

NREL's New Directions in Geothermal R&D

Tom Williams Laboratory Program Manager Geothermal Technologies

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC

NREL Mission

The Nation's Premier Laboratory for Renewable

Energy

Research & Development From inspiration to installation: NREL's sole focus is to conduct research and development in renewable energy and energy efficiency technologies and to accelerate the adoption of these technologies into the market.

Energy Challenges

Security

Secure supplyReliable Infrastructure

Economy

Economic Development
Energy price volatility
Affordability

All three imperatives must be simultaneously addressed

Environment

Carbon mitigation
Land and water use

A Profound Transformation is Required

Today's Energy System

Imperatives for Transformation

Sustainable Energy System

- Dependent on foreign sources
- Subject to price volatility
- Increasingly unreliable
- 2/3 of source energy is lost
- Produces 25% of the world's carbon emissions

DEFINE THE END STATES

REDUCE NEW TECHNOLOGY RISK

ACCELERATE ADOPTION

- Carbon neutral
- Efficient
- Diverse supply options
- Minimal impact on resources
- Creates sustainable jobs
- Accessible, affordable and secure

NREL Signature Competencies Accelerate Transformation

Building on **Today**

Inform

Strategic Analysis & Deployment

RE & EE Technology and System Data & Models

Geospatial Data and Analysis

Showcase Buildings

to Transform the **Future**

Integrated Analysis/ Joint Institute for Strategic Energy Analysis

Integrated Deployment

Model Sustainable Campus

Integrate

Systems Based Solutions

Thin-film PV Process Development

Wind Turbine Modeling and Testing

Cellulosic Biomass Process Dev & Testing

Renewable Systems Integration

- •Biorefineries
- •RE grid integration w/ smart grid
- Vehicles systems
- Net-zero energy buildings
- •Sustainable communities

Innovate

Renewable Energy Conversion Science and Technology

Photoconversion processes

Biomass Conversion
 processes

NREL-led Strategic Innovation Partnerships

Translational Energy Research

5

Achieving a Sustainable Energy Economy Requires a National Energy Grand Challenge*

Lead Coordinated RD3E Strategy in Sustainable Energy

Boost R&D Investment

Building a Sustainable Energy Future: U.S. Actions for an Effective Energy Economy Transformation

Support Education & Workforce Development

Promote Public Awareness & Action National Science

15

Board

* Recommendations of the National Science Board Task Force on Sustainable Energy

An Integrated Approach is Required

Need a Sustainable "System of Systems"

National Renewable Energy Laboratory

Opportunities for Low Temp Geothermal

Highly Efficient - Integrated Renewables

The Built Environment

Low Temperature Geothermal – A Suite of Opportunities

Coproduction:

- An estimated 10 barrels of water are produced per barrel of oil in North America.
- Facilities have lower cost, shorter lead time, broader geographic distribution than conventional geothermal.

Thermal Resources for Electricity:

- Distributed power systems
- Secure energy facilities (DOD, communities)
 Thermal Resources for Direct Use:
- District and building heating
- Greenhouses and aquaculture
- Tourism

Opportunity: Geothermal Heat Sinks

US Geothermal Resource

- Identified Hydrothermal Systems = 9,057 MWe
- Undiscovered
 Hydrothermal Resources
 = 30,033 MWe
- Much of this potential is for resources below 150 °C

12

Coproduction Resource: Gulf Coast

Petroleum production data indicate most of the TX-LA-MS basins host elevated temperatures and potential for significant water flow

Thousands of wells produce 250-400°F (120-200°C) water Example: Freestone County, East Texas >300°F (150°C), 11,000-13,000'

1-5 GW potential electricity production in the seven state Gulf Coast trend*

Major Unitized Fields and Operators Carthage, TX (Anadarko) Oak Hill, TX (Energen) Elm Grove, LA (Petrohawk)

* McKenna, Blackwell and Moyes, 2005, Oil and Gas Journal

Modest technical issues – modest technical challenges

Significant resource size – large potential benefits

Low Emphasis in Past – opportunities may have been overlooked

Geographically dispersed – broader availability than high temperature

Low thermodynamic efficiency – there is no cheating Carnot

Significant Business Challenge – making money has been tough

14

Applying NREL Signature Competencies to Low Temperature Geothermal

Innovate

Renewable Energy Conversion Science and Technology

computational sciences, geology and chemistry available but not effectively tapped

Geothermal Research

Identify and Pursue New Applications and **Research Thrusts**

Tools and Data Portal