom attribute class,
GetApplicationZipExtAttribute, must inherit from the SoapExtensionAttribute abstract
class and must override its Priority and ExtensionType properties; the latter is especially
important in that it returns the System.Type object that defines the SOAP extension
class. The Priority is simply the order in which the associated SoapExtension would
gain access to the message in relation to other defined SOAP extensions, as multiple
SOAP extensions may access a message.

<AttributeUsage(AttributeTargets.Method)> _
Public Class GetApplicationZipExtAttribute
 Inherits SoapExtensionAttribute

 Public Overrides ReadOnly Property ExtensionType() As Type
 Get
 Return GetType(GetApplicationZipExt)
 End Get
 End Property

 Public Overrides Property Priority() As Integer
 Get
 Return 1
 End Get
 Set(ByVal Value As Integer)
 End Set
 End Property

End Class

The attribute is associated with the appropriate Web Service method by modifying the
method in the proxy class file (Reference.vb or Reference.cs):

 <System.Web.Services.Protocols.SoapDocumentMethodAttribute _
 ("https://ws.grants.gov:446/AgencyIntegration/GetApplicationZip", _
 Use:=System.Web.Services.Description.SoapBindingUse.Literal, _
 ParameterStyle:=System.Web.Services.Protocols.SoapParameterStyle.Bare), _
 GetApplicationZipExtAttribute()> _
 Public Function GetApplicationZip

(<System.Xml.Serialization.XmlElementAttribute _
 ([Namespace]:="http://apply.grants.gov/WebServices/

AgencyIntegrationServices-V1.0")> _
 ByVal GetApplicationZipRequest As GetApplicationZipRequest) As _
 <System.Xml.Serialization.XmlElementAttribute _

("GetApplicationZipResponse", _
 [Namespace]:="http://apply.grants.gov/WebServices/

AgencyIntegrationServices-V1.0")> GetApplicationZipResponse

Dim results() As Object = _
Me.Invoke("GetApplicationZip", New Object() _
{GetApplicationZipRequest})

 Return CType(results(0), GetApplicationZipResponse)

 9

 End Function

Once the attribute is added to the GetApplicationZip method within the proxy class file,
the SOAP extension will be used when this method is called.

Alternatives

Other implementations of SwA for .NET include:

• Pocket SOAP, an open source SOAP client COM component
(http://www.pocketsoap.com/pocketsoap/). A sample of a Web Service written in
ASP.NET using SwA is available at
http://www.pocketsoap.com/weblog/2004/09/1472.html. A sample Web Service
client is not provided.

• Smart421 Solutions offers a .NET SOAP Extension that supports SwA

(http://www.smart421.com/solutions/smart421_solutions/soap.asp).

• AlotSoft.com offers a .NET SOAP Extension that supports SwA

(http://www.alotsoft.com/alotsoftweb/soap_attachment.jsp).

Conclusion

Despite the problems that arise while attempting to handle MIME with the .NET
infrastructure, the sample implementation outlined here offers one low-cost option that
has proven successful for the National Endowment for the Humanities.

 10

http://www.pocketsoap.com/pocketsoap/
http://www.pocketsoap.com/weblog/2004/09/1472.html
http://www.smart421.com/solutions/smart421_solutions/soap.asp

References

Balena, Francesco. Programming Microsoft Visual Basic .NET. Microsoft Press, 2002.

Bosworth, Adam, et. al. "XML, SOAP, and Binary Data."
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnwebsrv/html/infoset_whitepaper.asp.

Ewald, Tim. "Accessing Raw SOAP Messages in ASP.NET Web Services."
http://msdn.microsoft.com/msdnmag/issues/03/03/WebServices/default.aspx.

Powell, Matt. "Web Services, Opaque Data, and the Attachments Problem."
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnwebsrv/html/opaquedata.asp.

 11

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/infoset_whitepaper.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/infoset_whitepaper.asp
http://msdn.microsoft.com/msdnmag/issues/03/03/WebServices/default.aspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/opaquedata.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/opaquedata.asp

