
CUVIER'S BEAKED WHALE (Ziphius cavirostris): Hawaiian Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Cuvier's beaked whales occur in all oceans and major seas (Heyning 1989). In Hawaii, five strandings have been reported from Midway Islands, Pearl and Hermes Reef, Oahu, and Hawaii Islands (Shallenberger 1981; Galbreath 1963: Richards 1952: Nitta 1991; Maldini et al. 2005). Sightings have been reported off Lanai and Maui (Shallenberger 1981) and Hawaii. Ni'ihau, and Kauai (Mobley 2000, Baird et al. 2004, 2009). Four sightings were made during a 2002 shipboard survey of waters within the U.S. Exclusive Economic Zone (EEZ) of the Hawaiian islands (Figure 1; Barlow 2006). While nothing is known about stock structure, some genetic samples have been collected recently from around the island Resightings of individual of Hawaii. Cuvier's beaked whales during a 21-yr study suggests long-term site fidelity and year round occurrence off the island of Hawaii (McSweeney et al 2007). For the Marine Mammal Protection

Figure 1. Cuvier's beaked whale sighting locations during the 2002 shipboard survey of U.S. EEZ waters surrounding the Hawaiian Islands (Barlow 2006; see Appendix 2 for details on timing and location of survey effort). Outer line represents approximate boundary of survey area and U.S. EEZ.

(MMPA) stock assessment reports, Cuvier's beaked whales within the Pacific U.S. EEZ are divided into three discrete, non-contiguous areas: 1) Hawaiian waters (this report), 2) Alaskan waters, and 3) waters off California, Oregon and Washington. The Hawaiian stock includes animals found both within the Hawaiian Islands EEZ and in adjacent international waters; however, because data on abundance, distribution, and human-caused impacts are largely lacking for international waters, the status of this stock is evaluated based on data from U.S. EEZ waters of the Hawaiian Islands (NMFS 2005).

POPULATION SIZE

Wade and Gerrodette (1993) made an estimate for Cuvier's beaked whales in the eastern tropical Pacific, but it is not known whether any of these animals are part of the same population that occurs around the Hawaiian Islands. The data on which this estimate was based are now over 8 years old. Based on the photo-identification catalog for the island of Hawaii, a minimum of 35 individuals are known to occur there (McSweeney *et al.* 2007). A 2002 shipboard line-transect survey of the entire Hawaiian Islands EEZ resulted in an abundance estimate of 15,242 (CV=1.43) Cuvier's beaked whales (Barlow 2006), including a correction factor for missed diving animals. This is currently the best available abundance estimate for this stock.

Minimum Population Estimate

The log-normal 20th percentile of the 2002 abundance estimate (Barlow 2006) is 6,269 Cuvier's beaked whales within the Hawaiian Islands EEZ.

Current Population Trend

No data are available on current population trend.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

No data are available on current or maximum net productivity rate.

POTENTIAL BIOLOGICAL REMOVAL

The potential biological removal (PBR) level for this stock is calculated as the minimum population size within the U.S. EEZ of the Hawaiian Islands (6,269) times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery factor of 0.50 (for a species of unknown status with no known fishery mortality within the Hawaiian Islands EEZ; Wade and Angliss 1997), resulting in a PBR of 63 Cuvier's beaked whales per year.

HUMAN-CAUSED MORTALITY AND SERIOUS INJURYFishery Information

Information on fishery-related mortality of cetaceans in Hawaiian waters is limited, but the gear types used in Hawaiian fisheries are responsible for marine mammal mortality and serious injury in other fisheries throughout U.S. waters. Gillnets appear to capture marine mammals wherever they are used, and float lines from lobster traps and longlines can be expected to occasionally entangle cetaceans (Perrin et al. 1994).

Interactions with cetaceans are reported for all pelagic fisheries (Nitta and Henderson 1993). There are currently two distinct longline fisheries based in Hawaii: a deep-set longline (DSLL) fishery that targets primarily tunas, and a shallow-set longline fishery (SSLL) that targets swordfish. Both fisheries operate within U.S. waters and on the high seas. Between 2004 and 2008, no Cuvier's beaked whales were observed hooked or entangled in the SSLL fishery (100% observer coverage) or the DSLL fishery (20-28% observer coverage) (McCracken & Forney 2010) .However, one unidentified cetacean, which may have been a Cuvier's beaked whale, was taken in the DSLL fishery in international waters (Forney 2009).

Other Mortality

In recent years, there has been increasing concern that loud underwater sounds, such as active sonar and seismic operations, may be harmful to beaked whales (Malakoff 2002). The use of active sonar from military vessels has been implicated in mass strandings of beaked whales in the Mediterranean Sea during 1996 (Frantzis 1998), the Bahamas during 2000 (U.S. Dept. of Commerce and Secretary of the Navy 2001), and the Canary Islands 2002 (Martel 2002). Similar military active sonar operations occur around the Hawaiian islands. It has been suggested that quick ascent from deep dives in response to acoustic exposure could lead to death in beaked whales (Cox *et al.* 2006). A modeling exercise based on dive data from Blainville's, Cuvier's and northern bottlenose whales suggest that the dive habits of all three species produce tissue nitrogen saturation levels that would normally cause decompression sickness in terrestrial mammals (Hooker *et al.* 2009). The longer dives and shorter surface intervals of Cuvier's beaked whales may put them at higher risk for decompression sickness than other species, possibly increasing their susceptibility to high-intensity underwater noise (Hooker *et al.* 2009). No estimates of potential mortality or serious injury are available for U.S. waters.

STATUS OF STOCK

The status of Cuvier's beaked whales in Hawaiian waters relative to OSP is unknown, and there are insufficient data to evaluate trends in abundance. It is not listed as "threatened" or "endangered" under the Endangered Species Act (1973), nor as "depleted" under the MMPA. Because there have been no reported fishery related mortality or injuries within the Hawaiian Islands EEZ, the Hawaiian stock of Cuvier's beaked whales is not considered strategic under the 1994 amendments to the MMPA, and the total mortality and serious injury can be considered to be insignificant and approaching zero. The increasing level of anthropogenic noise in the world's oceans has been suggested to be a habitat concern for whales (Richardson et al. 1995), particularly for deep-diving whales like Cuvier's beaked whales that feed in the oceans' "sound channel".

REFERENCES

- Baird, R.W., D.J. McSweeney, A.D. Ligon and D.L. Webster. 2004. Tagging feasibility and diving of Cuvier's beaked whales (*Ziphius cavirostris*) and Blainville's beaked whales (*Mesoplodon densirostris*) in Hawai'i. Report prepared under Order No. AB133F-03-SE-0986 to the Hawai'i Wildlife Fund, Volcano, HI, from the Southwest Fisheries Science Center, National Marine Fisheries Service, La Jolla, CA, 92037 USA.
- Baird, R.W., G.S. Schorr, D.L. Webster, S.D. Mahaffy, D.J. McSweeney, M.B. Hanson, and K.D. Andrews. 2009. Movements of satellite-tagged Cuvier's and Blainville's beaked whales in Hawaii: Evidence for an offshore population of Blainville's beaked whales. Report to Southwest Fisheries Science Center, 15p.
- Barlow, J. 2006. Cetacean abundance in Hawaiian waters estimated from a summer/fall survey in 2002. Marine Mammal Science 22: 446–464.

- Cox, T.M., T.J. Ragen, A.J. Read, E. Vos, R.W. Baird, K. Balcomb, J. Barlow, J. Caldwell, T. Cranford, L. Crum, A. D'Amico, G. D'Spain, A. Fernandez, J. Finneran, R. Gentry, W. Gerth, F. Gulland, J.A. Hildebrand, D. Houser, T. Hullar, P.D. Jepson, D. Ketten, C.D. Macleod, P. Miller, S. Moore, D. Mountain, D. Palka, P. Ponganis, S. Rommel, T. Rowles, B. Taylor, P. Tyack, D. Wartzok, R. Gisiner, J. Mead, and L. Brenner. 2006. Understanding the impacts of anthropogenic sound on beaked whales. J.Cetacean Res. Manag. 7: 177-187.
- Forney, K.A. 2009. Serious injury determinations for cetaceans caught in Hawaii longline fisheries during 1994-2008. Draft document PSRG-2009-09 presented to the Pacific Scientific Review Group, November 3-5, 2009, Del Mar, CA.
- Frantzis, A. 1998. Does acoustic testing strand whales? Nature 392(5):29.
- Galbreath, E. C. 1963. Three beaked whales stranded on the Midway Islands, central Pacific Ocean. J. Mamm. 44:422-423.
- Heyning, J. E. 1989. Cuvier's beaked whale *Ziphius cavirostris* G. Cuvier, 1823. *In*: S. H. Ridgway and R. Harrison (eds.), Handbook of Marine Mammals, Vol. 4: The River Dolphins and Larger Toothed Whales, pp. 289-308. Academic Press, 442 pp.
- Hooker, S.K., R.W. Baird, F.A. Fahlman. 2009. Could beaked whales get the bends? Effect of diving behavior and physiology on modeled gas exchange for three species: *Ziphius cavirostris, Mesoplodon densirostris*, and *Hyperoodon ampulata*.. Respiration Physiology and Neurobiology 117(2009): 235-246.
- Malakoff, D. 2002. Suit ties whale deaths to research cruise. Science 298:722-723.
- Maldini, D., L. Mazzuca, and S. Atkinson. 2005. Odontocete stranding patterns in the Main Hawaiian Islands (1937-2002): How do they compare with live animal surveys? Pacific Science 59(1):55-67.
- McCracken M., and K.A. Forney. 2010. Preliminary assessment of incidental interactions with marine mammals in the Hawaii longline deep and shallow set fisheries. NMFS, Pacific Islands Fisheries Science Center Working Paper WP-10-001. 27p.
- McSweeney, D.J., R.W. Baird, and S.D. Mahaffy. 2007. Site fidelity, associations, and movements of Cuvier's (*Ziphius cavirostris*) and Blainville's (*Mesoplodon densirostris*) beaked whales off the island of Hawaii. Mar. Mamm. Sci. 23(3):666-687.
- Martel, V. M. 2002. Summary of the report on the atypical mass stranding of beaked whales in the Canary Islands in September 2002 during naval exercises. Society for the Study of the Cetaceans in the Canary Archipelago (SECAC). Unpublished report. 11p.
- Mobley, J. R., Jr, S. S. Spitz, K. A. Forney, R. A. Grotefendt, and P. H. Forestall. 2000. Distribution and abundance of odontocete species in Hawaiian waters: preliminary results of 1993-98 aerial surveys Admin. Rep. LJ-00-14C. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 26 pp.
- Nitta, E. 1991. The marine mammal stranding network for Hawaii: an overview. *In*: J.E. Reynolds III, D.K. Odell (eds.), Marine Mammal Strandings in the United States, pp.56-62. NOAA Tech. Rep. NMFS 98, 157 pp.
- Nitta, E. and J. R. Henderson. 1993. A review of interactions between Hawaii's fisheries and protected species. Mar. Fish. Rev. 55(2):83-92.
- Perrin, W.F., G. P. Donovan and J. Barlow. 1994. Gillnets and Cetaceans. Rep. Int. Whal. Commn., Special Issue 15, 629 pp.
- Richards, L. P. 1952. Cuvier's beaked whale from Hawaii. J. Mamm. 33:255.
- Richardson, W. J., C. R. Greene, Jr., C. I. Malme, and D. H. Thompson. 1995. Marine Mammals and Noise. Academic Press, San Diego. 576 p.
- Shallenberger, E. W. 1981. The status of Hawaiian cetaceans. Final report to U.S. Marine Mammal Commission. MMC-77/23, 79pp.
- U.S. Department of Commerce and Secretary of the Navy. 2001. Joint Interim Report, Bahamas Marine Mammal Stranding Event of 15_16 March 2000. Available from NOAA, NMFS, Office of Protected Resources, Silver Spring, MD.
- Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp.
- Wade, P. R. and T. Gerrodette. 1993. Estimates of cetacean abundance and distribution in the eastern tropical Pacific. Rep. Int. Whal. Commn. 43:477-493.